Warning: Permanently added '2620:52:3:1:dead:beef:cafe:c18f' (ED25519) to the list of known hosts. cmd: ['dist-git-client', 'sources'] cwd: /var/lib/copr-rpmbuild/workspace/workdir-85fzo0vo/R-CRAN-RBesT rc: 0 stdout: stderr: INFO: Reading stdout from command: git rev-parse --abbrev-ref HEAD INFO: Reading stdout from command: git rev-parse HEAD INFO: Reading sources specification file: sources INFO: Downloading RBesT_1.8-0.tar.gz INFO: Reading stdout from command: curl --help all INFO: Calling: curl -H Pragma: -o RBesT_1.8-0.tar.gz --location --connect-timeout 60 --retry 3 --retry-delay 10 --remote-time --show-error --fail --retry-all-errors https://copr-dist-git.fedorainfracloud.org/repo/pkgs/iucar/cran/R-CRAN-RBesT/RBesT_1.8-0.tar.gz/md5/76b3282e6275f271676ddc3240b7682d/RBesT_1.8-0.tar.gz % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 744k 100 744k 0 0 9.9M 0 --:--:-- --:--:-- --:--:-- 9.9M INFO: Reading stdout from command: md5sum RBesT_1.8-0.tar.gz Running (timeout=18000): unbuffer mock --spec /var/lib/copr-rpmbuild/workspace/workdir-85fzo0vo/R-CRAN-RBesT/R-CRAN-RBesT.spec --sources /var/lib/copr-rpmbuild/workspace/workdir-85fzo0vo/R-CRAN-RBesT --resultdir /var/lib/copr-rpmbuild/results --uniqueext 1736389900.755663 -r /var/lib/copr-rpmbuild/results/configs/child.cfg INFO: mock.py version 6.0 starting (python version = 3.13.0, NVR = mock-6.0-1.fc41), args: /usr/libexec/mock/mock --spec /var/lib/copr-rpmbuild/workspace/workdir-85fzo0vo/R-CRAN-RBesT/R-CRAN-RBesT.spec --sources /var/lib/copr-rpmbuild/workspace/workdir-85fzo0vo/R-CRAN-RBesT --resultdir /var/lib/copr-rpmbuild/results --uniqueext 1736389900.755663 -r /var/lib/copr-rpmbuild/results/configs/child.cfg Start: init plugins INFO: tmpfs initialized INFO: selinux enabled INFO: chroot_scan: initialized INFO: compress_logs: initialized Finish: init plugins INFO: Signal handler active Start: run INFO: Start(/var/lib/copr-rpmbuild/workspace/workdir-85fzo0vo/R-CRAN-RBesT/R-CRAN-RBesT.spec) Config(fedora-40-x86_64) Start: clean chroot Finish: clean chroot Mock Version: 6.0 INFO: Mock Version: 6.0 Start: chroot init INFO: mounting tmpfs at /var/lib/mock/fedora-40-x86_64-1736389900.755663/root. INFO: calling preinit hooks INFO: enabled root cache INFO: enabled package manager cache Start: cleaning package manager metadata Finish: cleaning package manager metadata INFO: enabled HW Info plugin INFO: Package manager dnf5 detected and used (fallback) INFO: Buildroot is handled by package management from host and used with --installroot: rpm-4.20.0-1.fc41.x86_64 rpm-sequoia-1.7.0-2.fc41.x86_64 python3-dnf-4.22.0-1.fc41.noarch python3-dnf-plugins-core-4.10.0-1.fc41.noarch dnf5-5.2.8.1-2.fc41.x86_64 dnf5-plugins-5.2.8.1-2.fc41.x86_64 Start: installing minimal buildroot with dnf5 Updating and loading repositories: updates 100% | 745.9 KiB/s | 29.1 KiB | 00m00s fedora 100% | 1.1 MiB/s | 30.1 KiB | 00m00s Copr repository 100% | 40.5 KiB/s | 1.5 KiB | 00m00s Copr repository 100% | 52.4 MiB/s | 12.4 MiB | 00m00s Repositories loaded. Package Arch Version Repository Size Installing group/module packages: bash x86_64 5.2.26-3.fc40 fedora 8.1 MiB bzip2 x86_64 1.0.8-18.fc40 fedora 91.7 KiB coreutils x86_64 9.4-9.fc40 updates 5.8 MiB cpio x86_64 2.15-1.fc40 fedora 1.1 MiB diffutils x86_64 3.10-5.fc40 fedora 1.6 MiB fedora-release-common noarch 40-40 updates 19.2 KiB findutils x86_64 1:4.9.0-9.fc40 updates 1.5 MiB gawk x86_64 5.3.0-3.fc40 fedora 1.7 MiB glibc-minimal-langpack x86_64 2.39-33.fc40 updates 0.0 B grep x86_64 3.11-7.fc40 fedora 1.0 MiB gzip x86_64 1.13-1.fc40 fedora 385.0 KiB info x86_64 7.1-2.fc40 fedora 357.8 KiB patch x86_64 2.7.6-24.fc40 fedora 262.8 KiB redhat-rpm-config noarch 288-1.fc40 updates 185.2 KiB rpm-build x86_64 4.19.1.1-1.fc40 fedora 173.7 KiB sed x86_64 4.9-1.fc40 fedora 861.5 KiB shadow-utils x86_64 2:4.15.1-4.fc40 updates 4.1 MiB tar x86_64 2:1.35-3.fc40 fedora 2.9 MiB unzip x86_64 6.0-63.fc40 fedora 382.8 KiB util-linux x86_64 2.40.2-1.fc40 updates 3.7 MiB which x86_64 2.21-41.fc40 fedora 80.2 KiB xz x86_64 1:5.4.6-3.fc40 fedora 2.0 MiB Installing dependencies: alternatives x86_64 1.27-1.fc40 updates 66.3 KiB ansible-srpm-macros noarch 1-16.fc40 updates 35.7 KiB audit-libs x86_64 4.0.2-1.fc40 updates 327.4 KiB authselect x86_64 1.5.0-6.fc40 updates 153.6 KiB authselect-libs x86_64 1.5.0-6.fc40 updates 818.2 KiB basesystem noarch 11-20.fc40 fedora 0.0 B binutils x86_64 2.41-38.fc40 updates 26.4 MiB binutils-gold x86_64 2.41-38.fc40 updates 2.0 MiB bzip2-libs x86_64 1.0.8-18.fc40 fedora 80.7 KiB ca-certificates noarch 2024.2.69_v8.0.401-1.0.fc40 updates 2.4 MiB coreutils-common x86_64 9.4-9.fc40 updates 11.4 MiB cracklib x86_64 2.9.11-5.fc40 fedora 238.9 KiB crypto-policies noarch 20241011-1.git5930b9a.fc40 updates 158.0 KiB curl x86_64 8.6.0-10.fc40 updates 738.6 KiB cyrus-sasl-lib x86_64 2.1.28-19.fc40 fedora 2.3 MiB debugedit x86_64 5.0-18.fc40 updates 199.3 KiB dwz x86_64 0.15-8.fc40 updates 294.9 KiB ed x86_64 1.20.2-1.fc40 updates 146.9 KiB efi-srpm-macros noarch 5-11.fc40 fedora 40.1 KiB elfutils x86_64 0.192-7.fc40 updates 2.7 MiB elfutils-debuginfod-client x86_64 0.192-7.fc40 updates 80.2 KiB elfutils-default-yama-scope noarch 0.192-7.fc40 updates 1.8 KiB elfutils-libelf x86_64 0.192-7.fc40 updates 1.2 MiB elfutils-libs x86_64 0.192-7.fc40 updates 670.3 KiB fedora-gpg-keys noarch 40-2 updates 124.7 KiB fedora-release noarch 40-40 updates 0.0 B fedora-release-identity-basic noarch 40-40 updates 654.0 B fedora-repos noarch 40-2 updates 4.9 KiB file x86_64 5.45-4.fc40 fedora 103.5 KiB file-libs x86_64 5.45-4.fc40 fedora 9.9 MiB filesystem x86_64 3.18-8.fc40 fedora 106.0 B fonts-srpm-macros noarch 1:2.0.5-14.fc40 fedora 55.3 KiB forge-srpm-macros noarch 0.4.0-1.fc40 updates 38.9 KiB fpc-srpm-macros noarch 1.3-12.fc40 fedora 144.0 B gdb-minimal x86_64 15.2-3.fc40 updates 13.0 MiB gdbm x86_64 1:1.23-6.fc40 fedora 460.9 KiB gdbm-libs x86_64 1:1.23-6.fc40 fedora 121.9 KiB ghc-srpm-macros noarch 1.9.1-1.fc40 updates 747.0 B glibc x86_64 2.39-33.fc40 updates 6.6 MiB glibc-common x86_64 2.39-33.fc40 updates 1.0 MiB glibc-gconv-extra x86_64 2.39-33.fc40 updates 7.8 MiB gmp x86_64 1:6.2.1-8.fc40 fedora 794.6 KiB gnat-srpm-macros noarch 6-5.fc40 fedora 1.0 KiB go-srpm-macros noarch 3.5.0-1.fc40 fedora 60.6 KiB jansson x86_64 2.13.1-9.fc40 fedora 88.3 KiB json-c x86_64 0.17-3.fc40 fedora 82.4 KiB kernel-srpm-macros noarch 1.0-23.fc40 fedora 1.9 KiB keyutils-libs x86_64 1.6.3-3.fc40 fedora 54.4 KiB krb5-libs x86_64 1.21.3-2.fc40 updates 2.3 MiB libacl x86_64 2.3.2-1.fc40 fedora 40.0 KiB libarchive x86_64 3.7.2-7.fc40 updates 922.6 KiB libattr x86_64 2.5.2-3.fc40 fedora 28.5 KiB libblkid x86_64 2.40.2-1.fc40 updates 258.6 KiB libbrotli x86_64 1.1.0-3.fc40 fedora 829.5 KiB libcap x86_64 2.69-8.fc40 updates 219.8 KiB libcap-ng x86_64 0.8.4-4.fc40 fedora 73.1 KiB libcom_err x86_64 1.47.0-5.fc40 fedora 67.2 KiB libcurl x86_64 8.6.0-10.fc40 updates 776.8 KiB libeconf x86_64 0.6.2-2.fc40 updates 58.0 KiB libevent x86_64 2.1.12-12.fc40 fedora 895.6 KiB libfdisk x86_64 2.40.2-1.fc40 updates 362.9 KiB libffi x86_64 3.4.4-7.fc40 fedora 81.6 KiB libgcc x86_64 14.2.1-3.fc40 updates 274.6 KiB libgomp x86_64 14.2.1-3.fc40 updates 523.6 KiB libidn2 x86_64 2.3.7-1.fc40 fedora 329.1 KiB libmount x86_64 2.40.2-1.fc40 updates 355.8 KiB libnghttp2 x86_64 1.59.0-3.fc40 updates 166.1 KiB libnsl2 x86_64 2.0.1-1.fc40 fedora 57.9 KiB libpkgconf x86_64 2.1.1-2.fc40 updates 74.2 KiB libpsl x86_64 0.21.5-3.fc40 fedora 80.5 KiB libpwquality x86_64 1.4.5-9.fc40 fedora 417.8 KiB libselinux x86_64 3.7-5.fc40 updates 177.0 KiB libsemanage x86_64 3.7-2.fc40 updates 293.5 KiB libsepol x86_64 3.7-2.fc40 updates 817.9 KiB libsmartcols x86_64 2.40.2-1.fc40 updates 180.4 KiB libssh x86_64 0.10.6-5.fc40 fedora 509.3 KiB libssh-config noarch 0.10.6-5.fc40 fedora 277.0 B libstdc++ x86_64 14.2.1-3.fc40 updates 2.8 MiB libtasn1 x86_64 4.19.0-6.fc40 fedora 175.7 KiB libtirpc x86_64 1.3.6-1.rc3.fc40 updates 202.7 KiB libtool-ltdl x86_64 2.4.7-10.fc40 fedora 66.2 KiB libunistring x86_64 1.1-7.fc40 fedora 1.7 MiB libutempter x86_64 1.2.1-13.fc40 fedora 57.7 KiB libuuid x86_64 2.40.2-1.fc40 updates 37.5 KiB libverto x86_64 0.3.2-8.fc40 fedora 29.5 KiB libxcrypt x86_64 4.4.37-4.fc40 updates 267.7 KiB libxml2 x86_64 2.12.9-1.fc40 updates 1.7 MiB libzstd x86_64 1.5.6-1.fc40 updates 787.9 KiB lua-libs x86_64 5.4.6-5.fc40 fedora 281.1 KiB lua-srpm-macros noarch 1-13.fc40 fedora 1.3 KiB lz4-libs x86_64 1.9.4-6.fc40 fedora 129.4 KiB mpfr x86_64 4.2.1-4.fc40 updates 832.0 KiB ncurses-base noarch 6.4-12.20240127.fc40 fedora 326.2 KiB ncurses-libs x86_64 6.4-12.20240127.fc40 fedora 963.2 KiB ocaml-srpm-macros noarch 9-3.fc40 fedora 1.9 KiB openblas-srpm-macros noarch 2-16.fc40 fedora 104.0 B openldap x86_64 2.6.8-1.fc40 updates 640.3 KiB openssl-libs x86_64 1:3.2.2-3.fc40 updates 7.8 MiB p11-kit x86_64 0.25.5-1.fc40 updates 2.2 MiB p11-kit-trust x86_64 0.25.5-1.fc40 updates 391.4 KiB package-notes-srpm-macros noarch 0.5-11.fc40 fedora 1.6 KiB pam x86_64 1.6.1-5.fc40 updates 1.8 MiB pam-libs x86_64 1.6.1-5.fc40 updates 135.0 KiB pcre2 x86_64 10.44-1.fc40 updates 653.5 KiB pcre2-syntax noarch 10.44-1.fc40 updates 251.6 KiB perl-srpm-macros noarch 1-53.fc40 fedora 861.0 B pkgconf x86_64 2.1.1-2.fc40 updates 82.9 KiB pkgconf-m4 noarch 2.1.1-2.fc40 updates 13.9 KiB pkgconf-pkg-config x86_64 2.1.1-2.fc40 updates 989.0 B popt x86_64 1.19-6.fc40 fedora 136.9 KiB publicsuffix-list-dafsa noarch 20240107-3.fc40 fedora 67.5 KiB pyproject-srpm-macros noarch 1.16.3-1.fc40 updates 1.9 KiB python-srpm-macros noarch 3.12-8.fc40 updates 50.6 KiB qt5-srpm-macros noarch 5.15.15-1.fc40 updates 500.0 B qt6-srpm-macros noarch 6.7.2-2.fc40 updates 456.0 B readline x86_64 8.2-8.fc40 fedora 489.2 KiB rpm x86_64 4.19.1.1-1.fc40 fedora 3.0 MiB rpm-build-libs x86_64 4.19.1.1-1.fc40 fedora 198.4 KiB rpm-libs x86_64 4.19.1.1-1.fc40 fedora 709.9 KiB rpm-sequoia x86_64 1.7.0-3.fc40 updates 2.4 MiB rust-srpm-macros noarch 26.3-1.fc40 updates 4.8 KiB setup noarch 2.14.5-2.fc40 fedora 720.4 KiB sqlite-libs x86_64 3.45.1-2.fc40 fedora 1.4 MiB systemd-libs x86_64 255.15-1.fc40 updates 1.9 MiB util-linux-core x86_64 2.40.2-1.fc40 updates 1.5 MiB xxhash-libs x86_64 0.8.3-1.fc40 updates 90.2 KiB xz-libs x86_64 1:5.4.6-3.fc40 fedora 209.8 KiB zig-srpm-macros noarch 1-2.fc40 fedora 1.1 KiB zip x86_64 3.0-40.fc40 fedora 703.2 KiB zlib-ng-compat x86_64 2.1.7-2.fc40 updates 134.0 KiB zstd x86_64 1.5.6-1.fc40 updates 1.7 MiB Installing groups: Buildsystem building group Transaction Summary: Installing: 153 packages Total size of inbound packages is 53 MiB. Need to download 0 B. After this operation, 179 MiB extra will be used (install 179 MiB, remove 0 B). [1/1] tar-2:1.35-3.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [1/1] Total 100% | 0.0 B/s | 0.0 B | 00m00s [1/2] bzip2-0:1.0.8-18.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [2/2] Total 100% | 0.0 B/s | 0.0 B | 00m00s [1/3] rpm-build-0:4.19.1.1-1.fc40.x86_6 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [3/3] Total 100% | 0.0 B/s | 0.0 B | 00m00s [1/4] unzip-0:6.0-63.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [4/4] Total 100% | 0.0 B/s | 0.0 B | 00m00s [1/5] cpio-0:2.15-1.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [5/5] Total 100% | 0.0 B/s | 0.0 B | 00m00s [1/6] which-0:2.21-41.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [6/6] Total 100% | 0.0 B/s | 0.0 B | 00m00s [1/7] bash-0:5.2.26-3.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [7/7] Total 100% | 0.0 B/s | 0.0 B | 00m00s [1/8] grep-0:3.11-7.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [8/8] Total 100% | 0.0 B/s | 0.0 B | 00m00s [1/9] patch-0:2.7.6-24.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [9/9] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/10] sed-0:4.9-1.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [10/10] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/11] diffutils-0:3.10-5.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [11/11] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/12] gzip-0:1.13-1.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [12/12] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/13] info-0:7.1-2.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [13/13] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/14] xz-1:5.4.6-3.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [14/14] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/15] redhat-rpm-config-0:288-1.fc40. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [15/15] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/16] coreutils-0:9.4-9.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [16/16] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/17] shadow-utils-2:4.15.1-4.fc40.x8 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [17/17] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/18] util-linux-0:2.40.2-1.fc40.x86_ 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [18/18] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/19] fedora-release-common-0:40-40.n 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [19/19] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/20] findutils-1:4.9.0-9.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [20/20] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/21] gawk-0:5.3.0-3.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [21/21] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/22] glibc-minimal-langpack-0:2.39-3 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [22/22] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/23] libacl-0:2.3.2-1.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [23/23] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/24] bzip2-libs-0:1.0.8-18.fc40.x86_ 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [24/24] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/25] file-0:5.45-4.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [25/25] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/26] popt-0:1.19-6.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [26/26] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/27] readline-0:8.2-8.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [27/27] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/28] rpm-0:4.19.1.1-1.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [28/28] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/29] rpm-build-libs-0:4.19.1.1-1.fc4 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [29/29] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/30] rpm-libs-0:4.19.1.1-1.fc40.x86_ 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [30/30] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/31] filesystem-0:3.18-8.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [31/31] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/32] ncurses-libs-0:6.4-12.20240127. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [32/32] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/33] libattr-0:2.5.2-3.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [33/33] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/34] xz-libs-1:5.4.6-3.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [34/34] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/35] efi-srpm-macros-0:5-11.fc40.noa 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [35/35] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/36] fonts-srpm-macros-1:2.0.5-14.fc 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [36/36] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/37] fpc-srpm-macros-0:1.3-12.fc40.n 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [37/37] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/38] gnat-srpm-macros-0:6-5.fc40.noa 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [38/38] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/39] go-srpm-macros-0:3.5.0-1.fc40.n 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [39/39] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/40] kernel-srpm-macros-0:1.0-23.fc4 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [40/40] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/41] lua-srpm-macros-0:1-13.fc40.noa 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [41/41] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/42] ocaml-srpm-macros-0:9-3.fc40.no 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [42/42] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/43] openblas-srpm-macros-0:2-16.fc4 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [43/43] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/44] package-notes-srpm-macros-0:0.5 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [44/44] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/45] perl-srpm-macros-0:1-53.fc40.no 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [45/45] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/46] zig-srpm-macros-0:1-2.fc40.noar 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [46/46] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/47] zip-0:3.0-40.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [47/47] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/48] coreutils-common-0:9.4-9.fc40.x 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [48/48] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/49] gmp-1:6.2.1-8.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [49/49] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/50] setup-0:2.14.5-2.fc40.noarch 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [50/50] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/51] util-linux-core-0:2.40.2-1.fc40 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [51/51] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/52] libcap-ng-0:0.8.4-4.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [52/52] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/53] libutempter-0:1.2.1-13.fc40.x86 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [53/53] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/54] glibc-common-0:2.39-33.fc40.x86 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [54/54] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/55] file-libs-0:5.45-4.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [55/55] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/56] lua-libs-0:5.4.6-5.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [56/56] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/57] sqlite-libs-0:3.45.1-2.fc40.x86 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [57/57] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/58] ncurses-base-0:6.4-12.20240127. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [58/58] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/59] glibc-0:2.39-33.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [59/59] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/60] glibc-gconv-extra-0:2.39-33.fc4 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [60/60] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/61] basesystem-0:11-20.fc40.noarch 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [61/61] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/62] libselinux-0:3.7-5.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [62/62] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/63] libsepol-0:3.7-2.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [63/63] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/64] zlib-ng-compat-0:2.1.7-2.fc40.x 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [64/64] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/65] libcap-0:2.69-8.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [65/65] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/66] libzstd-0:1.5.6-1.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [66/66] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/67] rpm-sequoia-0:1.7.0-3.fc40.x86_ 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [67/67] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/68] elfutils-libelf-0:0.192-7.fc40. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [68/68] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/69] elfutils-libs-0:0.192-7.fc40.x8 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [69/69] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/70] elfutils-0:0.192-7.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [70/70] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/71] elfutils-debuginfod-client-0:0. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [71/71] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/72] json-c-0:0.17-3.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [72/72] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/73] libgcc-0:14.2.1-3.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [73/73] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/74] libgomp-0:14.2.1-3.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [74/74] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/75] binutils-0:2.41-38.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [75/75] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/76] jansson-0:2.13.1-9.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [76/76] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/77] debugedit-0:5.0-18.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [77/77] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/78] pkgconf-pkg-config-0:2.1.1-2.fc 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [78/78] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/79] pkgconf-0:2.1.1-2.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [79/79] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/80] pkgconf-m4-0:2.1.1-2.fc40.noarc 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [80/80] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/81] libpkgconf-0:2.1.1-2.fc40.x86_6 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [81/81] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/82] zstd-0:1.5.6-1.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [82/82] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/83] lz4-libs-0:1.9.4-6.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [83/83] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/84] curl-0:8.6.0-10.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [84/84] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/85] libarchive-0:3.7.2-7.fc40.x86_6 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [85/85] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/86] ed-0:1.20.2-1.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [86/86] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/87] pcre2-0:10.44-1.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [87/87] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/88] pcre2-syntax-0:10.44-1.fc40.noa 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [88/88] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/89] forge-srpm-macros-0:0.4.0-1.fc4 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [89/89] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/90] mpfr-0:4.2.1-4.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [90/90] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/91] libstdc++-0:14.2.1-3.fc40.x86_6 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [91/91] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/92] libblkid-0:2.40.2-1.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [92/92] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/93] libuuid-0:2.40.2-1.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [93/93] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/94] libmount-0:2.40.2-1.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [94/94] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/95] libsmartcols-0:2.40.2-1.fc40.x8 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [95/95] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/96] libxcrypt-0:4.4.37-4.fc40.x86_6 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [96/96] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/97] systemd-libs-0:255.15-1.fc40.x8 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [97/97] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/98] audit-libs-0:4.0.2-1.fc40.x86_6 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [98/98] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/99] authselect-libs-0:1.5.0-6.fc40. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [99/99] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/100] libfdisk-0:2.40.2-1.fc40.x86_ 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [100/100] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/101] pam-0:1.6.1-5.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [101/101] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/102] authselect-0:1.5.0-6.fc40.x86 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [102/102] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/103] pam-libs-0:1.6.1-5.fc40.x86_6 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [103/103] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/104] gdbm-libs-1:1.23-6.fc40.x86_6 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [104/104] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/105] libnsl2-0:2.0.1-1.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [105/105] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/106] libpwquality-0:1.4.5-9.fc40.x 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [106/106] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/107] cracklib-0:2.9.11-5.fc40.x86_ 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [107/107] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/108] libeconf-0:0.6.2-2.fc40.x86_6 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [108/108] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/109] libsemanage-0:3.7-2.fc40.x86_ 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [109/109] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/110] openssl-libs-1:3.2.2-3.fc40.x 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [110/110] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/111] ansible-srpm-macros-0:1-16.fc 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [111/111] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/112] dwz-0:0.15-8.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [112/112] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/113] ghc-srpm-macros-0:1.9.1-1.fc4 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [113/113] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/114] pyproject-srpm-macros-0:1.16. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [114/114] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/115] python-srpm-macros-0:3.12-8.f 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [115/115] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/116] qt5-srpm-macros-0:5.15.15-1.f 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [116/116] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/117] qt6-srpm-macros-0:6.7.2-2.fc4 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [117/117] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/118] rust-srpm-macros-0:26.3-1.fc4 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [118/118] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/119] libtirpc-0:1.3.6-1.rc3.fc40.x 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [119/119] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/120] libcom_err-0:1.47.0-5.fc40.x8 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [120/120] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/121] gdbm-1:1.23-6.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [121/121] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/122] ca-certificates-0:2024.2.69_v 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [122/122] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/123] crypto-policies-0:20241011-1. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [123/123] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/124] krb5-libs-0:1.21.3-2.fc40.x86 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [124/124] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/125] keyutils-libs-0:1.6.3-3.fc40. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [125/125] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/126] libverto-0:0.3.2-8.fc40.x86_6 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [126/126] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/127] libxml2-0:2.12.9-1.fc40.x86_6 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [127/127] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/128] fedora-repos-0:40-2.noarch 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [128/128] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/129] fedora-gpg-keys-0:40-2.noarch 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [129/129] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/130] elfutils-default-yama-scope-0 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [130/130] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/131] p11-kit-0:0.25.5-1.fc40.x86_6 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [131/131] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/132] libffi-0:3.4.4-7.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [132/132] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/133] libtasn1-0:4.19.0-6.fc40.x86_ 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [133/133] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/134] p11-kit-trust-0:0.25.5-1.fc40 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [134/134] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/135] alternatives-0:1.27-1.fc40.x8 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [135/135] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/136] binutils-gold-0:2.41-38.fc40. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [136/136] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/137] fedora-release-0:40-40.noarch 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [137/137] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/138] gdb-minimal-0:15.2-3.fc40.x86 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [138/138] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/139] xxhash-libs-0:0.8.3-1.fc40.x8 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [139/139] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/140] fedora-release-identity-basic 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [140/140] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/141] libcurl-0:8.6.0-10.fc40.x86_6 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [141/141] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/142] libbrotli-0:1.1.0-3.fc40.x86_ 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [142/142] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/143] libidn2-0:2.3.7-1.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [143/143] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/144] libpsl-0:0.21.5-3.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [144/144] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/145] libssh-0:0.10.6-5.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [145/145] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/146] libunistring-0:1.1-7.fc40.x86 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [146/146] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/147] publicsuffix-list-dafsa-0:202 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [147/147] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/148] libssh-config-0:0.10.6-5.fc40 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [148/148] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/149] libnghttp2-0:1.59.0-3.fc40.x8 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [149/149] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/150] openldap-0:2.6.8-1.fc40.x86_6 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [150/150] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/151] cyrus-sasl-lib-0:2.1.28-19.fc 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [151/151] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/152] libevent-0:2.1.12-12.fc40.x86 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [152/152] Total 100% | 0.0 B/s | 0.0 B | 00m00s [ 1/153] libtool-ltdl-0:2.4.7-10.fc40. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded -------------------------------------------------------------------------------- [153/153] Total 100% | 0.0 B/s | 0.0 B | 00m00s Running transaction Importing OpenPGP key 0xA15B79CC: UserID : "Fedora (40) " Fingerprint: 115DF9AEF857853EE8445D0A0727707EA15B79CC From : file:///usr/share/distribution-gpg-keys/fedora/RPM-GPG-KEY-fedora-40-primary The key was successfully imported. [ 1/155] Verify package files 100% | 698.0 B/s | 153.0 B | 00m00s [ 2/155] Prepare transaction 100% | 1.8 KiB/s | 153.0 B | 00m00s [ 3/155] Installing libgcc-0:14.2.1-3. 100% | 89.9 MiB/s | 276.3 KiB | 00m00s [ 4/155] Installing crypto-policies-0: 100% | 15.5 MiB/s | 190.6 KiB | 00m00s [ 5/155] Installing libssh-config-0:0. 100% | 0.0 B/s | 816.0 B | 00m00s [ 6/155] Installing publicsuffix-list- 100% | 66.7 MiB/s | 68.3 KiB | 00m00s [ 7/155] Installing fedora-release-ide 100% | 890.6 KiB/s | 912.0 B | 00m00s [ 8/155] Installing fedora-gpg-keys-0: 100% | 18.4 MiB/s | 169.7 KiB | 00m00s [ 9/155] Installing fedora-repos-0:40- 100% | 5.6 MiB/s | 5.7 KiB | 00m00s [ 10/155] Installing fedora-release-com 100% | 11.4 MiB/s | 23.4 KiB | 00m00s [ 11/155] Installing fedora-release-0:4 100% | 0.0 B/s | 124.0 B | 00m00s [ 12/155] Installing setup-0:2.14.5-2.f 100% | 47.3 MiB/s | 725.8 KiB | 00m00s >>> [RPM] /etc/hosts created as /etc/hosts.rpmnew [ 13/155] Installing filesystem-0:3.18- 100% | 1.6 MiB/s | 212.4 KiB | 00m00s [ 14/155] Installing basesystem-0:11-20 100% | 0.0 B/s | 124.0 B | 00m00s [ 15/155] Installing rust-srpm-macros-0 100% | 0.0 B/s | 5.6 KiB | 00m00s [ 16/155] Installing qt6-srpm-macros-0: 100% | 0.0 B/s | 732.0 B | 00m00s [ 17/155] Installing qt5-srpm-macros-0: 100% | 0.0 B/s | 776.0 B | 00m00s [ 18/155] Installing ghc-srpm-macros-0: 100% | 0.0 B/s | 1.0 KiB | 00m00s [ 19/155] Installing ansible-srpm-macro 100% | 35.4 MiB/s | 36.2 KiB | 00m00s [ 20/155] Installing pcre2-syntax-0:10. 100% | 124.1 MiB/s | 254.1 KiB | 00m00s [ 21/155] Installing pkgconf-m4-0:2.1.1 100% | 14.0 MiB/s | 14.3 KiB | 00m00s [ 22/155] Installing ncurses-base-0:6.4 100% | 34.3 MiB/s | 351.6 KiB | 00m00s [ 23/155] Installing glibc-minimal-lang 100% | 0.0 B/s | 124.0 B | 00m00s [ 24/155] Installing ncurses-libs-0:6.4 100% | 135.3 MiB/s | 969.7 KiB | 00m00s warning: posix.fork(): .fork(), .exec(), .wait() and .redirect2null() are deprecated, use rpm.spawn() or rpm.execute() instead warning: posix.wait(): .fork(), .exec(), .wait() and .redirect2null() are deprecated, use rpm.spawn() or rpm.execute() instead warning: posix.exec(): .fork(), .exec(), .wait() and .redirect2null() are deprecated, use rpm.spawn() or rpm.execute() instead warning: posix.fork(): .fork(), .exec(), .wait() and .redirect2null() are deprecated, use rpm.spawn() or rpm.execute() instead warning: posix.wait(): .fork(), .exec(), .wait() and .redirect2null() are deprecated, use rpm.spawn() or rpm.execute() instead warning: posix.exec(): .fork(), .exec(), .wait() and .redirect2null() are deprecated, use rpm.spawn() or rpm.execute() instead [ 25/155] Installing glibc-0:2.39-33.fc 100% | 125.5 MiB/s | 6.6 MiB | 00m00s [ 26/155] Installing bash-0:5.2.26-3.fc 100% | 255.0 MiB/s | 8.2 MiB | 00m00s [ 27/155] Installing glibc-common-0:2.3 100% | 129.5 MiB/s | 1.0 MiB | 00m00s warning: posix.fork(): .fork(), .exec(), .wait() and .redirect2null() are deprecated, use rpm.spawn() or rpm.execute() instead warning: posix.wait(): .fork(), .exec(), .wait() and .redirect2null() are deprecated, use rpm.spawn() or rpm.execute() instead warning: posix.exec(): .fork(), .exec(), .wait() and .redirect2null() are deprecated, use rpm.spawn() or rpm.execute() instead [ 28/155] Installing glibc-gconv-extra- 100% | 123.5 MiB/s | 7.9 MiB | 00m00s [ 29/155] Installing zlib-ng-compat-0:2 100% | 131.6 MiB/s | 134.8 KiB | 00m00s [ 30/155] Installing xz-libs-1:5.4.6-3. 100% | 206.0 MiB/s | 210.9 KiB | 00m00s [ 31/155] Installing bzip2-libs-0:1.0.8 100% | 79.9 MiB/s | 81.8 KiB | 00m00s [ 32/155] Installing popt-0:1.19-6.fc40 100% | 17.5 MiB/s | 143.5 KiB | 00m00s [ 33/155] Installing readline-0:8.2-8.f 100% | 160.0 MiB/s | 491.4 KiB | 00m00s [ 34/155] Installing libzstd-0:1.5.6-1. 100% | 256.9 MiB/s | 789.2 KiB | 00m00s [ 35/155] Installing elfutils-libelf-0: 100% | 234.0 MiB/s | 1.2 MiB | 00m00s [ 36/155] Installing libstdc++-0:14.2.1 100% | 251.5 MiB/s | 2.8 MiB | 00m00s [ 37/155] Installing libuuid-0:2.40.2-1 100% | 37.7 MiB/s | 38.6 KiB | 00m00s [ 38/155] Installing libblkid-0:2.40.2- 100% | 126.8 MiB/s | 259.7 KiB | 00m00s [ 39/155] Installing libattr-0:2.5.2-3. 100% | 28.8 MiB/s | 29.5 KiB | 00m00s [ 40/155] Installing libacl-0:2.3.2-1.f 100% | 39.9 MiB/s | 40.8 KiB | 00m00s [ 41/155] Installing gmp-1:6.2.1-8.fc40 100% | 194.5 MiB/s | 796.8 KiB | 00m00s [ 42/155] Installing libxcrypt-0:4.4.37 100% | 132.1 MiB/s | 270.4 KiB | 00m00s [ 43/155] Installing lz4-libs-0:1.9.4-6 100% | 127.4 MiB/s | 130.5 KiB | 00m00s [ 44/155] Installing gdbm-libs-1:1.23-6 100% | 120.7 MiB/s | 123.6 KiB | 00m00s [ 45/155] Installing libeconf-0:0.6.2-2 100% | 58.3 MiB/s | 59.6 KiB | 00m00s [ 46/155] Installing mpfr-0:4.2.1-4.fc4 100% | 203.5 MiB/s | 833.7 KiB | 00m00s [ 47/155] Installing gawk-0:5.3.0-3.fc4 100% | 172.8 MiB/s | 1.7 MiB | 00m00s [ 48/155] Installing dwz-0:0.15-8.fc40. 100% | 144.7 MiB/s | 296.3 KiB | 00m00s [ 49/155] Installing unzip-0:6.0-63.fc4 100% | 125.8 MiB/s | 386.3 KiB | 00m00s [ 50/155] Installing file-libs-0:5.45-4 100% | 472.9 MiB/s | 9.9 MiB | 00m00s [ 51/155] Installing file-0:5.45-4.fc40 100% | 102.6 MiB/s | 105.0 KiB | 00m00s [ 52/155] Installing libcap-ng-0:0.8.4- 100% | 73.2 MiB/s | 75.0 KiB | 00m00s [ 53/155] Installing audit-libs-0:4.0.2 100% | 160.8 MiB/s | 329.3 KiB | 00m00s [ 54/155] Installing pam-libs-0:1.6.1-5 100% | 67.1 MiB/s | 137.4 KiB | 00m00s [ 55/155] Installing libcap-0:2.69-8.fc 100% | 73.2 MiB/s | 224.8 KiB | 00m00s [ 56/155] Installing systemd-libs-0:255 100% | 215.4 MiB/s | 1.9 MiB | 00m00s [ 57/155] Installing lua-libs-0:5.4.6-5 100% | 137.8 MiB/s | 282.3 KiB | 00m00s [ 58/155] Installing libsepol-0:3.7-2.f 100% | 266.5 MiB/s | 818.8 KiB | 00m00s [ 59/155] Installing jansson-0:2.13.1-9 100% | 87.6 MiB/s | 89.7 KiB | 00m00s [ 60/155] Installing pcre2-0:10.44-1.fc 100% | 213.2 MiB/s | 654.9 KiB | 00m00s [ 61/155] Installing libselinux-0:3.7-5 100% | 87.0 MiB/s | 178.3 KiB | 00m00s [ 62/155] Installing sed-0:4.9-1.fc40.x 100% | 121.3 MiB/s | 869.7 KiB | 00m00s [ 63/155] Installing grep-0:3.11-7.fc40 100% | 111.5 MiB/s | 1.0 MiB | 00m00s [ 64/155] Installing findutils-1:4.9.0- 100% | 146.6 MiB/s | 1.5 MiB | 00m00s [ 65/155] Installing xz-1:5.4.6-3.fc40. 100% | 133.5 MiB/s | 2.0 MiB | 00m00s [ 66/155] Installing libmount-0:2.40.2- 100% | 174.3 MiB/s | 356.9 KiB | 00m00s [ 67/155] Installing libsmartcols-0:2.4 100% | 177.3 MiB/s | 181.5 KiB | 00m00s [ 68/155] Installing libcom_err-0:1.47. 100% | 66.7 MiB/s | 68.3 KiB | 00m00s [ 69/155] Installing libffi-0:3.4.4-7.f 100% | 81.0 MiB/s | 83.0 KiB | 00m00s [ 70/155] Installing libtasn1-0:4.19.0- 100% | 86.7 MiB/s | 177.5 KiB | 00m00s [ 71/155] Installing p11-kit-0:0.25.5-1 100% | 147.2 MiB/s | 2.2 MiB | 00m00s [ 72/155] Installing alternatives-0:1.2 100% | 66.4 MiB/s | 68.0 KiB | 00m00s [ 73/155] Installing libunistring-0:1.1 100% | 288.5 MiB/s | 1.7 MiB | 00m00s [ 74/155] Installing libidn2-0:2.3.7-1. 100% | 65.4 MiB/s | 335.0 KiB | 00m00s [ 75/155] Installing libpsl-0:0.21.5-3. 100% | 79.7 MiB/s | 81.6 KiB | 00m00s [ 76/155] Installing p11-kit-trust-0:0. 100% | 24.0 MiB/s | 393.1 KiB | 00m00s [ 77/155] Installing util-linux-core-0: 100% | 114.3 MiB/s | 1.5 MiB | 00m00s [ 78/155] Installing tar-2:1.35-3.fc40. 100% | 210.8 MiB/s | 3.0 MiB | 00m00s [ 79/155] Installing libsemanage-0:3.7- 100% | 96.1 MiB/s | 295.2 KiB | 00m00s [ 80/155] Installing shadow-utils-2:4.1 100% | 73.2 MiB/s | 4.2 MiB | 00m00s [ 81/155] Installing libutempter-0:1.2. 100% | 29.2 MiB/s | 59.7 KiB | 00m00s [ 82/155] Installing zip-0:3.0-40.fc40. 100% | 138.1 MiB/s | 707.1 KiB | 00m00s [ 83/155] Installing gdbm-1:1.23-6.fc40 100% | 113.7 MiB/s | 465.8 KiB | 00m00s [ 84/155] Installing cyrus-sasl-lib-0:2 100% | 228.3 MiB/s | 2.3 MiB | 00m00s [ 85/155] Installing zstd-0:1.5.6-1.fc4 100% | 279.3 MiB/s | 1.7 MiB | 00m00s [ 86/155] Installing libfdisk-0:2.40.2- 100% | 177.7 MiB/s | 364.0 KiB | 00m00s [ 87/155] Installing bzip2-0:1.0.8-18.f 100% | 47.0 MiB/s | 96.2 KiB | 00m00s [ 88/155] Installing libxml2-0:2.12.9-1 100% | 244.6 MiB/s | 1.7 MiB | 00m00s [ 89/155] Installing sqlite-libs-0:3.45 100% | 233.6 MiB/s | 1.4 MiB | 00m00s [ 90/155] Installing ed-0:1.20.2-1.fc40 100% | 72.8 MiB/s | 149.2 KiB | 00m00s [ 91/155] Installing patch-0:2.7.6-24.f 100% | 129.0 MiB/s | 264.3 KiB | 00m00s [ 92/155] Installing elfutils-default-y 100% | 157.2 KiB/s | 2.0 KiB | 00m00s [ 93/155] Installing elfutils-libs-0:0. 100% | 164.1 MiB/s | 672.2 KiB | 00m00s [ 94/155] Installing cpio-0:2.15-1.fc40 100% | 137.5 MiB/s | 1.1 MiB | 00m00s [ 95/155] Installing diffutils-0:3.10-5 100% | 158.6 MiB/s | 1.6 MiB | 00m00s [ 96/155] Installing json-c-0:0.17-3.fc 100% | 81.7 MiB/s | 83.6 KiB | 00m00s [ 97/155] Installing libgomp-0:14.2.1-3 100% | 256.3 MiB/s | 525.0 KiB | 00m00s [ 98/155] Installing libpkgconf-0:2.1.1 100% | 73.5 MiB/s | 75.3 KiB | 00m00s [ 99/155] Installing pkgconf-0:2.1.1-2. 100% | 41.7 MiB/s | 85.4 KiB | 00m00s [100/155] Installing pkgconf-pkg-config 100% | 1.7 MiB/s | 1.8 KiB | 00m00s [101/155] Installing keyutils-libs-0:1. 100% | 54.5 MiB/s | 55.8 KiB | 00m00s [102/155] Installing libverto-0:0.3.2-8 100% | 30.5 MiB/s | 31.3 KiB | 00m00s [103/155] Installing xxhash-libs-0:0.8. 100% | 89.5 MiB/s | 91.6 KiB | 00m00s [104/155] Installing libbrotli-0:1.1.0- 100% | 203.1 MiB/s | 831.8 KiB | 00m00s [105/155] Installing libnghttp2-0:1.59. 100% | 163.3 MiB/s | 167.2 KiB | 00m00s [106/155] Installing libtool-ltdl-0:2.4 100% | 32.9 MiB/s | 67.3 KiB | 00m00s [107/155] Installing coreutils-common-0 100% | 249.2 MiB/s | 11.5 MiB | 00m00s [108/155] Installing openssl-libs-1:3.2 100% | 313.0 MiB/s | 7.8 MiB | 00m00s [109/155] Installing coreutils-0:9.4-9. 100% | 145.7 MiB/s | 5.8 MiB | 00m00s [110/155] Installing ca-certificates-0: 100% | 2.4 MiB/s | 2.4 MiB | 00m01s [111/155] Installing krb5-libs-0:1.21.3 100% | 164.8 MiB/s | 2.3 MiB | 00m00s [112/155] Installing libtirpc-0:1.3.6-1 100% | 99.9 MiB/s | 204.5 KiB | 00m00s [113/155] Installing gzip-0:1.13-1.fc40 100% | 76.3 MiB/s | 390.6 KiB | 00m00s [114/155] Installing authselect-libs-0: 100% | 81.4 MiB/s | 833.2 KiB | 00m00s [115/155] Installing libarchive-0:3.7.2 100% | 180.6 MiB/s | 924.5 KiB | 00m00s [116/155] Installing authselect-0:1.5.0 100% | 38.6 MiB/s | 157.9 KiB | 00m00s [117/155] Installing cracklib-0:2.9.11- 100% | 30.6 MiB/s | 250.3 KiB | 00m00s [118/155] Installing libpwquality-0:1.4 100% | 46.7 MiB/s | 430.1 KiB | 00m00s [119/155] Installing libnsl2-0:2.0.1-1. 100% | 28.8 MiB/s | 59.0 KiB | 00m00s [120/155] Installing pam-0:1.6.1-5.fc40 100% | 72.8 MiB/s | 1.8 MiB | 00m00s [121/155] Installing libssh-0:0.10.6-5. 100% | 124.8 MiB/s | 511.4 KiB | 00m00s [122/155] Installing rpm-sequoia-0:1.7. 100% | 266.0 MiB/s | 2.4 MiB | 00m00s [123/155] Installing rpm-libs-0:4.19.1. 100% | 173.7 MiB/s | 711.4 KiB | 00m00s [124/155] Installing rpm-build-libs-0:4 100% | 97.3 MiB/s | 199.2 KiB | 00m00s [125/155] Installing libevent-0:2.1.12- 100% | 175.7 MiB/s | 899.4 KiB | 00m00s [126/155] Installing openldap-0:2.6.8-1 100% | 125.8 MiB/s | 644.0 KiB | 00m00s [127/155] Installing libcurl-0:8.6.0-10 100% | 189.9 MiB/s | 777.9 KiB | 00m00s [128/155] Installing elfutils-debuginfo 100% | 26.8 MiB/s | 82.4 KiB | 00m00s [129/155] Installing binutils-0:2.41-38 100% | 259.6 MiB/s | 26.5 MiB | 00m00s [130/155] Installing binutils-gold-0:2. 100% | 93.0 MiB/s | 2.0 MiB | 00m00s [131/155] Installing elfutils-0:0.192-7 100% | 204.6 MiB/s | 2.7 MiB | 00m00s [132/155] Installing gdb-minimal-0:15.2 100% | 309.3 MiB/s | 13.0 MiB | 00m00s [133/155] Installing debugedit-0:5.0-18 100% | 65.8 MiB/s | 202.0 KiB | 00m00s [134/155] Installing curl-0:8.6.0-10.fc 100% | 31.5 MiB/s | 740.9 KiB | 00m00s [135/155] Installing rpm-0:4.19.1.1-1.f 100% | 79.9 MiB/s | 2.4 MiB | 00m00s [136/155] Installing efi-srpm-macros-0: 100% | 40.2 MiB/s | 41.2 KiB | 00m00s [137/155] Installing lua-srpm-macros-0: 100% | 1.9 MiB/s | 1.9 KiB | 00m00s [138/155] Installing zig-srpm-macros-0: 100% | 1.6 MiB/s | 1.7 KiB | 00m00s [139/155] Installing perl-srpm-macros-0 100% | 0.0 B/s | 1.1 KiB | 00m00s [140/155] Installing package-notes-srpm 100% | 2.0 MiB/s | 2.0 KiB | 00m00s [141/155] Installing openblas-srpm-macr 100% | 0.0 B/s | 384.0 B | 00m00s [142/155] Installing ocaml-srpm-macros- 100% | 0.0 B/s | 2.2 KiB | 00m00s [143/155] Installing kernel-srpm-macros 100% | 0.0 B/s | 2.3 KiB | 00m00s [144/155] Installing gnat-srpm-macros-0 100% | 0.0 B/s | 1.3 KiB | 00m00s [145/155] Installing fpc-srpm-macros-0: 100% | 0.0 B/s | 420.0 B | 00m00s [146/155] Installing fonts-srpm-macros- 100% | 55.1 MiB/s | 56.5 KiB | 00m00s [147/155] Installing go-srpm-macros-0:3 100% | 60.2 MiB/s | 61.6 KiB | 00m00s [148/155] Installing forge-srpm-macros- 100% | 39.3 MiB/s | 40.3 KiB | 00m00s [149/155] Installing python-srpm-macros 100% | 50.6 MiB/s | 51.8 KiB | 00m00s [150/155] Installing redhat-rpm-config- 100% | 46.9 MiB/s | 191.9 KiB | 00m00s [151/155] Installing rpm-build-0:4.19.1 100% | 44.4 MiB/s | 182.0 KiB | 00m00s [152/155] Installing pyproject-srpm-mac 100% | 1.2 MiB/s | 2.5 KiB | 00m00s [153/155] Installing util-linux-0:2.40. 100% | 83.3 MiB/s | 3.7 MiB | 00m00s [154/155] Installing which-0:2.21-41.fc 100% | 40.3 MiB/s | 82.4 KiB | 00m00s warning: posix.fork(): .fork(), .exec(), .wait() and .redirect2null() are deprecated, use rpm.spawn() or rpm.execute() instead warning: posix.wait(): .fork(), .exec(), .wait() and .redirect2null() are deprecated, use rpm.spawn() or rpm.execute() instead warning: posix.exec(): .fork(), .exec(), .wait() and .redirect2null() are deprecated, use rpm.spawn() or rpm.execute() instead [155/155] Installing info-0:7.1-2.fc40. 100% | 261.8 KiB/s | 358.2 KiB | 00m01s Complete! Finish: installing minimal buildroot with dnf5 Start: creating root cache Finish: creating root cache Finish: chroot init INFO: Installed packages: INFO: alternatives-1.27-1.fc40.x86_64 ansible-srpm-macros-1-16.fc40.noarch audit-libs-4.0.2-1.fc40.x86_64 authselect-1.5.0-6.fc40.x86_64 authselect-libs-1.5.0-6.fc40.x86_64 basesystem-11-20.fc40.noarch bash-5.2.26-3.fc40.x86_64 binutils-2.41-38.fc40.x86_64 binutils-gold-2.41-38.fc40.x86_64 bzip2-1.0.8-18.fc40.x86_64 bzip2-libs-1.0.8-18.fc40.x86_64 ca-certificates-2024.2.69_v8.0.401-1.0.fc40.noarch coreutils-9.4-9.fc40.x86_64 coreutils-common-9.4-9.fc40.x86_64 cpio-2.15-1.fc40.x86_64 cracklib-2.9.11-5.fc40.x86_64 crypto-policies-20241011-1.git5930b9a.fc40.noarch curl-8.6.0-10.fc40.x86_64 cyrus-sasl-lib-2.1.28-19.fc40.x86_64 debugedit-5.0-18.fc40.x86_64 diffutils-3.10-5.fc40.x86_64 dwz-0.15-8.fc40.x86_64 ed-1.20.2-1.fc40.x86_64 efi-srpm-macros-5-11.fc40.noarch elfutils-0.192-7.fc40.x86_64 elfutils-debuginfod-client-0.192-7.fc40.x86_64 elfutils-default-yama-scope-0.192-7.fc40.noarch elfutils-libelf-0.192-7.fc40.x86_64 elfutils-libs-0.192-7.fc40.x86_64 fedora-gpg-keys-40-2.noarch fedora-release-40-40.noarch fedora-release-common-40-40.noarch fedora-release-identity-basic-40-40.noarch fedora-repos-40-2.noarch file-5.45-4.fc40.x86_64 file-libs-5.45-4.fc40.x86_64 filesystem-3.18-8.fc40.x86_64 findutils-4.9.0-9.fc40.x86_64 fonts-srpm-macros-2.0.5-14.fc40.noarch forge-srpm-macros-0.4.0-1.fc40.noarch fpc-srpm-macros-1.3-12.fc40.noarch gawk-5.3.0-3.fc40.x86_64 gdb-minimal-15.2-3.fc40.x86_64 gdbm-1.23-6.fc40.x86_64 gdbm-libs-1.23-6.fc40.x86_64 ghc-srpm-macros-1.9.1-1.fc40.noarch glibc-2.39-33.fc40.x86_64 glibc-common-2.39-33.fc40.x86_64 glibc-gconv-extra-2.39-33.fc40.x86_64 glibc-minimal-langpack-2.39-33.fc40.x86_64 gmp-6.2.1-8.fc40.x86_64 gnat-srpm-macros-6-5.fc40.noarch go-srpm-macros-3.5.0-1.fc40.noarch gpg-pubkey-a15b79cc-63d04c2c grep-3.11-7.fc40.x86_64 gzip-1.13-1.fc40.x86_64 info-7.1-2.fc40.x86_64 jansson-2.13.1-9.fc40.x86_64 json-c-0.17-3.fc40.x86_64 kernel-srpm-macros-1.0-23.fc40.noarch keyutils-libs-1.6.3-3.fc40.x86_64 krb5-libs-1.21.3-2.fc40.x86_64 libacl-2.3.2-1.fc40.x86_64 libarchive-3.7.2-7.fc40.x86_64 libattr-2.5.2-3.fc40.x86_64 libblkid-2.40.2-1.fc40.x86_64 libbrotli-1.1.0-3.fc40.x86_64 libcap-2.69-8.fc40.x86_64 libcap-ng-0.8.4-4.fc40.x86_64 libcom_err-1.47.0-5.fc40.x86_64 libcurl-8.6.0-10.fc40.x86_64 libeconf-0.6.2-2.fc40.x86_64 libevent-2.1.12-12.fc40.x86_64 libfdisk-2.40.2-1.fc40.x86_64 libffi-3.4.4-7.fc40.x86_64 libgcc-14.2.1-3.fc40.x86_64 libgomp-14.2.1-3.fc40.x86_64 libidn2-2.3.7-1.fc40.x86_64 libmount-2.40.2-1.fc40.x86_64 libnghttp2-1.59.0-3.fc40.x86_64 libnsl2-2.0.1-1.fc40.x86_64 libpkgconf-2.1.1-2.fc40.x86_64 libpsl-0.21.5-3.fc40.x86_64 libpwquality-1.4.5-9.fc40.x86_64 libselinux-3.7-5.fc40.x86_64 libsemanage-3.7-2.fc40.x86_64 libsepol-3.7-2.fc40.x86_64 libsmartcols-2.40.2-1.fc40.x86_64 libssh-0.10.6-5.fc40.x86_64 libssh-config-0.10.6-5.fc40.noarch libstdc++-14.2.1-3.fc40.x86_64 libtasn1-4.19.0-6.fc40.x86_64 libtirpc-1.3.6-1.rc3.fc40.x86_64 libtool-ltdl-2.4.7-10.fc40.x86_64 libunistring-1.1-7.fc40.x86_64 libutempter-1.2.1-13.fc40.x86_64 libuuid-2.40.2-1.fc40.x86_64 libverto-0.3.2-8.fc40.x86_64 libxcrypt-4.4.37-4.fc40.x86_64 libxml2-2.12.9-1.fc40.x86_64 libzstd-1.5.6-1.fc40.x86_64 lua-libs-5.4.6-5.fc40.x86_64 lua-srpm-macros-1-13.fc40.noarch lz4-libs-1.9.4-6.fc40.x86_64 mpfr-4.2.1-4.fc40.x86_64 ncurses-base-6.4-12.20240127.fc40.noarch ncurses-libs-6.4-12.20240127.fc40.x86_64 ocaml-srpm-macros-9-3.fc40.noarch openblas-srpm-macros-2-16.fc40.noarch openldap-2.6.8-1.fc40.x86_64 openssl-libs-3.2.2-3.fc40.x86_64 p11-kit-0.25.5-1.fc40.x86_64 p11-kit-trust-0.25.5-1.fc40.x86_64 package-notes-srpm-macros-0.5-11.fc40.noarch pam-1.6.1-5.fc40.x86_64 pam-libs-1.6.1-5.fc40.x86_64 patch-2.7.6-24.fc40.x86_64 pcre2-10.44-1.fc40.x86_64 pcre2-syntax-10.44-1.fc40.noarch perl-srpm-macros-1-53.fc40.noarch pkgconf-2.1.1-2.fc40.x86_64 pkgconf-m4-2.1.1-2.fc40.noarch pkgconf-pkg-config-2.1.1-2.fc40.x86_64 popt-1.19-6.fc40.x86_64 publicsuffix-list-dafsa-20240107-3.fc40.noarch pyproject-srpm-macros-1.16.3-1.fc40.noarch python-srpm-macros-3.12-8.fc40.noarch qt5-srpm-macros-5.15.15-1.fc40.noarch qt6-srpm-macros-6.7.2-2.fc40.noarch readline-8.2-8.fc40.x86_64 redhat-rpm-config-288-1.fc40.noarch rpm-4.19.1.1-1.fc40.x86_64 rpm-build-4.19.1.1-1.fc40.x86_64 rpm-build-libs-4.19.1.1-1.fc40.x86_64 rpm-libs-4.19.1.1-1.fc40.x86_64 rpm-sequoia-1.7.0-3.fc40.x86_64 rust-srpm-macros-26.3-1.fc40.noarch sed-4.9-1.fc40.x86_64 setup-2.14.5-2.fc40.noarch shadow-utils-4.15.1-4.fc40.x86_64 sqlite-libs-3.45.1-2.fc40.x86_64 systemd-libs-255.15-1.fc40.x86_64 tar-1.35-3.fc40.x86_64 unzip-6.0-63.fc40.x86_64 util-linux-2.40.2-1.fc40.x86_64 util-linux-core-2.40.2-1.fc40.x86_64 which-2.21-41.fc40.x86_64 xxhash-libs-0.8.3-1.fc40.x86_64 xz-5.4.6-3.fc40.x86_64 xz-libs-5.4.6-3.fc40.x86_64 zig-srpm-macros-1-2.fc40.noarch zip-3.0-40.fc40.x86_64 zlib-ng-compat-2.1.7-2.fc40.x86_64 zstd-1.5.6-1.fc40.x86_64 Start: buildsrpm Start: rpmbuild -bs warning: source_date_epoch_from_changelog set but %changelog is missing Building target platforms: x86_64 Building for target x86_64 Wrote: /builddir/build/SRPMS/R-CRAN-RBesT-1.8.0-1.fc40.copr8491729.src.rpm RPM build warnings: source_date_epoch_from_changelog set but %changelog is missing Finish: rpmbuild -bs INFO: chroot_scan: 1 files copied to /var/lib/copr-rpmbuild/results/chroot_scan INFO: /var/lib/mock/fedora-40-x86_64-1736389900.755663/root/var/log/dnf5.log INFO: chroot_scan: creating tarball /var/lib/copr-rpmbuild/results/chroot_scan.tar.gz /bin/tar: Removing leading `/' from member names Finish: buildsrpm INFO: Done(/var/lib/copr-rpmbuild/workspace/workdir-85fzo0vo/R-CRAN-RBesT/R-CRAN-RBesT.spec) Config(child) 0 minutes 13 seconds INFO: Results and/or logs in: /var/lib/copr-rpmbuild/results INFO: Cleaning up build root ('cleanup_on_success=True') Start: clean chroot INFO: unmounting tmpfs. Finish: clean chroot INFO: Start(/var/lib/copr-rpmbuild/results/R-CRAN-RBesT-1.8.0-1.fc40.copr8491729.src.rpm) Config(fedora-40-x86_64) Start: chroot init INFO: mounting tmpfs at /var/lib/mock/fedora-40-x86_64-1736389900.755663/root. INFO: calling preinit hooks INFO: enabled root cache Start: unpacking root cache Finish: unpacking root cache INFO: enabled package manager cache Start: cleaning package manager metadata Finish: cleaning package manager metadata INFO: enabled HW Info plugin INFO: Buildroot is handled by package management from host and used with --installroot: rpm-4.20.0-1.fc41.x86_64 rpm-sequoia-1.7.0-2.fc41.x86_64 python3-dnf-4.22.0-1.fc41.noarch python3-dnf-plugins-core-4.10.0-1.fc41.noarch dnf5-5.2.8.1-2.fc41.x86_64 dnf5-plugins-5.2.8.1-2.fc41.x86_64 Finish: chroot init Start: build phase for R-CRAN-RBesT-1.8.0-1.fc40.copr8491729.src.rpm Start: build setup for R-CRAN-RBesT-1.8.0-1.fc40.copr8491729.src.rpm warning: source_date_epoch_from_changelog set but %changelog is missing Building target platforms: x86_64 Building for target x86_64 Wrote: /builddir/build/SRPMS/R-CRAN-RBesT-1.8.0-1.fc40.copr8491729.src.rpm RPM build warnings: source_date_epoch_from_changelog set but %changelog is missing Updating and loading repositories: fedora 100% | 1.0 MiB/s | 30.1 KiB | 00m00s updates 100% | 1.1 MiB/s | 29.1 KiB | 00m00s Copr repository 100% | 46.6 KiB/s | 1.5 KiB | 00m00s Copr repository 100% | 54.2 MiB/s | 12.4 MiB | 00m00s Repositories loaded. Package Arch Version Repository Size Installing: R-CRAN-BH noarch 1.87.0.1-1.fc40.copr8405681 copr_base 122.2 MiB R-CRAN-Formula noarch 1.2.5-1.fc40.copr7350002 copr_base 205.4 KiB R-CRAN-Rcpp x86_64 1.0.13.1-1.fc40.copr8204071 copr_base 8.4 MiB R-CRAN-RcppEigen x86_64 0.3.4.0.2-1.fc40.copr8100507 copr_base 9.0 MiB R-CRAN-RcppParallel x86_64 5.1.9-1.fc40.copr7936852 copr_base 1.5 MiB R-CRAN-StanHeaders x86_64 2.32.10-1.fc40.copr7736967 copr_base 9.7 MiB R-CRAN-abind noarch 1.4.8-1.fc40.copr8016475 copr_base 96.0 KiB R-CRAN-assertthat noarch 0.2.1-3.fc40.copr7349935 copr_base 86.3 KiB R-CRAN-bayesplot noarch 1.11.1-1.fc40.copr7364930 copr_base 6.7 MiB R-CRAN-checkmate x86_64 2.3.2-1.fc40.copr7803006 copr_base 1.4 MiB R-CRAN-dplyr x86_64 1.1.4-1.fc40.copr7361225 copr_base 2.6 MiB R-CRAN-ggplot2 noarch 3.5.1-1.fc40.copr7361224 copr_base 7.1 MiB R-CRAN-matrixStats x86_64 1.5.0-1.fc40.copr8483412 copr_base 1.0 MiB R-CRAN-mvtnorm x86_64 1.3.2-1.fc40.copr8210719 copr_base 1.4 MiB R-CRAN-rlang x86_64 1.1.4-1.fc40.copr7531082 copr_base 2.6 MiB R-CRAN-rstan x86_64 2.32.6-1.fc40.copr7480261 copr_base 6.0 MiB R-CRAN-rstantools noarch 2.4.0-1.fc40.copr7356058 copr_base 304.0 KiB R-core x86_64 4.4.2-1.fc40 updates 101.7 MiB R-devel x86_64 4.4.2-1.fc40 updates 0.0 B Installing dependencies: R-CRAN-MASS x86_64 7.3.64-1.fc40.copr8471837 copr_base 1.8 MiB R-CRAN-Matrix x86_64 1.7.1-1.fc40.copr8157422 copr_base 8.2 MiB R-CRAN-QuickJSR x86_64 1.4.0-1.fc40.copr8099908 copr_base 3.0 MiB R-CRAN-R6 noarch 2.5.1-1.fc40.copr7349938 copr_base 115.9 KiB R-CRAN-RColorBrewer noarch 1.1.3-1.fc40.copr7349948 copr_base 63.6 KiB R-CRAN-backports x86_64 1.5.0-1.fc40.copr7483453 copr_base 211.8 KiB R-CRAN-callr noarch 3.7.6-1.fc40.copr7356069 copr_base 711.7 KiB R-CRAN-cli x86_64 3.6.3-1.fc40.copr7649835 copr_base 2.4 MiB R-CRAN-colorspace x86_64 2.1.1-1.fc40.copr7795131 copr_base 4.0 MiB R-CRAN-desc noarch 1.4.3-1.fc40.copr7353609 copr_base 514.2 KiB R-CRAN-distributional noarch 0.5.0-1.fc40.copr8029419 copr_base 721.5 KiB R-CRAN-fansi x86_64 1.0.6-1.fc40.copr7349952 copr_base 625.8 KiB R-CRAN-farver x86_64 2.1.2-1.fc40.copr7442181 copr_base 2.1 MiB R-CRAN-generics noarch 0.1.3-1.fc40.copr7350006 copr_base 160.2 KiB R-CRAN-ggridges noarch 0.5.6-1.fc40.copr7362419 copr_base 3.0 MiB R-CRAN-glue x86_64 1.8.0-1.fc40.copr8094211 copr_base 344.8 KiB R-CRAN-gridExtra noarch 2.3-3.fc40.copr7357925 copr_base 1.6 MiB R-CRAN-gtable noarch 0.3.6-1.fc40.copr8178682 copr_base 337.3 KiB R-CRAN-inline noarch 0.3.20-1.fc40.copr8240085 copr_base 216.4 KiB R-CRAN-isoband x86_64 0.2.7-1.fc40.copr7351195 copr_base 1.9 MiB R-CRAN-labeling noarch 0.4.3-1.fc40.copr7349947 copr_base 92.7 KiB R-CRAN-lattice x86_64 0.22.6-1.fc40.copr7352639 copr_base 2.0 MiB R-CRAN-lifecycle noarch 1.0.4-1.fc40.copr7354340 copr_base 282.7 KiB R-CRAN-loo noarch 2.8.0-1.fc40.copr7705984 copr_base 2.7 MiB R-CRAN-magrittr x86_64 2.0.3-1.fc40.copr7349936 copr_base 417.3 KiB R-CRAN-mgcv x86_64 1.9.1-1.fc40.copr7357272 copr_base 4.5 MiB R-CRAN-munsell noarch 0.5.1-1.fc40.copr7353599 copr_base 379.0 KiB R-CRAN-nlme x86_64 3.1.166-1.fc40.copr7936970 copr_base 3.8 MiB R-CRAN-numDeriv noarch 2016.8.1.1-3.fc40.copr7350037 copr_base 151.0 KiB R-CRAN-pillar noarch 1.10.1-1.fc40.copr8483421 copr_base 1.4 MiB R-CRAN-pkgbuild noarch 1.4.5-1.fc40.copr8184949 copr_base 261.2 KiB R-CRAN-pkgconfig noarch 2.0.3-3.fc40.copr7349937 copr_base 34.0 KiB R-CRAN-plyr x86_64 1.8.9-1.fc40.copr7353597 copr_base 1.1 MiB R-CRAN-posterior noarch 1.6.0-1.fc40.copr7705971 copr_base 1.7 MiB R-CRAN-processx x86_64 3.8.5-1.fc40.copr8491723 copr_base 552.1 KiB R-CRAN-ps x86_64 1.8.1-1.fc40.copr8184952 copr_base 692.8 KiB R-CRAN-reshape2 x86_64 1.4.4-3.fc40.copr7359520 copr_base 215.1 KiB R-CRAN-scales noarch 1.3.0-1.fc40.copr7356067 copr_base 1.1 MiB R-CRAN-stringi x86_64 1.8.4-1.fc40.copr7422034 copr_base 2.0 MiB R-CRAN-stringr noarch 1.5.1-1.fc40.copr7357924 copr_base 646.8 KiB R-CRAN-tensorA x86_64 0.36.2.1-1.fc40.copr7350295 copr_base 381.7 KiB R-CRAN-tibble x86_64 3.2.1-1.fc40.copr7359525 copr_base 1.7 MiB R-CRAN-tidyselect noarch 1.2.1-1.fc40.copr7357928 copr_base 433.3 KiB R-CRAN-utf8 x86_64 1.2.4-1.fc40.copr7349954 copr_base 470.9 KiB R-CRAN-vctrs x86_64 0.6.5-1.fc40.copr7356070 copr_base 2.3 MiB R-CRAN-viridisLite noarch 0.4.2-1.fc40.copr7349928 copr_base 1.3 MiB R-CRAN-withr noarch 3.0.2-1.fc40.copr8184963 copr_base 395.1 KiB R-core-devel x86_64 4.4.2-1.fc40 updates 395.8 KiB R-java x86_64 4.4.2-1.fc40 updates 0.0 B R-java-devel x86_64 4.4.2-1.fc40 updates 0.0 B R-littler x86_64 0.3.19-4.fc40 updates 157.9 KiB R-rpm-macros noarch 1.2.1-10.fc40 updates 5.6 KiB abattis-cantarell-vf-fonts noarch 0.301-12.fc40 fedora 192.7 KiB alsa-lib x86_64 1.2.13-3.fc40 updates 1.4 MiB annobin-docs noarch 12.60-1.fc40 updates 96.2 KiB annobin-plugin-gcc x86_64 12.60-1.fc40 updates 976.2 KiB avahi-libs x86_64 0.8-26.fc40 fedora 166.3 KiB brotli x86_64 1.1.0-3.fc40 fedora 31.8 KiB brotli-devel x86_64 1.1.0-3.fc40 fedora 65.6 KiB bzip2-devel x86_64 1.0.8-18.fc40 fedora 309.8 KiB cairo x86_64 1.18.0-3.fc40 fedora 1.7 MiB cairo-devel x86_64 1.18.0-3.fc40 fedora 2.3 MiB cmake-filesystem x86_64 3.30.5-1.fc40 updates 0.0 B copy-jdk-configs noarch 4.1-5.fc40 fedora 20.3 KiB cpp x86_64 14.2.1-3.fc40 updates 35.0 MiB crypto-policies-scripts noarch 20241011-1.git5930b9a.fc40 updates 353.5 KiB cups-filesystem noarch 1:2.4.11-8.fc40 updates 0.0 B cups-libs x86_64 1:2.4.11-8.fc40 updates 622.9 KiB dbus-libs x86_64 1:1.14.10-3.fc40 fedora 368.9 KiB default-fonts-core-sans noarch 4.0-13.fc40 updates 11.9 KiB desktop-file-utils x86_64 0.26-12.fc40 fedora 226.0 KiB emacs-filesystem noarch 1:29.4-9.fc40 updates 0.0 B expat x86_64 2.6.3-1.fc40 updates 287.5 KiB flexiblas x86_64 3.4.4-1.fc40 updates 48.5 KiB flexiblas-devel x86_64 3.4.4-1.fc40 updates 4.7 MiB flexiblas-netlib x86_64 3.4.4-1.fc40 updates 10.6 MiB flexiblas-netlib64 x86_64 3.4.4-1.fc40 updates 10.7 MiB flexiblas-openblas-openmp x86_64 3.4.4-1.fc40 updates 39.3 KiB flexiblas-openblas-openmp64 x86_64 3.4.4-1.fc40 updates 39.3 KiB fontconfig x86_64 2.15.0-6.fc40 updates 768.0 KiB fontconfig-devel x86_64 2.15.0-6.fc40 updates 117.2 KiB fonts-filesystem noarch 1:2.0.5-14.fc40 fedora 0.0 B freetype x86_64 2.13.2-5.fc40 fedora 842.6 KiB freetype-devel x86_64 2.13.2-5.fc40 fedora 7.8 MiB fribidi x86_64 1.0.14-2.fc40 updates 367.6 KiB gc x86_64 8.2.2-6.fc40 fedora 258.7 KiB gcc x86_64 14.2.1-3.fc40 updates 104.3 MiB gcc-c++ x86_64 14.2.1-3.fc40 updates 38.2 MiB gcc-gfortran x86_64 14.2.1-3.fc40 updates 37.2 MiB gcc-plugin-annobin x86_64 14.2.1-3.fc40 updates 57.1 KiB gettext x86_64 0.22.5-4.fc40 updates 5.2 MiB gettext-envsubst x86_64 0.22.5-4.fc40 updates 74.9 KiB gettext-libs x86_64 0.22.5-4.fc40 updates 1.7 MiB gettext-runtime x86_64 0.22.5-4.fc40 updates 481.3 KiB glib2 x86_64 2.80.3-1.fc40 updates 14.6 MiB glib2-devel x86_64 2.80.3-1.fc40 updates 15.6 MiB glibc-devel x86_64 2.39-33.fc40 updates 2.2 MiB gnutls x86_64 3.8.6-1.fc40 updates 3.2 MiB google-noto-fonts-common noarch 20240301-2.fc40 fedora 17.5 KiB google-noto-sans-vf-fonts noarch 20240301-2.fc40 fedora 1.2 MiB graphite2 x86_64 1.3.14-15.fc40 fedora 192.0 KiB graphite2-devel x86_64 1.3.14-15.fc40 fedora 49.1 KiB guile30 x86_64 3.0.7-12.fc40 fedora 51.5 MiB harfbuzz x86_64 8.5.0-1.fc40 updates 2.7 MiB harfbuzz-devel x86_64 8.5.0-1.fc40 updates 5.1 MiB harfbuzz-icu x86_64 8.5.0-1.fc40 updates 15.5 KiB hwloc-libs x86_64 2.11.1-1.fc40 updates 2.8 MiB java-21-openjdk x86_64 1:21.0.5.0.11-1.fc40 updates 1.1 MiB java-21-openjdk-devel x86_64 1:21.0.5.0.11-1.fc40 updates 11.2 MiB java-21-openjdk-headless x86_64 1:21.0.5.0.11-1.fc40 updates 203.9 MiB javapackages-filesystem noarch 6.2.0-9.fc40 fedora 1.9 KiB jbigkit-libs x86_64 2.1-29.fc40 fedora 117.6 KiB kernel-headers x86_64 6.12.4-100.fc40 updates 6.4 MiB less x86_64 643-6.fc40 updates 372.6 KiB libICE x86_64 1.1.1-3.fc40 fedora 181.2 KiB libRmath x86_64 4.4.2-1.fc40 updates 246.8 KiB libRmath-devel x86_64 4.4.2-1.fc40 updates 17.4 KiB libSM x86_64 1.2.4-3.fc40 fedora 97.3 KiB libX11 x86_64 1.8.10-2.fc40 updates 1.3 MiB libX11-common noarch 1.8.10-2.fc40 updates 1.1 MiB libX11-devel x86_64 1.8.10-2.fc40 updates 1.0 MiB libX11-xcb x86_64 1.8.10-2.fc40 updates 15.0 KiB libXau x86_64 1.0.11-6.fc40 fedora 66.9 KiB libXau-devel x86_64 1.0.11-6.fc40 fedora 6.4 KiB libXcomposite x86_64 0.4.6-3.fc40 fedora 44.5 KiB libXext x86_64 1.3.6-1.fc40 fedora 90.1 KiB libXext-devel x86_64 1.3.6-1.fc40 fedora 98.9 KiB libXft x86_64 2.3.8-6.fc40 fedora 164.5 KiB libXft-devel x86_64 2.3.8-6.fc40 fedora 31.7 KiB libXi x86_64 1.8.2-1.fc40 updates 80.7 KiB libXmu x86_64 1.2.1-1.fc40 updates 187.5 KiB libXrender x86_64 0.9.11-6.fc40 fedora 50.1 KiB libXrender-devel x86_64 0.9.11-6.fc40 fedora 50.1 KiB libXt x86_64 1.3.0-3.fc40 fedora 425.9 KiB libXtst x86_64 1.2.5-1.fc40 updates 33.6 KiB libb2 x86_64 0.98.1-11.fc40 fedora 42.2 KiB libblkid-devel x86_64 2.40.2-1.fc40 updates 44.9 KiB libdatrie x86_64 0.2.13-9.fc40 fedora 57.9 KiB libdeflate x86_64 1.23-1.fc40 updates 118.8 KiB libdeflate-devel x86_64 1.23-1.fc40 updates 25.9 KiB libffi-devel x86_64 3.4.4-7.fc40 fedora 33.3 KiB libfontenc x86_64 1.1.7-3.fc40 fedora 65.0 KiB libgfortran x86_64 14.2.1-3.fc40 updates 3.0 MiB libicu x86_64 74.2-1.fc40 fedora 34.9 MiB libicu-devel x86_64 74.2-1.fc40 fedora 5.6 MiB libjpeg-turbo x86_64 3.0.2-1.fc40 fedora 776.9 KiB liblerc x86_64 4.0.0-6.fc40 fedora 603.5 KiB libmount-devel x86_64 2.40.2-1.fc40 updates 63.5 KiB libmpc x86_64 1.3.1-5.fc40 fedora 164.7 KiB libpng x86_64 2:1.6.40-3.fc40 fedora 241.8 KiB libpng-devel x86_64 2:1.6.40-3.fc40 fedora 881.5 KiB libquadmath x86_64 14.2.1-3.fc40 updates 325.9 KiB libquadmath-devel x86_64 14.2.1-3.fc40 updates 21.9 KiB libselinux-devel x86_64 3.7-5.fc40 updates 126.4 KiB libsepol-devel x86_64 3.7-2.fc40 updates 120.3 KiB libstdc++-devel x86_64 14.2.1-3.fc40 updates 15.4 MiB libtextstyle x86_64 0.22.5-4.fc40 updates 195.6 KiB libthai x86_64 0.1.29-8.fc40 fedora 783.5 KiB libtiff x86_64 4.6.0-5.fc40.1 updates 1.1 MiB libtirpc-devel x86_64 1.3.6-1.rc3.fc40 updates 251.6 KiB libwebp x86_64 1.5.0-1.fc40 updates 820.0 KiB libxcb x86_64 1.17.0-2.fc40 updates 1.1 MiB libxcb-devel x86_64 1.17.0-2.fc40 updates 2.7 MiB libxcrypt-devel x86_64 4.4.37-4.fc40 updates 30.5 KiB libxml2-devel x86_64 2.12.9-1.fc40 updates 3.4 MiB lksctp-tools x86_64 1.0.19-6.fc40 fedora 269.6 KiB lua x86_64 5.4.6-5.fc40 fedora 597.8 KiB lua-posix x86_64 36.2.1-6.fc40 fedora 599.7 KiB make x86_64 1:4.4.1-6.fc40 fedora 1.8 MiB mkfontscale x86_64 1.2.2-6.fc40 fedora 49.2 KiB mpdecimal x86_64 2.5.1-9.fc40 fedora 200.9 KiB nettle x86_64 3.9.1-6.fc40 fedora 790.1 KiB nspr x86_64 4.36.0-2.fc40 updates 316.4 KiB nss x86_64 3.107.0-1.fc40 updates 1.9 MiB nss-softokn x86_64 3.107.0-1.fc40 updates 1.9 MiB nss-softokn-freebl x86_64 3.107.0-1.fc40 updates 869.2 KiB nss-sysinit x86_64 3.107.0-1.fc40 updates 18.2 KiB nss-util x86_64 3.107.0-1.fc40 updates 230.2 KiB openblas x86_64 0.3.26-4.fc40 fedora 96.0 KiB openblas-openmp x86_64 0.3.26-4.fc40 fedora 38.9 MiB openblas-openmp64 x86_64 0.3.26-4.fc40 fedora 39.1 MiB pango x86_64 1.54.0-1.fc40 updates 996.2 KiB pcre2-devel x86_64 10.44-1.fc40 updates 2.0 MiB pcre2-utf16 x86_64 10.44-1.fc40 updates 590.0 KiB pcre2-utf32 x86_64 10.44-1.fc40 updates 562.0 KiB pixman x86_64 0.43.4-1.fc40 updates 710.1 KiB pixman-devel x86_64 0.43.4-1.fc40 updates 49.4 KiB python-pip-wheel noarch 23.3.2-2.fc40 updates 1.5 MiB python3 x86_64 3.12.8-2.fc40 updates 31.5 KiB python3-libs x86_64 3.12.8-2.fc40 updates 41.3 MiB python3-packaging noarch 23.2-4.fc40 fedora 421.1 KiB sysprof-capture-devel x86_64 46.0-1.fc40 fedora 252.8 KiB tbb x86_64 2021.11.0-5.fc40 fedora 440.9 KiB tbb-bind x86_64 2021.11.0-5.fc40 fedora 23.7 KiB tbb-devel x86_64 2021.11.0-5.fc40 fedora 1.3 MiB tcl x86_64 1:8.6.13-3.fc40 updates 4.2 MiB tcl-devel x86_64 1:8.6.13-3.fc40 updates 808.9 KiB tk x86_64 1:8.6.13-3.fc40 fedora 3.6 MiB tk-devel x86_64 1:8.6.13-3.fc40 fedora 983.9 KiB tre x86_64 0.8.0-43.20140228gitc2f5d13.fc40 fedora 75.9 KiB tre-common noarch 0.8.0-43.20140228gitc2f5d13.fc40 fedora 81.0 KiB tre-devel x86_64 0.8.0-43.20140228gitc2f5d13.fc40 fedora 10.7 KiB ttmkfdir x86_64 3.0.9-70.fc40 fedora 122.7 KiB tzdata noarch 2024a-5.fc40 updates 1.6 MiB tzdata-java noarch 2024a-5.fc40 updates 101.7 KiB xdg-utils noarch 1.2.1-1.fc40 fedora 346.3 KiB xml-common noarch 0.6.3-63.fc40 fedora 78.4 KiB xorg-x11-fonts-Type1 noarch 7.5-38.fc40 fedora 863.3 KiB xorg-x11-proto-devel noarch 2024.1-2.fc40 updates 1.7 MiB xz-devel x86_64 1:5.4.6-3.fc40 fedora 255.8 KiB zlib-ng-compat-devel x86_64 2.1.7-2.fc40 updates 106.8 KiB Transaction Summary: Installing: 230 packages Total size of inbound packages is 354 MiB. Need to download 34 MiB. After this operation, 1 GiB extra will be used (install 1 GiB, remove 0 B). [1/2] R-CRAN-Formula-0:1.2.5-1.fc40.cop 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [2/3] R-CRAN-Rcpp-0:1.0.13.1-1.fc40.cop 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [3/7] R-CRAN-abind-0:1.4.8-1.fc40.copr8 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 4/11] R-CRAN-dplyr-0:1.1.4-1.fc40.cop 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 5/12] R-CRAN-ggplot2-0:3.5.1-1.fc40.c 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 6/13] R-CRAN-mvtnorm-0:1.3.2-1.fc40.c 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 7/14] R-CRAN-rlang-0:1.1.4-1.fc40.cop 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 8/18] R-devel-0:4.4.2-1.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 9/19] R-core-0:4.4.2-1.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [10/22] R-CRAN-glue-0:1.8.0-1.fc40.copr 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [11/25] R-CRAN-tibble-0:3.2.1-1.fc40.co 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [12/26] R-CRAN-tidyselect-0:1.2.1-1.fc4 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [13/27] R-CRAN-backports-0:1.5.0-1.fc40 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [14/28] R-CRAN-R6-0:2.5.1-1.fc40.copr73 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [15/29] R-CRAN-cli-0:3.6.3-1.fc40.copr7 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [16/30] R-CRAN-generics-0:0.1.3-1.fc40. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [17/31] R-CRAN-lifecycle-0:1.0.4-1.fc40 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [18/32] R-CRAN-magrittr-0:2.0.3-1.fc40. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [19/33] R-CRAN-vctrs-0:0.6.5-1.fc40.cop 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [20/34] R-CRAN-gtable-0:0.3.6-1.fc40.co 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [21/35] R-CRAN-isoband-0:0.2.7-1.fc40.c 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [22/36] R-CRAN-mgcv-0:1.9.1-1.fc40.copr 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [23/37] R-CRAN-scales-0:1.3.0-1.fc40.co 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [24/38] R-CRAN-withr-0:3.0.2-1.fc40.cop 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [25/45] R-core-devel-0:4.4.2-1.fc40.x86 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [26/46] R-java-devel-0:4.4.2-1.fc40.x86 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [27/47] cairo-0:1.18.0-3.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [28/48] libXt-0:1.3.0-3.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [29/49] libicu-0:74.2-1.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [30/50] libjpeg-turbo-0:3.0.2-1.fc40.x8 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [31/51] libpng-2:1.6.40-3.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [32/52] tk-1:8.6.13-3.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [33/53] tre-0:0.8.0-43.20140228gitc2f5d 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [34/54] xdg-utils-0:1.2.1-1.fc40.noarch 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [35/55] libRmath-0:4.4.2-1.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [36/58] R-CRAN-plyr-0:1.8.9-1.fc40.copr 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [37/59] R-CRAN-stringr-0:1.5.1-1.fc40.c 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [38/60] R-CRAN-fansi-0:1.0.6-1.fc40.cop 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [39/61] R-CRAN-pkgconfig-0:2.0.3-3.fc40 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [40/62] R-CRAN-Matrix-0:1.7.1-1.fc40.co 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [41/63] R-CRAN-nlme-0:3.1.166-1.fc40.co 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [42/64] R-CRAN-RColorBrewer-0:1.1.3-1.f 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [43/65] R-CRAN-farver-0:2.1.2-1.fc40.co 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [44/66] R-CRAN-labeling-0:0.4.3-1.fc40. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [45/67] R-CRAN-munsell-0:0.5.1-1.fc40.c 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [46/68] R-CRAN-viridisLite-0:0.4.2-1.fc 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [47/70] make-1:4.4.1-6.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [48/71] libRmath-devel-0:4.4.2-1.fc40.x 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [49/72] R-java-0:4.4.2-1.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [50/73] freetype-0:2.13.2-5.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [51/74] libXext-0:1.3.6-1.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [52/75] libXrender-0:0.9.11-6.fc40.x86_ 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [53/76] libICE-0:1.1.1-3.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [54/77] libSM-0:1.2.4-3.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [55/78] libXft-0:2.3.8-6.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [56/79] tre-common-0:0.8.0-43.20140228g 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [57/80] desktop-file-utils-0:0.26-12.fc 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [58/81] R-CRAN-numDeriv-0:2016.8.1.1-3. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [59/82] R-CRAN-stringi-0:1.8.4-1.fc40.c 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [60/83] R-CRAN-lattice-0:0.22.6-1.fc40. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [61/84] R-CRAN-colorspace-0:2.1.1-1.fc4 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [62/85] guile30-0:3.0.7-12.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [63/86] gc-0:8.2.2-6.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [64/87] R-littler-0:0.3.19-4.fc40.x86_6 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [65/88] R-CRAN-pillar-0:1.10.1-1.fc40.c 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [66/89] R-CRAN-utf8-0:1.2.4-1.fc40.copr 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [67/92] flexiblas-netlib-0:3.4.4-1.fc40 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [68/93] flexiblas-0:3.4.4-1.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [69/94] flexiblas-openblas-openmp-0:3.4 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [70/95] openblas-openmp-0:0.3.26-4.fc40 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [71/96] R-CRAN-MASS-0:7.3.64-1.fc40.cop 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [72/99] libgfortran-0:14.2.1-3.fc40.x86 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 73/100] libquadmath-0:14.2.1-3.fc40.x 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 74/101] java-21-openjdk-devel-1:21.0. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 75/102] java-21-openjdk-1:21.0.5.0.11 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 76/103] libXcomposite-0:0.4.6-3.fc40. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 77/104] xorg-x11-fonts-Type1-0:7.5-38 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 78/105] java-21-openjdk-headless-1:21 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 79/106] mkfontscale-0:1.2.2-6.fc40.x8 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 80/107] ttmkfdir-0:3.0.9-70.fc40.x86_ 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 81/108] copy-jdk-configs-0:4.1-5.fc40 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 82/109] javapackages-filesystem-0:6.2 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 83/110] lksctp-tools-0:1.0.19-6.fc40. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 84/111] libfontenc-0:1.1.7-3.fc40.x86 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 85/112] lua-posix-0:36.2.1-6.fc40.x86 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 86/113] R-rpm-macros-0:1.2.1-10.fc40. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 87/114] bzip2-devel-0:1.0.8-18.fc40.x 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 88/115] flexiblas-devel-0:3.4.4-1.fc4 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 89/116] flexiblas-netlib64-0:3.4.4-1. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 90/117] flexiblas-openblas-openmp64-0 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 91/118] openblas-openmp64-0:0.3.26-4. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 92/119] gcc-c++-0:14.2.1-3.fc40.x86_6 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 93/120] libmpc-0:1.3.1-5.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 94/121] gcc-0:14.2.1-3.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 95/122] cpp-0:14.2.1-3.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 96/123] gcc-gfortran-0:14.2.1-3.fc40. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 97/124] libX11-devel-0:1.8.10-2.fc40. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 98/125] libdeflate-devel-0:1.23-1.fc4 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [ 99/126] libdeflate-0:1.23-1.fc40.x86_ 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [100/127] libicu-devel-0:74.2-1.fc40.x8 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [101/128] libtirpc-devel-0:1.3.6-1.rc3. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [102/129] pcre2-devel-0:10.44-1.fc40.x8 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [103/130] pcre2-utf16-0:10.44-1.fc40.x8 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [104/131] pcre2-utf32-0:10.44-1.fc40.x8 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [105/132] tcl-devel-1:8.6.13-3.fc40.x86 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [106/133] tk-devel-1:8.6.13-3.fc40.x86_ 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [107/134] tre-devel-0:0.8.0-43.20140228 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [108/135] xz-devel-1:5.4.6-3.fc40.x86_6 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [109/136] zlib-ng-compat-devel-0:2.1.7- 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [110/137] glib2-0:2.80.3-1.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [111/138] less-0:643-6.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [112/139] libX11-0:1.8.10-2.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [113/140] libX11-common-0:1.8.10-2.fc40 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [114/141] libXmu-0:1.2.1-1.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [115/142] libtiff-0:4.6.0-5.fc40.1.x86_ 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [116/143] jbigkit-libs-0:2.1-29.fc40.x8 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [117/144] liblerc-0:4.0.0-6.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [118/145] pango-0:1.54.0-1.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [119/146] libthai-0:0.1.29-8.fc40.x86_6 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [120/147] libdatrie-0:0.2.13-9.fc40.x86 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [121/148] tcl-1:8.6.13-3.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [122/149] fontconfig-0:2.15.0-6.fc40.x8 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [123/150] fonts-filesystem-1:2.0.5-14.f 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [124/151] xml-common-0:0.6.3-63.fc40.no 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [125/152] libXft-devel-0:2.3.8-6.fc40.x 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [126/153] cmake-filesystem-0:3.30.5-1.f 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [127/155] openblas-0:0.3.26-4.fc40.x86_ 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [128/156] fontconfig-devel-0:2.15.0-6.f 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [129/157] freetype-devel-0:2.13.2-5.fc4 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [130/158] libXrender-devel-0:0.9.11-6.f 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [131/159] xorg-x11-proto-devel-0:2024.1 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [132/160] brotli-devel-0:1.1.0-3.fc40.x 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [133/161] brotli-0:1.1.0-3.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [134/162] harfbuzz-devel-0:8.5.0-1.fc40 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [135/163] harfbuzz-0:8.5.0-1.fc40.x86_6 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [136/164] harfbuzz-icu-0:8.5.0-1.fc40.x 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [137/165] graphite2-0:1.3.14-15.fc40.x8 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [138/166] libpng-devel-2:1.6.40-3.fc40. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [139/167] emacs-filesystem-1:29.4-9.fc4 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [140/168] lua-0:5.4.6-5.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [141/169] libxcb-0:1.17.0-2.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [142/170] libXau-0:1.0.11-6.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [143/171] pixman-0:0.43.4-1.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [144/172] fribidi-0:1.0.14-2.fc40.x86_6 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [145/173] libwebp-0:1.5.0-1.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [146/174] libX11-xcb-0:1.8.10-2.fc40.x8 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [147/175] libxcb-devel-0:1.17.0-2.fc40. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [148/176] alsa-lib-0:1.2.13-3.fc40.x86_ 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [149/177] cups-libs-1:2.4.11-8.fc40.x86 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [150/178] avahi-libs-0:0.8-26.fc40.x86_ 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [151/179] cups-filesystem-1:2.4.11-8.fc 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [152/180] dbus-libs-1:1.14.10-3.fc40.x8 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [153/181] nss-0:3.107.0-1.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [154/182] nss-softokn-0:3.107.0-1.fc40. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [155/183] nss-util-0:3.107.0-1.fc40.x86 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [156/184] nss-softokn-freebl-0:3.107.0- 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [157/185] nss-sysinit-0:3.107.0-1.fc40. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [158/186] tzdata-java-0:2024a-5.fc40.no 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [159/187] libXi-0:1.8.2-1.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [160/188] libXtst-0:1.2.5-1.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [161/189] cairo-devel-0:1.18.0-3.fc40.x 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [162/190] glib2-devel-0:2.80.3-1.fc40.x 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [163/191] python3-packaging-0:23.2-4.fc 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [164/192] graphite2-devel-0:1.3.14-15.f 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [165/193] libffi-devel-0:3.4.4-7.fc40.x 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [166/194] libmount-devel-0:2.40.2-1.fc4 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [167/195] libselinux-devel-0:3.7-5.fc40 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [168/196] libsepol-devel-0:3.7-2.fc40.x 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [169/197] python3-0:3.12.8-2.fc40.x86_6 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [170/198] python3-libs-0:3.12.8-2.fc40. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [171/199] libb2-0:0.98.1-11.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [172/200] mpdecimal-0:2.5.1-9.fc40.x86_ 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [173/201] sysprof-capture-devel-0:46.0- 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [174/202] gnutls-0:3.8.6-1.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [175/203] nettle-0:3.9.1-6.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [176/204] libquadmath-devel-0:14.2.1-3. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [177/205] libstdc++-devel-0:14.2.1-3.fc 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [178/206] glibc-devel-0:2.39-33.fc40.x8 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [179/207] gettext-0:0.22.5-4.fc40.x86_6 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [180/208] gettext-runtime-0:0.22.5-4.fc 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [181/209] libtextstyle-0:0.22.5-4.fc40. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [182/210] gettext-envsubst-0:0.22.5-4.f 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [183/211] gettext-libs-0:0.22.5-4.fc40. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [184/212] libxml2-devel-0:2.12.9-1.fc40 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [185/213] default-fonts-core-sans-0:4.0 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [186/214] abattis-cantarell-vf-fonts-0: 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [187/215] google-noto-sans-vf-fonts-0:2 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [188/216] google-noto-fonts-common-0:20 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [189/217] libXext-devel-0:1.3.6-1.fc40. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [190/218] pixman-devel-0:0.43.4-1.fc40. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [191/219] expat-0:2.6.3-1.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [192/220] python-pip-wheel-0:23.3.2-2.f 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [193/221] tzdata-0:2024a-5.fc40.noarch 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [194/222] nspr-0:4.36.0-2.fc40.x86_64 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [195/223] crypto-policies-scripts-0:202 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [196/224] libXau-devel-0:1.0.11-6.fc40. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [197/225] libblkid-devel-0:2.40.2-1.fc4 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [198/226] kernel-headers-0:6.12.4-100.f 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [199/227] libxcrypt-devel-0:4.4.37-4.fc 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [200/228] gcc-plugin-annobin-0:14.2.1-3 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [201/229] annobin-plugin-gcc-0:12.60-1. 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [202/230] annobin-docs-0:12.60-1.fc40.n 100% | 0.0 B/s | 0.0 B | 00m00s >>> Already downloaded [203/230] R-CRAN-RcppParallel-0:5.1.9-1 100% | 4.7 MiB/s | 328.6 KiB | 00m00s [204/230] R-CRAN-RcppEigen-0:0.3.4.0.2- 100% | 16.1 MiB/s | 1.4 MiB | 00m00s [205/230] R-CRAN-assertthat-0:0.2.1-3.f 100% | 1.1 MiB/s | 69.1 KiB | 00m00s [206/230] R-CRAN-StanHeaders-0:2.32.10- 100% | 18.7 MiB/s | 1.6 MiB | 00m00s [207/230] R-CRAN-BH-0:1.87.0.1-1.fc40.c 100% | 45.4 MiB/s | 9.9 MiB | 00m00s [208/230] R-CRAN-checkmate-0:2.3.2-1.fc 100% | 10.7 MiB/s | 765.5 KiB | 00m00s [209/230] R-CRAN-bayesplot-0:1.11.1-1.f 100% | 42.3 MiB/s | 5.1 MiB | 00m00s [210/230] R-CRAN-rstantools-0:2.4.0-1.f 100% | 3.3 MiB/s | 179.7 KiB | 00m00s [211/230] R-CRAN-rstan-0:2.32.6-1.fc40. 100% | 30.7 MiB/s | 2.0 MiB | 00m00s [212/230] R-CRAN-matrixStats-0:1.5.0-1. 100% | 27.4 MiB/s | 504.6 KiB | 00m00s [213/230] R-CRAN-posterior-0:1.6.0-1.fc 100% | 36.1 MiB/s | 1.0 MiB | 00m00s [214/230] R-CRAN-ggridges-0:0.5.6-1.fc4 100% | 49.6 MiB/s | 2.1 MiB | 00m00s [215/230] R-CRAN-reshape2-0:1.4.4-3.fc4 100% | 12.6 MiB/s | 129.1 KiB | 00m00s [216/230] R-CRAN-gridExtra-0:2.3-3.fc40 100% | 35.7 MiB/s | 1.0 MiB | 00m00s [217/230] R-CRAN-QuickJSR-0:1.4.0-1.fc4 100% | 26.9 MiB/s | 798.0 KiB | 00m00s [218/230] R-CRAN-inline-0:0.3.20-1.fc40 100% | 11.1 MiB/s | 148.3 KiB | 00m00s [219/230] R-CRAN-pkgbuild-0:1.4.5-1.fc4 100% | 12.2 MiB/s | 213.2 KiB | 00m00s [220/230] R-CRAN-loo-0:2.8.0-1.fc40.cop 100% | 56.0 MiB/s | 1.7 MiB | 00m00s [221/230] R-CRAN-desc-0:1.4.3-1.fc40.co 100% | 24.5 MiB/s | 351.3 KiB | 00m00s [222/230] R-CRAN-distributional-0:0.5.0 100% | 30.2 MiB/s | 494.2 KiB | 00m00s [223/230] R-CRAN-tensorA-0:0.36.2.1-1.f 100% | 23.1 MiB/s | 260.1 KiB | 00m00s [224/230] R-CRAN-callr-0:3.7.6-1.fc40.c 100% | 30.8 MiB/s | 441.2 KiB | 00m00s [225/230] R-CRAN-ps-0:1.8.1-1.fc40.copr 100% | 29.3 MiB/s | 420.7 KiB | 00m00s [226/230] R-CRAN-processx-0:3.8.5-1.fc4 100% | 14.7 MiB/s | 360.6 KiB | 00m00s [227/230] tbb-bind-0:2021.11.0-5.fc40.x 100% | 90.2 KiB/s | 18.9 KiB | 00m00s [228/230] tbb-0:2021.11.0-5.fc40.x86_64 100% | 384.2 KiB/s | 163.3 KiB | 00m00s [229/230] tbb-devel-0:2021.11.0-5.fc40. 100% | 538.1 KiB/s | 240.0 KiB | 00m00s [230/230] hwloc-libs-0:2.11.1-1.fc40.x8 100% | 2.4 MiB/s | 2.1 MiB | 00m01s -------------------------------------------------------------------------------- [230/230] Total 100% | 17.6 MiB/s | 33.7 MiB | 00m02s Running transaction [ 1/232] Verify package files 100% | 185.0 B/s | 230.0 B | 00m01s >>> Running pre-transaction scriptlet: copy-jdk-configs-0:4.1-5.fc40.noarch >>> Finished pre-transaction scriptlet: copy-jdk-configs-0:4.1-5.fc40.noarch >>> [RPM] /var/lib/mock/fedora-40-x86_64-1736389900.755663/root/var/cache/dnf/co [ 2/232] Prepare transaction 100% | 472.0 B/s | 230.0 B | 00m00s [ 3/232] Installing nspr-0:4.36.0-2.fc 100% | 103.6 MiB/s | 318.3 KiB | 00m00s [ 4/232] Installing xorg-x11-proto-dev 100% | 127.3 MiB/s | 1.8 MiB | 00m00s [ 5/232] Installing libgfortran-0:14.2 100% | 304.4 MiB/s | 3.0 MiB | 00m00s [ 6/232] Installing nss-util-0:3.107.0 100% | 112.9 MiB/s | 231.2 KiB | 00m00s [ 7/232] Installing cmake-filesystem-0 100% | 2.4 MiB/s | 7.3 KiB | 00m00s [ 8/232] Installing zlib-ng-compat-dev 100% | 105.8 MiB/s | 108.3 KiB | 00m00s [ 9/232] Installing libmpc-0:1.3.1-5.f 100% | 81.2 MiB/s | 166.2 KiB | 00m00s [ 10/232] Installing libquadmath-0:14.2 100% | 159.7 MiB/s | 327.2 KiB | 00m00s [ 11/232] Installing libpng-2:1.6.40-3. 100% | 118.7 MiB/s | 243.1 KiB | 00m00s [ 12/232] Installing libicu-0:74.2-1.fc 100% | 306.5 MiB/s | 34.9 MiB | 00m00s [ 13/232] Installing tbb-0:2021.11.0-5. 100% | 108.3 MiB/s | 443.7 KiB | 00m00s [ 14/232] Installing fonts-filesystem-1 100% | 769.5 KiB/s | 788.0 B | 00m00s [ 15/232] Installing tcl-1:8.6.13-3.fc4 100% | 183.7 MiB/s | 4.2 MiB | 00m00s [ 16/232] Installing tcl-devel-1:8.6.13 100% | 159.4 MiB/s | 816.0 KiB | 00m00s [ 17/232] Installing libicu-devel-0:74. 100% | 152.5 MiB/s | 5.6 MiB | 00m00s [ 18/232] Installing libpng-devel-2:1.6 100% | 172.9 MiB/s | 885.4 KiB | 00m00s [ 19/232] Installing libtextstyle-0:0.2 100% | 95.9 MiB/s | 196.4 KiB | 00m00s [ 20/232] Installing gettext-libs-0:0.2 100% | 239.5 MiB/s | 1.7 MiB | 00m00s [ 21/232] Installing pixman-0:0.43.4-1. 100% | 231.5 MiB/s | 711.2 KiB | 00m00s [ 22/232] Installing libXau-0:1.0.11-6. 100% | 66.8 MiB/s | 68.4 KiB | 00m00s [ 23/232] Installing libxcb-0:1.17.0-2. 100% | 124.2 MiB/s | 1.1 MiB | 00m00s [ 24/232] Installing graphite2-0:1.3.14 100% | 94.8 MiB/s | 194.2 KiB | 00m00s [ 25/232] Installing openblas-0:0.3.26- 100% | 95.5 MiB/s | 97.8 KiB | 00m00s [ 26/232] Installing xz-devel-1:5.4.6-3 100% | 84.6 MiB/s | 259.9 KiB | 00m00s [ 27/232] Installing libdeflate-0:1.23- 100% | 117.4 MiB/s | 120.2 KiB | 00m00s [ 28/232] Installing bzip2-devel-0:1.0. 100% | 303.5 MiB/s | 310.7 KiB | 00m00s [ 29/232] Installing libICE-0:1.1.1-3.f 100% | 178.3 MiB/s | 182.6 KiB | 00m00s [ 30/232] Installing libRmath-0:4.4.2-1 100% | 242.0 MiB/s | 247.8 KiB | 00m00s [ 31/232] Installing libjpeg-turbo-0:3. 100% | 253.4 MiB/s | 778.6 KiB | 00m00s [ 32/232] Installing libRmath-devel-0:4 100% | 0.0 B/s | 17.7 KiB | 00m00s [ 33/232] Installing libSM-0:1.2.4-3.fc 100% | 96.3 MiB/s | 98.6 KiB | 00m00s [ 34/232] Installing libdeflate-devel-0 100% | 26.6 MiB/s | 27.3 KiB | 00m00s [ 35/232] Installing libxml2-devel-0:2. 100% | 213.5 MiB/s | 3.4 MiB | 00m00s [ 36/232] Installing openblas-openmp-0: 100% | 463.1 MiB/s | 38.9 MiB | 00m00s [ 37/232] Installing flexiblas-0:3.4.4- 100% | 48.5 MiB/s | 49.7 KiB | 00m00s [ 38/232] Installing flexiblas-openblas 100% | 39.2 MiB/s | 40.1 KiB | 00m00s [ 39/232] Installing flexiblas-netlib-0 100% | 319.8 MiB/s | 10.6 MiB | 00m00s [ 40/232] Installing openblas-openmp64- 100% | 465.4 MiB/s | 39.1 MiB | 00m00s [ 41/232] Installing flexiblas-netlib64 100% | 323.1 MiB/s | 10.7 MiB | 00m00s [ 42/232] Installing flexiblas-openblas 100% | 39.2 MiB/s | 40.2 KiB | 00m00s [ 43/232] Installing flexiblas-devel-0: 100% | 424.3 MiB/s | 4.7 MiB | 00m00s [ 44/232] Installing graphite2-devel-0: 100% | 49.4 MiB/s | 50.6 KiB | 00m00s [ 45/232] Installing libXau-devel-0:1.0 100% | 1.3 MiB/s | 8.2 KiB | 00m00s [ 46/232] Installing libxcb-devel-0:1.1 100% | 31.3 MiB/s | 3.1 MiB | 00m00s [ 47/232] Installing pixman-devel-0:0.4 100% | 49.0 MiB/s | 50.2 KiB | 00m00s [ 48/232] Installing abattis-cantarell- 100% | 94.9 MiB/s | 194.4 KiB | 00m00s [ 49/232] Installing cpp-0:14.2.1-3.fc4 100% | 312.5 MiB/s | 35.0 MiB | 00m00s [ 50/232] Installing nss-softokn-freebl 100% | 212.7 MiB/s | 871.4 KiB | 00m00s [ 51/232] Installing nss-softokn-0:3.10 100% | 237.0 MiB/s | 1.9 MiB | 00m00s [ 52/232] Installing annobin-docs-0:12. 100% | 31.7 MiB/s | 97.4 KiB | 00m00s [ 53/232] Installing kernel-headers-0:6 100% | 113.7 MiB/s | 6.6 MiB | 00m00s [ 54/232] Installing libxcrypt-devel-0: 100% | 10.7 MiB/s | 32.9 KiB | 00m00s [ 55/232] Installing glibc-devel-0:2.39 100% | 85.0 MiB/s | 2.3 MiB | 00m00s [ 56/232] Installing libblkid-devel-0:2 100% | 9.0 MiB/s | 46.0 KiB | 00m00s [ 57/232] Installing tzdata-0:2024a-5.f 100% | 25.7 MiB/s | 1.9 MiB | 00m00s [ 58/232] Installing python-pip-wheel-0 100% | 381.6 MiB/s | 1.5 MiB | 00m00s [ 59/232] Installing expat-0:2.6.3-1.fc 100% | 94.3 MiB/s | 289.6 KiB | 00m00s [ 60/232] Installing google-noto-fonts- 100% | 17.8 MiB/s | 18.3 KiB | 00m00s [ 61/232] Installing google-noto-sans-v 100% | 249.8 MiB/s | 1.2 MiB | 00m00s [ 62/232] Installing default-fonts-core 100% | 8.9 MiB/s | 18.2 KiB | 00m00s [ 63/232] Installing gettext-envsubst-0 100% | 74.5 MiB/s | 76.3 KiB | 00m00s [ 64/232] Installing gettext-runtime-0: 100% | 59.9 MiB/s | 490.7 KiB | 00m00s [ 65/232] Installing gettext-0:0.22.5-4 100% | 194.0 MiB/s | 5.2 MiB | 00m00s [ 66/232] Installing libstdc++-devel-0: 100% | 216.1 MiB/s | 15.6 MiB | 00m00s [ 67/232] Installing nettle-0:3.9.1-6.f 100% | 193.7 MiB/s | 793.3 KiB | 00m00s [ 68/232] Installing gnutls-0:3.8.6-1.f 100% | 230.0 MiB/s | 3.2 MiB | 00m00s [ 69/232] Installing glib2-0:2.80.3-1.f 100% | 265.7 MiB/s | 14.6 MiB | 00m00s [ 70/232] Installing sysprof-capture-de 100% | 124.8 MiB/s | 255.7 KiB | 00m00s [ 71/232] Installing mpdecimal-0:2.5.1- 100% | 197.3 MiB/s | 202.0 KiB | 00m00s [ 72/232] Installing libb2-0:0.98.1-11. 100% | 6.0 MiB/s | 43.3 KiB | 00m00s [ 73/232] Installing python3-libs-0:3.1 100% | 204.3 MiB/s | 41.7 MiB | 00m00s [ 74/232] Installing python3-0:3.12.8-2 100% | 32.5 MiB/s | 33.3 KiB | 00m00s [ 75/232] Installing python3-packaging- 100% | 84.4 MiB/s | 431.9 KiB | 00m00s [ 76/232] Installing crypto-policies-sc 100% | 60.0 MiB/s | 368.5 KiB | 00m00s [ 77/232] Installing nss-sysinit-0:3.10 100% | 18.7 MiB/s | 19.2 KiB | 00m00s [ 78/232] Installing nss-0:3.107.0-1.fc 100% | 83.4 MiB/s | 1.9 MiB | 00m00s [ 79/232] Installing libsepol-devel-0:3 100% | 31.2 MiB/s | 127.8 KiB | 00m00s [ 80/232] Installing libffi-devel-0:3.4 100% | 34.1 MiB/s | 34.9 KiB | 00m00s [ 81/232] Installing tzdata-java-0:2024 100% | 99.7 MiB/s | 102.1 KiB | 00m00s [ 82/232] Installing dbus-libs-1:1.14.1 100% | 120.5 MiB/s | 370.1 KiB | 00m00s [ 83/232] Installing avahi-libs-0:0.8-2 100% | 82.5 MiB/s | 168.9 KiB | 00m00s [ 84/232] Installing cups-filesystem-1: 100% | 1.7 MiB/s | 1.8 KiB | 00m00s [ 85/232] Installing cups-libs-1:2.4.11 100% | 152.4 MiB/s | 624.3 KiB | 00m00s [ 86/232] Installing alsa-lib-0:1.2.13- 100% | 127.9 MiB/s | 1.4 MiB | 00m00s [ 87/232] Installing libX11-xcb-0:1.8.1 100% | 0.0 B/s | 15.9 KiB | 00m00s [ 88/232] Installing libwebp-0:1.5.0-1. 100% | 161.0 MiB/s | 824.1 KiB | 00m00s [ 89/232] Installing fribidi-0:1.0.14-2 100% | 180.7 MiB/s | 370.1 KiB | 00m00s [ 90/232] Installing lua-0:5.4.6-5.fc40 100% | 146.7 MiB/s | 600.8 KiB | 00m00s [ 91/232] Installing emacs-filesystem-1 100% | 0.0 B/s | 544.0 B | 00m00s [ 92/232] Installing desktop-file-utils 100% | 74.8 MiB/s | 229.8 KiB | 00m00s [ 93/232] Installing xdg-utils-0:1.2.1- 100% | 170.7 MiB/s | 349.5 KiB | 00m00s [ 94/232] Installing brotli-0:1.1.0-3.f 100% | 31.7 MiB/s | 32.5 KiB | 00m00s [ 95/232] Installing brotli-devel-0:1.1 100% | 33.2 MiB/s | 68.0 KiB | 00m00s [ 96/232] Installing hwloc-libs-0:2.11. 100% | 317.2 MiB/s | 2.9 MiB | 00m00s [ 97/232] Installing tbb-bind-0:2021.11 100% | 24.0 MiB/s | 24.6 KiB | 00m00s [ 98/232] Installing tbb-devel-0:2021.1 100% | 51.7 MiB/s | 1.3 MiB | 00m00s [ 99/232] Installing xml-common-0:0.6.3 100% | 26.4 MiB/s | 81.1 KiB | 00m00s [100/232] Installing libdatrie-0:0.2.13 100% | 57.7 MiB/s | 59.0 KiB | 00m00s [101/232] Installing libthai-0:0.1.29-8 100% | 191.7 MiB/s | 785.3 KiB | 00m00s [102/232] Installing liblerc-0:4.0.0-6. 100% | 197.0 MiB/s | 605.0 KiB | 00m00s [103/232] Installing jbigkit-libs-0:2.1 100% | 116.8 MiB/s | 119.6 KiB | 00m00s [104/232] Installing libtiff-0:4.6.0-5. 100% | 190.6 MiB/s | 1.1 MiB | 00m00s [105/232] Installing libX11-common-0:1. 100% | 66.0 MiB/s | 1.2 MiB | 00m00s [106/232] Installing libX11-0:1.8.10-2. 100% | 256.3 MiB/s | 1.3 MiB | 00m00s [107/232] Installing libXext-0:1.3.6-1. 100% | 89.2 MiB/s | 91.3 KiB | 00m00s [108/232] Installing libXrender-0:0.9.1 100% | 50.2 MiB/s | 51.4 KiB | 00m00s [109/232] Installing cairo-0:1.18.0-3.f 100% | 216.5 MiB/s | 1.7 MiB | 00m00s [110/232] Installing harfbuzz-0:8.5.0-1 100% | 245.6 MiB/s | 2.7 MiB | 00m00s [111/232] Installing freetype-0:2.13.2- 100% | 164.9 MiB/s | 844.3 KiB | 00m00s [112/232] Installing fontconfig-0:2.15. 100% | 754.8 KiB/s | 787.2 KiB | 00m01s [113/232] Installing libX11-devel-0:1.8 100% | 32.0 MiB/s | 1.1 MiB | 00m00s [114/232] Installing libXft-0:2.3.8-6.f 100% | 10.1 MiB/s | 166.0 KiB | 00m00s [115/232] Installing tk-1:8.6.13-3.fc40 100% | 140.0 MiB/s | 3.6 MiB | 00m00s [116/232] Installing libXrender-devel-0 100% | 49.8 MiB/s | 51.0 KiB | 00m00s [117/232] Installing libXi-0:1.8.2-1.fc 100% | 79.9 MiB/s | 81.8 KiB | 00m00s [118/232] Installing libXt-0:1.3.0-3.fc 100% | 208.6 MiB/s | 427.1 KiB | 00m00s [119/232] Installing libXmu-0:1.2.1-1.f 100% | 92.5 MiB/s | 189.5 KiB | 00m00s [120/232] Installing libXtst-0:1.2.5-1. 100% | 33.8 MiB/s | 34.7 KiB | 00m00s [121/232] Installing pango-0:1.54.0-1.f 100% | 139.8 MiB/s | 1.0 MiB | 00m00s [122/232] Installing libXext-devel-0:1. 100% | 27.1 MiB/s | 110.9 KiB | 00m00s [123/232] Installing ttmkfdir-0:3.0.9-7 100% | 60.4 MiB/s | 123.8 KiB | 00m00s [124/232] Installing harfbuzz-icu-0:8.5 100% | 15.9 MiB/s | 16.3 KiB | 00m00s [125/232] Installing libXcomposite-0:0. 100% | 45.0 MiB/s | 46.1 KiB | 00m00s [126/232] Installing less-0:643-6.fc40. 100% | 91.8 MiB/s | 376.0 KiB | 00m00s [127/232] Installing pcre2-utf32-0:10.4 100% | 183.2 MiB/s | 562.8 KiB | 00m00s [128/232] Installing pcre2-utf16-0:10.4 100% | 192.3 MiB/s | 590.9 KiB | 00m00s [129/232] Installing pcre2-devel-0:10.4 100% | 142.5 MiB/s | 2.0 MiB | 00m00s [130/232] Installing libselinux-devel-0 100% | 15.7 MiB/s | 161.2 KiB | 00m00s [131/232] Installing libmount-devel-0:2 100% | 31.5 MiB/s | 64.5 KiB | 00m00s [132/232] Installing glib2-devel-0:2.80 100% | 300.4 MiB/s | 15.6 MiB | 00m00s [133/232] Installing fontconfig-devel-0 100% | 13.5 MiB/s | 151.9 KiB | 00m00s [134/232] Installing freetype-devel-0:2 100% | 261.9 MiB/s | 7.9 MiB | 00m00s [135/232] Installing cairo-devel-0:1.18 100% | 229.1 MiB/s | 2.3 MiB | 00m00s [136/232] Installing harfbuzz-devel-0:8 100% | 243.0 MiB/s | 5.1 MiB | 00m00s [137/232] Installing libXft-devel-0:2.3 100% | 10.8 MiB/s | 44.3 KiB | 00m00s [138/232] Installing tk-devel-1:8.6.13- 100% | 77.7 MiB/s | 1.0 MiB | 00m00s [139/232] Installing libtirpc-devel-0:1 100% | 51.4 MiB/s | 263.1 KiB | 00m00s [140/232] Installing lua-posix-0:36.2.1 100% | 75.0 MiB/s | 614.7 KiB | 00m00s [141/232] Installing copy-jdk-configs-0 100% | 20.5 MiB/s | 21.0 KiB | 00m00s [142/232] Installing libfontenc-0:1.1.7 100% | 64.8 MiB/s | 66.4 KiB | 00m00s [143/232] Installing mkfontscale-0:1.2. 100% | 4.9 MiB/s | 50.6 KiB | 00m00s [144/232] Installing xorg-x11-fonts-Typ 100% | 14.3 MiB/s | 865.6 KiB | 00m00s [145/232] Installing lksctp-tools-0:1.0 100% | 66.9 MiB/s | 274.0 KiB | 00m00s [146/232] Installing javapackages-files 100% | 2.6 MiB/s | 5.3 KiB | 00m00s [147/232] Installing java-21-openjdk-he 100% | 336.1 MiB/s | 204.0 MiB | 00m01s [148/232] Installing java-21-openjdk-1: 100% | 49.8 MiB/s | 1.1 MiB | 00m00s [149/232] Installing java-21-openjdk-de 100% | 239.1 MiB/s | 11.2 MiB | 00m00s [150/232] Installing gc-0:8.2.2-6.fc40. 100% | 51.0 MiB/s | 261.2 KiB | 00m00s [151/232] Installing guile30-0:3.0.7-12 100% | 308.9 MiB/s | 51.6 MiB | 00m00s [152/232] Installing make-1:4.4.1-6.fc4 100% | 150.0 MiB/s | 1.8 MiB | 00m00s [153/232] Installing gcc-0:14.2.1-3.fc4 100% | 314.4 MiB/s | 104.4 MiB | 00m00s [154/232] Installing gcc-c++-0:14.2.1-3 100% | 307.8 MiB/s | 38.2 MiB | 00m00s [155/232] Installing libquadmath-devel- 100% | 22.8 MiB/s | 23.4 KiB | 00m00s [156/232] Installing gcc-gfortran-0:14. 100% | 310.5 MiB/s | 37.3 MiB | 00m00s [157/232] Installing tre-common-0:0.8.0 100% | 81.2 MiB/s | 83.1 KiB | 00m00s [158/232] Installing tre-0:0.8.0-43.201 100% | 2.5 MiB/s | 76.7 KiB | 00m00s [159/232] Installing R-core-0:4.4.2-1.f 100% | 131.8 MiB/s | 103.8 MiB | 00m01s [160/232] Installing R-CRAN-rlang-0:1.1 100% | 71.1 MiB/s | 2.7 MiB | 00m00s [161/232] Installing R-CRAN-cli-0:3.6.3 100% | 90.0 MiB/s | 2.4 MiB | 00m00s [162/232] Installing R-CRAN-glue-0:1.8. 100% | 58.1 MiB/s | 356.7 KiB | 00m00s [163/232] Installing R-CRAN-lifecycle-0 100% | 48.2 MiB/s | 295.9 KiB | 00m00s [164/232] Installing R-CRAN-vctrs-0:0.6 100% | 104.5 MiB/s | 2.4 MiB | 00m00s [165/232] Installing R-CRAN-R6-0:2.5.1- 100% | 39.6 MiB/s | 121.6 KiB | 00m00s [166/232] Installing R-CRAN-RcppParalle 100% | 101.6 MiB/s | 1.5 MiB | 00m00s [167/232] Installing R-CRAN-magrittr-0: 100% | 53.3 MiB/s | 436.3 KiB | 00m00s [168/232] Installing R-CRAN-withr-0:3.0 100% | 51.4 MiB/s | 420.9 KiB | 00m00s [169/232] Installing R-CRAN-tidyselect- 100% | 62.5 MiB/s | 448.2 KiB | 00m00s [170/232] Installing R-CRAN-desc-0:1.4. 100% | 65.7 MiB/s | 538.2 KiB | 00m00s [171/232] Installing R-CRAN-gtable-0:0. 100% | 57.4 MiB/s | 352.6 KiB | 00m00s [172/232] Installing R-CRAN-matrixStats 100% | 67.9 MiB/s | 1.1 MiB | 00m00s [173/232] Installing R-CRAN-generics-0: 100% | 24.8 MiB/s | 177.5 KiB | 00m00s [174/232] Installing R-CRAN-lattice-0:0 100% | 77.1 MiB/s | 2.1 MiB | 00m00s [175/232] Installing R-CRAN-Matrix-0:1. 100% | 74.6 MiB/s | 8.6 MiB | 00m00s [176/232] Installing R-CRAN-nlme-0:3.1. 100% | 85.1 MiB/s | 3.9 MiB | 00m00s [177/232] Installing R-CRAN-mgcv-0:1.9. 100% | 143.8 MiB/s | 4.6 MiB | 00m00s [178/232] Installing R-CRAN-gridExtra-0 100% | 138.1 MiB/s | 1.7 MiB | 00m00s [179/232] Installing R-CRAN-StanHeaders 100% | 82.9 MiB/s | 10.1 MiB | 00m00s [180/232] Installing R-CRAN-abind-0:1.4 100% | 25.0 MiB/s | 102.5 KiB | 00m00s [181/232] Installing R-CRAN-backports-0 100% | 28.4 MiB/s | 232.9 KiB | 00m00s [182/232] Installing R-CRAN-checkmate-0 100% | 65.3 MiB/s | 1.5 MiB | 00m00s [183/232] Installing R-CRAN-isoband-0:0 100% | 187.2 MiB/s | 1.9 MiB | 00m00s [184/232] Installing R-CRAN-QuickJSR-0: 100% | 175.6 MiB/s | 3.0 MiB | 00m00s [185/232] Installing R-CRAN-inline-0:0. 100% | 44.6 MiB/s | 228.4 KiB | 00m00s [186/232] Installing R-CRAN-tensorA-0:0 100% | 40.2 MiB/s | 412.0 KiB | 00m00s [187/232] Installing R-CRAN-fansi-0:1.0 100% | 78.6 MiB/s | 643.9 KiB | 00m00s [188/232] Installing R-CRAN-pkgconfig-0 100% | 13.0 MiB/s | 39.9 KiB | 00m00s [189/232] Installing R-CRAN-RColorBrewe 100% | 22.6 MiB/s | 69.5 KiB | 00m00s [190/232] Installing R-CRAN-farver-0:2. 100% | 189.8 MiB/s | 2.1 MiB | 00m00s [191/232] Installing R-CRAN-labeling-0: 100% | 25.0 MiB/s | 102.5 KiB | 00m00s [192/232] Installing R-CRAN-viridisLite 100% | 217.4 MiB/s | 1.3 MiB | 00m00s [193/232] Installing R-java-0:4.4.2-1.f 100% | 0.0 B/s | 124.0 B | 00m00s [194/232] Installing R-CRAN-numDeriv-0: 100% | 38.8 MiB/s | 158.8 KiB | 00m00s [195/232] Installing R-CRAN-stringi-0:1 100% | 90.1 MiB/s | 2.1 MiB | 00m00s [196/232] Installing R-CRAN-stringr-0:1 100% | 65.8 MiB/s | 673.3 KiB | 00m00s [197/232] Installing R-CRAN-colorspace- 100% | 141.6 MiB/s | 4.1 MiB | 00m00s [198/232] Installing R-CRAN-munsell-0:0 100% | 54.9 MiB/s | 393.7 KiB | 00m00s [199/232] Installing R-CRAN-scales-0:1. 100% | 64.0 MiB/s | 1.2 MiB | 00m00s [200/232] Installing R-littler-0:0.3.19 100% | 20.0 MiB/s | 164.2 KiB | 00m00s [201/232] Installing R-CRAN-Rcpp-0:1.0. 100% | 133.0 MiB/s | 8.5 MiB | 00m00s [202/232] Installing R-CRAN-plyr-0:1.8. 100% | 79.6 MiB/s | 1.1 MiB | 00m00s [203/232] Installing R-CRAN-reshape2-0: 100% | 44.3 MiB/s | 226.8 KiB | 00m00s [204/232] Installing R-CRAN-utf8-0:1.2. 100% | 78.0 MiB/s | 479.5 KiB | 00m00s [205/232] Installing R-CRAN-pillar-0:1. 100% | 120.4 MiB/s | 1.4 MiB | 00m00s [206/232] Installing R-CRAN-tibble-0:3. 100% | 121.7 MiB/s | 1.7 MiB | 00m00s [207/232] Installing R-CRAN-dplyr-0:1.1 100% | 92.6 MiB/s | 2.7 MiB | 00m00s [208/232] Installing R-CRAN-distributio 100% | 61.5 MiB/s | 755.3 KiB | 00m00s [209/232] Installing R-CRAN-posterior-0 100% | 70.2 MiB/s | 1.8 MiB | 00m00s [210/232] Installing R-CRAN-loo-0:2.8.0 100% | 146.5 MiB/s | 2.8 MiB | 00m00s [211/232] Installing R-CRAN-ps-0:1.8.1- 100% | 70.2 MiB/s | 719.0 KiB | 00m00s [212/232] Installing R-CRAN-processx-0: 100% | 62.0 MiB/s | 571.0 KiB | 00m00s [213/232] Installing R-CRAN-callr-0:3.7 100% | 35.8 MiB/s | 732.7 KiB | 00m00s [214/232] Installing R-CRAN-pkgbuild-0: 100% | 44.5 MiB/s | 273.6 KiB | 00m00s [215/232] Installing R-CRAN-MASS-0:7.3. 100% | 67.3 MiB/s | 1.9 MiB | 00m00s [216/232] Installing R-CRAN-ggplot2-0:3 100% | 134.0 MiB/s | 7.2 MiB | 00m00s [217/232] Installing R-CRAN-ggridges-0: 100% | 188.4 MiB/s | 3.0 MiB | 00m00s [218/232] Installing R-rpm-macros-0:1.2 100% | 6.4 MiB/s | 6.6 KiB | 00m00s [219/232] Installing tre-devel-0:0.8.0- 100% | 11.3 MiB/s | 11.6 KiB | 00m00s [220/232] Installing R-core-devel-0:4.4 100% | 98.2 MiB/s | 402.4 KiB | 00m00s [221/232] Installing R-java-devel-0:4.4 100% | 0.0 B/s | 124.0 B | 00m00s [222/232] Installing R-devel-0:4.4.2-1. 100% | 0.0 B/s | 124.0 B | 00m00s [223/232] Installing R-CRAN-bayesplot-0 100% | 216.1 MiB/s | 6.7 MiB | 00m00s [224/232] Installing R-CRAN-rstan-0:2.3 100% | 184.5 MiB/s | 6.1 MiB | 00m00s [225/232] Installing R-CRAN-RcppEigen-0 100% | 145.0 MiB/s | 9.1 MiB | 00m00s [226/232] Installing R-CRAN-rstantools- 100% | 12.5 MiB/s | 320.2 KiB | 00m00s [227/232] Installing R-CRAN-BH-0:1.87.0 100% | 132.7 MiB/s | 124.7 MiB | 00m01s [228/232] Installing R-CRAN-Formula-0:1 100% | 52.2 MiB/s | 213.9 KiB | 00m00s [229/232] Installing R-CRAN-assertthat- 100% | 23.7 MiB/s | 96.9 KiB | 00m00s [230/232] Installing R-CRAN-mvtnorm-0:1 100% | 112.9 MiB/s | 1.5 MiB | 00m00s [231/232] Installing gcc-plugin-annobin 100% | 2.3 MiB/s | 58.6 KiB | 00m00s warning: posix.fork(): .fork(), .exec(), .wait() and .redirect2null() are deprecated, use rpm.spawn() or rpm.execute() instead warning: posix.wait(): .fork(), .exec(), .wait() and .redirect2null() are deprecated, use rpm.spawn() or rpm.execute() instead warning: posix.exec(): .fork(), .exec(), .wait() and .redirect2null() are deprecated, use rpm.spawn() or rpm.execute() instead [232/232] Installing annobin-plugin-gcc 100% | 1.0 MiB/s | 977.9 KiB | 00m01s Warning: skipped OpenPGP checks for 64 packages from repository: copr_base Complete! Finish: build setup for R-CRAN-RBesT-1.8.0-1.fc40.copr8491729.src.rpm Start: rpmbuild R-CRAN-RBesT-1.8.0-1.fc40.copr8491729.src.rpm warning: source_date_epoch_from_changelog set but %changelog is missing Building target platforms: x86_64 Building for target x86_64 Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.negaGv + umask 022 + cd /builddir/build/BUILD + cd /builddir/build/BUILD + rm -rf RBesT + /usr/bin/mkdir -p RBesT + cd RBesT + /usr/lib/rpm/rpmuncompress -x /builddir/build/SOURCES/RBesT_1.8-0.tar.gz + STATUS=0 + '[' 0 -ne 0 ']' + rm -rf /builddir/build/BUILD/RBesT-SPECPARTS + /usr/bin/mkdir -p /builddir/build/BUILD/RBesT-SPECPARTS + /usr/bin/chmod -Rf a+rX,u+w,g-w,o-w . + find -type f -executable -exec grep -Iq . '{}' ';' -exec sed -i -e '$a\' '{}' ';' + '[' -d RBesT/src ']' + find RBesT/src -type f -exec sed -i s@/usr/bin/strip@/usr/bin/true@g '{}' ';' + '[' -d RBesT/src ']' + find RBesT/src/Makevars -type f -exec sed -i s@-g0@@g '{}' ';' + find -type f -executable -exec sed -Ei 's@#!( )*/usr/local/bin@#!/usr/bin@g' '{}' ';' + RPM_EC=0 ++ jobs -p + exit 0 Executing(%build): /bin/sh -e /var/tmp/rpm-tmp.jSq7qx + umask 022 + cd /builddir/build/BUILD + CFLAGS='-O2 -flto=auto -ffat-lto-objects -fexceptions -g -grecord-gcc-switches -pipe -Wall -Werror=format-security -Wp,-U_FORTIFY_SOURCE,-D_FORTIFY_SOURCE=3 -Wp,-D_GLIBCXX_ASSERTIONS -specs=/usr/lib/rpm/redhat/redhat-hardened-cc1 -fstack-protector-strong -specs=/usr/lib/rpm/redhat/redhat-annobin-cc1 -m64 -march=x86-64 -mtune=generic -fasynchronous-unwind-tables -fstack-clash-protection -fcf-protection -fno-omit-frame-pointer -mno-omit-leaf-frame-pointer ' + export CFLAGS + CXXFLAGS='-O2 -flto=auto -ffat-lto-objects -fexceptions -g -grecord-gcc-switches -pipe -Wall -Werror=format-security -Wp,-U_FORTIFY_SOURCE,-D_FORTIFY_SOURCE=3 -Wp,-D_GLIBCXX_ASSERTIONS -specs=/usr/lib/rpm/redhat/redhat-hardened-cc1 -fstack-protector-strong -specs=/usr/lib/rpm/redhat/redhat-annobin-cc1 -m64 -march=x86-64 -mtune=generic -fasynchronous-unwind-tables -fstack-clash-protection -fcf-protection -fno-omit-frame-pointer -mno-omit-leaf-frame-pointer ' + export CXXFLAGS + FFLAGS='-O2 -flto=auto -ffat-lto-objects -fexceptions -g -grecord-gcc-switches -pipe -Wall -Wp,-U_FORTIFY_SOURCE,-D_FORTIFY_SOURCE=3 -Wp,-D_GLIBCXX_ASSERTIONS -specs=/usr/lib/rpm/redhat/redhat-hardened-cc1 -fstack-protector-strong -specs=/usr/lib/rpm/redhat/redhat-annobin-cc1 -m64 -march=x86-64 -mtune=generic -fasynchronous-unwind-tables -fstack-clash-protection -fcf-protection -fno-omit-frame-pointer -mno-omit-leaf-frame-pointer -I/usr/lib64/gfortran/modules ' + export FFLAGS + FCFLAGS='-O2 -flto=auto -ffat-lto-objects -fexceptions -g -grecord-gcc-switches -pipe -Wall -Wp,-U_FORTIFY_SOURCE,-D_FORTIFY_SOURCE=3 -Wp,-D_GLIBCXX_ASSERTIONS -specs=/usr/lib/rpm/redhat/redhat-hardened-cc1 -fstack-protector-strong -specs=/usr/lib/rpm/redhat/redhat-annobin-cc1 -m64 -march=x86-64 -mtune=generic -fasynchronous-unwind-tables -fstack-clash-protection -fcf-protection -fno-omit-frame-pointer -mno-omit-leaf-frame-pointer -I/usr/lib64/gfortran/modules ' + export FCFLAGS + VALAFLAGS=-g + export VALAFLAGS + RUSTFLAGS='-Copt-level=3 -Cdebuginfo=2 -Ccodegen-units=1 -Cstrip=none -Cforce-frame-pointers=yes -Clink-arg=-specs=/usr/lib/rpm/redhat/redhat-package-notes --cap-lints=warn' + export RUSTFLAGS + LDFLAGS='-Wl,-z,relro -Wl,--as-needed -Wl,-z,pack-relative-relocs -Wl,-z,now -specs=/usr/lib/rpm/redhat/redhat-hardened-ld -specs=/usr/lib/rpm/redhat/redhat-annobin-cc1 -Wl,--build-id=sha1 -specs=/usr/lib/rpm/redhat/redhat-package-notes ' + export LDFLAGS + LT_SYS_LIBRARY_PATH=/usr/lib64: + export LT_SYS_LIBRARY_PATH + CC=gcc + export CC + CXX=g++ + export CXX + cd RBesT + RPM_EC=0 ++ jobs -p + exit 0 Executing(%install): /bin/sh -e /var/tmp/rpm-tmp.MkPdBd + umask 022 + cd /builddir/build/BUILD + '[' /builddir/build/BUILDROOT/R-CRAN-RBesT-1.8.0-1.fc40.copr8491729.x86_64 '!=' / ']' + rm -rf /builddir/build/BUILDROOT/R-CRAN-RBesT-1.8.0-1.fc40.copr8491729.x86_64 ++ dirname /builddir/build/BUILDROOT/R-CRAN-RBesT-1.8.0-1.fc40.copr8491729.x86_64 + mkdir -p /builddir/build/BUILDROOT + mkdir /builddir/build/BUILDROOT/R-CRAN-RBesT-1.8.0-1.fc40.copr8491729.x86_64 + CFLAGS='-O2 -flto=auto -ffat-lto-objects -fexceptions -g -grecord-gcc-switches -pipe -Wall -Werror=format-security -Wp,-U_FORTIFY_SOURCE,-D_FORTIFY_SOURCE=3 -Wp,-D_GLIBCXX_ASSERTIONS -specs=/usr/lib/rpm/redhat/redhat-hardened-cc1 -fstack-protector-strong -specs=/usr/lib/rpm/redhat/redhat-annobin-cc1 -m64 -march=x86-64 -mtune=generic -fasynchronous-unwind-tables -fstack-clash-protection -fcf-protection -fno-omit-frame-pointer -mno-omit-leaf-frame-pointer ' + export CFLAGS + CXXFLAGS='-O2 -flto=auto -ffat-lto-objects -fexceptions -g -grecord-gcc-switches -pipe -Wall -Werror=format-security -Wp,-U_FORTIFY_SOURCE,-D_FORTIFY_SOURCE=3 -Wp,-D_GLIBCXX_ASSERTIONS -specs=/usr/lib/rpm/redhat/redhat-hardened-cc1 -fstack-protector-strong -specs=/usr/lib/rpm/redhat/redhat-annobin-cc1 -m64 -march=x86-64 -mtune=generic -fasynchronous-unwind-tables -fstack-clash-protection -fcf-protection -fno-omit-frame-pointer -mno-omit-leaf-frame-pointer ' + export CXXFLAGS + FFLAGS='-O2 -flto=auto -ffat-lto-objects -fexceptions -g -grecord-gcc-switches -pipe -Wall -Wp,-U_FORTIFY_SOURCE,-D_FORTIFY_SOURCE=3 -Wp,-D_GLIBCXX_ASSERTIONS -specs=/usr/lib/rpm/redhat/redhat-hardened-cc1 -fstack-protector-strong -specs=/usr/lib/rpm/redhat/redhat-annobin-cc1 -m64 -march=x86-64 -mtune=generic -fasynchronous-unwind-tables -fstack-clash-protection -fcf-protection -fno-omit-frame-pointer -mno-omit-leaf-frame-pointer -I/usr/lib64/gfortran/modules ' + export FFLAGS + FCFLAGS='-O2 -flto=auto -ffat-lto-objects -fexceptions -g -grecord-gcc-switches -pipe -Wall -Wp,-U_FORTIFY_SOURCE,-D_FORTIFY_SOURCE=3 -Wp,-D_GLIBCXX_ASSERTIONS -specs=/usr/lib/rpm/redhat/redhat-hardened-cc1 -fstack-protector-strong -specs=/usr/lib/rpm/redhat/redhat-annobin-cc1 -m64 -march=x86-64 -mtune=generic -fasynchronous-unwind-tables -fstack-clash-protection -fcf-protection -fno-omit-frame-pointer -mno-omit-leaf-frame-pointer -I/usr/lib64/gfortran/modules ' + export FCFLAGS + VALAFLAGS=-g + export VALAFLAGS + RUSTFLAGS='-Copt-level=3 -Cdebuginfo=2 -Ccodegen-units=1 -Cstrip=none -Cforce-frame-pointers=yes -Clink-arg=-specs=/usr/lib/rpm/redhat/redhat-package-notes --cap-lints=warn' + export RUSTFLAGS + LDFLAGS='-Wl,-z,relro -Wl,--as-needed -Wl,-z,pack-relative-relocs -Wl,-z,now -specs=/usr/lib/rpm/redhat/redhat-hardened-ld -specs=/usr/lib/rpm/redhat/redhat-annobin-cc1 -Wl,--build-id=sha1 -specs=/usr/lib/rpm/redhat/redhat-package-notes ' + export LDFLAGS + LT_SYS_LIBRARY_PATH=/usr/lib64: + export LT_SYS_LIBRARY_PATH + CC=gcc + export CC + CXX=g++ + export CXX + cd RBesT + mkdir -p /builddir/build/BUILDROOT/R-CRAN-RBesT-1.8.0-1.fc40.copr8491729.x86_64/usr/local/lib/R/library + /usr/bin/R CMD INSTALL -l /builddir/build/BUILDROOT/R-CRAN-RBesT-1.8.0-1.fc40.copr8491729.x86_64/usr/local/lib/R/library RBesT * installing *source* package ‘RBesT’ ... ** package ‘RBesT’ successfully unpacked and MD5 sums checked ** using staged installation ** libs using C++ compiler: ‘g++ (GCC) 14.2.1 20240912 (Red Hat 14.2.1-3)’ using C++17 g++ -std=gnu++17 -I"/usr/include/R" -DNDEBUG -I"../inst/include" -I"/usr/local/lib/R/library/StanHeaders/include/src" -DBOOST_DISABLE_ASSERTS -DEIGEN_NO_DEBUG -DBOOST_MATH_OVERFLOW_ERROR_POLICY=errno_on_error -DUSE_STANC3 -D_HAS_AUTO_PTR_ETC=0 -I'/usr/local/lib/R/library/BH/include' -I'/usr/local/lib/R/library/Rcpp/include' -I'/usr/local/lib/R/library/RcppEigen/include' -I'/usr/local/lib/R/library/RcppParallel/include' -I'/usr/local/lib/R/library/rstan/include' -I'/usr/local/lib/R/library/StanHeaders/include' -I/usr/local/include -I/usr/include/oneapi -DTBB_INTERFACE_NEW -I'/usr/local/lib/R/library/RcppParallel/include' -D_REENTRANT -DSTAN_THREADS -DTBB_INTERFACE_NEW -fpic -O2 -flto=auto -ffat-lto-objects -fexceptions -g -grecord-gcc-switches -pipe -Wall -Werror=format-security -Wp,-U_FORTIFY_SOURCE,-D_FORTIFY_SOURCE=3 -Wp,-D_GLIBCXX_ASSERTIONS -specs=/usr/lib/rpm/redhat/redhat-hardened-cc1 -fstack-protector-strong -specs=/usr/lib/rpm/redhat/redhat-annobin-cc1 -m64 -march=x86-64 -mtune=generic -fasynchronous-unwind-tables -fstack-clash-protection -fcf-protection -fno-omit-frame-pointer -mno-omit-leaf-frame-pointer -c RcppExports.cpp -o RcppExports.o In file included from /usr/local/lib/R/library/RcppEigen/include/Eigen/Core:205, from /usr/local/lib/R/library/RcppEigen/include/Eigen/Dense:1, from /usr/local/lib/R/library/RcppEigen/include/RcppEigenForward.h:28, from /usr/local/lib/R/library/RcppEigen/include/RcppEigen.h:25, from RcppExports.cpp:4: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:46:40: warning: ignoring attributes on template argument ‘__m128i’ [-Wignored-attributes] 46 | typedef eigen_packet_wrapper<__m128i, 0> Packet4i; | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:47:40: warning: ignoring attributes on template argument ‘__m128i’ [-Wignored-attributes] 47 | typedef eigen_packet_wrapper<__m128i, 1> Packet16b; | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:49:39: warning: ignoring attributes on template argument ‘__m128’ [-Wignored-attributes] 49 | template<> struct is_arithmetic<__m128> { enum { value = true }; }; | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:50:40: warning: ignoring attributes on template argument ‘__m128i’ [-Wignored-attributes] 50 | template<> struct is_arithmetic<__m128i> { enum { value = true }; }; | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:51:40: warning: ignoring attributes on template argument ‘__m128d’ [-Wignored-attributes] 51 | template<> struct is_arithmetic<__m128d> { enum { value = true }; }; | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:222:43: warning: ignoring attributes on template argument ‘Eigen::internal::Packet4f’ {aka ‘__m128’} [-Wignored-attributes] 222 | template<> struct unpacket_traits { | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:228:43: warning: ignoring attributes on template argument ‘Eigen::internal::Packet2d’ {aka ‘__m128d’} [-Wignored-attributes] 228 | template<> struct unpacket_traits { | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:1124:34: warning: ignoring attributes on template argument ‘Eigen::internal::Packet4f’ {aka ‘__m128’} [-Wignored-attributes] 1124 | ptranspose(PacketBlock& kernel) { | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:1129:34: warning: ignoring attributes on template argument ‘Eigen::internal::Packet2d’ {aka ‘__m128d’} [-Wignored-attributes] 1129 | ptranspose(PacketBlock& kernel) { | ^ In file included from /usr/local/lib/R/library/RcppEigen/include/Eigen/Core:174: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/Default/ConjHelper.h:16:60: warning: ignoring attributes on template argument ‘Eigen::internal::Packet4f’ {aka ‘__m128’} [-Wignored-attributes] 16 | struct conj_helper { \ | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/Complex.h:173:1: note: in expansion of macro ‘EIGEN_MAKE_CONJ_HELPER_CPLX_REAL’ 173 | EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cf,Packet4f) | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/Default/ConjHelper.h:29:60: warning: ignoring attributes on template argument ‘Eigen::internal::Packet4f’ {aka ‘__m128’} [-Wignored-attributes] 29 | struct conj_helper { \ | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/Complex.h:173:1: note: in expansion of macro ‘EIGEN_MAKE_CONJ_HELPER_CPLX_REAL’ 173 | EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cf,Packet4f) | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/Default/ConjHelper.h:16:60: warning: ignoring attributes on template argument ‘Eigen::internal::Packet2d’ {aka ‘__m128d’} [-Wignored-attributes] 16 | struct conj_helper { \ | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/Complex.h:298:1: note: in expansion of macro ‘EIGEN_MAKE_CONJ_HELPER_CPLX_REAL’ 298 | EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet1cd,Packet2d) | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/Default/ConjHelper.h:29:60: warning: ignoring attributes on template argument ‘Eigen::internal::Packet2d’ {aka ‘__m128d’} [-Wignored-attributes] 29 | struct conj_helper { \ | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/Complex.h:298:1: note: in expansion of macro ‘EIGEN_MAKE_CONJ_HELPER_CPLX_REAL’ 298 | EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet1cd,Packet2d) | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In file included from /usr/local/lib/R/library/RcppEigen/include/Eigen/Core:165: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h: In instantiation of ‘struct Eigen::internal::find_best_packet’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:22:57: required from ‘struct Eigen::internal::traits >’ 22 | typedef typename find_best_packet<_Scalar,size>::type PacketScalar; | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/Quaternion.h:266:49: required from ‘struct Eigen::internal::traits >’ 266 | Alignment = internal::traits::Alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/arch/Geometry_SIMD.h:24:46: required from here 24 | ResAlignment = traits >::Alignment | ^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:44: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(4) float>::half’ {aka ‘__m128’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:208:88: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128’} [-Wignored-attributes] 208 | typedef typename find_best_packet_helper::type>::type type; | ^~~~ In file included from /usr/local/lib/R/library/RcppEigen/include/Eigen/Core:271: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: required from ‘class Eigen::Matrix’ 178 | class Matrix | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/Quaternion.h:46:50: required from ‘class Eigen::QuaternionBase >’ 46 | typedef typename Coefficients::CoeffReturnType CoeffReturnType; | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/Quaternion.h:273:7: required from ‘class Eigen::Quaternion’ 273 | class Quaternion : public QuaternionBase > | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/arch/Geometry_SIMD.h:27:3: required from here 27 | { | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h: In instantiation of ‘struct Eigen::internal::find_best_packet’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:22:57: required from ‘struct Eigen::internal::traits >’ 22 | typedef typename find_best_packet<_Scalar,size>::type PacketScalar; | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/Quaternion.h:266:49: required from ‘struct Eigen::internal::traits >’ 266 | Alignment = internal::traits::Alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/arch/Geometry_SIMD.h:98:47: required from here 98 | ResAlignment = traits >::Alignment | ^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:44: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:208:88: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 208 | typedef typename find_best_packet_helper::type>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: required from ‘class Eigen::Matrix’ 178 | class Matrix | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/Quaternion.h:46:50: required from ‘class Eigen::QuaternionBase >’ 46 | typedef typename Coefficients::CoeffReturnType CoeffReturnType; | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/Quaternion.h:273:7: required from ‘class Eigen::Quaternion’ 273 | class Quaternion : public QuaternionBase > | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/arch/Geometry_SIMD.h:102:3: required from here 102 | { | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ In file included from /usr/local/lib/R/library/RcppEigen/include/Eigen/SparseCore:37, from /usr/local/lib/R/library/RcppEigen/include/Eigen/Sparse:26, from /usr/local/lib/R/library/RcppEigen/include/RcppEigenForward.h:29: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseMatrixBase.h: In instantiation of ‘class Eigen::SparseMatrixBase >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseCompressedBase.h:36:7: required from ‘class Eigen::SparseCompressedBase >’ 36 | class SparseCompressedBase | ^~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseMatrix.h:96:7: required from ‘class Eigen::SparseMatrix’ 96 | class SparseMatrix | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h:61:25: required from here 61 | typedef Triplet T; | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseMatrixBase.h:47:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 47 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ g++ -std=gnu++17 -I"/usr/include/R" -DNDEBUG -I"../inst/include" -I"/usr/local/lib/R/library/StanHeaders/include/src" -DBOOST_DISABLE_ASSERTS -DEIGEN_NO_DEBUG -DBOOST_MATH_OVERFLOW_ERROR_POLICY=errno_on_error -DUSE_STANC3 -D_HAS_AUTO_PTR_ETC=0 -I'/usr/local/lib/R/library/BH/include' -I'/usr/local/lib/R/library/Rcpp/include' -I'/usr/local/lib/R/library/RcppEigen/include' -I'/usr/local/lib/R/library/RcppParallel/include' -I'/usr/local/lib/R/library/rstan/include' -I'/usr/local/lib/R/library/StanHeaders/include' -I/usr/local/include -I/usr/include/oneapi -DTBB_INTERFACE_NEW -I'/usr/local/lib/R/library/RcppParallel/include' -D_REENTRANT -DSTAN_THREADS -DTBB_INTERFACE_NEW -fpic -O2 -flto=auto -ffat-lto-objects -fexceptions -g -grecord-gcc-switches -pipe -Wall -Werror=format-security -Wp,-U_FORTIFY_SOURCE,-D_FORTIFY_SOURCE=3 -Wp,-D_GLIBCXX_ASSERTIONS -specs=/usr/lib/rpm/redhat/redhat-hardened-cc1 -fstack-protector-strong -specs=/usr/lib/rpm/redhat/redhat-annobin-cc1 -m64 -march=x86-64 -mtune=generic -fasynchronous-unwind-tables -fstack-clash-protection -fcf-protection -fno-omit-frame-pointer -mno-omit-leaf-frame-pointer -c stanExports_gMAP.cc -o stanExports_gMAP.o In file included from /usr/local/lib/R/library/RcppEigen/include/Eigen/Core:205, from /usr/local/lib/R/library/RcppEigen/include/Eigen/Dense:1, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/Eigen.hpp:22, from /usr/local/lib/R/library/rstan/include/rstan/rstaninc.hpp:3, from stanExports_gMAP.h:18, from stanExports_gMAP.cc:5: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:46:40: warning: ignoring attributes on template argument ‘__m128i’ [-Wignored-attributes] 46 | typedef eigen_packet_wrapper<__m128i, 0> Packet4i; | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:47:40: warning: ignoring attributes on template argument ‘__m128i’ [-Wignored-attributes] 47 | typedef eigen_packet_wrapper<__m128i, 1> Packet16b; | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:49:39: warning: ignoring attributes on template argument ‘__m128’ [-Wignored-attributes] 49 | template<> struct is_arithmetic<__m128> { enum { value = true }; }; | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:50:40: warning: ignoring attributes on template argument ‘__m128i’ [-Wignored-attributes] 50 | template<> struct is_arithmetic<__m128i> { enum { value = true }; }; | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:51:40: warning: ignoring attributes on template argument ‘__m128d’ [-Wignored-attributes] 51 | template<> struct is_arithmetic<__m128d> { enum { value = true }; }; | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:222:43: warning: ignoring attributes on template argument ‘Eigen::internal::Packet4f’ {aka ‘__m128’} [-Wignored-attributes] 222 | template<> struct unpacket_traits { | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:228:43: warning: ignoring attributes on template argument ‘Eigen::internal::Packet2d’ {aka ‘__m128d’} [-Wignored-attributes] 228 | template<> struct unpacket_traits { | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:1124:34: warning: ignoring attributes on template argument ‘Eigen::internal::Packet4f’ {aka ‘__m128’} [-Wignored-attributes] 1124 | ptranspose(PacketBlock& kernel) { | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/PacketMath.h:1129:34: warning: ignoring attributes on template argument ‘Eigen::internal::Packet2d’ {aka ‘__m128d’} [-Wignored-attributes] 1129 | ptranspose(PacketBlock& kernel) { | ^ In file included from /usr/local/lib/R/library/RcppEigen/include/Eigen/Core:174: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/Default/ConjHelper.h:16:60: warning: ignoring attributes on template argument ‘Eigen::internal::Packet4f’ {aka ‘__m128’} [-Wignored-attributes] 16 | struct conj_helper { \ | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/Complex.h:173:1: note: in expansion of macro ‘EIGEN_MAKE_CONJ_HELPER_CPLX_REAL’ 173 | EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cf,Packet4f) | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/Default/ConjHelper.h:29:60: warning: ignoring attributes on template argument ‘Eigen::internal::Packet4f’ {aka ‘__m128’} [-Wignored-attributes] 29 | struct conj_helper { \ | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/Complex.h:173:1: note: in expansion of macro ‘EIGEN_MAKE_CONJ_HELPER_CPLX_REAL’ 173 | EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cf,Packet4f) | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/Default/ConjHelper.h:16:60: warning: ignoring attributes on template argument ‘Eigen::internal::Packet2d’ {aka ‘__m128d’} [-Wignored-attributes] 16 | struct conj_helper { \ | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/Complex.h:298:1: note: in expansion of macro ‘EIGEN_MAKE_CONJ_HELPER_CPLX_REAL’ 298 | EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet1cd,Packet2d) | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/Default/ConjHelper.h:29:60: warning: ignoring attributes on template argument ‘Eigen::internal::Packet2d’ {aka ‘__m128d’} [-Wignored-attributes] 29 | struct conj_helper { \ | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/arch/SSE/Complex.h:298:1: note: in expansion of macro ‘EIGEN_MAKE_CONJ_HELPER_CPLX_REAL’ 298 | EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet1cd,Packet2d) | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In file included from /usr/local/lib/R/library/RcppEigen/include/Eigen/Core:165: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h: In instantiation of ‘struct Eigen::internal::find_best_packet’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:22:57: required from ‘struct Eigen::internal::traits >’ 22 | typedef typename find_best_packet<_Scalar,size>::type PacketScalar; | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/Quaternion.h:266:49: required from ‘struct Eigen::internal::traits >’ 266 | Alignment = internal::traits::Alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/arch/Geometry_SIMD.h:24:46: required from here 24 | ResAlignment = traits >::Alignment | ^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:44: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(4) float>::half’ {aka ‘__m128’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:208:88: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128’} [-Wignored-attributes] 208 | typedef typename find_best_packet_helper::type>::type type; | ^~~~ In file included from /usr/local/lib/R/library/RcppEigen/include/Eigen/Core:271: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: required from ‘class Eigen::Matrix’ 178 | class Matrix | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/Quaternion.h:46:50: required from ‘class Eigen::QuaternionBase >’ 46 | typedef typename Coefficients::CoeffReturnType CoeffReturnType; | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/Quaternion.h:273:7: required from ‘class Eigen::Quaternion’ 273 | class Quaternion : public QuaternionBase > | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/arch/Geometry_SIMD.h:27:3: required from here 27 | { | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h: In instantiation of ‘struct Eigen::internal::find_best_packet’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:22:57: required from ‘struct Eigen::internal::traits >’ 22 | typedef typename find_best_packet<_Scalar,size>::type PacketScalar; | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/Quaternion.h:266:49: required from ‘struct Eigen::internal::traits >’ 266 | Alignment = internal::traits::Alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/arch/Geometry_SIMD.h:98:47: required from here 98 | ResAlignment = traits >::Alignment | ^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:44: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:208:88: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 208 | typedef typename find_best_packet_helper::type>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: required from ‘class Eigen::Matrix’ 178 | class Matrix | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/Quaternion.h:46:50: required from ‘class Eigen::QuaternionBase >’ 46 | typedef typename Coefficients::CoeffReturnType CoeffReturnType; | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/Quaternion.h:273:7: required from ‘class Eigen::Quaternion’ 273 | class Quaternion : public QuaternionBase > | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Geometry/arch/Geometry_SIMD.h:102:3: required from here 102 | { | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ In file included from /usr/local/lib/R/library/BH/include/boost/smart_ptr/shared_ptr.hpp:17, from /usr/local/lib/R/library/BH/include/boost/shared_ptr.hpp:17, from /usr/local/lib/R/library/BH/include/boost/date_time/time_clock.hpp:17, from /usr/local/lib/R/library/BH/include/boost/date_time/posix_time/posix_time_types.hpp:10, from /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:15, from /usr/local/lib/R/library/rstan/include/rstan/rstaninc.hpp:4: /usr/local/lib/R/library/BH/include/boost/smart_ptr/detail/shared_count.hpp:326:33: warning: ‘template class std::auto_ptr’ is deprecated: use 'std::unique_ptr' instead [-Wdeprecated-declarations] 326 | explicit shared_count( std::auto_ptr & r ): pi_( new sp_counted_impl_p( r.get() ) ) | ^~~~~~~~ In file included from /usr/include/c++/14/memory:78, from /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:7: /usr/include/c++/14/bits/unique_ptr.h:59:28: note: declared here 59 | template class auto_ptr; | ^~~~~~~~ /usr/local/lib/R/library/BH/include/boost/smart_ptr/shared_ptr.hpp:354:31: warning: ‘template class std::auto_ptr’ is deprecated: use 'std::unique_ptr' instead [-Wdeprecated-declarations] 354 | explicit shared_ptr( std::auto_ptr & r ): px(r.get()), pn() | ^~~~~~~~ /usr/include/c++/14/bits/unique_ptr.h:59:28: note: declared here 59 | template class auto_ptr; | ^~~~~~~~ /usr/local/lib/R/library/BH/include/boost/smart_ptr/shared_ptr.hpp:365:22: warning: ‘template class std::auto_ptr’ is deprecated: use 'std::unique_ptr' instead [-Wdeprecated-declarations] 365 | shared_ptr( std::auto_ptr && r ): px(r.get()), pn() | ^~~~~~~~ /usr/include/c++/14/bits/unique_ptr.h:59:28: note: declared here 59 | template class auto_ptr; | ^~~~~~~~ /usr/local/lib/R/library/BH/include/boost/smart_ptr/shared_ptr.hpp:423:34: warning: ‘template class std::auto_ptr’ is deprecated: use 'std::unique_ptr' instead [-Wdeprecated-declarations] 423 | shared_ptr & operator=( std::auto_ptr & r ) | ^~~~~~~~ /usr/include/c++/14/bits/unique_ptr.h:59:28: note: declared here 59 | template class auto_ptr; | ^~~~~~~~ /usr/local/lib/R/library/BH/include/boost/smart_ptr/shared_ptr.hpp:430:34: warning: ‘template class std::auto_ptr’ is deprecated: use 'std::unique_ptr' instead [-Wdeprecated-declarations] 430 | shared_ptr & operator=( std::auto_ptr && r ) | ^~~~~~~~ /usr/include/c++/14/bits/unique_ptr.h:59:28: note: declared here 59 | template class auto_ptr; | ^~~~~~~~ /usr/local/lib/R/library/BH/include/boost/smart_ptr/shared_ptr.hpp: In member function ‘boost::shared_ptr& boost::shared_ptr::operator=(std::auto_ptr<_Up>&&)’: /usr/local/lib/R/library/BH/include/boost/smart_ptr/shared_ptr.hpp:432:38: warning: ‘template class std::auto_ptr’ is deprecated: use 'std::unique_ptr' instead [-Wdeprecated-declarations] 432 | this_type( static_cast< std::auto_ptr && >( r ) ).swap( *this ); | ^~~~~~~~ /usr/include/c++/14/bits/unique_ptr.h:59:28: note: declared here 59 | template class auto_ptr; | ^~~~~~~~ In file included from /usr/local/lib/R/library/RcppEigen/include/Eigen/SparseCore:37, from /usr/local/lib/R/library/RcppEigen/include/Eigen/Sparse:26, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/Eigen.hpp:23: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseMatrixBase.h: In instantiation of ‘class Eigen::SparseMatrixBase >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseCompressedBase.h:36:7: required from ‘class Eigen::SparseCompressedBase >’ 36 | class SparseCompressedBase | ^~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseMatrix.h:96:7: required from ‘class Eigen::SparseMatrix’ 96 | class SparseMatrix | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h:61:25: required from here 61 | typedef Triplet T; | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseMatrixBase.h:47:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 47 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h: In instantiation of ‘struct Eigen::internal::find_best_packet’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:22:57: required from ‘struct Eigen::internal::traits >’ 22 | typedef typename find_best_packet<_Scalar,size>::type PacketScalar; | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:19:52: required from ‘struct Eigen::internal::traits > >’ 19 | template struct traits > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/EigenBase.h:42:59: required from ‘struct Eigen::EigenBase > >’ 42 | typedef typename internal::traits::StorageKind StorageKind; | ^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/SolverBase.h:68:7: required from ‘class Eigen::SolverBase > >’ 68 | class SolverBase : public EigenBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:59:49: required from ‘class Eigen::LDLT >’ 59 | template class LDLT | ^~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:46:15: required from here 46 | if (cholesky.info() != Eigen::Success || !cholesky.isPositive() | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:44: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:208:88: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 208 | typedef typename find_best_packet_helper::type>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: required from ‘class Eigen::Matrix’ 178 | class Matrix | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:69:42: required from ‘class Eigen::LDLT >’ 69 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | ^~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:46:15: required from here 46 | if (cholesky.info() != Eigen::Success || !cholesky.isPositive() | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: required from ‘class Eigen::Matrix’ 178 | class Matrix | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:287:19: required from ‘class Eigen::LDLT >’ 287 | TmpMatrixType m_temporary; | ^~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:46:15: required from here 46 | if (cholesky.info() != Eigen::Success || !cholesky.isPositive() | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Diagonal.h:63:53: required from ‘class Eigen::Diagonal, 0>’ 63 | template class Diagonal | ^~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:47:29: required from here 47 | || (cholesky.vectorD().array() <= 0.0).any()) { | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0> > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, 0> >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:47:41: required from here 47 | || (cholesky.vectorD().array() <= 0.0).any()) { | ^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Array >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:38:28: required from ‘struct Eigen::internal::traits, const Eigen::ArrayWrapper, 0> >, const Eigen::CwiseNullaryOp, Eigen::Array > > >’ 38 | >::type Scalar; | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, 0> >, const Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0> >, const Eigen::CwiseNullaryOp, Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:47:45: required from here 47 | || (cholesky.vectorD().array() <= 0.0).any()) { | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: required from ‘class Eigen::MapBase, -1, 1, true>, 1>’ 223 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, -1, 1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, -1, 1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/multiply_lower_tri_self_transpose.hpp:35:26: required from here 35 | LLt(m, m) = Lt.col(m).head(k).squaredNorm(); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, true>, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, true>, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, true>, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: required from ‘class Eigen::MapBase, -1, 1, true>, -1, 1, false>, 1>’ 223 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1, true>, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, -1, 1, true>, -1, 1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, -1, 1, true>, -1, 1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/VectorBlock.h:56:47: required from ‘class Eigen::VectorBlock, -1, 1, true>, -1>’ 56 | template class VectorBlock | ^~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/multiply_lower_tri_self_transpose.hpp:35:34: required from here 35 | LLt(m, m) = Lt.col(m).head(k).squaredNorm(); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/linspaced_array.hpp:37:49: required from here 37 | Eigen::VectorXd v = Eigen::VectorXd::LinSpaced(K, low, high); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: required from ‘class Eigen::Matrix’ 178 | class Matrix | ^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/linspaced_row_vector.hpp:32:28: required from here 32 | return Eigen::RowVectorXd::LinSpaced(K, low, high); | ^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/linspaced_row_vector.hpp:32:39: required from here 32 | return Eigen::RowVectorXd::LinSpaced(K, low, high); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Array.h:45:7: required from ‘class Eigen::Array’ 45 | class Array | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lmgamma.hpp:58:53: required from here 58 | return result + sum(lgamma(x + (1 - Eigen::ArrayXd::LinSpaced(k, 1, k)) / 2)); | ^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Array >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lmgamma.hpp:58:72: required from here 58 | return result + sum(lgamma(x + (1 - Eigen::ArrayXd::LinSpaced(k, 1, k)) / 2)); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lmgamma.hpp:58:77: required from here 58 | return result + sum(lgamma(x + (1 - Eigen::ArrayXd::LinSpaced(k, 1, k)) / 2)); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Diagonal.h:63:53: required from ‘class Eigen::Diagonal, 0>’ 63 | template class Diagonal | ^~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:71:17: required from here 71 | A.diagonal().array() -= mu; | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0> > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, 0> >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:71:29: required from here 71 | A.diagonal().array() -= mu; | ^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Matrix, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:86:43: required from here 86 | bi = (t / (s * (j + 1))) * (A * bi); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, const Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:38:28: required from ‘struct Eigen::internal::traits, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product, Eigen::Matrix, 0> > >’ 38 | >::type Scalar; | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product, Eigen::Matrix, 0>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product, Eigen::Matrix, 0> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:86:43: required from here 86 | bi = (t / (s * (j + 1))) * (A * bi); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product, Eigen::Matrix, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product, Eigen::Matrix, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product, Eigen::Matrix, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product, Eigen::Matrix, 0>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product, Eigen::Matrix, 0> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:86:43: required from here 86 | bi = (t / (s * (j + 1))) * (A * bi); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Matrix, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Matrix >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:106:22: required from here 106 | return x.cwiseAbs().rowwise().sum().maxCoeff(); | ~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix >, Eigen::internal::member_sum, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix >, Eigen::internal::member_sum, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix >, Eigen::internal::member_sum, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/VectorwiseOp.h:56:7: required from ‘class Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>’ 56 | class PartialReduxExpr : public internal::dense_xpr_base< PartialReduxExpr >::type, | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:106:38: required from here 106 | return x.cwiseAbs().rowwise().sum().maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:178:58: required from here 178 | alpha = Eigen::VectorXd::Constant(_p_max - 1, normA); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/ceil.hpp:57:44: required from ‘stan::math::ceil >(const Eigen::Matrix&):: [with auto:244 = Eigen::Matrix]’ 57 | x, [](const auto& v) { return v.array().ceil(); }); | ~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:47:25: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::apply(const T&, const F&) [with F = stan::math::ceil >(const Eigen::Matrix&)::; T2 = Eigen::Matrix; stan::require_t::type> >* = 0; T = Eigen::Matrix]’ 47 | f(x)); | ~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/ceil.hpp:56:46: required from ‘auto stan::math::ceil(const Container&) [with Container = Eigen::Matrix; stan::require_container_st* = 0; stan::require_not_var_matrix_t* = 0]’ 56 | return apply_vector_unary::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 57 | x, [](const auto& v) { return v.array().ceil(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:197:41: required from here 197 | Eigen::MatrixXd c = stan::math::ceil(mt) * u.asDiagonal(); | ~~~~~~~~~~~~~~~~^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/ceil.hpp:57:51: required from ‘stan::math::ceil >(const Eigen::Matrix&):: [with auto:244 = Eigen::Matrix]’ 57 | x, [](const auto& v) { return v.array().ceil(); }); | ~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:47:25: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::apply(const T&, const F&) [with F = stan::math::ceil >(const Eigen::Matrix&)::; T2 = Eigen::Matrix; stan::require_t::type> >* = 0; T = Eigen::Matrix]’ 47 | f(x)); | ~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/ceil.hpp:56:46: required from ‘auto stan::math::ceil(const Container&) [with Container = Eigen::Matrix; stan::require_container_st* = 0; stan::require_not_var_matrix_t* = 0]’ 56 | return apply_vector_unary::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 57 | x, [](const auto& v) { return v.array().ceil(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:197:41: required from here 197 | Eigen::MatrixXd c = stan::math::ceil(mt) * u.asDiagonal(); | ~~~~~~~~~~~~~~~~^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::ArrayWrapper > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::ArrayWrapper > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:46:59: required from ‘stan::math::apply_vector_unary, void>::apply >(const Eigen::Matrix&):: >(const Eigen::Matrix&, const stan::math::ceil >(const Eigen::Matrix&)::&):: [with auto:7 = Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >]’ 46 | return make_holder([](const auto& a) { return a.matrix().derived(); }, | ~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: required by substitution of ‘template()((declval)()...))>* > auto stan::math::make_holder(const F&, Args&& ...) [with F = stan::math::apply_vector_unary, void>::apply >(const Eigen::Matrix&):: >(const Eigen::Matrix&, const stan::math::ceil >(const Eigen::Matrix&)::&)::; Args = {Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >}; stan::require_plain_type_t()((declval)()...))>* = ]’ 370 | decltype(std::declval()(std::declval()...))>* = nullptr> | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:46:23: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::apply(const T&, const F&) [with F = stan::math::ceil >(const Eigen::Matrix&)::; T2 = Eigen::Matrix; stan::require_t::type> >* = 0; T = Eigen::Matrix]’ 46 | return make_holder([](const auto& a) { return a.matrix().derived(); }, | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 47 | f(x)); | ~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/ceil.hpp:56:46: required from ‘auto stan::math::ceil(const Container&) [with Container = Eigen::Matrix; stan::require_container_st* = 0; stan::require_not_var_matrix_t* = 0]’ 56 | return apply_vector_unary::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 57 | x, [](const auto& v) { return v.array().ceil(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:197:41: required from here 197 | Eigen::MatrixXd c = stan::math::ceil(mt) * u.asDiagonal(); | ~~~~~~~~~~~~~~~~^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::internal::member_minCoeff, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::internal::member_minCoeff, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::internal::member_minCoeff, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/VectorwiseOp.h:56:7: required from ‘class Eigen::PartialReduxExpr, Eigen::internal::member_minCoeff, 0>’ 56 | class PartialReduxExpr : public internal::dense_xpr_base< PartialReduxExpr >::type, | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:203:38: required from here 203 | int cost = c.colwise().minCoeff().minCoeff(&m); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/one_hot_row_vector.hpp:25:52: required from here 25 | Eigen::RowVectorXd ret = Eigen::RowVectorXd::Zero(K); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/welford_covar_estimator.hpp:13:64: required from here 13 | : m_(Eigen::VectorXd::Zero(n)), m2_(Eigen::MatrixXd::Zero(n, n)) { | ~~~~~~~~~~~~~~~~~~~~~^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/welford_covar_estimator.hpp:26:31: required from here 26 | Eigen::VectorXd delta(q - m_); | ^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, const Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:38:28: required from ‘struct Eigen::internal::traits, const Eigen::Matrix, const Eigen::CwiseNullaryOp, const Eigen::Matrix > > >’ 38 | >::type Scalar; | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/welford_covar_estimator.hpp:27:19: required from here 27 | m_ += delta / num_samples_; | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::CwiseNullaryOp, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::CwiseNullaryOp, const Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/welford_covar_estimator.hpp:27:19: required from here 27 | m_ += delta / num_samples_; | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/welford_covar_estimator.hpp:28:38: required from here 28 | m2_ += (q - m_) * delta.transpose(); | ~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0, 5>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/welford_covar_estimator.hpp:28:39: required from here 28 | m2_ += (q - m_) * delta.transpose(); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::CwiseNullaryOp, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::CwiseNullaryOp, const Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/welford_covar_estimator.hpp:37:40: required from here 37 | covar = m2_ / (num_samples_ - 1.0); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/welford_var_estimator.hpp:28:30: required from here 28 | m2_ += delta.cwiseProduct(q - m_); | ~~~~~~~~~~~~~~~~~~^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 1>’ 223 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Map.h:94:79: required from ‘class Eigen::Map, 0, Eigen::Stride<0, 0> >’ 94 | template class Map | ^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/coupled_ode_system.hpp:77:63: required from here 77 | Eigen::Map(dz_dt.data(), dz_dt.size()) = f_y_t; | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ In file included from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor.hpp:13, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim.hpp:15, from /usr/local/lib/R/library/StanHeaders/include/src/stan/io/dump.hpp:7, from /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:43: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/hcubature.hpp: In function ‘void stan::math::internal::combination(std::vector&, const int&, const int&, const int&)’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/hcubature.hpp:73:29: warning: comparison of integer expressions of different signedness: ‘std::size_t’ {aka ‘long unsigned int’} and ‘int’ [-Wsign-compare] 73 | for (std::size_t i = 0; i < p - 1; i++) { | ~~^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/hcubature.hpp:79:16: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘const int’ [-Wsign-compare] 79 | } while (k < x); | ~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/hcubature.hpp: In function ‘void stan::math::internal::combos(const int&, const double&, const int&, std::vector >&)’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/hcubature.hpp:102:29: warning: comparison of integer expressions of different signedness: ‘std::size_t’ {aka ‘long unsigned int’} and ‘int’ [-Wsign-compare] 102 | for (std::size_t i = 1; i != choose_dimk + 1; i++) { | ~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/hcubature.hpp:105:31: warning: comparison of integer expressions of different signedness: ‘std::size_t’ {aka ‘long unsigned int’} and ‘const int’ [-Wsign-compare] 105 | for (std::size_t j = 0; j != k; j++) { | ~~^~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/hcubature.hpp: In function ‘void stan::math::internal::increment(std::vector&, const int&, const double&, const std::vector&, std::vector&)’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/hcubature.hpp:126:31: warning: comparison of integer expressions of different signedness: ‘std::size_t’ {aka ‘long unsigned int’} and ‘const int’ [-Wsign-compare] 126 | for (std::size_t j = 0; j != k; j++) { | ~~^~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/hcubature.hpp:132:22: warning: comparison of integer expressions of different signedness: ‘int’ and ‘std::vector::size_type’ {aka ‘long unsigned int’} [-Wsign-compare] 132 | while ((first_zero < index.size()) && index[first_zero]) { | ~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/hcubature.hpp:135:18: warning: comparison of integer expressions of different signedness: ‘int’ and ‘std::vector::size_type’ {aka ‘long unsigned int’} [-Wsign-compare] 135 | if (first_zero == index.size()) { | ~~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/hcubature.hpp:143:31: warning: comparison of integer expressions of different signedness: ‘std::size_t’ {aka ‘long unsigned int’} and ‘int’ [-Wsign-compare] 143 | for (std::size_t i = 0; i != first_zero + 1; i++) { | ~~^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/hcubature.hpp: In function ‘void stan::math::internal::signcombos(const int&, const double&, const int&, std::vector >&)’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/hcubature.hpp:168:29: warning: comparison of integer expressions of different signedness: ‘std::size_t’ {aka ‘long unsigned int’} and ‘int’ [-Wsign-compare] 168 | for (std::size_t i = 1; i != choose_dimk + 1; i++) { | ~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Map.h:94:79: required from ‘class Eigen::Map, 0, Eigen::Stride<0, 0> >’ 94 | template class Map | ^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/ode_store_sensitivities.hpp:40:64: required from here 40 | coupled_state.size()); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ In file included from /usr/local/lib/R/library/BH/include/boost/mpl/aux_/na_assert.hpp:23, from /usr/local/lib/R/library/BH/include/boost/mpl/arg.hpp:25, from /usr/local/lib/R/library/BH/include/boost/mpl/placeholders.hpp:24, from /usr/local/lib/R/library/BH/include/boost/mpl/apply.hpp:24, from /usr/local/lib/R/library/BH/include/boost/serialization/array_optimization.hpp:18, from /usr/local/lib/R/library/BH/include/boost/serialization/array_wrapper.hpp:21, from /usr/local/lib/R/library/BH/include/boost/serialization/array.hpp:26, from /usr/local/lib/R/library/BH/include/boost/numeric/ublas/storage.hpp:22, from /usr/local/lib/R/library/BH/include/boost/numeric/ublas/vector.hpp:21, from /usr/local/lib/R/library/BH/include/boost/numeric/odeint/util/ublas_wrapper.hpp:23, from /usr/local/lib/R/library/BH/include/boost/numeric/odeint.hpp:25, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/ode_rk45.hpp:9, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/integrate_ode_rk45.hpp:6, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor.hpp:16: /usr/local/lib/R/library/BH/include/boost/mpl/assert.hpp: At global scope: /usr/local/lib/R/library/BH/include/boost/mpl/assert.hpp:194:21: warning: unnecessary parentheses in declaration of ‘assert_arg’ [-Wparentheses] 194 | failed ************ (Pred::************ | ^~~~~~~~~~~~~~~~~~~ 195 | assert_arg( void (*)(Pred), typename assert_arg_pred::type ) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 196 | ); | ~ /usr/local/lib/R/library/BH/include/boost/mpl/assert.hpp:194:21: note: remove parentheses 194 | failed ************ (Pred::************ | ^~~~~~~~~~~~~~~~~~~ | - 195 | assert_arg( void (*)(Pred), typename assert_arg_pred::type ) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 196 | ); | ~ | - /usr/local/lib/R/library/BH/include/boost/mpl/assert.hpp:199:21: warning: unnecessary parentheses in declaration of ‘assert_not_arg’ [-Wparentheses] 199 | failed ************ (boost::mpl::not_::************ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 200 | assert_not_arg( void (*)(Pred), typename assert_arg_pred_not::type ) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 201 | ); | ~ /usr/local/lib/R/library/BH/include/boost/mpl/assert.hpp:199:21: note: remove parentheses 199 | failed ************ (boost::mpl::not_::************ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | - 200 | assert_not_arg( void (*)(Pred), typename assert_arg_pred_not::type ) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 201 | ); | ~ | - In file included from /usr/local/lib/R/library/BH/include/boost/fusion/functional/invocation/detail/that_ptr.hpp:13, from /usr/local/lib/R/library/BH/include/boost/fusion/functional/invocation/invoke.hpp:52, from /usr/local/lib/R/library/BH/include/boost/fusion/functional/adapter/fused.hpp:17, from /usr/local/lib/R/library/BH/include/boost/fusion/functional/generation/make_fused.hpp:13, from /usr/local/lib/R/library/BH/include/boost/fusion/include/make_fused.hpp:11, from /usr/local/lib/R/library/BH/include/boost/numeric/odeint/util/resize.hpp:30, from /usr/local/lib/R/library/BH/include/boost/numeric/odeint/util/state_wrapper.hpp:26, from /usr/local/lib/R/library/BH/include/boost/numeric/odeint/util/ublas_wrapper.hpp:33: /usr/local/lib/R/library/BH/include/boost/get_pointer.hpp:48:40: warning: ‘template class std::auto_ptr’ is deprecated: use 'std::unique_ptr' instead [-Wdeprecated-declarations] 48 | template T * get_pointer(std::auto_ptr const& p) | ^~~~~~~~ /usr/include/c++/14/bits/unique_ptr.h:59:28: note: declared here 59 | template class auto_ptr; | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_sum_exp.hpp:92:39: required from ‘stan::math::log_sum_exp >(const Eigen::Matrix&):: [with auto:304 = Eigen::Matrix]’ 92 | return max + std::log((v_ref.array() - max).exp().sum()); | ~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:93:13: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::reduce(const T&, const F&) [with F = stan::math::log_sum_exp >(const Eigen::Matrix&)::; T = Eigen::Matrix]’ 93 | return f(x); | ~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_sum_exp.hpp:83:39: required from ‘auto stan::math::log_sum_exp(const T&) [with T = Eigen::Matrix; stan::require_container_st* = 0]’ 83 | return apply_vector_unary::reduce(x, [&](const auto& v) { | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ 84 | if (v.size() == 0) { | ~~~~~~~~~~~~~~~~~~~~ 85 | return NEGATIVE_INFTY; | ~~~~~~~~~~~~~~~~~~~~~~ 86 | } | ~ 87 | const auto& v_ref = to_ref(v); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 88 | const double max = v_ref.maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 89 | if (!std::isfinite(max)) { | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 90 | return max; | ~~~~~~~~~~~ 91 | } | ~ 92 | return max + std::log((v_ref.array() - max).exp().sum()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 93 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/dirichlet_rng.hpp:59:35: required from here 59 | double log_sum_y = log_sum_exp(log_y); | ~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, const Eigen::Array >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:38:28: required from ‘struct Eigen::internal::traits, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 38 | >::type Scalar; | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_sum_exp.hpp:92:42: required from ‘stan::math::log_sum_exp >(const Eigen::Matrix&):: [with auto:304 = Eigen::Matrix]’ 92 | return max + std::log((v_ref.array() - max).exp().sum()); | ~~~~~~~~~~~~~~~^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:93:13: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::reduce(const T&, const F&) [with F = stan::math::log_sum_exp >(const Eigen::Matrix&)::; T = Eigen::Matrix]’ 93 | return f(x); | ~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_sum_exp.hpp:83:39: required from ‘auto stan::math::log_sum_exp(const T&) [with T = Eigen::Matrix; stan::require_container_st* = 0]’ 83 | return apply_vector_unary::reduce(x, [&](const auto& v) { | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ 84 | if (v.size() == 0) { | ~~~~~~~~~~~~~~~~~~~~ 85 | return NEGATIVE_INFTY; | ~~~~~~~~~~~~~~~~~~~~~~ 86 | } | ~ 87 | const auto& v_ref = to_ref(v); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 88 | const double max = v_ref.maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 89 | if (!std::isfinite(max)) { | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 90 | return max; | ~~~~~~~~~~~ 91 | } | ~ 92 | return max + std::log((v_ref.array() - max).exp().sum()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 93 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/dirichlet_rng.hpp:59:35: required from here 59 | double log_sum_y = log_sum_exp(log_y); | ~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_sum_exp.hpp:92:42: required from ‘stan::math::log_sum_exp >(const Eigen::Matrix&):: [with auto:304 = Eigen::Matrix]’ 92 | return max + std::log((v_ref.array() - max).exp().sum()); | ~~~~~~~~~~~~~~~^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:93:13: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::reduce(const T&, const F&) [with F = stan::math::log_sum_exp >(const Eigen::Matrix&)::; T = Eigen::Matrix]’ 93 | return f(x); | ~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_sum_exp.hpp:83:39: required from ‘auto stan::math::log_sum_exp(const T&) [with T = Eigen::Matrix; stan::require_container_st* = 0]’ 83 | return apply_vector_unary::reduce(x, [&](const auto& v) { | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ 84 | if (v.size() == 0) { | ~~~~~~~~~~~~~~~~~~~~ 85 | return NEGATIVE_INFTY; | ~~~~~~~~~~~~~~~~~~~~~~ 86 | } | ~ 87 | const auto& v_ref = to_ref(v); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 88 | const double max = v_ref.maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 89 | if (!std::isfinite(max)) { | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 90 | return max; | ~~~~~~~~~~~ 91 | } | ~ 92 | return max + std::log((v_ref.array() - max).exp().sum()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 93 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/dirichlet_rng.hpp:59:35: required from here 59 | double log_sum_y = log_sum_exp(log_y); | ~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_sum_exp.hpp:92:52: required from ‘stan::math::log_sum_exp >(const Eigen::Matrix&):: [with auto:304 = Eigen::Matrix]’ 92 | return max + std::log((v_ref.array() - max).exp().sum()); | ~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:93:13: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::reduce(const T&, const F&) [with F = stan::math::log_sum_exp >(const Eigen::Matrix&)::; T = Eigen::Matrix]’ 93 | return f(x); | ~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_sum_exp.hpp:83:39: required from ‘auto stan::math::log_sum_exp(const T&) [with T = Eigen::Matrix; stan::require_container_st* = 0]’ 83 | return apply_vector_unary::reduce(x, [&](const auto& v) { | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ 84 | if (v.size() == 0) { | ~~~~~~~~~~~~~~~~~~~~ 85 | return NEGATIVE_INFTY; | ~~~~~~~~~~~~~~~~~~~~~~ 86 | } | ~ 87 | const auto& v_ref = to_ref(v); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 88 | const double max = v_ref.maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 89 | if (!std::isfinite(max)) { | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 90 | return max; | ~~~~~~~~~~~ 91 | } | ~ 92 | return max + std::log((v_ref.array() - max).exp().sum()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 93 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/dirichlet_rng.hpp:59:35: required from here 59 | double log_sum_y = log_sum_exp(log_y); | ~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gaussian_dlm_obs_rng.hpp:38:59: required from here 38 | Eigen::VectorXd stddev = S_ldlt.vectorD().array().sqrt().matrix(); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 5>, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 5>, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 5>, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 5>, Eigen::Matrix, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 5>, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 5>, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gaussian_dlm_obs_rng.hpp:46:75: required from here 46 | = mu + (S_ldlt.transpositionsP().transpose() * (S_ldlt.matrixL() * z)); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, Eigen::Product, 5>, Eigen::Matrix, 0>, 2>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, Eigen::Product, 5>, Eigen::Matrix, 0>, 2> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, Eigen::Product, 5>, Eigen::Matrix, 0>, 2> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base > >, Eigen::Product, 5>, Eigen::Matrix, 0>, 2, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl > >, Eigen::Product, 5>, Eigen::Matrix, 0>, 2, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product > >, Eigen::Product, 5>, Eigen::Matrix, 0>, 2>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gaussian_dlm_obs_rng.hpp:46:76: required from here 46 | = mu + (S_ldlt.transpositionsP().transpose() * (S_ldlt.matrixL() * z)); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gaussian_dlm_obs_rng.hpp:135:41: required from here 135 | Eigen::VectorXd(F.transpose() * theta_t), V_ldlt, rng); | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, 1, true>, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, 1, true>, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, 1, true>, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Block, -1, 1, true>, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, true>, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/hmm_hidden_state_prob.hpp:77:52: required from here 77 | alphas.col(n) = alphas.col(n).cwiseProduct(beta); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, 1, true>, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, 1, true>, const Eigen::CwiseNullaryOp, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, 1, true>, const Eigen::CwiseNullaryOp, const Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Block, -1, 1, true>, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, true>, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/hmm_latent_rng.hpp:71:73: required from here 71 | probs_vec = alphas.col(n_transitions) / alphas.col(n_transitions).sum(); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_cholesky_rng.hpp:49:68: required from here 49 | return L_S.template triangularView() * B.transpose(); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1>, Eigen::Transpose >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1>, Eigen::Transpose >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1>, Eigen::Transpose >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 1>, Eigen::Transpose >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 1>, Eigen::Transpose >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 1>, Eigen::Transpose >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_cholesky_rng.hpp:49:68: required from here 49 | return L_S.template triangularView() * B.transpose(); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::TriangularView >, 2>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::TriangularView >, 2>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::TriangularView >, 2>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::TriangularView >, 2>, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::TriangularView >, 2>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::TriangularView >, 2>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:42: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::TriangularView >, 2>, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::TriangularView >, 2>, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::TriangularView >, 2>, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, Eigen::TriangularView >, 2>, 0>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:32: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:86:7: required from ‘class Eigen::SolveImpl >, Eigen::Matrix, Eigen::Dense>’ 86 | class SolveImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:62:7: required from ‘class Eigen::Solve >, Eigen::Matrix >’ 62 | class Solve : public SolveImpl::StorageKind> | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/inv_wishart_rng.hpp:25:32: required from here 25 | S_inv = ldlt_of_S.solve(S_inv); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose >, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose >, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose >, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose >, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose >, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/inv_wishart_rng.hpp:27:40: required from here 27 | return 0.5 * (asym.transpose() + asym); // ensure symmetry | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, const Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:38:28: required from ‘struct Eigen::internal::traits, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Transpose >, const Eigen::Matrix > > >’ 38 | >::type Scalar; | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Transpose >, const Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Transpose >, const Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/inv_wishart_rng.hpp:27:40: required from here 27 | return 0.5 * (asym.transpose() + asym); // ensure symmetry | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Transpose >, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Transpose >, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Transpose >, const Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Transpose >, const Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::Transpose >, const Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/inv_wishart_rng.hpp:27:40: required from here 27 | return 0.5 * (asym.transpose() + asym); // ensure symmetry | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/matrix_normal_prec_rng.hpp:89:47: required from here 89 | = Sigma_ldlt.vectorD().array().inverse().sqrt().matrix(); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0> > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0> > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/matrix_normal_prec_rng.hpp:89:54: required from here 89 | = Sigma_ldlt.vectorD().array().inverse().sqrt().matrix(); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 6>, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, 6>, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, 6>, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:86:7: required from ‘class Eigen::SolveImpl >, 6>, Eigen::Matrix, Eigen::Dense>’ 86 | class SolveImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:62:7: required from ‘class Eigen::Solve >, 6>, Eigen::Matrix >’ 62 | class Solve : public SolveImpl::StorageKind> | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/matrix_normal_prec_rng.hpp:109:64: required from here 109 | (Sigma_ldlt.matrixU().solve(X)).transpose())) | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 6>, Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, 6>, Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, 6>, Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl >, 6>, Eigen::Matrix >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/matrix_normal_prec_rng.hpp:108:51: recursively required by substitution of ‘template const Eigen::internal::triangular_solve_retval >, 6>, Other> Eigen::TriangularViewImpl >, 6, Eigen::Dense>::solve(const Eigen::MatrixBase&) const [with int Side = ; Other = ]’ 108 | * (D_ldlt.matrixU().solve( | ~~~~~~~~~~~~~~~~~~~~~~^ 109 | (Sigma_ldlt.matrixU().solve(X)).transpose())) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/matrix_normal_prec_rng.hpp:108:51: required from here /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/ForwardDeclarations.h:32:48: required from ‘struct Eigen::internal::accessors_level >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >’ 32 | enum { has_direct_access = (traits::Flags & DirectAccessBit) ? 1 : 0, | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:86:7: required from ‘class Eigen::SolveImpl >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > >, Eigen::Dense>’ 86 | class SolveImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:62:7: required from ‘class Eigen::Solve >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > >’ 62 | class Solve : public SolveImpl::StorageKind> | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/matrix_normal_prec_rng.hpp:110:32: required from here 110 | .transpose() | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:86:7: required from ‘class Eigen::SolveImpl >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > >, Eigen::Dense>’ 86 | class SolveImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:62:7: required from ‘class Eigen::Solve >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > >’ 62 | class Solve : public SolveImpl::StorageKind> | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/matrix_normal_prec_rng.hpp:110:32: required from here 110 | .transpose() | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/matrix_normal_prec_rng.hpp:110:43: required from here 110 | .transpose() | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, Eigen::Transpose >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >, 2>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, Eigen::Transpose >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >, 2> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, Eigen::Transpose >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >, 2> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base > >, Eigen::Transpose >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >, 2, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl > >, Eigen::Transpose >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >, 2, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product > >, Eigen::Transpose >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >, 2>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/matrix_normal_prec_rng.hpp:111:51: required from here 111 | * D_ldlt.transpositionsP()); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, Eigen::Transpose >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >, 2>, Eigen::Transpositions<-1, -1, int>, 2>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >, Eigen::Transpose >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >, 2>, Eigen::Transpositions<-1, -1, int>, 2> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >, Eigen::Transpose >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >, 2>, Eigen::Transpositions<-1, -1, int>, 2> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base > >, Eigen::Transpose >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >, 2>, Eigen::Transpositions<-1, -1, int>, 2, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl > >, Eigen::Transpose >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >, 2>, Eigen::Transpositions<-1, -1, int>, 2, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product > >, Eigen::Transpose >, 6>, Eigen::Transpose >, 6>, Eigen::Matrix > > > >, 2>, Eigen::Transpositions<-1, -1, int>, 2>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/matrix_normal_prec_rng.hpp:111:52: required from here 111 | * D_ldlt.transpositionsP()); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:62:23: required from ‘static auto stan::math::apply_scalar_unary::type>::value, void>::type>::apply(const T&) [with F = stan::math::lgamma_fun; T = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >]’ 62 | return x.unaryExpr([](auto&& x) { | ~~~~~~~~~~~^~~~~~~~~~~~~~~ 63 | return apply_scalar_unary>::apply(x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 64 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:72:38: required from ‘struct stan::math::apply_scalar_unary, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, void>’ 72 | apply_scalar_unary::apply(std::declval()))>; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lgamma.hpp:120:50: required from ‘auto stan::math::lgamma(const T&) [with T = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >; stan::require_not_var_matrix_t* = 0; stan::require_not_nonscalar_prim_or_rev_kernel_expression_t* = 0]’ 120 | return apply_scalar_unary::apply(x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/multinomial_logit_lpmf.hpp:39:44: required from here 39 | lp += lgamma(1 + ns_map.sum()) - lgamma(1 + ns_map).sum(); | ~~~~~~^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ In file included from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/ordered_probit_lpmf.hpp:13, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/ordered_probit_log.hpp:5, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob.hpp:256, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim.hpp:16: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/std_normal_lcdf.hpp: In function ‘stan::return_type_t stan::math::std_normal_lcdf(const T_y&)’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/std_normal_lcdf.hpp:69: note: ‘-Wmisleading-indentation’ is disabled from this point onwards, since column-tracking was disabled due to the size of the code/headers 69 | } else if (10.0 * log(fabs(scaled_y)) /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/std_normal_lcdf.hpp:69: note: adding ‘-flarge-source-files’ will allow for more column-tracking support, at the expense of compilation time and memory /usr/local/lib/R/library/StanHeaders/include/src/stan/io/dump.hpp: In member function ‘virtual std::vector > stan::io::dump::vals_c(const std::string&) const’: /usr/local/lib/R/library/StanHeaders/include/src/stan/io/dump.hpp:694: warning: comparison of integer expressions of different signedness: ‘int’ and ‘std::vector::size_type’ {aka ‘long unsigned int’} [-Wsign-compare] 694 | for (comp_iter = 0, real_iter = 0; real_iter < val_r->second.first.size(); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/dump.hpp:707: warning: comparison of integer expressions of different signedness: ‘int’ and ‘std::vector::size_type’ {aka ‘long unsigned int’} [-Wsign-compare] 707 | real_iter < val_i->second.first.size(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: required from ‘class Eigen::MapBase, -1, -1, false>, 1>’ 223 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, -1, -1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, -1, -1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cholesky_decompose.hpp:102:0: required from here 102 | if (C_adj.size() > 0) { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, -1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cholesky_decompose.hpp:111:0: required from here 111 | = D_adj.adjoint().template triangularView(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 0>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 0>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Diagonal.h:63:53: required from ‘class Eigen::Diagonal, -1, -1, false>, 0>’ 63 | template class Diagonal | ^~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cholesky_decompose.hpp:116:0: required from here 116 | D_adj.diagonal() *= 0.5; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::OuterStride<> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: required from ‘class Eigen::MapBase, 0, Eigen::OuterStride<> >, 1>’ 223 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Ref.h:59:34: required from ‘class Eigen::RefBase, 0, Eigen::OuterStride<> > >’ 59 | template class RefBase | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Ref.h:281:76: required from ‘class Eigen::Ref, 0, Eigen::OuterStride<> >’ 281 | template class Ref | ^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:76:42: required from ‘class Eigen::LLT, 0, Eigen::OuterStride<> >, 1>’ 76 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | ^~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cholesky_decompose.hpp:142:0: required from here 142 | check_pos_definite("cholesky_decompose", "m", L_factor); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 1>’ 223 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Map.h:94:79: required from ‘class Eigen::Map, 0, Eigen::Stride<0, 0> >’ 94 | template class Map | ^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:13:0: required from ‘class stan::math::arena_matrix, void>’ 13 | class arena_matrix> /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cholesky_decompose.hpp:144:0: required from here 144 | L_A.template triangularView().setZero(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 1>’ 223 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::Stride<0, 0> >, 1, -1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, 0, Eigen::Stride<0, 0> >, 1, -1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cholesky_factor_constrain.hpp:42:0: required from here 42 | y_val.row(m).head(m) = x.val().segment(pos, m); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 0, Eigen::Stride<0, 0> > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:28:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 28 | * arena_L_val.transpose(); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:28:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 27 | arena_t res = arena_L_val.template triangularView() 28 | * arena_L_val.transpose(); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:31:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 31 | arena_L.adj() += ((res.adj().transpose() + res.adj()) /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:32:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 31 | arena_L.adj() += ((res.adj().transpose() + res.adj()) 32 | * arena_L_val.template triangularView()) /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/gp_exp_quad_cov.hpp:94:0: required from here 94 | adjsigma += (cov_diag.val().array() * cov_diag.adj().array()).sum(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/gp_exp_quad_cov.hpp:94:0: required from here 94 | adjsigma += (cov_diag.val().array() * cov_diag.adj().array()).sum(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/gp_exp_quad_cov.hpp:94:0: required from here 94 | adjsigma += (cov_diag.val().array() * cov_diag.adj().array()).sum(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/gp_exp_quad_cov.hpp:94:0: required from here 94 | adjsigma += (cov_diag.val().array() * cov_diag.adj().array()).sum(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/gp_exp_quad_cov.hpp:94:0: required from here 94 | adjsigma += (cov_diag.val().array() * cov_diag.adj().array()).sum(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseMatrixBase.h: In instantiation of ‘class Eigen::SparseMatrixBase >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseCompressedBase.h:36:7: required from ‘class Eigen::SparseCompressedBase >’ 36 | class SparseCompressedBase | ^~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: recursively required by substitution of ‘template static std::true_type stan::is_base_pointer_convertible >::f(const Eigen::EigenBase*) [with OtherDerived = ]’ 29 | = decltype(f(std::declval *>()))::value | ~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: required from ‘struct stan::is_base_pointer_convertible >’ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_eigen.hpp:21:71: required from ‘struct stan::is_eigen >’ 21 | : bool_constant::value> {}; | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/var.hpp:301:0: required by substitution of ‘template class stan::math::var_value::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type> [with T = Eigen::SparseMatrix]’ 301 | (is_eigen::value || is_kernel_expression_and_not_scalar::value) /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/csr_matrix_times_vector.hpp:120:0: required from here 120 | arena_t res = w_mat_arena.val() * value_of(b_arena); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseMatrixBase.h:47:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 47 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseMatrixBase.h: In instantiation of ‘class Eigen::SparseMatrixBase, 0, Eigen::Stride<0, 0> > >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseCompressedBase.h:36:7: required from ‘class Eigen::SparseCompressedBase, 0, Eigen::Stride<0, 0> > >’ 36 | class SparseCompressedBase | ^~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseMap.h:50:7: required from ‘class Eigen::SparseMapBase, 0, Eigen::Stride<0, 0> >, 0>’ 50 | class SparseMapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseMap.h:148:7: required from ‘class Eigen::SparseMapBase, 0, Eigen::Stride<0, 0> >, 1>’ 148 | class SparseMapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseMap.h:222:7: required from ‘class Eigen::Map, 0, Eigen::Stride<0, 0> >’ 222 | class Map, Options, StrideType> | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:129:0: required from ‘class stan::math::arena_matrix, void>’ 129 | class arena_matrix> /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/vari.hpp:814:0: required from ‘class stan::math::vari_value, void>’ 814 | using InnerIterator = typename arena_matrix::InnerIterator; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/var.hpp:419:0: required from ‘const auto& stan::math::var_value::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type>::val() const [with T = Eigen::SparseMatrix; typename std::enable_if::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type = void; typename stan::value_type::type = double]’ 419 | inline const auto& val() const noexcept { return vi_->val(); } /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/csr_matrix_times_vector.hpp:120:0: required from here 120 | arena_t res = w_mat_arena.val() * value_of(b_arena); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/SparseCore/SparseMatrixBase.h:47:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 47 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Diagonal.h:63:53: required from ‘class Eigen::Diagonal, -1>’ 63 | template class Diagonal | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:97:21: required from ‘class Eigen::Tridiagonalization >’ 97 | >::type SubDiagonalReturnType; | ^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:111:62: required from ‘class Eigen::SelfAdjointEigenSolver >’ 111 | typedef typename TridiagonalizationType::SubDiagonalType SubDiagonalType; | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/eigendecompose_sym.hpp:40:0: required from here 40 | arena_t eigenvals = solver.eigenvalues(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1> >::adj_Op, Eigen::Matrix, -1, 1> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1> >::adj_Op, Eigen::Matrix, -1, 1> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1> >::adj_Op, Eigen::Matrix, -1, 1> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1> >::adj_Op, Eigen::Matrix, -1, 1> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1> >::adj_Op, Eigen::Matrix, -1, 1> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:103:7: required from ‘class Eigen::CwiseUnaryViewImpl, -1, 1> >::adj_Op, Eigen::Matrix, -1, 1>, Eigen::Dense>’ 103 | class CwiseUnaryViewImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:58:7: required from ‘class Eigen::CwiseUnaryView, -1, 1> >::adj_Op, Eigen::Matrix, -1, 1> >’ 58 | class CwiseUnaryView : public CwiseUnaryViewImpl::StorageKind> | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/grad.hpp:27:0: required from here 27 | g = x.adj(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0> > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, 0> >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:66:44: required from ‘stan::math::log, 0> >(const Eigen::Diagonal, 0>&):: [with auto:170 = Eigen::Diagonal, 0>]’ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:47:25: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::apply(const T&, const F&) [with F = stan::math::log, 0> >(const Eigen::Diagonal, 0>&)::; T2 = Eigen::Diagonal, 0>; stan::require_t::type> >* = 0; T = Eigen::Diagonal, 0>]’ 47 | f(x)); | ~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:65:46: required from ‘auto stan::math::log(const Container&) [with Container = Eigen::Diagonal, 0>; stan::require_container_st* = 0]’ 65 | return apply_vector_unary::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/log_determinant_spd.hpp:49:0: required from here 49 | var log_det = sum(log(M_ldlt.vectorD())); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:66:50: required from ‘stan::math::log, 0> >(const Eigen::Diagonal, 0>&):: [with auto:170 = Eigen::Diagonal, 0>]’ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:47:25: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::apply(const T&, const F&) [with F = stan::math::log, 0> >(const Eigen::Diagonal, 0>&)::; T2 = Eigen::Diagonal, 0>; stan::require_t::type> >* = 0; T = Eigen::Diagonal, 0>]’ 47 | f(x)); | ~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:65:46: required from ‘auto stan::math::log(const Container&) [with Container = Eigen::Diagonal, 0>; stan::require_container_st* = 0]’ 65 | return apply_vector_unary::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/log_determinant_spd.hpp:49:0: required from here 49 | var log_det = sum(log(M_ldlt.vectorD())); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::ArrayWrapper, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::ArrayWrapper, 0> > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:46:59: required from ‘stan::math::apply_vector_unary, 0>, void>::apply, 0> >(const Eigen::Diagonal, 0>&):: >(const Eigen::Diagonal, 0>&, const stan::math::log, 0> >(const Eigen::Diagonal, 0>&)::&):: [with auto:7 = Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0> > >]’ 46 | return make_holder([](const auto& a) { return a.matrix().derived(); }, | ~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: required by substitution of ‘template()((declval)()...))>* > auto stan::math::make_holder(const F&, Args&& ...) [with F = stan::math::apply_vector_unary, 0>, void>::apply, 0> >(const Eigen::Diagonal, 0>&):: >(const Eigen::Diagonal, 0>&, const stan::math::log, 0> >(const Eigen::Diagonal, 0>&)::&)::; Args = {Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0> > >}; stan::require_plain_type_t()((declval)()...))>* = ]’ 370 | decltype(std::declval()(std::declval()...))>* = nullptr> | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:46:23: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::apply(const T&, const F&) [with F = stan::math::log, 0> >(const Eigen::Diagonal, 0>&)::; T2 = Eigen::Diagonal, 0>; stan::require_t::type> >* = 0; T = Eigen::Diagonal, 0>]’ 46 | return make_holder([](const auto& a) { return a.matrix().derived(); }, | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 47 | f(x)); | ~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:65:46: required from ‘auto stan::math::log(const Container&) [with Container = Eigen::Diagonal, 0>; stan::require_container_st* = 0]’ 65 | return apply_vector_unary::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/log_determinant_spd.hpp:49:0: required from here 49 | var log_det = sum(log(M_ldlt.vectorD())); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 1>’ 223 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Map.h:94:79: required from ‘class Eigen::Map, 0, Eigen::Stride<0, 0> >’ 94 | template class Map | ^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:13:0: required from ‘class stan::math::arena_matrix, void>’ 13 | class arena_matrix> /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/log_determinant_spd.hpp:51:0: required from here 51 | reverse_pass_callback([arena_M, log_det, arena_M_inv_transpose]() mutable { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/log_softmax.hpp:73:0: required from here 73 | vector_d diff = (x_d.array() - x_d.maxCoeff()); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/log_softmax.hpp:81:0: required from here 81 | Eigen::Map(softmax_x_d_array, a_size) = softmax_x_d.array() / sum; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/matrix_power.hpp:50:0: required from here 50 | arena_powers[0] = Eigen::MatrixXd::Identity(N, N); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::Stride<0, 0> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/matrix_power.hpp:53:0: required from here 53 | arena_powers[i] = arena_powers[1] * arena_powers[i - 1]; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/matrix_power.hpp:63:0: required from here 63 | adj_M += adj_C * arena_powers[i - 1].transpose(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 0, Eigen::Stride<0, 0> > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/matrix_power.hpp:64:0: required from here 64 | adj_C = M_val.transpose() * adj_C; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0, Eigen::Stride<0, 0> > >, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/matrix_power.hpp:64:0: required from here 64 | adj_C = M_val.transpose() * adj_C; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase*, -1, -1> > >::adj_Op, Eigen::Map*, -1, -1> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase*, -1, -1> > >::adj_Op, Eigen::Map*, -1, -1> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase*, -1, -1> > >::adj_Op, Eigen::Map*, -1, -1> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase*, -1, -1> > >::adj_Op, Eigen::Map*, -1, -1> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase*, -1, -1> > >::adj_Op, Eigen::Map*, -1, -1> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:103:7: required from ‘class Eigen::CwiseUnaryViewImpl*, -1, -1> > >::adj_Op, Eigen::Map*, -1, -1> >, Eigen::Dense>’ 103 | class CwiseUnaryViewImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:58:7: required from ‘class Eigen::CwiseUnaryView*, -1, -1> > >::adj_Op, Eigen::Map*, -1, -1> > >’ 58 | class CwiseUnaryView : public CwiseUnaryViewImpl::StorageKind> | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/mdivide_left_spd.hpp:67:0: required from here 67 | Eigen::Map(variRefB_, M_, N_).adj() += adjB; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Matrix, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Matrix >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/mdivide_left_tri.hpp:85:0: required from here 85 | adjA = -adjB * Map(C_, M_, N_).transpose(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::Matrix >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::Matrix >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::Matrix >, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/mdivide_left_tri.hpp:85:0: required from here 85 | adjA = -adjB * Map(C_, M_, N_).transpose(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Transpose > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Transpose > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::Transpose > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::Transpose >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/quad_form.hpp:25:0: required from here 25 | matrix_d M = 0.5 * (Cd + Cd.transpose()); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, -1, 1, true>, 1>’ 223 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::Stride<0, 0> >, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, 0, Eigen::Stride<0, 0> >, -1, 1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/read_corr_L.hpp:55:0: required from here 55 | L.col(0).tail(pull) = CPCs.val().head(pull); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0, Eigen::Stride<0, 0> > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 1>’ 223 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Map.h:94:79: required from ‘class Eigen::Map, 0, Eigen::Stride<0, 0> >’ 94 | template class Map | ^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:13:0: required from ‘class stan::math::arena_matrix, void>’ 13 | class arena_matrix> /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/read_corr_L.hpp:56:0: required from here 56 | arena_acc.tail(pull) = 1.0 - CPCs.val().head(pull).array().square(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, 1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, 1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0, Eigen::Stride<0, 0> >, -1, 1, false> >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, -1, 1, false>, 1>’ 223 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::Stride<0, 0> >, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, 0, Eigen::Stride<0, 0> >, -1, 1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/VectorBlock.h:56:47: required from ‘class Eigen::VectorBlock, 0, Eigen::Stride<0, 0> >, -1>’ 56 | template class VectorBlock | ^~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/read_corr_L.hpp:63:0: required from here 63 | L.col(i).tail(pull) = cpc_seg * arena_acc.tail(pull).sqrt(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1, false> >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: required from ‘class Eigen::MapBase, -1, 1, false>, 1>’ 223 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, -1, 1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, -1, 1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/VectorBlock.h:56:47: required from ‘class Eigen::VectorBlock, -1>’ 56 | template class VectorBlock | ^~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/read_corr_L.hpp:86:0: required from here 86 | -= 2.0 * acc_adj.tail(pull) * acc_val.tail(pull) * cpc_seg_val; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Block, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Block, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Block, -1, 1, false> > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Block, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Block, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/read_corr_L.hpp:86:0: required from here 86 | -= 2.0 * acc_adj.tail(pull) * acc_val.tail(pull) * cpc_seg_val; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0, Eigen::Stride<0, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/read_corr_L.hpp:90:0: required from here 90 | += L_res.adj().array().col(i).tail(pull) * acc_val.tail(pull).sqrt(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 1>’ 223 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::Stride<0, 0> > >, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, 0, Eigen::Stride<0, 0> > >, -1, 1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/read_corr_L.hpp:90:0: required from here 90 | += L_res.adj().array().col(i).tail(pull) * acc_val.tail(pull).sqrt(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, false> >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, false>, 1>’ 223 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1, 1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/VectorBlock.h:56:47: required from ‘class Eigen::VectorBlock, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, -1>’ 56 | template class VectorBlock | ^~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/read_corr_L.hpp:90:0: required from here 90 | += L_res.adj().array().col(i).tail(pull) * acc_val.tail(pull).sqrt(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Block, -1, 1, false> > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Block, -1, 1, false>, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, false> >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/read_corr_L.hpp:90:0: required from here 90 | += L_res.adj().array().col(i).tail(pull) * acc_val.tail(pull).sqrt(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/read_cov_matrix.hpp:56:0: required from here 56 | sds.adj() += (prod.adj().cwiseProduct(corr_L.val())).rowwise().sum(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/rows_dot_self.hpp:41:0: required from here 41 | x.adj() += (2 * res.adj()).asDiagonal() * x.val(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 0>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 0>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Diagonal.h:63:53: required from ‘class Eigen::Diagonal, 0, Eigen::Stride<0, 0> >, 0>’ 63 | template class Diagonal | ^~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/svd.hpp:56:0: required from here 56 | arena_Fp.diagonal().setZero(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Transpose > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Transpose > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::Transpose > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::Transpose >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Transpose > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/svd.hpp:69:0: required from here 69 | * (arena_Fp.array() * (UUadjT - UUadjT.transpose()).array()) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Transpose > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Transpose > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Matrix, const Eigen::Transpose > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, const Eigen::Matrix, const Eigen::Transpose > > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/svd.hpp:69:0: required from here 69 | * (arena_Fp.array() * (UUadjT - UUadjT.transpose()).array()) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, const Eigen::Matrix, const Eigen::Transpose > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, const Eigen::Matrix, const Eigen::Transpose > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, const Eigen::Matrix, const Eigen::Transpose > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, const Eigen::Matrix, const Eigen::Transpose > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, const Eigen::Matrix, const Eigen::Transpose > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/svd.hpp:70:0: required from here 70 | .matrix() /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/svd_V.hpp:61:0: required from here 61 | .matrix() /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, const Eigen::Matrix, const Eigen::Transpose > > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, const Eigen::Matrix, const Eigen::Transpose > > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, const Eigen::Matrix, const Eigen::Transpose > > > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, const Eigen::Matrix, const Eigen::Transpose > > > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/svd_V.hpp:61:0: required from here 61 | .matrix() /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DiagonalMatrix.h:278:47: required from ‘struct Eigen::internal::traits, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > >’ 278 | typedef typename DiagonalVectorType::Scalar Scalar; | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/EigenBase.h:42:59: required from ‘struct Eigen::EigenBase, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > >’ 42 | typedef typename internal::traits::StorageKind StorageKind; | ^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DiagonalMatrix.h:18:7: required from ‘class Eigen::DiagonalBase, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > >’ 18 | class DiagonalBase : public EigenBase | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DiagonalMatrix.h:293:7: required from ‘class Eigen::DiagonalWrapper, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 293 | class DiagonalWrapper | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/svd_V.hpp:63:0: required from here 63 | + arena_U * arena_D.asDiagonal().inverse() /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:103:7: required from ‘class Eigen::CwiseUnaryViewImpl*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> >, Eigen::Dense>’ 103 | class CwiseUnaryViewImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:58:7: required from ‘class Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >’ 58 | class CwiseUnaryView : public CwiseUnaryViewImpl::StorageKind> | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/squared_distance.hpp:79:0: required from here 79 | vector_d di = 2 * adj_ * (v1_map.val() - v2_map.val()); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/squared_distance.hpp:79:0: required from here 79 | vector_d di = 2 * adj_ * (v1_map.val() - v2_map.val()); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/squared_distance.hpp:79:0: required from here 79 | vector_d di = 2 * adj_ * (v1_map.val() - v2_map.val()); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase*, -1, 1> > >::adj_Op, Eigen::Map*, -1, 1> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase*, -1, 1> > >::adj_Op, Eigen::Map*, -1, 1> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase*, -1, 1> > >::adj_Op, Eigen::Map*, -1, 1> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase*, -1, 1> > >::adj_Op, Eigen::Map*, -1, 1> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase*, -1, 1> > >::adj_Op, Eigen::Map*, -1, 1> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:103:7: required from ‘class Eigen::CwiseUnaryViewImpl*, -1, 1> > >::adj_Op, Eigen::Map*, -1, 1> >, Eigen::Dense>’ 103 | class CwiseUnaryViewImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:58:7: required from ‘class Eigen::CwiseUnaryView*, -1, 1> > >::adj_Op, Eigen::Map*, -1, 1> > >’ 58 | class CwiseUnaryView : public CwiseUnaryViewImpl::StorageKind> | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/squared_distance.hpp:80:0: required from here 80 | v1_map.adj() += di; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/squared_distance.hpp:111:0: required from here 111 | += 2 * adj_ * (v1_map.val() - Eigen::Map(v2_, length_)); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView*, -1, 1> > >::val_Op, Eigen::Map*, -1, 1> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/squared_distance.hpp:111:0: required from here 111 | += 2 * adj_ * (v1_map.val() - Eigen::Map(v2_, length_)); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:103:7: required from ‘class Eigen::CwiseUnaryViewImpl, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 103 | class CwiseUnaryViewImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:58:7: required from ‘class Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >’ 58 | class CwiseUnaryView : public CwiseUnaryViewImpl::StorageKind> | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/variance.hpp:23:0: required from here 23 | vector_d dtrs_vals = dtrs_map.val(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/variance.hpp:25:0: required from here 25 | vector_d diff = dtrs_vals.array() - dtrs_vals.mean(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/variance.hpp:27:0: required from here 27 | Eigen::Map(partials, size) = 2 * diff.array() / size_m1; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/variance.hpp:27:0: required from here 27 | Eigen::Map(partials, size) = 2 * diff.array() / size_m1; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1> >::val_Op, Eigen::Matrix, -1, 1> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1> >::val_Op, Eigen::Matrix, -1, 1> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1> >::val_Op, Eigen::Matrix, -1, 1> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1> >::val_Op, Eigen::Matrix, -1, 1> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1> >::val_Op, Eigen::Matrix, -1, 1> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:103:7: required from ‘class Eigen::CwiseUnaryViewImpl, -1, 1> >::val_Op, Eigen::Matrix, -1, 1>, Eigen::Dense>’ 103 | class CwiseUnaryViewImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:58:7: required from ‘class Eigen::CwiseUnaryView, -1, 1> >::val_Op, Eigen::Matrix, -1, 1> >’ 58 | class CwiseUnaryView : public CwiseUnaryViewImpl::StorageKind> | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/functor/jacobian.hpp:26:0: required from here 26 | fx = fx_var.val(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1>, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/value_of.hpp:75:27: required from ‘stan::math::value_of, -1, 1>&>(const Eigen::Matrix, -1, 1>&):: [with auto:12 = const Eigen::Matrix, -1, 1>]’ 75 | return a.unaryExpr([](const auto& scal) { return value_of(scal); }); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: required by substitution of ‘template()((declval)()...))>* > auto stan::math::make_holder(const F&, Args&& ...) [with F = stan::math::value_of, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::; Args = {const Eigen::Matrix, -1, 1, 0, -1, 1>&}; stan::require_plain_type_t()((declval)()...))>* = ]’ 370 | decltype(std::declval()(std::declval()...))>* = nullptr> | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/value_of.hpp:73:21: required from ‘auto stan::math::value_of(EigMat&&) [with EigMat = const Eigen::Matrix, -1, 1>&; stan::require_eigen_dense_base_t* = 0; stan::require_not_st_arithmetic* = 0]’ 73 | return make_holder( | ~~~~~~~~~~~^ 74 | [](auto& a) { | ~~~~~~~~~~~~~ 75 | return a.unaryExpr([](const auto& scal) { return value_of(scal); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 76 | }, | ~~ 77 | std::forward(M)); | ~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/functor/algebra_solver_fp.hpp:101:0: required from here 101 | y_dummy(stan::math::value_of(y)), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:103:7: required from ‘class Eigen::CwiseUnaryViewImpl, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 103 | class CwiseUnaryViewImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:58:7: required from ‘class Eigen::CwiseUnaryView, -1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, -1>, 0, Eigen::Stride<0, 0> > >’ 58 | class CwiseUnaryView : public CwiseUnaryViewImpl::StorageKind> | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/functor/solve_powell.hpp:369:0: required from here 369 | Eigen::VectorXd eta = -Jf_x_T_lu_ptr->solve(ret.adj().eval()); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:86:7: required from ‘class Eigen::SolveImpl >, Eigen::Matrix, Eigen::Dense>’ 86 | class SolveImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:62:7: required from ‘class Eigen::Solve >, Eigen::Matrix >’ 62 | class Solve : public SolveImpl::StorageKind> | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/functor/solve_powell.hpp:369:0: required from here 369 | Eigen::VectorXd eta = -Jf_x_T_lu_ptr->solve(ret.adj().eval()); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/functor/cvodes_integrator_adjoint.hpp:604:0: required from here 604 | f_y_t_vars.adj() = -Eigen::Map(NV_DATA_S(yB), N_); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, const Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/functor/finite_diff_hessian_times_vector_auto.hpp:62:0: required from here 62 | hvp = (grad_forward - grad_backward) / (2 * epsilon); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ In file included from /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/initialize.hpp:7, from /usr/local/lib/R/library/StanHeaders/include/src/stan/services/diagnose/diagnose.hpp:10, from /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:49: /usr/local/lib/R/library/StanHeaders/include/src/stan/io/random_var_context.hpp: In member function ‘virtual std::vector > stan::io::random_var_context::vals_c(const std::string&) const’: /usr/local/lib/R/library/StanHeaders/include/src/stan/io/random_var_context.hpp:111: warning: comparison of integer expressions of different signedness: ‘int’ and ‘std::vector::size_type’ {aka ‘long unsigned int’} [-Wsign-compare] 111 | for (comp_iter = 0, real_iter = 0; real_iter < val_r.size(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_fullrank.hpp:182:0: required from here 182 | return normal_fullrank(Eigen::VectorXd(mu_.array().square()), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_fullrank.hpp:183:0: required from here 183 | Eigen::MatrixXd(L_chol_.array().square())); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_fullrank.hpp:197:0: required from here 197 | return normal_fullrank(Eigen::VectorXd(mu_.array().sqrt()), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_fullrank.hpp:198:0: required from here 198 | Eigen::MatrixXd(L_chol_.array().sqrt())); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_fullrank.hpp:263:0: required from here 263 | L_chol_.array() /= rhs.L_chol().array(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Matrix, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_fullrank.hpp:351:0: required from here 351 | return (L_chol_ * eta) + mu_; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Product, Eigen::Matrix, 0>, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Product, Eigen::Matrix, 0>, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Product, Eigen::Matrix, 0>, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Product, Eigen::Matrix, 0>, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Product, Eigen::Matrix, 0>, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_fullrank.hpp:351:0: required from here 351 | return (L_chol_ * eta) + mu_; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_fullrank.hpp:459:0: required from here 459 | L_grad.diagonal().array() += L_chol_.diagonal().array().inverse(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_meanfield.hpp:314:0: required from here 314 | return eta.array().cwiseProduct(omega_.array().exp()) + mu_.array(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_meanfield.hpp:314:0: required from here 314 | return eta.array().cwiseProduct(omega_.array().exp()) + mu_.array(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_meanfield.hpp:314:0: required from here 314 | return eta.array().cwiseProduct(omega_.array().exp()) + mu_.array(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_meanfield.hpp:370:0: required from here 370 | omega_grad.array() += tmp_mu_grad.array().cwiseProduct(eta.array()); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_meanfield.hpp:388:0: required from here 388 | omega_grad.array() = omega_grad.array().cwiseProduct(omega_.array().exp()); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base >, Eigen::Matrix, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl >, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product >, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:22:0: required from here 22 | vector_d eigenprojections = eigenvectors.transpose() * g; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/nuts/base_nuts.hpp:175:0: required from here 175 | rho = rho_bck + rho_fwd; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, const Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:38:28: required from ‘struct Eigen::internal::traits, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > > >’ 38 | >::type Scalar; | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from here 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from here 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from here 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:126:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0, 6>’ 126 | class dense_product_base | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from here 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h: In instantiation of ‘struct Eigen::internal::find_best_packet’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:179:81: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0> >’ 179 | typedef typename internal::find_best_packet::type PacketScalar; | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:126:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0, 6>’ 126 | class dense_product_base | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from here 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:44: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:208:88: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 208 | typedef typename find_best_packet_helper::type>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 2>, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, 2>, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, 2>, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:86:7: required from ‘class Eigen::SolveImpl >, 2>, Eigen::Matrix, Eigen::Dense>’ 86 | class SolveImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Solve.h:62:7: required from ‘class Eigen::Solve >, 2>, Eigen::Matrix >’ 62 | class Solve : public SolveImpl::StorageKind> | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:53:0: required from here 53 | z.p = z.inv_e_metric_.llt().matrixU().solve(u); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Map.h:94:79: required from ‘class Eigen::Map, 0, Eigen::Stride<0, 0> >’ 94 | template class Map | ^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/to_matrix.hpp:133:17: required from ‘auto stan::math::to_matrix(const std::vector&, int, int) [with T = double]’ 133 | return Eigen::Map>( | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 134 | &x[0], m, n); | ~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/read_dense_inv_metric.hpp:33:0: required from here 33 | inv_metric = stan::math::to_matrix(dense_vals, num_params, num_params); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/covar_adaptation.hpp:27:0: required from here 27 | covar = (n / (n + 5.0)) * covar /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/covar_adaptation.hpp:29:0: required from here 29 | * Eigen::MatrixXd::Identity(covar.rows(), covar.cols()); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/covar_adaptation.hpp:29:0: required from here 29 | * Eigen::MatrixXd::Identity(covar.rows(), covar.cols()); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/diag_e_metric.hpp:21:0: recursively required by substitution of ‘template typename Eigen::ScalarBinaryOpTraits::Scalar, Eigen::internal::scalar_product_op::Scalar> >::ReturnType Eigen::MatrixBase >::dot(const Eigen::MatrixBase&) const [with OtherDerived = ]’ 21 | return 0.5 * z.p.dot(z.inv_e_metric_.cwiseProduct(z.p)); /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/diag_e_metric.hpp:21:0: required from here /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/var_adaptation.hpp:27:0: required from here 27 | var = (n / (n + 5.0)) * var /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/var_adaptation.hpp:28:0: required from here 28 | + 1e-3 * (5.0 / (n + 5.0)) * Eigen::VectorXd::Ones(var.size()); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseNullaryOp, Eigen::Matrix > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/var_adaptation.hpp:28:0: required from here 28 | + 1e-3 * (5.0 / (n + 5.0)) * Eigen::VectorXd::Ones(var.size()); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ In file included from /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/standalone_gqs.hpp:7, from /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:68: /usr/local/lib/R/library/StanHeaders/include/src/stan/io/array_var_context.hpp: In member function ‘virtual std::vector > stan::io::array_var_context::vals_c(const std::string&) const’: /usr/local/lib/R/library/StanHeaders/include/src/stan/io/array_var_context.hpp:304: warning: comparison of integer expressions of different signedness: ‘int’ and ‘std::vector::size_type’ {aka ‘long unsigned int’} [-Wsign-compare] 304 | for (comp_iter = 0, real_iter = 0; real_iter < val_r->second.first.size(); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/array_var_context.hpp:317: warning: comparison of integer expressions of different signedness: ‘int’ and ‘std::vector::size_type’ {aka ‘long unsigned int’} [-Wsign-compare] 317 | real_iter < val_i->second.first.size(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 1, -1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, 1, -1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, 1, -1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/standalone_gqs.hpp:72:0: required from here 72 | Eigen::Map(&row[0], draws.cols()) = draws.row(i); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 1>’ 223 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Map.h:94:79: required from ‘class Eigen::Map, 0, Eigen::Stride<0, 0> >’ 94 | template class Map | ^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:13:0: required from ‘class stan::math::arena_matrix, void>’ 13 | class arena_matrix> /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/rvalue_varmat.hpp:145:0: required from here 145 | x_ret_vals.coeffRef(j) = x.val().coeff(row_idx_val, col_idx_vals[j]); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ In file included from /usr/local/lib/R/library/StanHeaders/include/src/stan/model/model_header.hpp:11, from stanExports_gMAP.h:20: /usr/local/lib/R/library/StanHeaders/include/src/stan/model/model_base_crtp.hpp: At global scope: /usr/local/lib/R/library/StanHeaders/include/src/stan/model/model_base_crtp.hpp:159: warning: ‘stan::math::var stan::model::model_base_crtp::log_prob(std::vector, std::allocator > >&, std::vector&, std::ostream*) const [with M = model_gMAP_namespace::model_gMAP; stan::math::var = stan::math::var_value; std::ostream = std::basic_ostream]’ was hidden [-Woverloaded-virtual=] 159 | inline math::var log_prob(std::vector& theta, stanExports_gMAP.h:1678: note: by ‘model_gMAP_namespace::model_gMAP::log_prob’ 1678 | log_prob(std::vector& params_r, std::vector& params_i, /usr/local/lib/R/library/StanHeaders/include/src/stan/model/model_base_crtp.hpp:154: warning: ‘double stan::model::model_base_crtp::log_prob(std::vector&, std::vector&, std::ostream*) const [with M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ was hidden [-Woverloaded-virtual=] 154 | inline double log_prob(std::vector& theta, std::vector& theta_i, stanExports_gMAP.h:1678: note: by ‘model_gMAP_namespace::model_gMAP::log_prob’ 1678 | log_prob(std::vector& params_r, std::vector& params_i, /usr/local/lib/R/library/StanHeaders/include/src/stan/model/model_base_crtp.hpp:96: warning: ‘stan::math::var stan::model::model_base_crtp::log_prob(Eigen::Matrix, -1, 1>&, std::ostream*) const [with M = model_gMAP_namespace::model_gMAP; stan::math::var = stan::math::var_value; std::ostream = std::basic_ostream]’ was hidden [-Woverloaded-virtual=] 96 | inline math::var log_prob(Eigen::Matrix& theta, stanExports_gMAP.h:1678: note: by ‘model_gMAP_namespace::model_gMAP::log_prob’ 1678 | log_prob(std::vector& params_r, std::vector& params_i, /usr/local/lib/R/library/StanHeaders/include/src/stan/model/model_base_crtp.hpp:91: warning: ‘double stan::model::model_base_crtp::log_prob(Eigen::VectorXd&, std::ostream*) const [with M = model_gMAP_namespace::model_gMAP; Eigen::VectorXd = Eigen::Matrix; std::ostream = std::basic_ostream]’ was hidden [-Woverloaded-virtual=] 91 | inline double log_prob(Eigen::VectorXd& theta, stanExports_gMAP.h:1678: note: by ‘model_gMAP_namespace::model_gMAP::log_prob’ 1678 | log_prob(std::vector& params_r, std::vector& params_i, /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::Stride<0, 0> >, 1, -1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, 0, Eigen::Stride<0, 0> >, 1, -1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/rvalue.hpp:251:0: required from ‘auto stan::model::rvalue(Mat&&, const char*, index_uni) [with Mat = const Eigen::Map, 0, Eigen::Stride<0, 0> >&; stan::require_dense_dynamic_t* = 0]’ 251 | return x.row(idx.n_ - 1); stanExports_gMAP.h:980:0: required from here 980 | stan::model::rvalue(X_param, "X_param", 981 | stan::model::index_uni(h)), beta) + /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/add.hpp:45:13: required from ‘auto stan::math::add(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix; Mat2 = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 + m2; | ~~~^~~~ stanExports_gMAP.h:1265:0: required from here 1265 | stan::math::add( 1266 | stan::model::rvalue(beta_raw_guess, "beta_raw_guess", 1267 | stan::model::index_uni(1)), 1268 | stan::math::elt_multiply( 1269 | stan::model::rvalue(beta_raw_guess, "beta_raw_guess", 1270 | stan::model::index_uni(2)), beta_raw)), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/add.hpp:77:22: required from ‘auto stan::math::add(Scal, const Mat&) [with Scal = double; Mat = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; stan::require_stan_scalar_t* = 0; stan::require_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 77 | return (c + m.array()).matrix(); | ~~~~~~~^~ stanExports_gMAP.h:1282:0: required from here 1282 | stan::math::add( 1283 | stan::model::rvalue(tau_raw_guess, "tau_raw_guess", 1284 | stan::model::index_uni(1)), 1285 | stan::math::multiply( 1286 | stan::model::rvalue(tau_raw_guess, "tau_raw_guess", 1287 | stan::model::index_uni(2)), tau_raw))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/add.hpp:77:13: required from ‘auto stan::math::add(Scal, const Mat&) [with Scal = double; Mat = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; stan::require_stan_scalar_t* = 0; stan::require_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 77 | return (c + m.array()).matrix(); | ~~~^~~~~~~~~~~~ stanExports_gMAP.h:1282:0: required from here 1282 | stan::math::add( 1283 | stan::model::rvalue(tau_raw_guess, "tau_raw_guess", 1284 | stan::model::index_uni(1)), 1285 | stan::math::multiply( 1286 | stan::model::rvalue(tau_raw_guess, "tau_raw_guess", 1287 | stan::model::index_uni(2)), tau_raw))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/add.hpp:77:32: required from ‘auto stan::math::add(Scal, const Mat&) [with Scal = double; Mat = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; stan::require_stan_scalar_t* = 0; stan::require_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 77 | return (c + m.array()).matrix(); | ~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_gMAP.h:1282:0: required from here 1282 | stan::math::add( 1283 | stan::model::rvalue(tau_raw_guess, "tau_raw_guess", 1284 | stan::model::index_uni(1)), 1285 | stan::math::multiply( 1286 | stan::model::rvalue(tau_raw_guess, "tau_raw_guess", 1287 | stan::model::index_uni(2)), tau_raw))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/exp.hpp:63:44: required from ‘stan::math::exp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > > >(const Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >&):: [with auto:216 = Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >]’ 63 | x, [](const auto& v) { return v.array().exp(); }); | ~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:47:25: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::apply(const T&, const F&) [with F = stan::math::exp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > > >(const Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >&)::; T2 = Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >; stan::require_t::type> >* = 0; T = Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >]’ 47 | f(x)); | ~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/exp.hpp:62:46: required from ‘auto stan::math::exp(const Container&) [with Container = Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >; stan::require_container_st* = 0]’ 62 | return apply_vector_unary::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 63 | x, [](const auto& v) { return v.array().exp(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1281:0: required from here 1281 | stan::math::exp( 1282 | stan::math::add( 1283 | stan::model::rvalue(tau_raw_guess, "tau_raw_guess", 1284 | stan::model::index_uni(1)), 1285 | stan::math::multiply( 1286 | stan::model::rvalue(tau_raw_guess, "tau_raw_guess", 1287 | stan::model::index_uni(2)), tau_raw))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/exp.hpp:63:50: required from ‘stan::math::exp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > > >(const Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >&):: [with auto:216 = Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >]’ 63 | x, [](const auto& v) { return v.array().exp(); }); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:47:25: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::apply(const T&, const F&) [with F = stan::math::exp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > > >(const Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >&)::; T2 = Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >; stan::require_t::type> >* = 0; T = Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >]’ 47 | f(x)); | ~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/exp.hpp:62:46: required from ‘auto stan::math::exp(const Container&) [with Container = Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >; stan::require_container_st* = 0]’ 62 | return apply_vector_unary::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 63 | x, [](const auto& v) { return v.array().exp(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1281:0: required from here 1281 | stan::math::exp( 1282 | stan::math::add( 1283 | stan::model::rvalue(tau_raw_guess, "tau_raw_guess", 1284 | stan::model::index_uni(1)), 1285 | stan::math::multiply( 1286 | stan::model::rvalue(tau_raw_guess, "tau_raw_guess", 1287 | stan::model::index_uni(2)), tau_raw))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > > > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > > > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:46:59: required from ‘stan::math::apply_vector_unary, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >, void>::apply, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > > >(const Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >&):: >(const Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >&, const stan::math::exp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > > >(const Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >&)::&):: [with auto:7 = Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > > > >]’ 46 | return make_holder([](const auto& a) { return a.matrix().derived(); }, | ~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: required by substitution of ‘template()((declval)()...))>* > auto stan::math::make_holder(const F&, Args&& ...) [with F = stan::math::apply_vector_unary, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >, void>::apply, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > > >(const Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >&):: >(const Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >&, const stan::math::exp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > > >(const Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >&)::&)::; Args = {Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > > > >}; stan::require_plain_type_t()((declval)()...))>* = ]’ 370 | decltype(std::declval()(std::declval()...))>* = nullptr> | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:46:23: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::apply(const T&, const F&) [with F = stan::math::exp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > > >(const Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >&)::; T2 = Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >; stan::require_t::type> >* = 0; T = Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >]’ 46 | return make_holder([](const auto& a) { return a.matrix().derived(); }, | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 47 | f(x)); | ~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/exp.hpp:62:46: required from ‘auto stan::math::exp(const Container&) [with Container = Eigen::MatrixWrapper, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > > >; stan::require_container_st* = 0]’ 62 | return apply_vector_unary::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 63 | x, [](const auto& v) { return v.array().exp(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1281:0: required from here 1281 | stan::math::exp( 1282 | stan::math::add( 1283 | stan::model::rvalue(tau_raw_guess, "tau_raw_guess", 1284 | stan::model::index_uni(1)), 1285 | stan::math::multiply( 1286 | stan::model::rvalue(tau_raw_guess, "tau_raw_guess", 1287 | stan::model::index_uni(2)), tau_raw))), /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:35: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Transpose >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Transpose >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Transpose >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Transpose >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Transpose >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Transpose >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h: In instantiation of ‘struct Eigen::internal::find_best_packet’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:22:57: required from ‘struct Eigen::internal::traits >’ 22 | typedef typename find_best_packet<_Scalar,size>::type PacketScalar; | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Array.h:17:8: required from ‘struct Eigen::internal::traits >’ 17 | struct traits > : traits > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Array.h:45:7: required from ‘class Eigen::Array’ 45 | class Array | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:28:11: required from ‘T_return stan::math::internal::hypergeometric_3F2_infsum(const Ta&, const Tb&, const Tz&, double, int) [with Ta = std::vector; Tb = std::vector; Tz = double; T_return = double; ArrayAT = Eigen::Array; ArrayBT = Eigen::Array; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 28 | ArrayAT a_array = as_array_or_scalar(a); | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:123:47: required from ‘auto stan::math::hypergeometric_3F2(const Ta&, const Tb&, const Tz&) [with Ta = std::vector; Tb = std::vector; Tz = double; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 123 | return internal::hypergeometric_3F2_infsum(a, b, z); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:148:28: required from ‘auto stan::math::hypergeometric_3F2(const std::initializer_list<_Tp>&, const std::initializer_list<_Value>&, const Tz&) [with Ta = double; Tb = double; Tz = double; stan::require_all_stan_scalar_t* = 0]’ 148 | return hypergeometric_3F2(std::vector(a), std::vector(b), z); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/inv_inc_beta.hpp:77:0: required from here 77 | + log(hypergeometric_3F2({a_val, a_val, one_m_b}, {ap1, ap1}, w)) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:44: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:208:88: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 208 | typedef typename find_best_packet_helper::type>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Array.h:45:7: required from ‘class Eigen::Array’ 45 | class Array | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:28:11: required from ‘T_return stan::math::internal::hypergeometric_3F2_infsum(const Ta&, const Tb&, const Tz&, double, int) [with Ta = std::vector; Tb = std::vector; Tz = double; T_return = double; ArrayAT = Eigen::Array; ArrayBT = Eigen::Array; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 28 | ArrayAT a_array = as_array_or_scalar(a); | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:123:47: required from ‘auto stan::math::hypergeometric_3F2(const Ta&, const Tb&, const Tz&) [with Ta = std::vector; Tb = std::vector; Tz = double; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 123 | return internal::hypergeometric_3F2_infsum(a, b, z); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:148:28: required from ‘auto stan::math::hypergeometric_3F2(const std::initializer_list<_Tp>&, const std::initializer_list<_Value>&, const Tz&) [with Ta = double; Tb = double; Tz = double; stan::require_all_stan_scalar_t* = 0]’ 148 | return hypergeometric_3F2(std::vector(a), std::vector(b), z); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/inv_inc_beta.hpp:77:0: required from here 77 | + log(hypergeometric_3F2({a_val, a_val, one_m_b}, {ap1, ap1}, w)) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0, Eigen::Stride<0, 0> > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Map.h:94:79: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: required by substitution of ‘template()((declval)()...))>* > auto stan::math::make_holder(const F&, Args&& ...) [with F = stan::math::as_array_or_scalar&>(const std::vector&)::; Args = {const std::vector >&}; stan::require_plain_type_t()((declval)()...))>* = ]’ 370 | decltype(std::declval()(std::declval()...))>* = nullptr> | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/as_array_or_scalar.hpp:72:21: required from ‘auto stan::math::as_array_or_scalar(T&&) [with T = const std::vector&; stan::require_std_vector_t* = 0; stan::require_not_std_vector_t::type>* = 0]’ 72 | return make_holder([](auto& x) { return T_map(x.data(), x.size()); }, | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 73 | std::forward(v)); | ~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:28:39: required from ‘T_return stan::math::internal::hypergeometric_3F2_infsum(const Ta&, const Tb&, const Tz&, double, int) [with Ta = std::vector; Tb = std::vector; Tz = double; T_return = double; ArrayAT = Eigen::Array; ArrayBT = Eigen::Array; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 28 | ArrayAT a_array = as_array_or_scalar(a); | ~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:123:47: required from ‘auto stan::math::hypergeometric_3F2(const Ta&, const Tb&, const Tz&) [with Ta = std::vector; Tb = std::vector; Tz = double; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 123 | return internal::hypergeometric_3F2_infsum(a, b, z); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:148:28: required from ‘auto stan::math::hypergeometric_3F2(const std::initializer_list<_Tp>&, const std::initializer_list<_Value>&, const Tz&) [with Ta = double; Tb = double; Tz = double; stan::require_all_stan_scalar_t* = 0]’ 148 | return hypergeometric_3F2(std::vector(a), std::vector(b), z); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/inv_inc_beta.hpp:77:0: required from here 77 | + log(hypergeometric_3F2({a_val, a_val, one_m_b}, {ap1, ap1}, w)) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Array >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:38:28: required from ‘struct Eigen::internal::traits, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > > >’ 38 | >::type Scalar; | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:47:43: required from ‘T_return stan::math::internal::hypergeometric_3F2_infsum(const Ta&, const Tb&, const Tz&, double, int) [with Ta = std::vector; Tb = std::vector; Tz = double; T_return = double; ArrayAT = Eigen::Array; ArrayBT = Eigen::Array; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 47 | const auto& abs_apk = math::fabs((apk == 0).select(1.0, apk)); | ~~~~~^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:123:47: required from ‘auto stan::math::hypergeometric_3F2(const Ta&, const Tb&, const Tz&) [with Ta = std::vector; Tb = std::vector; Tz = double; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 123 | return internal::hypergeometric_3F2_infsum(a, b, z); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:148:28: required from ‘auto stan::math::hypergeometric_3F2(const std::initializer_list<_Tp>&, const std::initializer_list<_Value>&, const Tz&) [with Ta = double; Tb = double; Tz = double; stan::require_all_stan_scalar_t* = 0]’ 148 | return hypergeometric_3F2(std::vector(a), std::vector(b), z); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/inv_inc_beta.hpp:77:0: required from here 77 | + log(hypergeometric_3F2({a_val, a_val, one_m_b}, {ap1, ap1}, w)) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Select.h:52:7: required from ‘class Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array >’ 52 | class Select : public internal::dense_xpr_base< Select >::type, | ^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:47:55: required from ‘T_return stan::math::internal::hypergeometric_3F2_infsum(const Ta&, const Tb&, const Tz&, double, int) [with Ta = std::vector; Tb = std::vector; Tz = double; T_return = double; ArrayAT = Eigen::Array; ArrayBT = Eigen::Array; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 47 | const auto& abs_apk = math::fabs((apk == 0).select(1.0, apk)); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:123:47: required from ‘auto stan::math::hypergeometric_3F2(const Ta&, const Tb&, const Tz&) [with Ta = std::vector; Tb = std::vector; Tz = double; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 123 | return internal::hypergeometric_3F2_infsum(a, b, z); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:148:28: required from ‘auto stan::math::hypergeometric_3F2(const std::initializer_list<_Tp>&, const std::initializer_list<_Value>&, const Tz&) [with Ta = double; Tb = double; Tz = double; stan::require_all_stan_scalar_t* = 0]’ 148 | return hypergeometric_3F2(std::vector(a), std::vector(b), z); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/inv_inc_beta.hpp:77:0: required from here 77 | + log(hypergeometric_3F2({a_val, a_val, one_m_b}, {ap1, ap1}, w)) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/fabs.hpp:67:50: required from ‘stan::math::fabs, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > >(const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array >&):: [with auto:10 = Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array >]’ 67 | x, [](const auto& v) { return v.array().abs(); }); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:53:76: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::apply(const T&, const F&) [with F = stan::math::fabs, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > >(const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array >&)::; T2 = Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array >; stan::require_t::type> >* = 0; T = Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array >]’ 53 | return make_holder([](const auto& a) { return a.array().derived(); }, f(x)); | ~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/fabs.hpp:66:46: required from ‘auto stan::math::fabs(const Container&) [with Container = Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array >; stan::require_container_st* = 0]’ 66 | return apply_vector_unary::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 67 | x, [](const auto& v) { return v.array().abs(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:47:37: required from ‘T_return stan::math::internal::hypergeometric_3F2_infsum(const Ta&, const Tb&, const Tz&, double, int) [with Ta = std::vector; Tb = std::vector; Tz = double; T_return = double; ArrayAT = Eigen::Array; ArrayBT = Eigen::Array; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 47 | const auto& abs_apk = math::fabs((apk == 0).select(1.0, apk)); | ~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:123:47: required from ‘auto stan::math::hypergeometric_3F2(const Ta&, const Tb&, const Tz&) [with Ta = std::vector; Tb = std::vector; Tz = double; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 123 | return internal::hypergeometric_3F2_infsum(a, b, z); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:148:28: required from ‘auto stan::math::hypergeometric_3F2(const std::initializer_list<_Tp>&, const std::initializer_list<_Value>&, const Tz&) [with Ta = double; Tb = double; Tz = double; stan::require_all_stan_scalar_t* = 0]’ 148 | return hypergeometric_3F2(std::vector(a), std::vector(b), z); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/inv_inc_beta.hpp:77:0: required from here 77 | + log(hypergeometric_3F2({a_val, a_val, one_m_b}, {ap1, ap1}, w)) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:66:50: required from ‘stan::math::log, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > > >(const Eigen::CwiseUnaryOp, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > >&):: [with auto:170 = Eigen::CwiseUnaryOp, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > >]’ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:53:76: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::apply(const T&, const F&) [with F = stan::math::log, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > > >(const Eigen::CwiseUnaryOp, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > >&)::; T2 = Eigen::CwiseUnaryOp, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > >; stan::require_t::type> >* = 0; T = Eigen::CwiseUnaryOp, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > >]’ 53 | return make_holder([](const auto& a) { return a.array().derived(); }, f(x)); | ~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:65:46: required from ‘auto stan::math::log(const Container&) [with Container = Eigen::CwiseUnaryOp, const Eigen::Select, const Eigen::Array, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::CwiseNullaryOp, Eigen::Array >, Eigen::Array > >; stan::require_container_st* = 0]’ 65 | return apply_vector_unary::apply( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:49:25: required from ‘T_return stan::math::internal::hypergeometric_3F2_infsum(const Ta&, const Tb&, const Tz&, double, int) [with Ta = std::vector; Tb = std::vector; Tz = double; T_return = double; ArrayAT = Eigen::Array; ArrayBT = Eigen::Array; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 49 | T_return p = sum(log(abs_apk)) - sum(log(abs_bpk)); | ~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:123:47: required from ‘auto stan::math::hypergeometric_3F2(const Ta&, const Tb&, const Tz&) [with Ta = std::vector; Tb = std::vector; Tz = double; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 123 | return internal::hypergeometric_3F2_infsum(a, b, z); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:148:28: required from ‘auto stan::math::hypergeometric_3F2(const std::initializer_list<_Tp>&, const std::initializer_list<_Value>&, const Tz&) [with Ta = double; Tb = double; Tz = double; stan::require_all_stan_scalar_t* = 0]’ 148 | return hypergeometric_3F2(std::vector(a), std::vector(b), z); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/inv_inc_beta.hpp:77:0: required from here 77 | + log(hypergeometric_3F2({a_val, a_val, one_m_b}, {ap1, ap1}, w)) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lmgamma.hpp:58:75: required from ‘stan::return_type_t stan::math::lmgamma(int, T) [with T = double; stan::require_arithmetic_t* = 0; stan::return_type_t = double]’ 58 | return result + sum(lgamma(x + (1 - Eigen::ArrayXd::LinSpaced(k, 1, k)) / 2)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lmgamma.hpp:16:0: required from here 16 | : op_dv_vari(lmgamma(a, bvi->val_), a, bvi) {} /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lmgamma.hpp:58:32: required from ‘stan::return_type_t stan::math::lmgamma(int, T) [with T = double; stan::require_arithmetic_t* = 0; stan::return_type_t = double]’ 58 | return result + sum(lgamma(x + (1 - Eigen::ArrayXd::LinSpaced(k, 1, k)) / 2)); | ~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lmgamma.hpp:16:0: required from here 16 | : op_dv_vari(lmgamma(a, bvi->val_), a, bvi) {} /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:62:23: required from ‘static auto stan::math::apply_scalar_unary::type>::value, void>::type>::apply(const T&) [with F = stan::math::lgamma_fun; T = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >]’ 62 | return x.unaryExpr([](auto&& x) { | ~~~~~~~~~~~^~~~~~~~~~~~~~~ 63 | return apply_scalar_unary>::apply(x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 64 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:72:38: required from ‘struct stan::math::apply_scalar_unary, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, void>’ 72 | apply_scalar_unary::apply(std::declval()))>; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lgamma.hpp:120:50: required from ‘auto stan::math::lgamma(const T&) [with T = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseNullaryOp, Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_not_var_matrix_t* = 0; stan::require_not_nonscalar_prim_or_rev_kernel_expression_t* = 0]’ 120 | return apply_scalar_unary::apply(x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/lmgamma.hpp:58:29: required from ‘stan::return_type_t stan::math::lmgamma(int, T) [with T = double; stan::require_arithmetic_t* = 0; stan::return_type_t = double]’ 58 | return result + sum(lgamma(x + (1 - Eigen::ArrayXd::LinSpaced(k, 1, k)) / 2)); | ~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/lmgamma.hpp:16:0: required from here 16 | : op_dv_vari(lmgamma(a, bvi->val_), a, bvi) {} /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Matrix, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Matrix >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:98:40: required from ‘typename Eigen::NumTraits::Scalar>::Real Eigen::MatrixBase::squaredNorm() const [with Derived = Eigen::Matrix; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 98 | return numext::real((*this).cwiseAbs2().sum()); | ~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/variance.hpp:28:0: required from here 28 | double variance = diff.squaredNorm() / size_m1; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Array.h:45:7: required from ‘class Eigen::Array’ 45 | class Array | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/SelfCwiseBinaryOp.h:27:67: required from ‘Derived& Eigen::ArrayBase::operator+=(const Scalar&) [with Derived = Eigen::ArrayWrapper >; Scalar = double]’ 27 | internal::call_assignment(this->derived(), PlainObject::Constant(rows(),cols(),other), internal::add_assign_op()); | ~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_fullrank.hpp:280:0: required from here 280 | L_chol_.array() += scalar; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Array >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/SelfCwiseBinaryOp.h:27:67: required from ‘Derived& Eigen::ArrayBase::operator+=(const Scalar&) [with Derived = Eigen::ArrayWrapper >; Scalar = double]’ 27 | internal::call_assignment(this->derived(), PlainObject::Constant(rows(),cols(),other), internal::add_assign_op()); | ~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_fullrank.hpp:280:0: required from here 280 | L_chol_.array() += scalar; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/BooleanRedux.h:156:22: required from ‘bool Eigen::DenseBase::allFinite() const [with Derived = Eigen::Matrix]’ 156 | return !((derived()-derived()).hasNaN()); | ~~~~~~~~~~^~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/covar_adaptation.hpp:31:0: required from here 31 | if (!covar.allFinite()) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/io/array_var_context.hpp: In instantiation of ‘std::vector stan::io::array_var_context::validate_dims(const std::vector >&, T, const std::vector >&) [with T = long unsigned int]’: /usr/local/lib/R/library/StanHeaders/include/src/stan/io/array_var_context.hpp:97:0: required from here 97 | std::vector dim_vec = validate_dims(names, values.size(), dims); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/array_var_context.hpp:74: warning: comparison of integer expressions of different signedness: ‘int’ and ‘std::vector >::size_type’ {aka ‘long unsigned int’} [-Wsign-compare] 74 | for (int i = 0; i < dims.size(); i++) { /usr/local/lib/R/library/StanHeaders/include/src/stan/io/array_var_context.hpp: In instantiation of ‘std::vector stan::io::array_var_context::validate_dims(const std::vector >&, T, const std::vector >&) [with T = long int]’: /usr/local/lib/R/library/StanHeaders/include/src/stan/io/array_var_context.hpp:118:0: required from here 118 | std::vector dim_vec = validate_dims(names, values.size(), dims); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/array_var_context.hpp:74: warning: comparison of integer expressions of different signedness: ‘int’ and ‘std::vector >::size_type’ {aka ‘long unsigned int’} [-Wsign-compare] 74 | for (int i = 0; i < dims.size(); i++) { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >(Eigen::Map, 0, Eigen::Stride<0, 0> >&&)::::, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >(Eigen::Map, 0, Eigen::Stride<0, 0> >&&)::::, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0, Eigen::Stride<0, 0> > >(Eigen::Map, 0, Eigen::Stride<0, 0> >&&)::::, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, 0, Eigen::Stride<0, 0> > >(Eigen::Map, 0, Eigen::Stride<0, 0> >&&)::::, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, 0, Eigen::Stride<0, 0> > >(Eigen::Map, 0, Eigen::Stride<0, 0> >&&)::::, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/value_of_rec.hpp:110:27: required from ‘stan::math::value_of_rec, 0, Eigen::Stride<0, 0> > >(Eigen::Map, 0, Eigen::Stride<0, 0> >&&):: [with auto:2 = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 110 | return m.unaryExpr([](auto x) { return value_of_rec(x); }); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: required by substitution of ‘template()((declval)()...))>* > auto stan::math::make_holder(const F&, Args&& ...) [with F = stan::math::value_of_rec, 0, Eigen::Stride<0, 0> > >(Eigen::Map, 0, Eigen::Stride<0, 0> >&&)::; Args = {Eigen::Map, 0, Eigen::Stride<0, 0> >}; stan::require_plain_type_t()((declval)()...))>* = ]’ 370 | decltype(std::declval()(std::declval()...))>* = nullptr> | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/value_of_rec.hpp:108:21: required from ‘auto stan::math::value_of_rec(T&&) [with T = Eigen::Map, 0, Eigen::Stride<0, 0> >; = void; = void]’ 108 | return make_holder( | ~~~~~~~~~~~^ 109 | [](auto& m) { | ~~~~~~~~~~~~~ 110 | return m.unaryExpr([](auto x) { return value_of_rec(x); }); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 111 | }, | ~~ 112 | std::forward(M)); | ~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_greater_or_equal.hpp:157:30: required from ‘void stan::math::check_greater_or_equal(const char*, const char*, const T_y&, const T_low&, Idxs ...) [with T_y = std::vector; T_low = int; stan::require_vector_t* = 0; stan::require_not_std_vector_vt* = 0; stan::require_stan_scalar_t* = 0; Idxs = {}]’ 157 | auto&& y_arr = value_of_rec(as_array_or_scalar(to_ref(y))); | ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:343:0: required from here 343 | stan::math::check_greater_or_equal(function__, "r", r, 0); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ stanExports_gMAP.h: In instantiation of ‘void model_gMAP_namespace::model_gMAP::unconstrain_array_impl(const VecVar&, const VecI&, VecVar&, std::ostream*) const [with VecVar = std::vector; VecI = std::vector; stan::require_vector_t* = 0; stan::require_vector_like_vt* = 0; std::ostream = std::basic_ostream]’: stanExports_gMAP.h:1706:0: required from here 1706 | unconstrain_array_impl(params_constrained, params_i, 1707 | params_unconstrained, pstream); stanExports_gMAP.h:1411: warning: variable ‘pos__’ set but not used [-Wunused-but-set-variable] 1411 | int pos__ = std::numeric_limits::min(); stanExports_gMAP.h: In instantiation of ‘void model_gMAP_namespace::model_gMAP::unconstrain_array_impl(const VecVar&, const VecI&, VecVar&, std::ostream*) const [with VecVar = Eigen::Matrix; VecI = std::vector; stan::require_vector_t* = 0; stan::require_vector_like_vt* = 0; std::ostream = std::basic_ostream]’: stanExports_gMAP.h:1716:0: required from here 1716 | unconstrain_array_impl(params_constrained, params_i, 1717 | params_unconstrained, pstream); stanExports_gMAP.h:1411: warning: variable ‘pos__’ set but not used [-Wunused-but-set-variable] 1411 | int pos__ = std::numeric_limits::min(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp: In instantiation of ‘SEXPREC* rstan::stan_fit::standalone_gqs(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’: stanExports_gMAP.cc:30:0: required from here 30 | .method("standalone_gqs", &rstan::stan_fit ::standalone_gqs) /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1252: warning: variable ‘ret’ set but not used [-Wunused-but-set-variable] 1252 | int ret = stan::services::error_codes::CONFIG; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h: In instantiation of ‘struct Eigen::internal::find_best_packet’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:22:57: required from ‘struct Eigen::internal::traits >’ 22 | typedef typename find_best_packet<_Scalar,size>::type PacketScalar; | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: required from ‘class Eigen::Matrix’ 178 | class Matrix | ^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_2F1.hpp:181:31: required from ‘stan::return_type_t stan::math::hypergeometric_2F1(const Ta1&, const Ta2&, const Tb&, const Tz&) [with Ta1 = double; Ta2 = double; Tb = double; Tz = double; ScalarT = double; OptT = boost::optional; stan::require_all_arithmetic_t* = 0; stan::return_type_t = double]’ 181 | Eigen::Matrix a_args(2); | ^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:190:39: required from ‘TupleT stan::math::internal::grad_2F1_impl(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool calc_a1 = true; bool calc_a2 = true; bool calc_b1 = true; bool calc_z = true; T1 = double; T2 = double; T3 = double; T_z = double; ScalarT = double; TupleT = std::tuple]’ 190 | auto hyper1 = hypergeometric_2F1(a1_euler, a2_euler, b1, z_euler); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:306:57: required from ‘auto stan::math::grad_2F1(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool ReturnSameT = true; T1 = double; T2 = double; T3 = double; T_z = double; stan::require_t >* = 0]’ 306 | return internal::grad_2F1_impl(a1, a2, b1, z, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~ 307 | precision, max_steps); | ~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_inc_beta.hpp:37:25: required from here 37 | = grad_2F1(a + b, 1.0, a + 1, z); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:44: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:208:88: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 208 | typedef typename find_best_packet_helper::type>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: required from ‘class Eigen::Matrix’ 178 | class Matrix | ^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_2F1.hpp:181:31: required from ‘stan::return_type_t stan::math::hypergeometric_2F1(const Ta1&, const Ta2&, const Tb&, const Tz&) [with Ta1 = double; Ta2 = double; Tb = double; Tz = double; ScalarT = double; OptT = boost::optional; stan::require_all_arithmetic_t* = 0; stan::return_type_t = double]’ 181 | Eigen::Matrix a_args(2); | ^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:190:39: required from ‘TupleT stan::math::internal::grad_2F1_impl(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool calc_a1 = true; bool calc_a2 = true; bool calc_b1 = true; bool calc_z = true; T1 = double; T2 = double; T3 = double; T_z = double; ScalarT = double; TupleT = std::tuple]’ 190 | auto hyper1 = hypergeometric_2F1(a1_euler, a2_euler, b1, z_euler); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:306:57: required from ‘auto stan::math::grad_2F1(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool ReturnSameT = true; T1 = double; T2 = double; T3 = double; T_z = double; stan::require_t >* = 0]’ 306 | return internal::grad_2F1_impl(a1, a2, b1, z, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~ 307 | precision, max_steps); | ~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_inc_beta.hpp:37:25: required from here 37 | = grad_2F1(a + b, 1.0, a + 1, z); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: required from ‘class Eigen::Matrix’ 178 | class Matrix | ^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_2F1.hpp:182:31: required from ‘stan::return_type_t stan::math::hypergeometric_2F1(const Ta1&, const Ta2&, const Tb&, const Tz&) [with Ta1 = double; Ta2 = double; Tb = double; Tz = double; ScalarT = double; OptT = boost::optional; stan::require_all_arithmetic_t* = 0; stan::return_type_t = double]’ 182 | Eigen::Matrix b_args(1); | ^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:190:39: required from ‘TupleT stan::math::internal::grad_2F1_impl(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool calc_a1 = true; bool calc_a2 = true; bool calc_b1 = true; bool calc_z = true; T1 = double; T2 = double; T3 = double; T_z = double; ScalarT = double; TupleT = std::tuple]’ 190 | auto hyper1 = hypergeometric_2F1(a1_euler, a2_euler, b1, z_euler); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:306:57: required from ‘auto stan::math::grad_2F1(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool ReturnSameT = true; T1 = double; T2 = double; T3 = double; T_z = double; stan::require_t >* = 0]’ 306 | return internal::grad_2F1_impl(a1, a2, b1, z, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~ 307 | precision, max_steps); | ~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_inc_beta.hpp:37:25: required from here 37 | = grad_2F1(a + b, 1.0, a + 1, z); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Array, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Array >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:117:39: required from ‘TupleT stan::math::internal::grad_2F1_impl_ab(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool calc_a1 = true; bool calc_a2 = true; bool calc_b1 = true; T1 = double; T2 = double; T3 = double; T_z = double; ScalarT = double; TupleT = std::tuple]’ 117 | inner_diff = g_current.array().abs().maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:204:78: required from ‘TupleT stan::math::internal::grad_2F1_impl(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool calc_a1 = true; bool calc_a2 = true; bool calc_b1 = true; bool calc_z = true; T1 = double; T2 = double; T3 = double; T_z = double; ScalarT = double; TupleT = std::tuple]’ 204 | grad_tuple_ab = grad_2F1_impl_ab( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 205 | a1_euler, a2_euler, b1, z_euler); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:306:57: required from ‘auto stan::math::grad_2F1(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool ReturnSameT = true; T1 = double; T2 = double; T3 = double; T_z = double; stan::require_t >* = 0]’ 306 | return internal::grad_2F1_impl(a1, a2, b1, z, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~ 307 | precision, max_steps); | ~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_inc_beta.hpp:37:25: required from here 37 | = grad_2F1(a + b, 1.0, a + 1, z); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:513:38: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/../plugins/CommonCwiseUnaryOps.h:62:1: required by substitution of ‘template typename Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >::CastXpr::Type Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >::cast() const [with NewType = double]’ 62 | cast() const | ^~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/append_row.hpp:102:38: required from ‘Eigen::Matrix::type, -1, 1> stan::math::append_row(const ColVec&, const Scal&) [with ColVec = Eigen::Map, 0, Eigen::Stride<0, 0> >; Scal = double; stan::require_t >* = 0; stan::require_stan_scalar_t* = 0; typename stan::return_type::type = double]’ 102 | result << A.template cast(), B; | ~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:29:31: required from ‘T_return stan::math::internal::hypergeometric_3F2_infsum(const Ta&, const Tb&, const Tz&, double, int) [with Ta = std::vector; Tb = std::vector; Tz = double; T_return = double; ArrayAT = Eigen::Array; ArrayBT = Eigen::Array; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 29 | ArrayBT b_array = append_row(as_array_or_scalar(b), 1.0); | ~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:123:47: required from ‘auto stan::math::hypergeometric_3F2(const Ta&, const Tb&, const Tz&) [with Ta = std::vector; Tb = std::vector; Tz = double; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 123 | return internal::hypergeometric_3F2_infsum(a, b, z); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:148:28: required from ‘auto stan::math::hypergeometric_3F2(const std::initializer_list<_Tp>&, const std::initializer_list<_Value>&, const Tz&) [with Ta = double; Tb = double; Tz = double; stan::require_all_stan_scalar_t* = 0]’ 148 | return hypergeometric_3F2(std::vector(a), std::vector(b), z); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/inv_inc_beta.hpp:77:0: required from here 77 | + log(hypergeometric_3F2({a_val, a_val, one_m_b}, {ap1, ap1}, w)) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ In file included from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_not_nan.hpp:5, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_2F1_converges.hpp:5, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err.hpp:4, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim.hpp:12: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_not_nan >(const char*, const char*, const Eigen::Matrix&)::; T = Eigen::Matrix; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_not_nan.hpp:28:20: required from ‘void stan::math::check_not_nan(const char*, const char*, const T_y&) [with T_y = Eigen::Matrix]’ 28 | elementwise_check([](double x) { return !std::isnan(x); }, function, name, y, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 29 | "not nan"); | ~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_fullrank.hpp:47:0: required from here 47 | stan::math::check_not_nan(function, "Mean vector", mu); /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_not_nan >(const char*, const char*, const Eigen::Matrix&)::; T = Eigen::Matrix; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)(((!(Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit)) && (! T::IsVectorAtCompileTime)) && (!(Eigen::internal::traits<_Rhs>::Flags & Eigen::RowMajorBit))))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_not_nan.hpp:28:20: required from ‘void stan::math::check_not_nan(const char*, const char*, const T_y&) [with T_y = Eigen::Matrix]’ 28 | elementwise_check([](double x) { return !std::isnan(x); }, function, name, y, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 29 | "not nan"); | ~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/variational/families/normal_fullrank.hpp:74:0: required from here 74 | stan::math::check_not_nan(function, "Cholesky factor", L_chol); /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:207:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::Index’ {aka ‘long int’} [-Wsign-compare] 207 | for (size_t i = 0; i < x.rows(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:208:26: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::Index’ {aka ‘long int’} [-Wsign-compare] 208 | for (size_t j = 0; j < x.cols(); j++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_finite >(const char*, const char*, const Eigen::Matrix&)::; T = Eigen::Matrix; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_finite.hpp:29:20: required from ‘void stan::math::check_finite(const char*, const char*, const T_y&) [with T_y = Eigen::Matrix]’ 29 | elementwise_check([](double x) { return std::isfinite(x); }, function, name, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 30 | y, "finite"); | ~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_diag_inv_metric.hpp:21:0: required from here 21 | stan::math::check_finite("check_finite", "inv_metric", inv_metric); /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_positive >(const char*, const char*, const Eigen::Matrix&)::; T = Eigen::Matrix; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_positive.hpp:29:20: required from ‘void stan::math::check_positive(const char*, const char*, const T_y&) [with T_y = Eigen::Matrix]’ 29 | elementwise_check([](double x) { return x > 0; }, function, name, y, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 30 | "positive"); | ~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_diag_inv_metric.hpp:22:0: required from here 22 | stan::math::check_positive("check_positive", "inv_metric", inv_metric); /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Matrix, const Eigen::Matrix > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, const Eigen::Matrix, const Eigen::Matrix > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/BooleanRedux.h:142:28: required from ‘bool Eigen::DenseBase::hasNaN() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >]’ 142 | return !((derived().array()==derived().array()).all()); | ~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/BooleanRedux.h:156:40: required from ‘bool Eigen::DenseBase::allFinite() const [with Derived = Eigen::Matrix]’ 156 | return !((derived()-derived()).hasNaN()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/covar_adaptation.hpp:31:0: required from here 31 | if (!covar.allFinite()) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Matrix, const Eigen::Matrix > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, const Eigen::Matrix, const Eigen::Matrix > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/BooleanRedux.h:142:28: required from ‘bool Eigen::DenseBase::hasNaN() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >]’ 142 | return !((derived().array()==derived().array()).all()); | ~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/BooleanRedux.h:156:40: required from ‘bool Eigen::DenseBase::allFinite() const [with Derived = Eigen::Matrix]’ 156 | return !((derived()-derived()).hasNaN()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/var_adaptation.hpp:30:0: required from here 30 | if (!var.allFinite()) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ In file included from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta.hpp:70, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/invalid_argument.hpp:4, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/core/init_threadpool_tbb.hpp:4, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/core.hpp:4, from /usr/local/lib/R/library/StanHeaders/include/stan/math/prim.hpp:10: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_less_or_equal.hpp: In instantiation of ‘void stan::math::check_less_or_equal(const char*, const char*, const T_y&, const T_high&, Idxs ...) [with T_y = long unsigned int; T_high = long int; stan::require_all_stan_scalar_t* = 0; Idxs = {}]’: /usr/local/lib/R/library/StanHeaders/include/src/stan/io/array_var_context.hpp:79:0: required from ‘std::vector stan::io::array_var_context::validate_dims(const std::vector >&, T, const std::vector >&) [with T = long int]’ 79 | stan::math::check_less_or_equal("validate_dims", "array_var_context", 80 | elem_dims_total[dims.size()], array_size); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/array_var_context.hpp:118:0: required from here 118 | std::vector dim_vec = validate_dims(names, values.size(), dims); /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_less_or_equal.hpp:39:20: warning: comparison of integer expressions of different signedness: ‘const long unsigned int’ and ‘const long int’ [-Wsign-compare] 39 | if (unlikely(!(y <= high))) { | ~~~^~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/compiler_attributes.hpp:9:41: note: in definition of macro ‘unlikely’ 9 | #define unlikely(x) __builtin_expect(!!(x), 0) | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 0, Eigen::Stride<0, 0> >, 1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; U = Eigen::Matrix; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Matrix; Derived = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/dot_product.hpp:26:16: required from ‘auto stan::math::dot_product(const Vec1&, const Vec2&) [with Vec1 = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; Vec2 = Eigen::Matrix; stan::require_all_eigen_vector_t* = 0; stan::require_not_var_t::type>* = 0]’ 26 | return v1.dot(v2); | ~~~~~~^~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/multiply.hpp:152:21: required from ‘auto stan::math::multiply(const RowVec&, const ColVec&) [with RowVec = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; ColVec = Eigen::Matrix; stan::require_not_var_t::type>* = 0; stan::require_eigen_row_and_col_t* = 0]’ 152 | return dot_product(rv, v); | ~~~~~~~~~~~^~~~~~~ stanExports_gMAP.h:1298:0: required from here 1298 | (stan::math::multiply( 1299 | stan::model::rvalue(X_param, "X_param", 1300 | stan::model::index_uni(h)), beta) + /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; U = Eigen::Matrix; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Matrix; Derived = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/dot_product.hpp:26:16: required from ‘auto stan::math::dot_product(const Vec1&, const Vec2&) [with Vec1 = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; Vec2 = Eigen::Matrix; stan::require_all_eigen_vector_t* = 0; stan::require_not_var_t::type>* = 0]’ 26 | return v1.dot(v2); | ~~~~~~^~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/multiply.hpp:152:21: required from ‘auto stan::math::multiply(const RowVec&, const ColVec&) [with RowVec = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; ColVec = Eigen::Matrix; stan::require_not_var_t::type>* = 0; stan::require_eigen_row_and_col_t* = 0]’ 152 | return dot_product(rv, v); | ~~~~~~~~~~~^~~~~~~ stanExports_gMAP.h:1298:0: required from here 1298 | (stan::math::multiply( 1299 | stan::model::rvalue(X_param, "X_param", 1300 | stan::model::index_uni(h)), beta) + /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/standalone_gqs.hpp: In instantiation of ‘int stan::services::standalone_generate(const Model&, const Eigen::MatrixXd&, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; Eigen::MatrixXd = Eigen::Matrix]’: /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1253:0: required from ‘SEXPREC* rstan::stan_fit::standalone_gqs(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1253 | ret = stan::services::standalone_generate(model_, draws, 1254 | Rcpp::as(seed), interrupt, logger, *sample_writer_ptr); stanExports_gMAP.cc:30:0: required from here 30 | .method("standalone_gqs", &rstan::stan_fit ::standalone_gqs) /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/standalone_gqs.hpp:55: warning: comparison of integer expressions of different signedness: ‘std::vector >::size_type’ {aka ‘long unsigned int’} and ‘Eigen::Index’ {aka ‘long int’} [-Wsign-compare] 55 | if (p_names.size() != draws.cols()) { /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/standalone_gqs.hpp:71: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::Index’ {aka ‘long int’} [-Wsign-compare] 71 | for (size_t i = 0; i < draws.rows(); ++i) { In file included from /usr/local/lib/R/library/BH/include/boost/concept/assert.hpp:35, from /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:20, from /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:19, from /usr/local/lib/R/library/BH/include/boost/range/size_type.hpp:20, from /usr/local/lib/R/library/BH/include/boost/range/size.hpp:21, from /usr/local/lib/R/library/BH/include/boost/range/functions.hpp:20, from /usr/local/lib/R/library/BH/include/boost/range.hpp:18, from /usr/local/lib/R/library/BH/include/boost/numeric/odeint/util/resize.hpp:24: /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp: In instantiation of ‘static void boost::concepts::constraint::failed() [with Model = boost::algorithm::FinderConcept >, __gnu_cxx::__normal_iterator > >]’: /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:81:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:65:52: warning: ‘this’ pointer is null [-Wnonnull] 65 | static void failed() { ((Model*)0)->constraints(); } | ~~~~~~~~~~~~~~~~~~~~~~~~^~ In file included from /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:26, from /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:16, from /usr/local/lib/R/library/BH/include/boost/algorithm/string.hpp:23, from /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:4, from /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:46: /usr/local/lib/R/library/BH/include/boost/algorithm/string/concept.hpp:40: note: in a call to non-static member function ‘void boost::algorithm::FinderConcept::constraints() [with FinderT = boost::algorithm::detail::token_finderF >; IteratorT = __gnu_cxx::__normal_iterator >]’ 40 | void constraints() /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp: In instantiation of ‘static void boost::concepts::constraint::failed() [with Model = boost::algorithm::FinderConcept, __gnu_cxx::__normal_iterator > >]’: /usr/local/lib/R/library/BH/include/boost/algorithm/string/find_format.hpp:98:0: required from ‘void boost::algorithm::find_format(SequenceT&, FinderT, FormatterT) [with SequenceT = std::__cxx11::basic_string; FinderT = detail::first_finderF; FormatterT = detail::const_formatF >]’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/replace.hpp:179:0: required from ‘void boost::algorithm::replace_first(SequenceT&, const Range1T&, const Range2T&) [with SequenceT = std::__cxx11::basic_string; Range1T = char [11]; Range2T = char [1]]’ 179 | ::boost::algorithm::find_format( 180 | Input, 181 | ::boost::algorithm::first_finder(Search), 182 | ::boost::algorithm::const_formatter(Format) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:133:0: required from here 133 | boost::replace_first(value, " (Default)", ""); /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:65:52: warning: ‘this’ pointer is null [-Wnonnull] 65 | static void failed() { ((Model*)0)->constraints(); } | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/concept.hpp:40: note: in a call to non-static member function ‘void boost::algorithm::FinderConcept::constraints() [with FinderT = boost::algorithm::detail::first_finderF; IteratorT = __gnu_cxx::__normal_iterator >]’ 40 | void constraints() /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp: In instantiation of ‘static void boost::concepts::constraint::failed() [with Model = boost::algorithm::FormatterConcept >, boost::algorithm::detail::first_finderF, __gnu_cxx::__normal_iterator > >]’: /usr/local/lib/R/library/BH/include/boost/algorithm/string/find_format.hpp:103:0: required from ‘void boost::algorithm::find_format(SequenceT&, FinderT, FormatterT) [with SequenceT = std::__cxx11::basic_string; FinderT = detail::first_finderF; FormatterT = detail::const_formatF >]’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/replace.hpp:179:0: required from ‘void boost::algorithm::replace_first(SequenceT&, const Range1T&, const Range2T&) [with SequenceT = std::__cxx11::basic_string; Range1T = char [11]; Range2T = char [1]]’ 179 | ::boost::algorithm::find_format( 180 | Input, 181 | ::boost::algorithm::first_finder(Search), 182 | ::boost::algorithm::const_formatter(Format) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:133:0: required from here 133 | boost::replace_first(value, " (Default)", ""); /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:65:52: warning: ‘this’ pointer is null [-Wnonnull] 65 | static void failed() { ((Model*)0)->constraints(); } | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/concept.hpp:65: note: in a call to non-static member function ‘void boost::algorithm::FormatterConcept::constraints() [with FormatterT = boost::algorithm::detail::const_formatF >; FinderT = boost::algorithm::detail::first_finderF; IteratorT = __gnu_cxx::__normal_iterator >]’ 65 | void constraints() /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, -1, 1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/VectorBlock.h:56:47: required from ‘class Eigen::VectorBlock, -1>’ 56 | template class VectorBlock | ^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:563:19: required from ‘Eigen::ComputationInfo Eigen::internal::computeFromTridiagonal_impl(DiagType&, SubDiagType&, Eigen::Index, bool, MatrixType&) [with MatrixType = Eigen::Matrix; DiagType = Eigen::Matrix; SubDiagType = Eigen::Matrix; Eigen::Index = long int]’ 563 | diag.segment(i,n-i).minCoeff(&k); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:460:49: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 460 | m_info = internal::computeFromTridiagonal_impl(diag, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ stanExports_gMAP.h: In instantiation of ‘void model_gMAP_namespace::model_gMAP::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = std::vector; VecI = std::vector; VecVar = std::vector; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’: stanExports_gMAP.h:1669:0: required from ‘void model_gMAP_namespace::model_gMAP::write_array(RNG&, std::vector&, std::vector&, std::vector&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 1669 | write_array_impl(base_rng, params_r, params_i, vars, 1670 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1105:0: required from ‘SEXPREC* rstan::stan_fit::constrain_pars(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1105 | model_.write_array(base_rng, params_r, params_i, par); stanExports_gMAP.cc:26:0: required from here 26 | .method("constrain_pars", &rstan::stan_fit ::constrain_pars) stanExports_gMAP.h:1223: warning: unused variable ‘jacobian__’ [-Wunused-variable] 1223 | constexpr bool jacobian__ = false; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_sum_exp.hpp:92:58: required from ‘stan::math::log_sum_exp >(const Eigen::Matrix&):: [with auto:304 = Eigen::Matrix]’ 92 | return max + std::log((v_ref.array() - max).exp().sum()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:93:13: required from ‘static auto stan::math::apply_vector_unary::type>::value, void>::type>::reduce(const T&, const F&) [with F = stan::math::log_sum_exp >(const Eigen::Matrix&)::; T = Eigen::Matrix]’ 93 | return f(x); | ~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log_sum_exp.hpp:83:39: required from ‘auto stan::math::log_sum_exp(const T&) [with T = Eigen::Matrix; stan::require_container_st* = 0]’ 83 | return apply_vector_unary::reduce(x, [&](const auto& v) { | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ 84 | if (v.size() == 0) { | ~~~~~~~~~~~~~~~~~~~~ 85 | return NEGATIVE_INFTY; | ~~~~~~~~~~~~~~~~~~~~~~ 86 | } | ~ 87 | const auto& v_ref = to_ref(v); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 88 | const double max = v_ref.maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 89 | if (!std::isfinite(max)) { | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 90 | return max; | ~~~~~~~~~~~ 91 | } | ~ 92 | return max + std::log((v_ref.array() - max).exp().sum()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 93 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/dirichlet_rng.hpp:59:35: required from here 59 | double log_sum_y = log_sum_exp(log_y); | ~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ In file included from /usr/local/lib/R/library/RcppEigen/include/Eigen/Core:330: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h: In instantiation of ‘class Eigen::internal::gebp_traits’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h:72:102: required from ‘static void Eigen::internal::general_matrix_matrix_triangular_product::run(Index, Index, const LhsScalar*, Index, const RhsScalar*, Index, ResScalar*, Index, Index, const ResScalar&, Eigen::internal::level3_blocking&) [with Index = long int; LhsScalar = double; int LhsStorageOrder = 1; bool ConjugateLhs = false; RhsScalar = double; int RhsStorageOrder = 0; bool ConjugateRhs = false; int ResInnerStride = 1; int UpLo = 2; int Version = 0; ResScalar = double]’ 72 | typedef blas_data_mapper ResMapper; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:113:12: required from ‘static void Eigen::selfadjoint_product_selector::run(MatrixType&, const OtherType&, const typename MatrixType::Scalar&) [with MatrixType = Eigen::Matrix; OtherType = Eigen::Matrix; int UpLo = 2; typename MatrixType::Scalar = double]’ 109 | internal::general_matrix_matrix_triangular_product::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 111 | Scalar, OtherIsRowMajor ? ColMajor : RowMajor, (!OtherBlasTraits::NeedToConjugate) && NumTraits::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 112 | IsRowMajor ? RowMajor : ColMajor, MatrixType::InnerStrideAtCompileTime, UpLo> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 113 | ::run(size, depth, | ~~~~~^~~~~~~~~~~~~ 114 | actualOther.data(), actualOther.outerStride(), actualOther.data(), actualOther.outerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 115 | mat.data(), mat.innerStride(), mat.outerStride(), actualAlpha, blocking); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:126:62: required from ‘Eigen::SelfAdjointView& Eigen::SelfAdjointView::rankUpdate(const Eigen::MatrixBase&, const Scalar&) [with DerivedU = Eigen::Matrix; _MatrixType = Eigen::Matrix; unsigned int UpLo = 2; Scalar = double]’ 126 | selfadjoint_product_selector::run(_expression().const_cast_derived(), u.derived(), alpha); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:33:78: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 33 | return result.setZero().template selfadjointView().rankUpdate( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 34 | M_ref); | ~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:425:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 425 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:425:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 425 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:425:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 425 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:425:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 425 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:426:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 426 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:426:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 426 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:426:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 426 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:426:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 426 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:427:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 427 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:427:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 427 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:427:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 427 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:427:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 427 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:49: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 432 | Vectorizable = unpacket_traits<_LhsPacket>::vectorizable && unpacket_traits<_RhsPacket>::vectorizable, | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:49: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:49: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:49: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:94: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 432 | Vectorizable = unpacket_traits<_LhsPacket>::vectorizable && unpacket_traits<_RhsPacket>::vectorizable, | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:94: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:94: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:94: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:433:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 433 | LhsPacketSize = Vectorizable ? unpacket_traits<_LhsPacket>::size : 1, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:433:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:433:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:433:65: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:434:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 434 | RhsPacketSize = Vectorizable ? unpacket_traits<_RhsPacket>::size : 1, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:434:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:434:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:434:65: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:435:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 435 | ResPacketSize = Vectorizable ? unpacket_traits<_ResPacket>::size : 1, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:435:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:435:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:435:65: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:460:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 460 | typedef typename conditional::type LhsPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:460:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:460:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:460:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:461:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 461 | typedef typename conditional::type RhsPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:461:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:461:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:461:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:462:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 462 | typedef typename conditional::type ResPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:462:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:462:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:462:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:465:33: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 465 | typedef QuadPacket RhsPacketx4; | ^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:465:33: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:465:33: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:465:33: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h: In instantiation of ‘class Eigen::internal::gebp_traits’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:1080:42: required from ‘struct Eigen::internal::gebp_kernel, 4, 4, false, false>’ 1080 | typedef typename HalfTraits::LhsPacket LhsPacketHalf; | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h:92:109: required from ‘static void Eigen::internal::general_matrix_matrix_triangular_product::run(Index, Index, const LhsScalar*, Index, const RhsScalar*, Index, ResScalar*, Index, Index, const ResScalar&, Eigen::internal::level3_blocking&) [with Index = long int; LhsScalar = double; int LhsStorageOrder = 1; bool ConjugateLhs = false; RhsScalar = double; int RhsStorageOrder = 0; bool ConjugateRhs = false; int ResInnerStride = 1; int UpLo = 2; int Version = 0; ResScalar = double]’ 92 | gebp_kernel gebp; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:113:12: required from ‘static void Eigen::selfadjoint_product_selector::run(MatrixType&, const OtherType&, const typename MatrixType::Scalar&) [with MatrixType = Eigen::Matrix; OtherType = Eigen::Matrix; int UpLo = 2; typename MatrixType::Scalar = double]’ 109 | internal::general_matrix_matrix_triangular_product::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 111 | Scalar, OtherIsRowMajor ? ColMajor : RowMajor, (!OtherBlasTraits::NeedToConjugate) && NumTraits::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 112 | IsRowMajor ? RowMajor : ColMajor, MatrixType::InnerStrideAtCompileTime, UpLo> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 113 | ::run(size, depth, | ~~~~~^~~~~~~~~~~~~ 114 | actualOther.data(), actualOther.outerStride(), actualOther.data(), actualOther.outerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 115 | mat.data(), mat.innerStride(), mat.outerStride(), actualAlpha, blocking); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:126:62: required from ‘Eigen::SelfAdjointView& Eigen::SelfAdjointView::rankUpdate(const Eigen::MatrixBase&, const Scalar&) [with DerivedU = Eigen::Matrix; _MatrixType = Eigen::Matrix; unsigned int UpLo = 2; Scalar = double]’ 126 | selfadjoint_product_selector::run(_expression().const_cast_derived(), u.derived(), alpha); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:33:78: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 33 | return result.setZero().template selfadjointView().rankUpdate( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 34 | M_ref); | ~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:425:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 425 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:425:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 425 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:425:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 425 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:425:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 425 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:426:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 426 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:426:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 426 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:426:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 426 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:426:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 426 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:427:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 427 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:427:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 427 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:427:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 427 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:427:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 427 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:49: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 432 | Vectorizable = unpacket_traits<_LhsPacket>::vectorizable && unpacket_traits<_RhsPacket>::vectorizable, | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:49: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:49: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:49: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:94: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 432 | Vectorizable = unpacket_traits<_LhsPacket>::vectorizable && unpacket_traits<_RhsPacket>::vectorizable, | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:94: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:94: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:94: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:433:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 433 | LhsPacketSize = Vectorizable ? unpacket_traits<_LhsPacket>::size : 1, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:433:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:433:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:433:65: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:434:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 434 | RhsPacketSize = Vectorizable ? unpacket_traits<_RhsPacket>::size : 1, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:434:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:434:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:434:65: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:435:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 435 | ResPacketSize = Vectorizable ? unpacket_traits<_ResPacket>::size : 1, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:435:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:435:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:435:65: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:460:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 460 | typedef typename conditional::type LhsPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:460:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:460:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:460:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:461:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 461 | typedef typename conditional::type RhsPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:461:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:461:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:461:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:462:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 462 | typedef typename conditional::type ResPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:462:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:462:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:462:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:465:33: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 465 | typedef QuadPacket RhsPacketx4; | ^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:465:33: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:465:33: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:465:33: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h: In instantiation of ‘class Eigen::internal::gebp_traits’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:1085:45: required from ‘struct Eigen::internal::gebp_kernel, 4, 4, false, false>’ 1085 | typedef typename QuarterTraits::LhsPacket LhsPacketQuarter; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h:92:109: required from ‘static void Eigen::internal::general_matrix_matrix_triangular_product::run(Index, Index, const LhsScalar*, Index, const RhsScalar*, Index, ResScalar*, Index, Index, const ResScalar&, Eigen::internal::level3_blocking&) [with Index = long int; LhsScalar = double; int LhsStorageOrder = 1; bool ConjugateLhs = false; RhsScalar = double; int RhsStorageOrder = 0; bool ConjugateRhs = false; int ResInnerStride = 1; int UpLo = 2; int Version = 0; ResScalar = double]’ 92 | gebp_kernel gebp; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:113:12: required from ‘static void Eigen::selfadjoint_product_selector::run(MatrixType&, const OtherType&, const typename MatrixType::Scalar&) [with MatrixType = Eigen::Matrix; OtherType = Eigen::Matrix; int UpLo = 2; typename MatrixType::Scalar = double]’ 109 | internal::general_matrix_matrix_triangular_product::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 111 | Scalar, OtherIsRowMajor ? ColMajor : RowMajor, (!OtherBlasTraits::NeedToConjugate) && NumTraits::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 112 | IsRowMajor ? RowMajor : ColMajor, MatrixType::InnerStrideAtCompileTime, UpLo> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 113 | ::run(size, depth, | ~~~~~^~~~~~~~~~~~~ 114 | actualOther.data(), actualOther.outerStride(), actualOther.data(), actualOther.outerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 115 | mat.data(), mat.innerStride(), mat.outerStride(), actualAlpha, blocking); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:126:62: required from ‘Eigen::SelfAdjointView& Eigen::SelfAdjointView::rankUpdate(const Eigen::MatrixBase&, const Scalar&) [with DerivedU = Eigen::Matrix; _MatrixType = Eigen::Matrix; unsigned int UpLo = 2; Scalar = double]’ 126 | selfadjoint_product_selector::run(_expression().const_cast_derived(), u.derived(), alpha); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:33:78: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 33 | return result.setZero().template selfadjointView().rankUpdate( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 34 | M_ref); | ~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:425:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 425 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:425:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 425 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:425:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 425 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:425:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 425 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:426:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 426 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:426:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 426 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:426:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 426 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:426:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 426 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:427:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 427 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:427:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 427 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:427:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 427 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:427:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 427 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:384:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 384 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:49: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 432 | Vectorizable = unpacket_traits<_LhsPacket>::vectorizable && unpacket_traits<_RhsPacket>::vectorizable, | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:49: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:49: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:49: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:94: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 432 | Vectorizable = unpacket_traits<_LhsPacket>::vectorizable && unpacket_traits<_RhsPacket>::vectorizable, | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:94: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:94: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:432:94: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:433:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 433 | LhsPacketSize = Vectorizable ? unpacket_traits<_LhsPacket>::size : 1, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:433:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:433:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:433:65: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:434:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 434 | RhsPacketSize = Vectorizable ? unpacket_traits<_RhsPacket>::size : 1, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:434:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:434:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:434:65: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:435:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 435 | ResPacketSize = Vectorizable ? unpacket_traits<_ResPacket>::size : 1, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:435:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:435:65: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:435:65: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:460:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 460 | typedef typename conditional::type LhsPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:460:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:460:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:460:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:461:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 461 | typedef typename conditional::type RhsPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:461:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:461:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:461:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:462:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 462 | typedef typename conditional::type ResPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:462:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:462:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:462:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:465:33: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 465 | typedef QuadPacket RhsPacketx4; | ^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:465:33: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:465:33: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:465:33: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CommaInitializer.h:159:10: required from ‘Eigen::CommaInitializer Eigen::DenseBase::operator<<(const Eigen::DenseBase&) [with OtherDerived = Eigen::Map, 0, Eigen::Stride<0, 0> >; Derived = Eigen::Matrix]’ 159 | return CommaInitializer(*static_cast(this), other); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/append_row.hpp:102:10: required from ‘Eigen::Matrix::type, -1, 1> stan::math::append_row(const ColVec&, const Scal&) [with ColVec = Eigen::Map, 0, Eigen::Stride<0, 0> >; Scal = double; stan::require_t >* = 0; stan::require_stan_scalar_t* = 0; typename stan::return_type::type = double]’ 102 | result << A.template cast(), B; | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:29:31: required from ‘T_return stan::math::internal::hypergeometric_3F2_infsum(const Ta&, const Tb&, const Tz&, double, int) [with Ta = std::vector; Tb = std::vector; Tz = double; T_return = double; ArrayAT = Eigen::Array; ArrayBT = Eigen::Array; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 29 | ArrayBT b_array = append_row(as_array_or_scalar(b), 1.0); | ~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:123:47: required from ‘auto stan::math::hypergeometric_3F2(const Ta&, const Tb&, const Tz&) [with Ta = std::vector; Tb = std::vector; Tz = double; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 123 | return internal::hypergeometric_3F2_infsum(a, b, z); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:148:28: required from ‘auto stan::math::hypergeometric_3F2(const std::initializer_list<_Tp>&, const std::initializer_list<_Value>&, const Tz&) [with Ta = double; Tb = double; Tz = double; stan::require_all_stan_scalar_t* = 0]’ 148 | return hypergeometric_3F2(std::vector(a), std::vector(b), z); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/inv_inc_beta.hpp:77:0: required from here 77 | + log(hypergeometric_3F2({a_val, a_val, one_m_b}, {ap1, ap1}, w)) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::Matrix; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::Matrix; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::Matrix; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:478:32: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::mean() const [with Derived = Eigen::Matrix; typename Eigen::internal::traits::Scalar = double]’ 478 | return Scalar(derived().redux(Eigen::internal::scalar_sum_op())) / Scalar(this->size()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/variance.hpp:25:0: required from here 25 | vector_d diff = dtrs_vals.array() - dtrs_vals.mean(); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Diagonal.h:63:53: required from ‘class Eigen::Diagonal, -1>’ 63 | template class Diagonal | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:451:40: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 451 | subdiag = mat.template diagonal<-1>().real(); | ~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, 1, -1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:514:91: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 514 | abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); | ~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, false>, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false>, 1, -1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false>, 1, -1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, false>, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, false>, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 1, -1, false>, 1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 4 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/VectorBlock.h:56:47: required from ‘class Eigen::VectorBlock, 1, -1, false>, -1>’ 56 | template class VectorBlock | ^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:514:101: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 514 | abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); | ~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ In file included from /usr/local/lib/R/library/RcppEigen/include/Eigen/Core:277: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, 1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, 1, -1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, 1, -1, false> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Matrix >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, 1, -1, false> >, const Eigen::Matrix >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:63: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; U = Eigen::Matrix; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Matrix; Derived = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/dot_product.hpp:26:16: required from ‘auto stan::math::dot_product(const Vec1&, const Vec2&) [with Vec1 = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; Vec2 = Eigen::Matrix; stan::require_all_eigen_vector_t* = 0; stan::require_not_var_t::type>* = 0]’ 26 | return v1.dot(v2); | ~~~~~~^~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/multiply.hpp:152:21: required from ‘auto stan::math::multiply(const RowVec&, const ColVec&) [with RowVec = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; ColVec = Eigen::Matrix; stan::require_not_var_t::type>* = 0; stan::require_eigen_row_and_col_t* = 0]’ 152 | return dot_product(rv, v); | ~~~~~~~~~~~^~~~~~~ stanExports_gMAP.h:1298:0: required from here 1298 | (stan::math::multiply( 1299 | stan::model::rvalue(X_param, "X_param", 1300 | stan::model::index_uni(h)), beta) + /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Matrix, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Matrix >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:191:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 191 | _pk.noalias() = -_gk; /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::CwiseUnaryOp, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::CwiseUnaryOp, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::CwiseUnaryOp, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::CwiseUnaryOp, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseUnaryOp, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_var_matrix.hpp:80:65: required from ‘struct stan::is_any_var_matrix, const Eigen::Matrix, const Eigen::CwiseUnaryOp, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1, 0, -1, 1> > >, Eigen::Matrix, Eigen::Matrix, -1, 1, 0, -1, 1> >’ 80 | : bool_constant...>::value> {}; | ^~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/meta/return_var_matrix.hpp:23:0: required by substitution of ‘template using stan::return_var_matrix_t = std::conditional_t<((bool)stan::is_any_var_matrix::value), stan::math::var_value::type>::type, void>::type>, typename stan::math::promote_scalar_type, typename std::decay::type>::type, void>::type> [with ReturnType = const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseUnaryOp, -1, 1>&>(const Eigen::Matrix, -1, 1>&)::::, const Eigen::Matrix, -1, 1> > >; Types = {Eigen::Matrix, Eigen::Matrix, -1, 1, 0, -1, 1>}]’ 23 | is_any_var_matrix::value, /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/elt_multiply.hpp:31:0: required from ‘auto stan::math::elt_multiply(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix; Mat2 = Eigen::Matrix, -1, 1>; stan::require_all_matrix_t* = 0; stan::require_any_rev_matrix_t* = 0]’ 31 | using ret_type = return_var_matrix_t; stanExports_gMAP.h:949:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 949 | stan::math::elt_multiply( 950 | stan::model::rvalue(beta_raw_guess, "beta_raw_guess", 951 | stan::model::index_uni(2)), beta_raw)), stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:103:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/elt_multiply.hpp:35:0: required from ‘auto stan::math::elt_multiply(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix; Mat2 = Eigen::Matrix, -1, 1>; stan::require_all_matrix_t* = 0; stan::require_any_rev_matrix_t* = 0]’ 35 | arena_t ret(arena_m1.val().cwiseProduct(arena_m2.val())); stanExports_gMAP.h:949:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 949 | stan::math::elt_multiply( 950 | stan::model::rvalue(beta_raw_guess, "beta_raw_guess", 951 | stan::model::index_uni(2)), beta_raw)), stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/elt_multiply.hpp:35:0: required from ‘auto stan::math::elt_multiply(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix; Mat2 = Eigen::Matrix, -1, 1>; stan::require_all_matrix_t* = 0; stan::require_any_rev_matrix_t* = 0]’ 35 | arena_t ret(arena_m1.val().cwiseProduct(arena_m2.val())); stanExports_gMAP.h:949:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 949 | stan::math::elt_multiply( 950 | stan::model::rvalue(beta_raw_guess, "beta_raw_guess", 951 | stan::model::index_uni(2)), beta_raw)), stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:103:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/elt_multiply.hpp:39:0: required from ‘auto stan::math::elt_multiply(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix; Mat2 = Eigen::Matrix, -1, 1>; stan::require_all_matrix_t* = 0; stan::require_any_rev_matrix_t* = 0]’ 39 | const auto ret_adj = ret.adj().coeffRef(i, j); stanExports_gMAP.h:949:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 949 | stan::math::elt_multiply( 950 | stan::model::rvalue(beta_raw_guess, "beta_raw_guess", 951 | stan::model::index_uni(2)), beta_raw)), stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/elt_multiply.hpp:49:0: required from ‘auto stan::math::elt_multiply(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix; Mat2 = Eigen::Matrix, -1, 1>; stan::require_all_matrix_t* = 0; stan::require_any_rev_matrix_t* = 0]’ 49 | arena_t ret(arena_m1.val().cwiseProduct(arena_m2)); stanExports_gMAP.h:949:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 949 | stan::math::elt_multiply( 950 | stan::model::rvalue(beta_raw_guess, "beta_raw_guess", 951 | stan::model::index_uni(2)), beta_raw)), stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/elt_multiply.hpp:51:0: required from ‘auto stan::math::elt_multiply(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix; Mat2 = Eigen::Matrix, -1, 1>; stan::require_all_matrix_t* = 0; stan::require_any_rev_matrix_t* = 0]’ 51 | arena_m1.adj().array() += arena_m2.array() * ret.adj().array(); stanExports_gMAP.h:949:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 949 | stan::math::elt_multiply( 950 | stan::model::rvalue(beta_raw_guess, "beta_raw_guess", 951 | stan::model::index_uni(2)), beta_raw)), stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0, Eigen::Stride<0, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/elt_multiply.hpp:51:0: required from ‘auto stan::math::elt_multiply(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix; Mat2 = Eigen::Matrix, -1, 1>; stan::require_all_matrix_t* = 0; stan::require_any_rev_matrix_t* = 0]’ 51 | arena_m1.adj().array() += arena_m2.array() * ret.adj().array(); stanExports_gMAP.h:949:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 949 | stan::math::elt_multiply( 950 | stan::model::rvalue(beta_raw_guess, "beta_raw_guess", 951 | stan::model::index_uni(2)), beta_raw)), stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/elt_multiply.hpp:51:0: required from ‘auto stan::math::elt_multiply(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix; Mat2 = Eigen::Matrix, -1, 1>; stan::require_all_matrix_t* = 0; stan::require_any_rev_matrix_t* = 0]’ 51 | arena_m1.adj().array() += arena_m2.array() * ret.adj().array(); stanExports_gMAP.h:949:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 949 | stan::math::elt_multiply( 950 | stan::model::rvalue(beta_raw_guess, "beta_raw_guess", 951 | stan::model::index_uni(2)), beta_raw)), stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/elt_multiply.hpp:57:0: required from ‘auto stan::math::elt_multiply(const Mat1&, const Mat2&) [with Mat1 = Eigen::Matrix; Mat2 = Eigen::Matrix, -1, 1>; stan::require_all_matrix_t* = 0; stan::require_any_rev_matrix_t* = 0]’ 57 | arena_t ret(arena_m1.cwiseProduct(arena_m2.val())); stanExports_gMAP.h:949:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 949 | stan::math::elt_multiply( 950 | stan::model::rvalue(beta_raw_guess, "beta_raw_guess", 951 | stan::model::index_uni(2)), beta_raw)), stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1>, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:147:0: required from ‘auto stan::math::add(const VarMat&, const Arith&) [with Arith = Eigen::Matrix; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 147 | = decltype((a.val().array() + as_array_or_scalar(b)).matrix()); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:169:0: required from ‘auto stan::math::add(const Arith&, const VarMat&) [with Arith = Eigen::Matrix; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 169 | return add(b, a); stanExports_gMAP.h:946:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 946 | stan::math::add( 947 | stan::model::rvalue(beta_raw_guess, "beta_raw_guess", 948 | stan::model::index_uni(1)), 949 | stan::math::elt_multiply( 950 | stan::model::rvalue(beta_raw_guess, "beta_raw_guess", 951 | stan::model::index_uni(2)), beta_raw)), stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:147:0: required from ‘auto stan::math::add(const VarMat&, const Arith&) [with Arith = Eigen::Matrix; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 147 | = decltype((a.val().array() + as_array_or_scalar(b)).matrix()); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:169:0: required from ‘auto stan::math::add(const Arith&, const VarMat&) [with Arith = Eigen::Matrix; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 169 | return add(b, a); stanExports_gMAP.h:946:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 946 | stan::math::add( 947 | stan::model::rvalue(beta_raw_guess, "beta_raw_guess", 948 | stan::model::index_uni(1)), 949 | stan::math::elt_multiply( 950 | stan::model::rvalue(beta_raw_guess, "beta_raw_guess", 951 | stan::model::index_uni(2)), beta_raw)), stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:147:0: required from ‘auto stan::math::add(const VarMat&, const Arith&) [with Arith = Eigen::Matrix; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 147 | = decltype((a.val().array() + as_array_or_scalar(b)).matrix()); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:169:0: required from ‘auto stan::math::add(const Arith&, const VarMat&) [with Arith = Eigen::Matrix; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 169 | return add(b, a); stanExports_gMAP.h:946:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 946 | stan::math::add( 947 | stan::model::rvalue(beta_raw_guess, "beta_raw_guess", 948 | stan::model::index_uni(1)), 949 | stan::math::elt_multiply( 950 | stan::model::rvalue(beta_raw_guess, "beta_raw_guess", 951 | stan::model::index_uni(2)), beta_raw)), stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: required from ‘struct stan::is_base_pointer_convertible, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper > > > >’ 29 | = decltype(f(std::declval *>()))::value | ~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_eigen.hpp:21:71: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/meta/return_var_matrix.hpp:23:0: required by substitution of ‘template using stan::return_var_matrix_t = std::conditional_t<((bool)stan::is_any_var_matrix::value), stan::math::var_value::type>::type, void>::type>, typename stan::math::promote_scalar_type, typename std::decay::type>::type, void>::type> [with ReturnType = const Eigen::MatrixWrapper, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper > > >; Types = {Eigen::Matrix, -1, 1, 0, -1, 1>}]’ 23 | is_any_var_matrix::value, /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:148:0: required from ‘auto stan::math::add(const VarMat&, const Arith&) [with Arith = Eigen::Matrix; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 148 | using ret_type = return_var_matrix_t; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:169:0: required from ‘auto stan::math::add(const Arith&, const VarMat&) [with Arith = Eigen::Matrix; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 169 | return add(b, a); stanExports_gMAP.h:946:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 946 | stan::math::add( 947 | stan::model::rvalue(beta_raw_guess, "beta_raw_guess", 948 | stan::model::index_uni(1)), 949 | stan::math::elt_multiply( 950 | stan::model::rvalue(beta_raw_guess, "beta_raw_guess", 951 | stan::model::index_uni(2)), beta_raw)), stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:169:0: required from ‘auto stan::math::add(const Arith&, const VarMat&) [with Arith = Eigen::Matrix; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 169 | return add(b, a); stanExports_gMAP.h:946:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 946 | stan::math::add( 947 | stan::model::rvalue(beta_raw_guess, "beta_raw_guess", 948 | stan::model::index_uni(1)), 949 | stan::math::elt_multiply( 950 | stan::model::rvalue(beta_raw_guess, "beta_raw_guess", 951 | stan::model::index_uni(2)), beta_raw)), stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:150:0: required from ‘auto stan::math::add(const VarMat&, const Arith&) [with Arith = Eigen::Matrix; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 150 | arena_t ret(arena_a.val().array() + as_array_or_scalar(b)); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:169:0: required from ‘auto stan::math::add(const Arith&, const VarMat&) [with Arith = Eigen::Matrix; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 169 | return add(b, a); stanExports_gMAP.h:946:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 946 | stan::math::add( 947 | stan::model::rvalue(beta_raw_guess, "beta_raw_guess", 948 | stan::model::index_uni(1)), 949 | stan::math::elt_multiply( 950 | stan::model::rvalue(beta_raw_guess, "beta_raw_guess", 951 | stan::model::index_uni(2)), beta_raw)), stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:152:0: required from ‘auto stan::math::add(const VarMat&, const Arith&) [with Arith = Eigen::Matrix; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 152 | [ret, arena_a]() mutable { arena_a.adj() += ret.adj_op(); }); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:169:0: required from ‘auto stan::math::add(const Arith&, const VarMat&) [with Arith = Eigen::Matrix; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 169 | return add(b, a); stanExports_gMAP.h:946:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 946 | stan::math::add( 947 | stan::model::rvalue(beta_raw_guess, "beta_raw_guess", 948 | stan::model::index_uni(1)), 949 | stan::math::elt_multiply( 950 | stan::model::rvalue(beta_raw_guess, "beta_raw_guess", 951 | stan::model::index_uni(2)), beta_raw)), stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:145:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = double; T2 = Eigen::Matrix, -1, 1>; stan::require_not_matrix_t* = 0; stan::require_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 145 | arena_t res = arena_A.val() * arena_B.val().array(); stanExports_gMAP.h:966:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 966 | stan::math::multiply( 967 | stan::model::rvalue(tau_raw_guess, "tau_raw_guess", 968 | stan::model::index_uni(2)), tau_raw))), stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:163:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = double; T2 = Eigen::Matrix, -1, 1>; stan::require_not_matrix_t* = 0; stan::require_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 163 | arena_B.adj().array() += arena_A * res.adj().array(); stanExports_gMAP.h:966:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 966 | stan::math::multiply( 967 | stan::model::rvalue(tau_raw_guess, "tau_raw_guess", 968 | stan::model::index_uni(2)), tau_raw))), stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:170:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = double; T2 = Eigen::Matrix, -1, 1>; stan::require_not_matrix_t* = 0; stan::require_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 170 | arena_t res = arena_A.val() * arena_B.array(); stanExports_gMAP.h:966:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 966 | stan::math::multiply( 967 | stan::model::rvalue(tau_raw_guess, "tau_raw_guess", 968 | stan::model::index_uni(2)), tau_raw))), stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:172:0: required from ‘auto stan::math::multiply(const T1&, const T2&) [with T1 = double; T2 = Eigen::Matrix, -1, 1>; stan::require_not_matrix_t* = 0; stan::require_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_not_row_and_col_vector_t* = 0]’ 172 | arena_A.adj() += (res.adj().array() * arena_B.array()).sum(); stanExports_gMAP.h:966:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 966 | stan::math::multiply( 967 | stan::model::rvalue(tau_raw_guess, "tau_raw_guess", 968 | stan::model::index_uni(2)), tau_raw))), stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:147:0: required from ‘auto stan::math::add(const VarMat&, const Arith&) [with Arith = double; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 147 | = decltype((a.val().array() + as_array_or_scalar(b)).matrix()); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:169:0: required from ‘auto stan::math::add(const Arith&, const VarMat&) [with Arith = double; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 169 | return add(b, a); stanExports_gMAP.h:963:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 963 | stan::math::add( 964 | stan::model::rvalue(tau_raw_guess, "tau_raw_guess", 965 | stan::model::index_uni(1)), 966 | stan::math::multiply( 967 | stan::model::rvalue(tau_raw_guess, "tau_raw_guess", 968 | stan::model::index_uni(2)), tau_raw))), stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: required from ‘struct stan::is_base_pointer_convertible, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 29 | = decltype(f(std::declval *>()))::value | ~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_eigen.hpp:21:71: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/meta/return_var_matrix.hpp:23:0: required by substitution of ‘template using stan::return_var_matrix_t = std::conditional_t<((bool)stan::is_any_var_matrix::value), stan::math::var_value::type>::type, void>::type>, typename stan::math::promote_scalar_type, typename std::decay::type>::type, void>::type> [with ReturnType = const Eigen::MatrixWrapper, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; Types = {Eigen::Matrix, -1, 1, 0, -1, 1>}]’ 23 | is_any_var_matrix::value, /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:148:0: required from ‘auto stan::math::add(const VarMat&, const Arith&) [with Arith = double; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 148 | using ret_type = return_var_matrix_t; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:169:0: required from ‘auto stan::math::add(const Arith&, const VarMat&) [with Arith = double; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 169 | return add(b, a); stanExports_gMAP.h:963:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 963 | stan::math::add( 964 | stan::model::rvalue(tau_raw_guess, "tau_raw_guess", 965 | stan::model::index_uni(1)), 966 | stan::math::multiply( 967 | stan::model::rvalue(tau_raw_guess, "tau_raw_guess", 968 | stan::model::index_uni(2)), tau_raw))), stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:150:0: required from ‘auto stan::math::add(const VarMat&, const Arith&) [with Arith = double; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 150 | arena_t ret(arena_a.val().array() + as_array_or_scalar(b)); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:169:0: required from ‘auto stan::math::add(const Arith&, const VarMat&) [with Arith = double; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 169 | return add(b, a); stanExports_gMAP.h:963:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 963 | stan::math::add( 964 | stan::model::rvalue(tau_raw_guess, "tau_raw_guess", 965 | stan::model::index_uni(1)), 966 | stan::math::multiply( 967 | stan::model::rvalue(tau_raw_guess, "tau_raw_guess", 968 | stan::model::index_uni(2)), tau_raw))), stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::CwiseUnaryView, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_division.hpp:131:0: required from ‘auto stan::math::divide(const Mat&, Scalar) [with Scalar = double; Mat = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; stan::require_matrix_t* = 0; stan::require_stan_scalar_t* = 0; stan::require_all_st_var_or_arithmetic* = 0; stan::require_any_st_var* = 0]’ 131 | arena_t> res = inv_c * arena_m.val(); stanExports_gMAP.h:1056:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1056 | stan::math::divide( 1057 | stan::model::rvalue(tau, "tau", 1058 | stan::model::index_multi(tau_strata_gindex)), 1059 | stan::model::rvalue(beta_raw_guess, 1060 | "beta_raw_guess", stan::model::index_uni(2), 1061 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Array, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_division.hpp:134:0: required from ‘auto stan::math::divide(const Mat&, Scalar) [with Scalar = double; Mat = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; stan::require_matrix_t* = 0; stan::require_stan_scalar_t* = 0; stan::require_all_st_var_or_arithmetic* = 0; stan::require_any_st_var* = 0]’ 134 | arena_c.adj() -= (inv_times_adj * res.val().array()).sum(); stanExports_gMAP.h:1056:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1056 | stan::math::divide( 1057 | stan::model::rvalue(tau, "tau", 1058 | stan::model::index_multi(tau_strata_gindex)), 1059 | stan::model::rvalue(beta_raw_guess, 1060 | "beta_raw_guess", stan::model::index_uni(2), 1061 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_division.hpp:143:0: required from ‘auto stan::math::divide(const Mat&, Scalar) [with Scalar = double; Mat = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; stan::require_matrix_t* = 0; stan::require_stan_scalar_t* = 0; stan::require_all_st_var_or_arithmetic* = 0; stan::require_any_st_var* = 0]’ 143 | arena_m.adj().array() += inv_c * res.adj_op().array(); stanExports_gMAP.h:1056:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1056 | stan::math::divide( 1057 | stan::model::rvalue(tau, "tau", 1058 | stan::model::index_multi(tau_strata_gindex)), 1059 | stan::model::rvalue(beta_raw_guess, 1060 | "beta_raw_guess", stan::model::index_uni(2), 1061 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_division.hpp:143:0: required from ‘auto stan::math::divide(const Mat&, Scalar) [with Scalar = double; Mat = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; stan::require_matrix_t* = 0; stan::require_stan_scalar_t* = 0; stan::require_all_st_var_or_arithmetic* = 0; stan::require_any_st_var* = 0]’ 143 | arena_m.adj().array() += inv_c * res.adj_op().array(); stanExports_gMAP.h:1056:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1056 | stan::math::divide( 1057 | stan::model::rvalue(tau, "tau", 1058 | stan::model::index_multi(tau_strata_gindex)), 1059 | stan::model::rvalue(beta_raw_guess, 1060 | "beta_raw_guess", stan::model::index_uni(2), 1061 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >&>(const Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >&)::::, const Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >&>(const Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >&)::::, const Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >&>(const Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >&)::::, const Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >&>(const Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >&)::::, const Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >&>(const Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >&)::::, const Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/value_of.hpp:75:27: required from ‘stan::math::value_of, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >&>(const Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >&):: [with auto:12 = const Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >]’ 75 | return a.unaryExpr([](const auto& scal) { return value_of(scal); }); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_division.hpp:149:0: required from ‘auto stan::math::divide(const Mat&, Scalar) [with Scalar = double; Mat = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; stan::require_matrix_t* = 0; stan::require_stan_scalar_t* = 0; stan::require_all_st_var_or_arithmetic* = 0; stan::require_any_st_var* = 0]’ 149 | arena_t> res = inv_c * value_of(m).array(); stanExports_gMAP.h:1056:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1056 | stan::math::divide( 1057 | stan::model::rvalue(tau, "tau", 1058 | stan::model::index_multi(tau_strata_gindex)), 1059 | stan::model::rvalue(beta_raw_guess, 1060 | "beta_raw_guess", stan::model::index_uni(2), 1061 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >&>(const Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >&)::::, const Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >&>(const Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >&)::::, const Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >&>(const Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >&)::::, const Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >&>(const Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >&)::::, const Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> > > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_division.hpp:149:0: required from ‘auto stan::math::divide(const Mat&, Scalar) [with Scalar = double; Mat = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; stan::require_matrix_t* = 0; stan::require_stan_scalar_t* = 0; stan::require_all_st_var_or_arithmetic* = 0; stan::require_any_st_var* = 0]’ 149 | arena_t> res = inv_c * value_of(m).array(); stanExports_gMAP.h:1056:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1056 | stan::math::divide( 1057 | stan::model::rvalue(tau, "tau", 1058 | stan::model::index_multi(tau_strata_gindex)), 1059 | stan::model::rvalue(beta_raw_guess, 1060 | "beta_raw_guess", stan::model::index_uni(2), 1061 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >&>(const Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >&)::::, const Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >&>(const Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >&)::::, const Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >&>(const Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >&)::::, const Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >&>(const Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >&)::::, const Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >&>(const Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >&)::::, const Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_division.hpp:149:0: required from ‘auto stan::math::divide(const Mat&, Scalar) [with Scalar = double; Mat = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; stan::require_matrix_t* = 0; stan::require_stan_scalar_t* = 0; stan::require_all_st_var_or_arithmetic* = 0; stan::require_any_st_var* = 0]’ 149 | arena_t> res = inv_c * value_of(m).array(); stanExports_gMAP.h:1056:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1056 | stan::math::divide( 1057 | stan::model::rvalue(tau, "tau", 1058 | stan::model::index_multi(tau_strata_gindex)), 1059 | stan::model::rvalue(beta_raw_guess, 1060 | "beta_raw_guess", stan::model::index_uni(2), 1061 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_division.hpp:151:0: required from ‘auto stan::math::divide(const Mat&, Scalar) [with Scalar = double; Mat = Eigen::CwiseNullaryOp, -1, 1>&>(Eigen::Matrix, -1, 1>&, const char*, const index_multi&)::::, Eigen::Matrix, -1, 1> >; stan::require_matrix_t* = 0; stan::require_stan_scalar_t* = 0; stan::require_all_st_var_or_arithmetic* = 0; stan::require_any_st_var* = 0]’ 151 | arena_c.adj() -= inv_c * (res.adj().array() * res.val().array()).sum(); stanExports_gMAP.h:1056:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1056 | stan::math::divide( 1057 | stan::model::rvalue(tau, "tau", 1058 | stan::model::index_multi(tau_strata_gindex)), 1059 | stan::model::rvalue(beta_raw_guess, 1060 | "beta_raw_guess", stan::model::index_uni(2), 1061 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0, Eigen::Stride<0, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/as_array_or_scalar.hpp:57:50: required from ‘stan::math::as_array_or_scalar, 0, Eigen::Stride<0, 0> >&>(const Eigen::Map, 0, Eigen::Stride<0, 0> >&):: [with auto:14 = const Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 57 | return make_holder([](auto& x) { return x.array(); }, std::forward(v)); | ~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:169:0: required from ‘auto stan::math::add(const Arith&, const VarMat&) [with Arith = Eigen::Map, 0, Eigen::Stride<0, 0> >; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 169 | return add(b, a); stanExports_gMAP.h:1188:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1188 | stan::math::add(log_offset, theta))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:147:0: required from ‘auto stan::math::add(const VarMat&, const Arith&) [with Arith = Eigen::Map, 0, Eigen::Stride<0, 0> >; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 147 | = decltype((a.val().array() + as_array_or_scalar(b)).matrix()); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:169:0: required from ‘auto stan::math::add(const Arith&, const VarMat&) [with Arith = Eigen::Map, 0, Eigen::Stride<0, 0> >; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 169 | return add(b, a); stanExports_gMAP.h:1188:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1188 | stan::math::add(log_offset, theta))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_base_pointer_convertible.hpp:29:17: required from ‘struct stan::is_base_pointer_convertible, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >’ 29 | = decltype(f(std::declval *>()))::value | ~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/is_eigen.hpp:21:71: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/meta/return_var_matrix.hpp:23:0: required by substitution of ‘template using stan::return_var_matrix_t = std::conditional_t<((bool)stan::is_any_var_matrix::value), stan::math::var_value::type>::type, void>::type>, typename stan::math::promote_scalar_type, typename std::decay::type>::type, void>::type> [with ReturnType = const Eigen::MatrixWrapper, const Eigen::ArrayWrapper, -1, 1> >::val_Op, const Eigen::Matrix, -1, 1> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >; Types = {Eigen::Matrix, -1, 1, 0, -1, 1>}]’ 23 | is_any_var_matrix::value, /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:148:0: required from ‘auto stan::math::add(const VarMat&, const Arith&) [with Arith = Eigen::Map, 0, Eigen::Stride<0, 0> >; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 148 | using ret_type = return_var_matrix_t; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:169:0: required from ‘auto stan::math::add(const Arith&, const VarMat&) [with Arith = Eigen::Map, 0, Eigen::Stride<0, 0> >; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 169 | return add(b, a); stanExports_gMAP.h:1188:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1188 | stan::math::add(log_offset, theta))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:150:0: required from ‘auto stan::math::add(const VarMat&, const Arith&) [with Arith = Eigen::Map, 0, Eigen::Stride<0, 0> >; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 150 | arena_t ret(arena_a.val().array() + as_array_or_scalar(b)); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/operator_addition.hpp:169:0: required from ‘auto stan::math::add(const Arith&, const VarMat&) [with Arith = Eigen::Map, 0, Eigen::Stride<0, 0> >; VarMat = Eigen::Matrix, -1, 1>; stan::require_st_arithmetic* = 0; stan::require_rev_matrix_t* = 0]’ 169 | return add(b, a); stanExports_gMAP.h:1188:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1188 | stan::math::add(log_offset, theta))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_finite >(const char*, const char*, const Eigen::Matrix&)::; T = Eigen::Matrix; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_finite.hpp:29:20: required from ‘void stan::math::check_finite(const char*, const char*, const T_y&) [with T_y = Eigen::Matrix]’ 29 | elementwise_check([](double x) { return std::isfinite(x); }, function, name, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 30 | y, "finite"); | ~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_pFq.hpp:35:15: required from ‘stan::return_type_t stan::math::hypergeometric_pFq(const Ta&, const Tb&, const Tz&) [with Ta = Eigen::Matrix; Tb = Eigen::Matrix; Tz = double; stan::require_all_eigen_st* = 0; stan::require_arithmetic_t* = 0; stan::return_type_t = double]’ 35 | check_finite("hypergeometric_pFq", "a", a_ref); | ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_2F1.hpp:189:30: required from ‘stan::return_type_t stan::math::hypergeometric_2F1(const Ta1&, const Ta2&, const Tb&, const Tz&) [with Ta1 = double; Ta2 = double; Tb = double; Tz = double; ScalarT = double; OptT = boost::optional; stan::require_all_arithmetic_t* = 0; stan::return_type_t = double]’ 189 | return hypergeometric_pFq(a_args, b_args, z); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:190:39: required from ‘TupleT stan::math::internal::grad_2F1_impl(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool calc_a1 = true; bool calc_a2 = true; bool calc_b1 = true; bool calc_z = true; T1 = double; T2 = double; T3 = double; T_z = double; ScalarT = double; TupleT = std::tuple]’ 190 | auto hyper1 = hypergeometric_2F1(a1_euler, a2_euler, b1, z_euler); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:306:57: required from ‘auto stan::math::grad_2F1(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool ReturnSameT = true; T1 = double; T2 = double; T3 = double; T_z = double; stan::require_t >* = 0]’ 306 | return internal::grad_2F1_impl(a1, a2, b1, z, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~ 307 | precision, max_steps); | ~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_inc_beta.hpp:37:25: required from here 37 | = grad_2F1(a + b, 1.0, a + 1, z); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_finite >(const char*, const char*, const Eigen::Matrix&)::; T = Eigen::Matrix; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_finite.hpp:29:20: required from ‘void stan::math::check_finite(const char*, const char*, const T_y&) [with T_y = Eigen::Matrix]’ 29 | elementwise_check([](double x) { return std::isfinite(x); }, function, name, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 30 | y, "finite"); | ~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_pFq.hpp:36:15: required from ‘stan::return_type_t stan::math::hypergeometric_pFq(const Ta&, const Tb&, const Tz&) [with Ta = Eigen::Matrix; Tb = Eigen::Matrix; Tz = double; stan::require_all_eigen_st* = 0; stan::require_arithmetic_t* = 0; stan::return_type_t = double]’ 36 | check_finite("hypergeometric_pFq", "b", b_ref); | ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_2F1.hpp:189:30: required from ‘stan::return_type_t stan::math::hypergeometric_2F1(const Ta1&, const Ta2&, const Tb&, const Tz&) [with Ta1 = double; Ta2 = double; Tb = double; Tz = double; ScalarT = double; OptT = boost::optional; stan::require_all_arithmetic_t* = 0; stan::return_type_t = double]’ 189 | return hypergeometric_pFq(a_args, b_args, z); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:190:39: required from ‘TupleT stan::math::internal::grad_2F1_impl(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool calc_a1 = true; bool calc_a2 = true; bool calc_b1 = true; bool calc_z = true; T1 = double; T2 = double; T3 = double; T_z = double; ScalarT = double; TupleT = std::tuple]’ 190 | auto hyper1 = hypergeometric_2F1(a1_euler, a2_euler, b1, z_euler); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:306:57: required from ‘auto stan::math::grad_2F1(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool ReturnSameT = true; T1 = double; T2 = double; T3 = double; T_z = double; stan::require_t >* = 0]’ 306 | return internal::grad_2F1_impl(a1, a2, b1, z, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~ 307 | precision, max_steps); | ~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_inc_beta.hpp:37:25: required from here 37 | = grad_2F1(a + b, 1.0, a + 1, z); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_not_nan >(const char*, const char*, const Eigen::Matrix&)::; T = Eigen::Matrix; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_not_nan.hpp:28:20: required from ‘void stan::math::check_not_nan(const char*, const char*, const T_y&) [with T_y = Eigen::Matrix]’ 28 | elementwise_check([](double x) { return !std::isnan(x); }, function, name, y, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 29 | "not nan"); | ~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_pFq.hpp:39:16: required from ‘stan::return_type_t stan::math::hypergeometric_pFq(const Ta&, const Tb&, const Tz&) [with Ta = Eigen::Matrix; Tb = Eigen::Matrix; Tz = double; stan::require_all_eigen_st* = 0; stan::require_arithmetic_t* = 0; stan::return_type_t = double]’ 39 | check_not_nan("hypergeometric_pFq", "a", a_ref); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_2F1.hpp:189:30: required from ‘stan::return_type_t stan::math::hypergeometric_2F1(const Ta1&, const Ta2&, const Tb&, const Tz&) [with Ta1 = double; Ta2 = double; Tb = double; Tz = double; ScalarT = double; OptT = boost::optional; stan::require_all_arithmetic_t* = 0; stan::return_type_t = double]’ 189 | return hypergeometric_pFq(a_args, b_args, z); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:190:39: required from ‘TupleT stan::math::internal::grad_2F1_impl(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool calc_a1 = true; bool calc_a2 = true; bool calc_b1 = true; bool calc_z = true; T1 = double; T2 = double; T3 = double; T_z = double; ScalarT = double; TupleT = std::tuple]’ 190 | auto hyper1 = hypergeometric_2F1(a1_euler, a2_euler, b1, z_euler); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:306:57: required from ‘auto stan::math::grad_2F1(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool ReturnSameT = true; T1 = double; T2 = double; T3 = double; T_z = double; stan::require_t >* = 0]’ 306 | return internal::grad_2F1_impl(a1, a2, b1, z, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~ 307 | precision, max_steps); | ~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_inc_beta.hpp:37:25: required from here 37 | = grad_2F1(a + b, 1.0, a + 1, z); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_not_nan >(const char*, const char*, const Eigen::Matrix&)::; T = Eigen::Matrix; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_not_nan.hpp:28:20: required from ‘void stan::math::check_not_nan(const char*, const char*, const T_y&) [with T_y = Eigen::Matrix]’ 28 | elementwise_check([](double x) { return !std::isnan(x); }, function, name, y, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 29 | "not nan"); | ~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_pFq.hpp:40:16: required from ‘stan::return_type_t stan::math::hypergeometric_pFq(const Ta&, const Tb&, const Tz&) [with Ta = Eigen::Matrix; Tb = Eigen::Matrix; Tz = double; stan::require_all_eigen_st* = 0; stan::require_arithmetic_t* = 0; stan::return_type_t = double]’ 40 | check_not_nan("hypergeometric_pFq", "b", b_ref); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_2F1.hpp:189:30: required from ‘stan::return_type_t stan::math::hypergeometric_2F1(const Ta1&, const Ta2&, const Tb&, const Tz&) [with Ta1 = double; Ta2 = double; Tb = double; Tz = double; ScalarT = double; OptT = boost::optional; stan::require_all_arithmetic_t* = 0; stan::return_type_t = double]’ 189 | return hypergeometric_pFq(a_args, b_args, z); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:190:39: required from ‘TupleT stan::math::internal::grad_2F1_impl(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool calc_a1 = true; bool calc_a2 = true; bool calc_b1 = true; bool calc_z = true; T1 = double; T2 = double; T3 = double; T_z = double; ScalarT = double; TupleT = std::tuple]’ 190 | auto hyper1 = hypergeometric_2F1(a1_euler, a2_euler, b1, z_euler); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_2F1.hpp:306:57: required from ‘auto stan::math::grad_2F1(const T1&, const T2&, const T3&, const T_z&, double, int) [with bool ReturnSameT = true; T1 = double; T2 = double; T3 = double; T_z = double; stan::require_t >* = 0]’ 306 | return internal::grad_2F1_impl(a1, a2, b1, z, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~ 307 | precision, max_steps); | ~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/grad_inc_beta.hpp:37:25: required from here 37 | = grad_2F1(a + b, 1.0, a + 1, z); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, member_sum, 1>; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; Func = Eigen::internal::scalar_max_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Matrix >, Eigen::internal::member_sum, 1> >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_max_op; Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:448:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::maxCoeff() const [with int NaNPropagation = 0; Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; typename Eigen::internal::traits::Scalar = double]’ 448 | return derived().redux(Eigen::internal::scalar_max_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:466:37: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::maxCoeff() const [with Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; typename Eigen::internal::traits::Scalar = double]’ 466 | return maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:106:49: required from here 106 | return x.cwiseAbs().rowwise().sum().maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix >, 2, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix >, 2, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix >, 2, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::Matrix >, 2, -1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::Matrix >, 2, -1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::Matrix >, 2, -1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PartialReduxEvaluator.h:203:15: required from ‘PacketType Eigen::internal::evaluator >::packet(Eigen::Index) const [with int LoadMode = 0; PacketType = __vector(2) double; ArgType = const Eigen::CwiseUnaryOp, const Eigen::Matrix >; MemberOp = Eigen::internal::member_sum; int Direction = 1; Eigen::Index = long int]’ 203 | PanelType panel(m_arg, | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:251:78: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; Func = Eigen::internal::scalar_max_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Matrix >, Eigen::internal::member_sum, 1> >; Scalar = double]’ 251 | PacketScalar packet_res0 = eval.template packet(alignedStart); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_max_op; Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:448:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::maxCoeff() const [with int NaNPropagation = 0; Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; typename Eigen::internal::traits::Scalar = double]’ 448 | return derived().redux(Eigen::internal::scalar_max_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:466:37: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::maxCoeff() const [with Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; typename Eigen::internal::traits::Scalar = double]’ 466 | return maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:106:49: required from here 106 | return x.cwiseAbs().rowwise().sum().maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::Matrix >, 2, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Matrix >, 2, -1, true> >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PartialReduxEvaluator.h:217:20: required from ‘PacketType Eigen::internal::evaluator >::packet(Eigen::Index) const [with int LoadMode = 0; PacketType = __vector(2) double; ArgType = const Eigen::CwiseUnaryOp, const Eigen::Matrix >; MemberOp = Eigen::internal::member_sum; int Direction = 1; Eigen::Index = long int]’ 217 | PanelEvaluator panel_eval(panel); | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:251:78: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; Func = Eigen::internal::scalar_max_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Matrix >, Eigen::internal::member_sum, 1> >; Scalar = double]’ 251 | PacketScalar packet_res0 = eval.template packet(alignedStart); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_max_op; Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:448:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::maxCoeff() const [with int NaNPropagation = 0; Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; typename Eigen::internal::traits::Scalar = double]’ 448 | return derived().redux(Eigen::internal::scalar_max_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:466:37: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::maxCoeff() const [with Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; typename Eigen::internal::traits::Scalar = double]’ 466 | return maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:106:49: required from here 106 | return x.cwiseAbs().rowwise().sum().maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix >, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix >, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix >, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::Matrix >, 1, -1, false, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::Matrix >, 1, -1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::Matrix >, 1, -1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PartialReduxEvaluator.h:183:72: required from ‘const Eigen::internal::evaluator >::Scalar Eigen::internal::evaluator >::coeff(Eigen::Index) const [with ArgType = const Eigen::CwiseUnaryOp, const Eigen::Matrix >; MemberOp = Eigen::internal::member_sum; int Direction = 1; Scalar = double; Eigen::Index = long int]’ 183 | return m_functor(m_arg.template subVector(index)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:268:34: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; Func = Eigen::internal::scalar_max_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Matrix >, Eigen::internal::member_sum, 1> >; Scalar = double]’ 268 | res = func(res,eval.coeff(index)); | ~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_max_op; Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:448:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::maxCoeff() const [with int NaNPropagation = 0; Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; typename Eigen::internal::traits::Scalar = double]’ 448 | return derived().redux(Eigen::internal::scalar_max_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:466:37: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::maxCoeff() const [with Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; typename Eigen::internal::traits::Scalar = double]’ 466 | return maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:106:49: required from here 106 | return x.cwiseAbs().rowwise().sum().maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h: In instantiation of ‘void Eigen::internal::gemm_pack_rhs::operator()(Scalar*, const DataMapper&, Index, Index, Index, Index) [with Scalar = double; Index = long int; DataMapper = Eigen::internal::const_blas_data_mapper; int nr = 4; bool Conjugate = false; bool PanelMode = false]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h:100:15: required from ‘static void Eigen::internal::general_matrix_matrix_triangular_product::run(Index, Index, const LhsScalar*, Index, const RhsScalar*, Index, ResScalar*, Index, Index, const ResScalar&, Eigen::internal::level3_blocking&) [with Index = long int; LhsScalar = double; int LhsStorageOrder = 1; bool ConjugateLhs = false; RhsScalar = double; int RhsStorageOrder = 0; bool ConjugateRhs = false; int ResInnerStride = 1; int UpLo = 2; int Version = 0; ResScalar = double]’ 100 | pack_rhs(blockB, rhs.getSubMapper(k2,0), actual_kc, size); | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:113:12: required from ‘static void Eigen::selfadjoint_product_selector::run(MatrixType&, const OtherType&, const typename MatrixType::Scalar&) [with MatrixType = Eigen::Matrix; OtherType = Eigen::Matrix; int UpLo = 2; typename MatrixType::Scalar = double]’ 109 | internal::general_matrix_matrix_triangular_product::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 111 | Scalar, OtherIsRowMajor ? ColMajor : RowMajor, (!OtherBlasTraits::NeedToConjugate) && NumTraits::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 112 | IsRowMajor ? RowMajor : ColMajor, MatrixType::InnerStrideAtCompileTime, UpLo> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 113 | ::run(size, depth, | ~~~~~^~~~~~~~~~~~~ 114 | actualOther.data(), actualOther.outerStride(), actualOther.data(), actualOther.outerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 115 | mat.data(), mat.innerStride(), mat.outerStride(), actualAlpha, blocking); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:126:62: required from ‘Eigen::SelfAdjointView& Eigen::SelfAdjointView::rankUpdate(const Eigen::MatrixBase&, const Scalar&) [with DerivedU = Eigen::Matrix; _MatrixType = Eigen::Matrix; unsigned int UpLo = 2; Scalar = double]’ 126 | selfadjoint_product_selector::run(_expression().const_cast_derived(), u.derived(), alpha); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:33:78: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 33 | return result.setZero().template selfadjointView().rankUpdate( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 34 | M_ref); | ~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2459:62: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 2459 | PacketBlock kernel; | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h: In instantiation of ‘void Eigen::internal::gemm_pack_lhs::operator()(Scalar*, const DataMapper&, Index, Index, Index, Index) [with Scalar = double; Index = long int; DataMapper = Eigen::internal::const_blas_data_mapper; int Pack1 = 4; int Pack2 = 2; Packet = __vector(2) double; bool Conjugate = false; bool PanelMode = false]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h:106:17: required from ‘static void Eigen::internal::general_matrix_matrix_triangular_product::run(Index, Index, const LhsScalar*, Index, const RhsScalar*, Index, ResScalar*, Index, Index, const ResScalar&, Eigen::internal::level3_blocking&) [with Index = long int; LhsScalar = double; int LhsStorageOrder = 1; bool ConjugateLhs = false; RhsScalar = double; int RhsStorageOrder = 0; bool ConjugateRhs = false; int ResInnerStride = 1; int UpLo = 2; int Version = 0; ResScalar = double]’ 106 | pack_lhs(blockA, lhs.getSubMapper(i2, k2), actual_kc, actual_mc); | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:113:12: required from ‘static void Eigen::selfadjoint_product_selector::run(MatrixType&, const OtherType&, const typename MatrixType::Scalar&) [with MatrixType = Eigen::Matrix; OtherType = Eigen::Matrix; int UpLo = 2; typename MatrixType::Scalar = double]’ 109 | internal::general_matrix_matrix_triangular_product::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 111 | Scalar, OtherIsRowMajor ? ColMajor : RowMajor, (!OtherBlasTraits::NeedToConjugate) && NumTraits::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 112 | IsRowMajor ? RowMajor : ColMajor, MatrixType::InnerStrideAtCompileTime, UpLo> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 113 | ::run(size, depth, | ~~~~~^~~~~~~~~~~~~ 114 | actualOther.data(), actualOther.outerStride(), actualOther.data(), actualOther.outerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 115 | mat.data(), mat.innerStride(), mat.outerStride(), actualAlpha, blocking); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:126:62: required from ‘Eigen::SelfAdjointView& Eigen::SelfAdjointView::rankUpdate(const Eigen::MatrixBase&, const Scalar&) [with DerivedU = Eigen::Matrix; _MatrixType = Eigen::Matrix; unsigned int UpLo = 2; Scalar = double]’ 126 | selfadjoint_product_selector::run(_expression().const_cast_derived(), u.derived(), alpha); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:33:78: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 33 | return result.setZero().template selfadjointView().rankUpdate( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 34 | M_ref); | ~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2256:82: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 2256 | typedef typename unpacket_traits::half>::half QuarterPacket; | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2258:56: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 2258 | HalfPacketSize = unpacket_traits::size, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2259:62: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 2259 | QuarterPacketSize = unpacket_traits::size, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2259:62: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2298:39: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 2298 | PacketBlock kernel_half; | ^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2298:39: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2304:42: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 2304 | PacketBlock kernel_quarter; | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2304:42: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2304:42: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2304:42: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h: In instantiation of ‘void Eigen::internal::gebp_kernel::operator()(const DataMapper&, const LhsScalar*, const RhsScalar*, Index, Index, Index, ResScalar, Index, Index, Index, Index) [with LhsScalar = double; RhsScalar = double; Index = long int; DataMapper = Eigen::internal::blas_data_mapper; int mr = 4; int nr = 4; bool ConjugateLhs = false; bool ConjugateRhs = false; ResScalar = double]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h:113:15: required from ‘static void Eigen::internal::general_matrix_matrix_triangular_product::run(Index, Index, const LhsScalar*, Index, const RhsScalar*, Index, ResScalar*, Index, Index, const ResScalar&, Eigen::internal::level3_blocking&) [with Index = long int; LhsScalar = double; int LhsStorageOrder = 1; bool ConjugateLhs = false; RhsScalar = double; int RhsStorageOrder = 0; bool ConjugateRhs = false; int ResInnerStride = 1; int UpLo = 2; int Version = 0; ResScalar = double]’ 113 | gebp(res.getSubMapper(i2, 0), blockA, blockB, actual_mc, actual_kc, | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 114 | (std::min)(size,i2), alpha, -1, -1, 0, 0); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:113:12: required from ‘static void Eigen::selfadjoint_product_selector::run(MatrixType&, const OtherType&, const typename MatrixType::Scalar&) [with MatrixType = Eigen::Matrix; OtherType = Eigen::Matrix; int UpLo = 2; typename MatrixType::Scalar = double]’ 109 | internal::general_matrix_matrix_triangular_product::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 111 | Scalar, OtherIsRowMajor ? ColMajor : RowMajor, (!OtherBlasTraits::NeedToConjugate) && NumTraits::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 112 | IsRowMajor ? RowMajor : ColMajor, MatrixType::InnerStrideAtCompileTime, UpLo> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 113 | ::run(size, depth, | ~~~~~^~~~~~~~~~~~~ 114 | actualOther.data(), actualOther.outerStride(), actualOther.data(), actualOther.outerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 115 | mat.data(), mat.innerStride(), mat.outerStride(), actualAlpha, blocking); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:126:62: required from ‘Eigen::SelfAdjointView& Eigen::SelfAdjointView::rankUpdate(const Eigen::MatrixBase&, const Scalar&) [with DerivedU = Eigen::Matrix; _MatrixType = Eigen::Matrix; unsigned int UpLo = 2; Scalar = double]’ 126 | selfadjoint_product_selector::run(_expression().const_cast_derived(), u.derived(), alpha); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:33:78: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 33 | return result.setZero().template selfadjointView().rankUpdate( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 34 | M_ref); | ~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:1920:103: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 1920 | const int SResPacketHalfSize = unpacket_traits::half>::size; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:1921:138: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 1921 | const int SResPacketQuarterSize = unpacket_traits::half>::half>::size; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:1921:138: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:1977:135: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 1977 | typedef typename conditional=8,typename unpacket_traits::half,SResPacket>::type SResPacketHalf; | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:1978:135: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 1978 | typedef typename conditional=8,typename unpacket_traits::half,SLhsPacket>::type SLhsPacketHalf; | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:1979:135: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 1979 | typedef typename conditional=8,typename unpacket_traits::half,SRhsPacket>::type SRhsPacketHalf; | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:1980:135: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 1980 | typedef typename conditional=8,typename unpacket_traits::half,SAccPacket>::type SAccPacketHalf; | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h: In instantiation of ‘struct Eigen::internal::find_best_packet’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:22:57: required from ‘struct Eigen::internal::traits >’ 22 | typedef typename find_best_packet<_Scalar,size>::type PacketScalar; | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: required from ‘class Eigen::Matrix’ 178 | class Matrix | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h:155:52: required from ‘void Eigen::internal::tribb_kernel::operator()(ResScalar*, Index, Index, const LhsScalar*, const RhsScalar*, Index, Index, const ResScalar&) [with LhsScalar = double; RhsScalar = double; Index = long int; int mr = 4; int nr = 4; bool ConjLhs = false; bool ConjRhs = false; int ResInnerStride = 1; int UpLo = 2; ResScalar = double]’ 155 | Matrix buffer((internal::constructor_without_unaligned_array_assert())); | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h:116:13: required from ‘static void Eigen::internal::general_matrix_matrix_triangular_product::run(Index, Index, const LhsScalar*, Index, const RhsScalar*, Index, ResScalar*, Index, Index, const ResScalar&, Eigen::internal::level3_blocking&) [with Index = long int; LhsScalar = double; int LhsStorageOrder = 1; bool ConjugateLhs = false; RhsScalar = double; int RhsStorageOrder = 0; bool ConjugateRhs = false; int ResInnerStride = 1; int UpLo = 2; int Version = 0; ResScalar = double]’ 116 | sybb(_res+resStride*i2 + resIncr*i2, resIncr, resStride, blockA, blockB + actual_kc*i2, actual_mc, actual_kc, alpha); | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:113:12: required from ‘static void Eigen::selfadjoint_product_selector::run(MatrixType&, const OtherType&, const typename MatrixType::Scalar&) [with MatrixType = Eigen::Matrix; OtherType = Eigen::Matrix; int UpLo = 2; typename MatrixType::Scalar = double]’ 109 | internal::general_matrix_matrix_triangular_product::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 111 | Scalar, OtherIsRowMajor ? ColMajor : RowMajor, (!OtherBlasTraits::NeedToConjugate) && NumTraits::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 112 | IsRowMajor ? RowMajor : ColMajor, MatrixType::InnerStrideAtCompileTime, UpLo> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 113 | ::run(size, depth, | ~~~~~^~~~~~~~~~~~~ 114 | actualOther.data(), actualOther.outerStride(), actualOther.data(), actualOther.outerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 115 | mat.data(), mat.innerStride(), mat.outerStride(), actualAlpha, blocking); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:126:62: required from ‘Eigen::SelfAdjointView& Eigen::SelfAdjointView::rankUpdate(const Eigen::MatrixBase&, const Scalar&) [with DerivedU = Eigen::Matrix; _MatrixType = Eigen::Matrix; unsigned int UpLo = 2; Scalar = double]’ 126 | selfadjoint_product_selector::run(_expression().const_cast_derived(), u.derived(), alpha); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:33:78: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 33 | return result.setZero().template selfadjointView().rankUpdate( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 34 | M_ref); | ~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:44: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:208:88: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 208 | typedef typename find_best_packet_helper::type>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h:116:13: required from ‘static void Eigen::internal::general_matrix_matrix_triangular_product::run(Index, Index, const LhsScalar*, Index, const RhsScalar*, Index, ResScalar*, Index, Index, const ResScalar&, Eigen::internal::level3_blocking&) [with Index = long int; LhsScalar = double; int LhsStorageOrder = 1; bool ConjugateLhs = false; RhsScalar = double; int RhsStorageOrder = 0; bool ConjugateRhs = false; int ResInnerStride = 1; int UpLo = 2; int Version = 0; ResScalar = double]’ 116 | sybb(_res+resStride*i2 + resIncr*i2, resIncr, resStride, blockA, blockB + actual_kc*i2, actual_mc, actual_kc, alpha); | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:113:12: required from ‘static void Eigen::selfadjoint_product_selector::run(MatrixType&, const OtherType&, const typename MatrixType::Scalar&) [with MatrixType = Eigen::Matrix; OtherType = Eigen::Matrix; int UpLo = 2; typename MatrixType::Scalar = double]’ 109 | internal::general_matrix_matrix_triangular_product::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 111 | Scalar, OtherIsRowMajor ? ColMajor : RowMajor, (!OtherBlasTraits::NeedToConjugate) && NumTraits::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 112 | IsRowMajor ? RowMajor : ColMajor, MatrixType::InnerStrideAtCompileTime, UpLo> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 113 | ::run(size, depth, | ~~~~~^~~~~~~~~~~~~ 114 | actualOther.data(), actualOther.outerStride(), actualOther.data(), actualOther.outerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 115 | mat.data(), mat.innerStride(), mat.outerStride(), actualAlpha, blocking); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:126:62: required from ‘Eigen::SelfAdjointView& Eigen::SelfAdjointView::rankUpdate(const Eigen::MatrixBase&, const Scalar&) [with DerivedU = Eigen::Matrix; _MatrixType = Eigen::Matrix; unsigned int UpLo = 2; Scalar = double]’ 126 | selfadjoint_product_selector::run(_expression().const_cast_derived(), u.derived(), alpha); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:33:78: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 33 | return result.setZero().template selfadjointView().rankUpdate( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 34 | M_ref); | ~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseUnaryOp, const Eigen::Matrix >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseUnaryOp, const Eigen::Matrix >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Matrix > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseUnaryOp, const Eigen::Matrix >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseUnaryOp, const Eigen::Matrix >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:98:46: required from ‘typename Eigen::NumTraits::Scalar>::Real Eigen::MatrixBase::squaredNorm() const [with Derived = Eigen::Matrix; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 98 | return numext::real((*this).cwiseAbs2().sum()); | ~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/variance.hpp:28:0: required from here 28 | double variance = diff.squaredNorm() / size_m1; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:370:46: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 370 | * (conj(h) * matA.col(i).tail(remainingSize))); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 1>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, 1>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, 1>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1, false>, 1>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1, false>, 1>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, -1, false>, 1>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:370:35: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 369 | hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView() | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 370 | * (conj(h) * matA.col(i).tail(remainingSize))); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0>, -1, 1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0>, -1, 1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0>, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0>, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0>, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:325:26: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 325 | mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner); | ~~~~~~~~~~~~~~~~~~~^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, 0>, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, 0>, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, 0>, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Block, 0>, -1, 1, false>, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Block, 0>, -1, 1, false> >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:325:43: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 325 | mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 4 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:352:35: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 352 | Block A21(mat,k+1,k,rs,1); | ^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 1, -1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:358:80: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 358 | temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint(); | ~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>, -1, 1, false> >, Eigen::Transpose, 1, -1, false> >, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0>, -1, 1, false> >, Eigen::Transpose, 1, -1, false> >, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0>, -1, 1, false> >, Eigen::Transpose, 1, -1, false> >, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 0>, -1, 1, false> >, Eigen::Transpose, 1, -1, false> >, 1, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 0>, -1, 1, false> >, Eigen::Transpose, 1, -1, false> >, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 0>, -1, 1, false> >, Eigen::Transpose, 1, -1, false> >, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:358:67: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 358 | temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, false>, Eigen::Block, -1, 1, false>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, false>, Eigen::Block, -1, 1, false>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, false>, Eigen::Block, -1, 1, false>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:126:7: required from ‘class Eigen::internal::dense_product_base, 1, -1, false>, Eigen::Block, -1, 1, false>, 0, 6>’ 126 | class dense_product_base | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 1, -1, false>, Eigen::Block, -1, 1, false>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 1, -1, false>, Eigen::Block, -1, 1, false>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:359:35: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 359 | mat.coeffRef(k,k) -= (A10 * temp.head(k)).value(); | ~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, Eigen::Block, -1, 1, false>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, Eigen::Block, -1, 1, false>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, Eigen::Block, -1, 1, false>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1, false>, Eigen::Block, -1, 1, false>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1, false>, Eigen::Block, -1, 1, false>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, -1, false>, Eigen::Block, -1, 1, false>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:361:32: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 361 | A21.noalias() -= A20 * temp.head(k); | ~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, true>, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1, true>, -1, 1, false> > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, -1, 1, true>, -1, 1, false> >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:379:56: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 379 | ret = ret && (mat.col(j).tail(size-j-1).array()==Scalar(0)).all(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1, false> > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, -1, 1, false> >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:387:32: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 387 | ret = ret && (A21.array()==Scalar(0)).all(); | ~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/model/indexing/rvalue.hpp:158:0: required from ‘stan::model::rvalue&>(Eigen::Matrix&, const char*, const index_multi&):: [with auto:767 = Eigen::Matrix]’ 158 | return plain_type_t::NullaryExpr( 159 | idx.ns_.size(), [name, &idx, &v_ref](Eigen::Index i) { 160 | math::check_range("vector[multi] indexing", name, v_ref.size(), 161 | idx.ns_[i]); 162 | return v_ref.coeff(idx.ns_[i] - 1); 163 | }); /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_gMAP.h:1057:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1057 | stan::model::rvalue(tau, "tau", 1058 | stan::model::index_multi(tau_strata_gindex)), stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/as_array_or_scalar.hpp:57:50: required from ‘stan::math::as_array_or_scalar&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >&>(const Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >&):: [with auto:14 = const Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >]’ 57 | return make_holder([](auto& x) { return x.array(); }, std::forward(v)); | ~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: required by substitution of ‘template()((declval)()...))>* > auto stan::math::make_holder(const F&, Args&& ...) [with F = stan::math::as_array_or_scalar&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >&>(const Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >&)::; Args = {const Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >&}; stan::require_plain_type_t()((declval)()...))>* = ]’ 370 | decltype(std::declval()(std::declval()...))>* = nullptr> | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/as_array_or_scalar.hpp:57:21: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_gMAP.h:1056:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1056 | stan::math::divide( 1057 | stan::model::rvalue(tau, "tau", 1058 | stan::model::index_multi(tau_strata_gindex)), 1059 | stan::model::rvalue(beta_raw_guess, 1060 | "beta_raw_guess", stan::model::index_uni(2), 1061 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/divide.hpp:47:33: required from ‘auto stan::math::divide(const T1&, const T2&) [with T1 = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T2 = double; stan::require_any_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 47 | return (as_array_or_scalar(m) / as_array_or_scalar(c)).matrix(); | ~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1056:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1056 | stan::math::divide( 1057 | stan::model::rvalue(tau, "tau", 1058 | stan::model::index_multi(tau_strata_gindex)), 1059 | stan::model::rvalue(beta_raw_guess, 1060 | "beta_raw_guess", stan::model::index_uni(2), 1061 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:140:7: required from ‘class Eigen::MatrixWrapper, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 140 | class MatrixWrapper : public MatrixBase > | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/divide.hpp:47:64: required from ‘auto stan::math::divide(const T1&, const T2&) [with T1 = Eigen::CwiseNullaryOp&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix >; T2 = double; stan::require_any_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 47 | return (as_array_or_scalar(m) / as_array_or_scalar(c)).matrix(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ stanExports_gMAP.h:1056:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1056 | stan::math::divide( 1057 | stan::model::rvalue(tau, "tau", 1058 | stan::model::index_multi(tau_strata_gindex)), 1059 | stan::model::rvalue(beta_raw_guess, 1060 | "beta_raw_guess", stan::model::index_uni(2), 1061 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/add.hpp:45:13: required from ‘auto stan::math::add(const Mat1&, const Mat2&) [with Mat1 = Eigen::Map, 0, Eigen::Stride<0, 0> >; Mat2 = Eigen::Matrix; stan::require_all_eigen_t* = 0; stan::require_all_not_st_var* = 0]’ 45 | return m1 + m2; | ~~~^~~~ stanExports_gMAP.h:1188:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1188 | stan::math::add(log_offset, theta))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_linesearch.hpp:247:0: required from ‘int stan::optimization::WolfeLineSearch(FunctorType&, Scalar&, XType&, Scalar&, XType&, const XType&, const XType&, const Scalar&, const XType&, const Scalar&, const Scalar&, const Scalar&, const Scalar&, const Scalar&) [with FunctorType = ModelAdaptor; Scalar = double; XType = Eigen::Matrix]’ 247 | x1.noalias() = x0 + alpha1 * p; /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:209:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 209 | = WolfeLineSearch(_func, _alpha, _xk_1, _fk_1, _gk_1, _pk, _xk, _fk, 210 | _gk, _ls_opts.c1, _ls_opts.c2, _ls_opts.minAlpha, 211 | _ls_opts.maxLSIts, _ls_opts.maxLSRestarts); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:34:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 34 | = HessianT::Identity(yk.size(), yk.size()) - rhok * sk * yk.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0, 5>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:34:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 34 | = HessianT::Identity(yk.size(), yk.size()) - rhok * sk * yk.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, Eigen::Matrix >, const Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, Eigen::Matrix >, const Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, Eigen::Matrix >, const Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, Eigen::Matrix >, const Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, Eigen::Matrix >, const Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:34:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 34 | = HessianT::Identity(yk.size(), yk.size()) - rhok * sk * yk.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, Eigen::Transpose >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix, 0>, Eigen::Transpose >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix, 0>, Eigen::Transpose >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix, 0>, Eigen::Transpose >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Matrix, 0>, Eigen::Transpose >, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Matrix, 0>, Eigen::Transpose >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Matrix, 0>, Eigen::Transpose >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Product, Eigen::Matrix, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Product, Eigen::Matrix, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Product, Eigen::Matrix, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Product, Eigen::Matrix, 0>, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Product, Eigen::Matrix, 0> >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:55:0: required from ‘void stan::optimization::BFGSUpdate_HInv::search_direction(VectorT&, const VectorT&) const [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 55 | pk.noalias() = -(_Hk * gk); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:254:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 254 | _qn.search_direction(_pk, _gk); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1>, void>&>(arena_matrix, 1, -1>, void>&)::::, const Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1>, void>&>(arena_matrix, 1, -1>, void>&)::::, const Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1>, void>&>(arena_matrix, 1, -1>, void>&)::::, const Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, 1, -1>, void>&>(arena_matrix, 1, -1>, void>&)::::, const Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, 1, -1>, void>&>(arena_matrix, 1, -1>, void>&)::::, const Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/value_of.hpp:75:27: required from ‘stan::math::value_of, 1, -1>, void>&>(arena_matrix, 1, -1>, void>&):: [with auto:12 = stan::math::arena_matrix, 1, -1>, void>]’ 75 | return a.unaryExpr([](const auto& scal) { return value_of(scal); }); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:95:0: required from ‘stan::math::var stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; T2 = Eigen::Matrix, -1, 1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_row_and_col_vector_t* = 0; var = var_value]’ 95 | arena_t> arena_A_val = value_of(arena_A); stanExports_gMAP.h:979:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 979 | (stan::math::multiply( 980 | stan::model::rvalue(X_param, "X_param", 981 | stan::model::index_uni(h)), beta) + stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/value_of.hpp:75:27: required from ‘stan::math::value_of, -1, 1> >&>(arena_matrix, -1, 1> >&):: [with auto:12 = stan::math::arena_matrix, -1, 1> >]’ 75 | return a.unaryExpr([](const auto& scal) { return value_of(scal); }); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:96:0: required from ‘stan::math::var stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; T2 = Eigen::Matrix, -1, 1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_row_and_col_vector_t* = 0; var = var_value]’ 96 | arena_t> arena_B_val = value_of(arena_B); stanExports_gMAP.h:979:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 979 | (stan::math::multiply( 980 | stan::model::rvalue(X_param, "X_param", 981 | stan::model::index_uni(h)), beta) + stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:103:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:102:0: required from ‘stan::math::var stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; T2 = Eigen::Matrix, -1, 1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_row_and_col_vector_t* = 0; var = var_value]’ 102 | arena_A.adj().array() += res_adj * arena_B_val.transpose().array(); stanExports_gMAP.h:979:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 979 | (stan::math::multiply( 980 | stan::model::rvalue(X_param, "X_param", 981 | stan::model::index_uni(h)), beta) + stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, 1, -1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:102:0: required from ‘stan::math::var stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; T2 = Eigen::Matrix, -1, 1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_row_and_col_vector_t* = 0; var = var_value]’ 102 | arena_A.adj().array() += res_adj * arena_B_val.transpose().array(); stanExports_gMAP.h:979:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 979 | (stan::math::multiply( 980 | stan::model::rvalue(X_param, "X_param", 981 | stan::model::index_uni(h)), beta) + stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:102:0: required from ‘stan::math::var stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; T2 = Eigen::Matrix, -1, 1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_row_and_col_vector_t* = 0; var = var_value]’ 102 | arena_A.adj().array() += res_adj * arena_B_val.transpose().array(); stanExports_gMAP.h:979:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 979 | (stan::math::multiply( 980 | stan::model::rvalue(X_param, "X_param", 981 | stan::model::index_uni(h)), beta) + stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:102:0: required from ‘stan::math::var stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; T2 = Eigen::Matrix, -1, 1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_row_and_col_vector_t* = 0; var = var_value]’ 102 | arena_A.adj().array() += res_adj * arena_B_val.transpose().array(); stanExports_gMAP.h:979:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 979 | (stan::math::multiply( 980 | stan::model::rvalue(X_param, "X_param", 981 | stan::model::index_uni(h)), beta) + stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, const Eigen::Array >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:38:28: required from ‘struct Eigen::internal::traits, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >’ 38 | >::type Scalar; | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:102:0: required from ‘stan::math::var stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; T2 = Eigen::Matrix, -1, 1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_row_and_col_vector_t* = 0; var = var_value]’ 102 | arena_A.adj().array() += res_adj * arena_B_val.transpose().array(); stanExports_gMAP.h:979:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 979 | (stan::math::multiply( 980 | stan::model::rvalue(X_param, "X_param", 981 | stan::model::index_uni(h)), beta) + stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:102:0: required from ‘stan::math::var stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; T2 = Eigen::Matrix, -1, 1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_row_and_col_vector_t* = 0; var = var_value]’ 102 | arena_A.adj().array() += res_adj * arena_B_val.transpose().array(); stanExports_gMAP.h:979:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 979 | (stan::math::multiply( 980 | stan::model::rvalue(X_param, "X_param", 981 | stan::model::index_uni(h)), beta) + stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:102:0: required from ‘stan::math::var stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; T2 = Eigen::Matrix, -1, 1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_row_and_col_vector_t* = 0; var = var_value]’ 102 | arena_A.adj().array() += res_adj * arena_B_val.transpose().array(); stanExports_gMAP.h:979:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 979 | (stan::math::multiply( 980 | stan::model::rvalue(X_param, "X_param", 981 | stan::model::index_uni(h)), beta) + stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:103:0: required from ‘stan::math::var stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; T2 = Eigen::Matrix, -1, 1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_row_and_col_vector_t* = 0; var = var_value]’ 103 | arena_B.adj().array() += arena_A_val.transpose().array() * res_adj; stanExports_gMAP.h:979:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 979 | (stan::math::multiply( 980 | stan::model::rvalue(X_param, "X_param", 981 | stan::model::index_uni(h)), beta) + stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:103:0: required from ‘stan::math::var stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; T2 = Eigen::Matrix, -1, 1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_row_and_col_vector_t* = 0; var = var_value]’ 103 | arena_B.adj().array() += arena_A_val.transpose().array() * res_adj; stanExports_gMAP.h:979:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 979 | (stan::math::multiply( 980 | stan::model::rvalue(X_param, "X_param", 981 | stan::model::index_uni(h)), beta) + stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:103:0: required from ‘stan::math::var stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; T2 = Eigen::Matrix, -1, 1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_row_and_col_vector_t* = 0; var = var_value]’ 103 | arena_B.adj().array() += arena_A_val.transpose().array() * res_adj; stanExports_gMAP.h:979:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 979 | (stan::math::multiply( 980 | stan::model::rvalue(X_param, "X_param", 981 | stan::model::index_uni(h)), beta) + stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1> > >(Eigen::ArrayWrapper, -1, 1> >&&)::::, const Eigen::ArrayWrapper, -1, 1> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1> > >(Eigen::ArrayWrapper, -1, 1> >&&)::::, const Eigen::ArrayWrapper, -1, 1> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1> > >(Eigen::ArrayWrapper, -1, 1> >&&)::::, const Eigen::ArrayWrapper, -1, 1> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, -1, 1> > >(Eigen::ArrayWrapper, -1, 1> >&&)::::, const Eigen::ArrayWrapper, -1, 1> >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, -1, 1> > >(Eigen::ArrayWrapper, -1, 1> >&&)::::, const Eigen::ArrayWrapper, -1, 1> > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/value_of.hpp:75:27: required from ‘stan::math::value_of, -1, 1> > >(Eigen::ArrayWrapper, -1, 1> >&&):: [with auto:12 = Eigen::ArrayWrapper, -1, 1> >]’ 75 | return a.unaryExpr([](const auto& scal) { return value_of(scal); }); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:58:64: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 58 | decltype(auto) y_val = to_ref(as_value_column_array_or_scalar(y_ref)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~ stanExports_gMAP.h:1035:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1035 | lp_accum__.add(stan::math::normal_lpdf(xi_eta, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:77:40: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 77 | const auto& y_scaled = to_ref((y_val - mu_val) * inv_sigma); | ~~~~~~~^~~~~~~~~ stanExports_gMAP.h:1035:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1035 | lp_accum__.add(stan::math::normal_lpdf(xi_eta, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:77:50: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 77 | const auto& y_scaled = to_ref((y_val - mu_val) * inv_sigma); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~ stanExports_gMAP.h:1035:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1035 | lp_accum__.add(stan::math::normal_lpdf(xi_eta, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Array, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:79:62: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 79 | = to_ref_if::value>(y_scaled * y_scaled); | ~~~~~~~~~^~~~~~~~~~ stanExports_gMAP.h:1035:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1035 | lp_accum__.add(stan::math::normal_lpdf(xi_eta, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:94:50: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 94 | >= 2>(inv_sigma * y_scaled); | ~~~~~~~~~~^~~~~~~~~~ stanExports_gMAP.h:1035:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1035 | lp_accum__.add(stan::math::normal_lpdf(xi_eta, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:96:35: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 96 | partials<0>(ops_partials) = -scaled_diff; | ^~~~~~~~~~~~ stanExports_gMAP.h:1035:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1035 | lp_accum__.add(stan::math::normal_lpdf(xi_eta, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:99:45: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 99 | partials<2>(ops_partials) = inv_sigma * y_scaled_sq - inv_sigma; | ~~~~~~~~~~^~~~~~~~~~~~~ stanExports_gMAP.h:1035:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1035 | lp_accum__.add(stan::math::normal_lpdf(xi_eta, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:99:59: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 99 | partials<2>(ops_partials) = inv_sigma * y_scaled_sq - inv_sigma; | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~ stanExports_gMAP.h:1035:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1035 | lp_accum__.add(stan::math::normal_lpdf(xi_eta, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:99:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 99 | const auto& square_y_scaled = square((y_val - mu_val) / sigma_val); stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/square.hpp:70:53: required from ‘stan::math::square, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >(const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&):: [with auto:239 = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >]’ 70 | x, [](const auto& v) { return v.array().square(); }); | ~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:53:76: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:99:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 99 | const auto& square_y_scaled = square((y_val - mu_val) / sigma_val); stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:102:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 102 | square_y_scaled / nu_val); stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, void>::apply(const Eigen::Array&)::, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, void>::apply(const Eigen::Array&)::, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, void>::apply(const Eigen::Array&)::, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, void>::apply(const Eigen::Array&)::, const Eigen::Array, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, void>::apply(const Eigen::Array&)::, const Eigen::Array >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:62:23: required from ‘static auto stan::math::apply_scalar_unary::type>::value, void>::type>::apply(const T&) [with F = stan::math::log1p_fun; T = Eigen::Array]’ 62 | return x.unaryExpr([](auto&& x) { | ~~~~~~~~~~~^~~~~~~~~~~~~~~ 63 | return apply_scalar_unary>::apply(x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 64 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:72:38: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:104:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 104 | log1p(square_y_scaled_over_nu)); stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>::apply(const Eigen::Array&)::, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>::apply(const Eigen::Array&)::, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>::apply(const Eigen::Array&)::, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>::apply(const Eigen::Array&)::, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>::apply(const Eigen::Array&)::, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:107:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 107 | T_partials_return logp = -sum((half_nu + 0.5) * log1p_val); stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:124:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 124 | (nu_val + 1) * (y_val - mu_val) stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:125:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 125 | / ((1 + square_y_scaled_over_nu) * square_sigma * nu_val)); stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:125:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 125 | / ((1 + square_y_scaled_over_nu) * square_sigma * nu_val)); stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:125:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 125 | / ((1 + square_y_scaled_over_nu) * square_sigma * nu_val)); stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:125:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 124 | (nu_val + 1) * (y_val - mu_val) 125 | / ((1 + square_y_scaled_over_nu) * square_sigma * nu_val)); stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:127:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 127 | partials<0>(ops_partials) = -deriv_y_mu; stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:136:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 136 | (nu_val + 1) * square_y_scaled_over_nu / (1 + square_y_scaled_over_nu) stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:137:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 136 | (nu_val + 1) * square_y_scaled_over_nu / (1 + square_y_scaled_over_nu) 137 | - 1); stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>::apply(const Eigen::Array&)::, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>::apply(const Eigen::Array&)::, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>::apply(const Eigen::Array&)::, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>::apply(const Eigen::Array&)::, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>::apply(const Eigen::Array&)::, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:143:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 143 | * (digamma_half_nu_plus_half - digamma_half_nu - log1p_val stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:144:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 144 | + rep_deriv / nu_val); stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>::apply(const Eigen::Array&)::, const Eigen::Array > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>::apply(const Eigen::Array&)::, const Eigen::Array > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>::apply(const Eigen::Array&)::, const Eigen::Array > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>::apply(const Eigen::Array&)::, const Eigen::Array > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>::apply(const Eigen::Array&)::, const Eigen::Array > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:144:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 143 | * (digamma_half_nu_plus_half - digamma_half_nu - log1p_val 144 | + rep_deriv / nu_val); stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>::apply(const Eigen::Array&)::, const Eigen::Array > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>::apply(const Eigen::Array&)::, const Eigen::Array > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>::apply(const Eigen::Array&)::, const Eigen::Array > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>::apply(const Eigen::Array&)::, const Eigen::Array > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, void>::apply(const Eigen::Array&)::, const Eigen::Array > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:143:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 142 | = 0.5 143 | * (digamma_half_nu_plus_half - digamma_half_nu - log1p_val 144 | + rep_deriv / nu_val); stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:147:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 147 | partials<3>(ops_partials) = rep_deriv / sigma_val; stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Array, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Array >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/inv.hpp:55:54: required from ‘stan::math::inv >(const Eigen::Array&):: [with auto:221 = Eigen::Array]’ 55 | x, [](const auto& v) { return v.array().inverse(); }); | ~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:53:76: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:76:68: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = var_value; T_scale = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 76 | = to_ref_if::value>(inv(sigma_val)); | ~~~^~~~~~~~~~~ stanExports_gMAP.h:1047:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1047 | lp_accum__.add(stan::math::normal_lpdf(xi_eta, 1048 | ((stan::model::rvalue(beta, "beta", 1049 | stan::model::index_uni(1)) - 1050 | stan::model::rvalue(beta_raw_guess, 1051 | "beta_raw_guess", stan::model::index_uni(1), 1052 | stan::model::index_uni(1))) / 1053 | stan::model::rvalue(beta_raw_guess, 1054 | "beta_raw_guess", stan::model::index_uni(2), 1055 | stan::model::index_uni(1))), 1056 | stan::math::divide( 1057 | stan::model::rvalue(tau, "tau", 1058 | stan::model::index_multi(tau_strata_gindex)), 1059 | stan::model::rvalue(beta_raw_guess, 1060 | "beta_raw_guess", stan::model::index_uni(2), 1061 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:77:40: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = var_value; T_scale = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 77 | const auto& y_scaled = to_ref((y_val - mu_val) * inv_sigma); | ~~~~~~~^~~~~~~~~ stanExports_gMAP.h:1047:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1047 | lp_accum__.add(stan::math::normal_lpdf(xi_eta, 1048 | ((stan::model::rvalue(beta, "beta", 1049 | stan::model::index_uni(1)) - 1050 | stan::model::rvalue(beta_raw_guess, 1051 | "beta_raw_guess", stan::model::index_uni(1), 1052 | stan::model::index_uni(1))) / 1053 | stan::model::rvalue(beta_raw_guess, 1054 | "beta_raw_guess", stan::model::index_uni(2), 1055 | stan::model::index_uni(1))), 1056 | stan::math::divide( 1057 | stan::model::rvalue(tau, "tau", 1058 | stan::model::index_multi(tau_strata_gindex)), 1059 | stan::model::rvalue(beta_raw_guess, 1060 | "beta_raw_guess", stan::model::index_uni(2), 1061 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:77:50: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = var_value; T_scale = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 77 | const auto& y_scaled = to_ref((y_val - mu_val) * inv_sigma); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~ stanExports_gMAP.h:1047:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1047 | lp_accum__.add(stan::math::normal_lpdf(xi_eta, 1048 | ((stan::model::rvalue(beta, "beta", 1049 | stan::model::index_uni(1)) - 1050 | stan::model::rvalue(beta_raw_guess, 1051 | "beta_raw_guess", stan::model::index_uni(1), 1052 | stan::model::index_uni(1))) / 1053 | stan::model::rvalue(beta_raw_guess, 1054 | "beta_raw_guess", stan::model::index_uni(2), 1055 | stan::model::index_uni(1))), 1056 | stan::math::divide( 1057 | stan::model::rvalue(tau, "tau", 1058 | stan::model::index_multi(tau_strata_gindex)), 1059 | stan::model::rvalue(beta_raw_guess, 1060 | "beta_raw_guess", stan::model::index_uni(2), 1061 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Array, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Array >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:66:50: required from ‘stan::math::log >(const Eigen::Array&):: [with auto:170 = Eigen::Array]’ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:53:76: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:87:20: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = var_value; T_scale = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 87 | logp -= sum(log(sigma_val)) * N / math::size(sigma); | ~~~^~~~~~~~~~~ stanExports_gMAP.h:1047:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1047 | lp_accum__.add(stan::math::normal_lpdf(xi_eta, 1048 | ((stan::model::rvalue(beta, "beta", 1049 | stan::model::index_uni(1)) - 1050 | stan::model::rvalue(beta_raw_guess, 1051 | "beta_raw_guess", stan::model::index_uni(1), 1052 | stan::model::index_uni(1))) / 1053 | stan::model::rvalue(beta_raw_guess, 1054 | "beta_raw_guess", stan::model::index_uni(2), 1055 | stan::model::index_uni(1))), 1056 | stan::math::divide( 1057 | stan::model::rvalue(tau, "tau", 1058 | stan::model::index_multi(tau_strata_gindex)), 1059 | stan::model::rvalue(beta_raw_guess, 1060 | "beta_raw_guess", stan::model::index_uni(2), 1061 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Array, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Array >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:96:35: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = var_value; T_scale = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 96 | partials<0>(ops_partials) = -scaled_diff; | ^~~~~~~~~~~~ stanExports_gMAP.h:1047:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1047 | lp_accum__.add(stan::math::normal_lpdf(xi_eta, 1048 | ((stan::model::rvalue(beta, "beta", 1049 | stan::model::index_uni(1)) - 1050 | stan::model::rvalue(beta_raw_guess, 1051 | "beta_raw_guess", stan::model::index_uni(1), 1052 | stan::model::index_uni(1))) / 1053 | stan::model::rvalue(beta_raw_guess, 1054 | "beta_raw_guess", stan::model::index_uni(2), 1055 | stan::model::index_uni(1))), 1056 | stan::math::divide( 1057 | stan::model::rvalue(tau, "tau", 1058 | stan::model::index_multi(tau_strata_gindex)), 1059 | stan::model::rvalue(beta_raw_guess, 1060 | "beta_raw_guess", stan::model::index_uni(2), 1061 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:99:59: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = var_value; T_scale = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 99 | partials<2>(ops_partials) = inv_sigma * y_scaled_sq - inv_sigma; | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~ stanExports_gMAP.h:1047:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1047 | lp_accum__.add(stan::math::normal_lpdf(xi_eta, 1048 | ((stan::model::rvalue(beta, "beta", 1049 | stan::model::index_uni(1)) - 1050 | stan::model::rvalue(beta_raw_guess, 1051 | "beta_raw_guess", stan::model::index_uni(1), 1052 | stan::model::index_uni(1))) / 1053 | stan::model::rvalue(beta_raw_guess, 1054 | "beta_raw_guess", stan::model::index_uni(2), 1055 | stan::model::index_uni(1))), 1056 | stan::math::divide( 1057 | stan::model::rvalue(tau, "tau", 1058 | stan::model::index_multi(tau_strata_gindex)), 1059 | stan::model::rvalue(beta_raw_guess, 1060 | "beta_raw_guess", stan::model::index_uni(2), 1061 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:99:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_dof = double; T_loc = var_value; T_scale = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 99 | const auto& square_y_scaled = square((y_val - mu_val) / sigma_val); stanExports_gMAP.h:1066:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1066 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1067 | re_dist_t_df, 1068 | ((stan::model::rvalue(beta, "beta", 1069 | stan::model::index_uni(1)) - 1070 | stan::model::rvalue(beta_raw_guess, 1071 | "beta_raw_guess", stan::model::index_uni(1), 1072 | stan::model::index_uni(1))) / 1073 | stan::model::rvalue(beta_raw_guess, 1074 | "beta_raw_guess", stan::model::index_uni(2), 1075 | stan::model::index_uni(1))), 1076 | stan::math::divide( 1077 | stan::model::rvalue(tau, "tau", 1078 | stan::model::index_multi(tau_strata_gindex)), 1079 | stan::model::rvalue(beta_raw_guess, 1080 | "beta_raw_guess", stan::model::index_uni(2), 1081 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/square.hpp:70:53: required from ‘stan::math::square, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >(const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >&):: [with auto:239 = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >]’ 70 | x, [](const auto& v) { return v.array().square(); }); | ~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:53:76: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:99:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_dof = double; T_loc = var_value; T_scale = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 99 | const auto& square_y_scaled = square((y_val - mu_val) / sigma_val); stanExports_gMAP.h:1066:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1066 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1067 | re_dist_t_df, 1068 | ((stan::model::rvalue(beta, "beta", 1069 | stan::model::index_uni(1)) - 1070 | stan::model::rvalue(beta_raw_guess, 1071 | "beta_raw_guess", stan::model::index_uni(1), 1072 | stan::model::index_uni(1))) / 1073 | stan::model::rvalue(beta_raw_guess, 1074 | "beta_raw_guess", stan::model::index_uni(2), 1075 | stan::model::index_uni(1))), 1076 | stan::math::divide( 1077 | stan::model::rvalue(tau, "tau", 1078 | stan::model::index_multi(tau_strata_gindex)), 1079 | stan::model::rvalue(beta_raw_guess, 1080 | "beta_raw_guess", stan::model::index_uni(2), 1081 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:102:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_dof = double; T_loc = var_value; T_scale = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 102 | square_y_scaled / nu_val); stanExports_gMAP.h:1066:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1066 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1067 | re_dist_t_df, 1068 | ((stan::model::rvalue(beta, "beta", 1069 | stan::model::index_uni(1)) - 1070 | stan::model::rvalue(beta_raw_guess, 1071 | "beta_raw_guess", stan::model::index_uni(1), 1072 | stan::model::index_uni(1))) / 1073 | stan::model::rvalue(beta_raw_guess, 1074 | "beta_raw_guess", stan::model::index_uni(2), 1075 | stan::model::index_uni(1))), 1076 | stan::math::divide( 1077 | stan::model::rvalue(tau, "tau", 1078 | stan::model::index_multi(tau_strata_gindex)), 1079 | stan::model::rvalue(beta_raw_guess, 1080 | "beta_raw_guess", stan::model::index_uni(2), 1081 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Array, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Array >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/square.hpp:70:53: required from ‘stan::math::square >(const Eigen::Array&):: [with auto:239 = Eigen::Array]’ 70 | x, [](const auto& v) { return v.array().square(); }); | ~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:53:76: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:121:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_dof = double; T_loc = var_value; T_scale = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 121 | const auto& square_sigma = square(sigma_val); stanExports_gMAP.h:1066:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1066 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1067 | re_dist_t_df, 1068 | ((stan::model::rvalue(beta, "beta", 1069 | stan::model::index_uni(1)) - 1070 | stan::model::rvalue(beta_raw_guess, 1071 | "beta_raw_guess", stan::model::index_uni(1), 1072 | stan::model::index_uni(1))) / 1073 | stan::model::rvalue(beta_raw_guess, 1074 | "beta_raw_guess", stan::model::index_uni(2), 1075 | stan::model::index_uni(1))), 1076 | stan::math::divide( 1077 | stan::model::rvalue(tau, "tau", 1078 | stan::model::index_multi(tau_strata_gindex)), 1079 | stan::model::rvalue(beta_raw_guess, 1080 | "beta_raw_guess", stan::model::index_uni(2), 1081 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:124:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_dof = double; T_loc = var_value; T_scale = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 124 | (nu_val + 1) * (y_val - mu_val) stanExports_gMAP.h:1066:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1066 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1067 | re_dist_t_df, 1068 | ((stan::model::rvalue(beta, "beta", 1069 | stan::model::index_uni(1)) - 1070 | stan::model::rvalue(beta_raw_guess, 1071 | "beta_raw_guess", stan::model::index_uni(1), 1072 | stan::model::index_uni(1))) / 1073 | stan::model::rvalue(beta_raw_guess, 1074 | "beta_raw_guess", stan::model::index_uni(2), 1075 | stan::model::index_uni(1))), 1076 | stan::math::divide( 1077 | stan::model::rvalue(tau, "tau", 1078 | stan::model::index_multi(tau_strata_gindex)), 1079 | stan::model::rvalue(beta_raw_guess, 1080 | "beta_raw_guess", stan::model::index_uni(2), 1081 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:125:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_dof = double; T_loc = var_value; T_scale = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 125 | / ((1 + square_y_scaled_over_nu) * square_sigma * nu_val)); stanExports_gMAP.h:1066:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1066 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1067 | re_dist_t_df, 1068 | ((stan::model::rvalue(beta, "beta", 1069 | stan::model::index_uni(1)) - 1070 | stan::model::rvalue(beta_raw_guess, 1071 | "beta_raw_guess", stan::model::index_uni(1), 1072 | stan::model::index_uni(1))) / 1073 | stan::model::rvalue(beta_raw_guess, 1074 | "beta_raw_guess", stan::model::index_uni(2), 1075 | stan::model::index_uni(1))), 1076 | stan::math::divide( 1077 | stan::model::rvalue(tau, "tau", 1078 | stan::model::index_multi(tau_strata_gindex)), 1079 | stan::model::rvalue(beta_raw_guess, 1080 | "beta_raw_guess", stan::model::index_uni(2), 1081 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:125:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_dof = double; T_loc = var_value; T_scale = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 125 | / ((1 + square_y_scaled_over_nu) * square_sigma * nu_val)); stanExports_gMAP.h:1066:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1066 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1067 | re_dist_t_df, 1068 | ((stan::model::rvalue(beta, "beta", 1069 | stan::model::index_uni(1)) - 1070 | stan::model::rvalue(beta_raw_guess, 1071 | "beta_raw_guess", stan::model::index_uni(1), 1072 | stan::model::index_uni(1))) / 1073 | stan::model::rvalue(beta_raw_guess, 1074 | "beta_raw_guess", stan::model::index_uni(2), 1075 | stan::model::index_uni(1))), 1076 | stan::math::divide( 1077 | stan::model::rvalue(tau, "tau", 1078 | stan::model::index_multi(tau_strata_gindex)), 1079 | stan::model::rvalue(beta_raw_guess, 1080 | "beta_raw_guess", stan::model::index_uni(2), 1081 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:125:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_dof = double; T_loc = var_value; T_scale = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 124 | (nu_val + 1) * (y_val - mu_val) 125 | / ((1 + square_y_scaled_over_nu) * square_sigma * nu_val)); stanExports_gMAP.h:1066:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1066 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1067 | re_dist_t_df, 1068 | ((stan::model::rvalue(beta, "beta", 1069 | stan::model::index_uni(1)) - 1070 | stan::model::rvalue(beta_raw_guess, 1071 | "beta_raw_guess", stan::model::index_uni(1), 1072 | stan::model::index_uni(1))) / 1073 | stan::model::rvalue(beta_raw_guess, 1074 | "beta_raw_guess", stan::model::index_uni(2), 1075 | stan::model::index_uni(1))), 1076 | stan::math::divide( 1077 | stan::model::rvalue(tau, "tau", 1078 | stan::model::index_multi(tau_strata_gindex)), 1079 | stan::model::rvalue(beta_raw_guess, 1080 | "beta_raw_guess", stan::model::index_uni(2), 1081 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:147:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_dof = double; T_loc = var_value; T_scale = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 147 | partials<3>(ops_partials) = rep_deriv / sigma_val; stanExports_gMAP.h:1066:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1066 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1067 | re_dist_t_df, 1068 | ((stan::model::rvalue(beta, "beta", 1069 | stan::model::index_uni(1)) - 1070 | stan::model::rvalue(beta_raw_guess, 1071 | "beta_raw_guess", stan::model::index_uni(1), 1072 | stan::model::index_uni(1))) / 1073 | stan::model::rvalue(beta_raw_guess, 1074 | "beta_raw_guess", stan::model::index_uni(2), 1075 | stan::model::index_uni(1))), 1076 | stan::math::divide( 1077 | stan::model::rvalue(tau, "tau", 1078 | stan::model::index_multi(tau_strata_gindex)), 1079 | stan::model::rvalue(beta_raw_guess, 1080 | "beta_raw_guess", stan::model::index_uni(2), 1081 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/inv.hpp:55:54: required from ‘stan::math::inv > >(const Eigen::ArrayWrapper >&):: [with auto:221 = Eigen::ArrayWrapper >]’ 55 | x, [](const auto& v) { return v.array().inverse(); }); | ~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:53:76: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:76:68: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 76 | = to_ref_if::value>(inv(sigma_val)); | ~~~^~~~~~~~~~~ stanExports_gMAP.h:1085:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1085 | lp_accum__.add(stan::math::normal_lpdf(beta, 1086 | stan::model::rvalue(beta_prior_stan, 1087 | "beta_prior_stan", stan::model::index_uni(1)), 1088 | stan::model::rvalue(beta_prior_stan, 1089 | "beta_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Array, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:77:40: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 77 | const auto& y_scaled = to_ref((y_val - mu_val) * inv_sigma); | ~~~~~~~^~~~~~~~~ stanExports_gMAP.h:1085:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1085 | lp_accum__.add(stan::math::normal_lpdf(beta, 1086 | stan::model::rvalue(beta_prior_stan, 1087 | "beta_prior_stan", stan::model::index_uni(1)), 1088 | stan::model::rvalue(beta_prior_stan, 1089 | "beta_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::ArrayWrapper > >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::ArrayWrapper > >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::ArrayWrapper > >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::ArrayWrapper > >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::ArrayWrapper > >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:77:50: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 77 | const auto& y_scaled = to_ref((y_val - mu_val) * inv_sigma); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~ stanExports_gMAP.h:1085:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1085 | lp_accum__.add(stan::math::normal_lpdf(beta, 1086 | stan::model::rvalue(beta_prior_stan, 1087 | "beta_prior_stan", stan::model::index_uni(1)), 1088 | stan::model::rvalue(beta_prior_stan, 1089 | "beta_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:66:50: required from ‘stan::math::log > >(const Eigen::ArrayWrapper >&):: [with auto:170 = Eigen::ArrayWrapper >]’ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:53:76: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:87:20: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 87 | logp -= sum(log(sigma_val)) * N / math::size(sigma); | ~~~^~~~~~~~~~~ stanExports_gMAP.h:1085:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1085 | lp_accum__.add(stan::math::normal_lpdf(beta, 1086 | stan::model::rvalue(beta_prior_stan, 1087 | "beta_prior_stan", stan::model::index_uni(1)), 1088 | stan::model::rvalue(beta_prior_stan, 1089 | "beta_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:96:35: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 96 | partials<0>(ops_partials) = -scaled_diff; | ^~~~~~~~~~~~ stanExports_gMAP.h:1085:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1085 | lp_accum__.add(stan::math::normal_lpdf(beta, 1086 | stan::model::rvalue(beta_prior_stan, 1087 | "beta_prior_stan", stan::model::index_uni(1)), 1088 | stan::model::rvalue(beta_prior_stan, 1089 | "beta_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Array, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:99:45: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 99 | partials<2>(ops_partials) = inv_sigma * y_scaled_sq - inv_sigma; | ~~~~~~~~~~^~~~~~~~~~~~~ stanExports_gMAP.h:1085:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1085 | lp_accum__.add(stan::math::normal_lpdf(beta, 1086 | stan::model::rvalue(beta_prior_stan, 1087 | "beta_prior_stan", stan::model::index_uni(1)), 1088 | stan::model::rvalue(beta_prior_stan, 1089 | "beta_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:99:59: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 99 | partials<2>(ops_partials) = inv_sigma * y_scaled_sq - inv_sigma; | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~ stanExports_gMAP.h:1085:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1085 | lp_accum__.add(stan::math::normal_lpdf(beta, 1086 | stan::model::rvalue(beta_prior_stan, 1087 | "beta_prior_stan", stan::model::index_uni(1)), 1088 | stan::model::rvalue(beta_prior_stan, 1089 | "beta_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:77:50: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = int; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 77 | const auto& y_scaled = to_ref((y_val - mu_val) * inv_sigma); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~ stanExports_gMAP.h:1098:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1098 | lp_accum__.add(stan::math::normal_lpdf(tau, 0, 1099 | stan::model::rvalue(tau_prior_stan, 1100 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/uniform_lpdf.hpp:85:0: required from ‘stan::return_type_t stan::math::uniform_lpdf(const T_y&, const T_low&, const T_high&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_low = Eigen::Matrix; T_high = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 85 | logp -= sum(log(beta_val - alpha_val)) * N / max_size(alpha, beta); stanExports_gMAP.h:1114:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1114 | lp_accum__.add(stan::math::uniform_lpdf(tau, 1115 | stan::model::rvalue(tau_prior_stan, 1116 | "tau_prior_stan", stan::model::index_uni(1)), 1117 | stan::model::rvalue(tau_prior_stan, 1118 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:66:50: required from ‘stan::math::log, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >(const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >&):: [with auto:170 = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >]’ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:53:76: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/uniform_lpdf.hpp:85:0: required from ‘stan::return_type_t stan::math::uniform_lpdf(const T_y&, const T_low&, const T_high&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_low = Eigen::Matrix; T_high = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 85 | logp -= sum(log(beta_val - alpha_val)) * N / max_size(alpha, beta); stanExports_gMAP.h:1114:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1114 | lp_accum__.add(stan::math::uniform_lpdf(tau, 1115 | stan::model::rvalue(tau_prior_stan, 1116 | "tau_prior_stan", stan::model::index_uni(1)), 1117 | stan::model::rvalue(tau_prior_stan, 1118 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/inv.hpp:55:54: required from ‘stan::math::inv, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >(const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >&):: [with auto:221 = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >]’ 55 | x, [](const auto& v) { return v.array().inverse(); }); | ~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:53:76: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/uniform_lpdf.hpp:93:0: required from ‘stan::return_type_t stan::math::uniform_lpdf(const T_y&, const T_low&, const T_high&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_low = Eigen::Matrix; T_high = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 93 | inv(beta_val - alpha_val)); stanExports_gMAP.h:1114:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1114 | lp_accum__.add(stan::math::uniform_lpdf(tau, 1115 | stan::model::rvalue(tau_prior_stan, 1116 | "tau_prior_stan", stan::model::index_uni(1)), 1117 | stan::model::rvalue(tau_prior_stan, 1118 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/uniform_lpdf.hpp:97:0: required from ‘stan::return_type_t stan::math::uniform_lpdf(const T_y&, const T_low&, const T_high&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_low = Eigen::Matrix; T_high = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 97 | partials<2>(ops_partials) = -inv_beta_minus_alpha * math::size(y); stanExports_gMAP.h:1114:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1114 | lp_accum__.add(stan::math::uniform_lpdf(tau, 1115 | stan::model::rvalue(tau_prior_stan, 1116 | "tau_prior_stan", stan::model::index_uni(1)), 1117 | stan::model::rvalue(tau_prior_stan, 1118 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/uniform_lpdf.hpp:97:0: required from ‘stan::return_type_t stan::math::uniform_lpdf(const T_y&, const T_low&, const T_high&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_low = Eigen::Matrix; T_high = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 97 | partials<2>(ops_partials) = -inv_beta_minus_alpha * math::size(y); stanExports_gMAP.h:1114:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1114 | lp_accum__.add(stan::math::uniform_lpdf(tau, 1115 | stan::model::rvalue(tau_prior_stan, 1116 | "tau_prior_stan", stan::model::index_uni(1)), 1117 | stan::model::rvalue(tau_prior_stan, 1118 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/uniform_lpdf.hpp:105:0: required from ‘stan::return_type_t stan::math::uniform_lpdf(const T_y&, const T_low&, const T_high&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_low = Eigen::Matrix; T_high = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 105 | partials<1>(ops_partials) = inv_beta_minus_alpha * math::size(y); stanExports_gMAP.h:1114:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1114 | lp_accum__.add(stan::math::uniform_lpdf(tau, 1115 | stan::model::rvalue(tau_prior_stan, 1116 | "tau_prior_stan", stan::model::index_uni(1)), 1117 | stan::model::rvalue(tau_prior_stan, 1118 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:62:23: required from ‘static auto stan::math::apply_scalar_unary::type>::value, void>::type>::apply(const T&) [with F = stan::math::lgamma_fun; T = Eigen::ArrayWrapper >]’ 62 | return x.unaryExpr([](auto&& x) { | ~~~~~~~~~~~^~~~~~~~~~~~~~~ 63 | return apply_scalar_unary>::apply(x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 64 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:72:38: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:94:23: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_shape = Eigen::Matrix; T_inv_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 94 | logp = -sum(lgamma(alpha_val)) * N / math::size(alpha); | ~~~~~~^~~~~~~~~~~ stanExports_gMAP.h:1123:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1123 | lp_accum__.add(stan::math::gamma_lpdf(tau, 1124 | stan::model::rvalue(tau_prior_stan, 1125 | "tau_prior_stan", stan::model::index_uni(1)), 1126 | stan::model::rvalue(tau_prior_stan, 1127 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:100:27: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_shape = Eigen::Matrix; T_inv_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 100 | logp += sum(alpha_val * log_beta) * N / max_size(alpha, beta); | ~~~~~~~~~~^~~~~~~~~~ stanExports_gMAP.h:1123:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1123 | lp_accum__.add(stan::math::gamma_lpdf(tau, 1124 | stan::model::rvalue(tau_prior_stan, 1125 | "tau_prior_stan", stan::model::index_uni(1)), 1126 | stan::model::rvalue(tau_prior_stan, 1127 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:102:44: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_shape = Eigen::Matrix; T_inv_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 102 | partials<1>(ops_partials) = log_beta + log_y - digamma(alpha_val); | ~~~~~~~~~^~~~~~~ stanExports_gMAP.h:1123:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1123 | lp_accum__.add(stan::math::gamma_lpdf(tau, 1124 | stan::model::rvalue(tau_prior_stan, 1125 | "tau_prior_stan", stan::model::index_uni(1)), 1126 | stan::model::rvalue(tau_prior_stan, 1127 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:62:23: required from ‘static auto stan::math::apply_scalar_unary::type>::value, void>::type>::apply(const T&) [with F = stan::math::digamma_fun; T = Eigen::ArrayWrapper >]’ 62 | return x.unaryExpr([](auto&& x) { | ~~~~~~~~~~~^~~~~~~~~~~~~~~ 63 | return apply_scalar_unary>::apply(x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 64 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:72:38: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:102:61: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_shape = Eigen::Matrix; T_inv_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 102 | partials<1>(ops_partials) = log_beta + log_y - digamma(alpha_val); | ~~~~~~~^~~~~~~~~~~ stanExports_gMAP.h:1123:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1123 | lp_accum__.add(stan::math::gamma_lpdf(tau, 1124 | stan::model::rvalue(tau_prior_stan, 1125 | "tau_prior_stan", stan::model::index_uni(1)), 1126 | stan::model::rvalue(tau_prior_stan, 1127 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::Array >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::Array >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::Array >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::Array >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::Array >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:102:52: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_shape = Eigen::Matrix; T_inv_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 102 | partials<1>(ops_partials) = log_beta + log_y - digamma(alpha_val); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1123:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1123 | lp_accum__.add(stan::math::gamma_lpdf(tau, 1124 | stan::model::rvalue(tau_prior_stan, 1125 | "tau_prior_stan", stan::model::index_uni(1)), 1126 | stan::model::rvalue(tau_prior_stan, 1127 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:106:35: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_shape = Eigen::Matrix; T_inv_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 106 | logp += sum((alpha_val - 1.0) * log_y) * N / max_size(alpha, y); | ~~~~~~~~~~~~~~~~~~^~~~~~~ stanExports_gMAP.h:1123:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1123 | lp_accum__.add(stan::math::gamma_lpdf(tau, 1124 | stan::model::rvalue(tau_prior_stan, 1125 | "tau_prior_stan", stan::model::index_uni(1)), 1126 | stan::model::rvalue(tau_prior_stan, 1127 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:109:26: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_shape = Eigen::Matrix; T_inv_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 109 | logp -= sum(beta_val * y_val) * N / max_size(beta, y); | ~~~~~~~~~^~~~~~~ stanExports_gMAP.h:1123:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1123 | lp_accum__.add(stan::math::gamma_lpdf(tau, 1124 | stan::model::rvalue(tau_prior_stan, 1125 | "tau_prior_stan", stan::model::index_uni(1)), 1126 | stan::model::rvalue(tau_prior_stan, 1127 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:113:44: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_shape = Eigen::Matrix; T_inv_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 113 | partials<0>(ops_partials) = (alpha_val - 1) / y_val - beta_val; | ~~~~~~~~~~~^~~~ stanExports_gMAP.h:1123:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1123 | lp_accum__.add(stan::math::gamma_lpdf(tau, 1124 | stan::model::rvalue(tau_prior_stan, 1125 | "tau_prior_stan", stan::model::index_uni(1)), 1126 | stan::model::rvalue(tau_prior_stan, 1127 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:113:49: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_shape = Eigen::Matrix; T_inv_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 113 | partials<0>(ops_partials) = (alpha_val - 1) / y_val - beta_val; | ~~~~~~~~~~~~~~~~^~~~~~~ stanExports_gMAP.h:1123:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1123 | lp_accum__.add(stan::math::gamma_lpdf(tau, 1124 | stan::model::rvalue(tau_prior_stan, 1125 | "tau_prior_stan", stan::model::index_uni(1)), 1126 | stan::model::rvalue(tau_prior_stan, 1127 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:113:57: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_shape = Eigen::Matrix; T_inv_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 113 | partials<0>(ops_partials) = (alpha_val - 1) / y_val - beta_val; | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~ stanExports_gMAP.h:1123:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1123 | lp_accum__.add(stan::math::gamma_lpdf(tau, 1124 | stan::model::rvalue(tau_prior_stan, 1125 | "tau_prior_stan", stan::model::index_uni(1)), 1126 | stan::model::rvalue(tau_prior_stan, 1127 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:116:43: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_shape = Eigen::Matrix; T_inv_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 116 | partials<2>(ops_partials) = alpha_val / beta_val - y_val; | ~~~~~~~~~~^~~~~~~~~~ stanExports_gMAP.h:1123:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1123 | lp_accum__.add(stan::math::gamma_lpdf(tau, 1124 | stan::model::rvalue(tau_prior_stan, 1125 | "tau_prior_stan", stan::model::index_uni(1)), 1126 | stan::model::rvalue(tau_prior_stan, 1127 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:116:54: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_shape = Eigen::Matrix; T_inv_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 116 | partials<2>(ops_partials) = alpha_val / beta_val - y_val; | ~~~~~~~~~~~~~~~~~~~~~^~~~~~~ stanExports_gMAP.h:1123:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1123 | lp_accum__.add(stan::math::gamma_lpdf(tau, 1124 | stan::model::rvalue(tau_prior_stan, 1125 | "tau_prior_stan", stan::model::index_uni(1)), 1126 | stan::model::rvalue(tau_prior_stan, 1127 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/inv_gamma_lpdf.hpp:92:44: required from ‘stan::return_type_t stan::math::inv_gamma_lpdf(const T_y&, const T_shape&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_shape = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 92 | partials<1>(ops_partials) = log_beta - digamma(alpha_val) - log_y; | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1132:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1132 | lp_accum__.add(stan::math::inv_gamma_lpdf(tau, 1133 | stan::model::rvalue(tau_prior_stan, 1134 | "tau_prior_stan", stan::model::index_uni(1)), 1135 | stan::model::rvalue(tau_prior_stan, 1136 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/inv_gamma_lpdf.hpp:92:65: required from ‘stan::return_type_t stan::math::inv_gamma_lpdf(const T_y&, const T_shape&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_shape = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 92 | partials<1>(ops_partials) = log_beta - digamma(alpha_val) - log_y; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~ stanExports_gMAP.h:1132:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1132 | lp_accum__.add(stan::math::inv_gamma_lpdf(tau, 1133 | stan::model::rvalue(tau_prior_stan, 1134 | "tau_prior_stan", stan::model::index_uni(1)), 1135 | stan::model::rvalue(tau_prior_stan, 1136 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/inv_gamma_lpdf.hpp:96:28: required from ‘stan::return_type_t stan::math::inv_gamma_lpdf(const T_y&, const T_shape&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_shape = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 96 | logp -= sum((alpha_val + 1.0) * log_y) * N / max_size(y, alpha); | ~~~~~~~~~~~^~~~~~ stanExports_gMAP.h:1132:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1132 | lp_accum__.add(stan::math::inv_gamma_lpdf(tau, 1133 | stan::model::rvalue(tau_prior_stan, 1134 | "tau_prior_stan", stan::model::index_uni(1)), 1135 | stan::model::rvalue(tau_prior_stan, 1136 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/inv_gamma_lpdf.hpp:96:35: required from ‘stan::return_type_t stan::math::inv_gamma_lpdf(const T_y&, const T_shape&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_shape = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 96 | logp -= sum((alpha_val + 1.0) * log_y) * N / max_size(y, alpha); | ~~~~~~~~~~~~~~~~~~^~~~~~~ stanExports_gMAP.h:1132:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1132 | lp_accum__.add(stan::math::inv_gamma_lpdf(tau, 1133 | stan::model::rvalue(tau_prior_stan, 1134 | "tau_prior_stan", stan::model::index_uni(1)), 1135 | stan::model::rvalue(tau_prior_stan, 1136 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::Array >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::Array >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::Array >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::Array >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::Array >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/inv_gamma_lpdf.hpp:105:31: required from ‘stan::return_type_t stan::math::inv_gamma_lpdf(const T_y&, const T_shape&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_shape = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 105 | = (beta_val * inv_y - alpha_val - 1) * inv_y; | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~ stanExports_gMAP.h:1132:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1132 | lp_accum__.add(stan::math::inv_gamma_lpdf(tau, 1133 | stan::model::rvalue(tau_prior_stan, 1134 | "tau_prior_stan", stan::model::index_uni(1)), 1135 | stan::model::rvalue(tau_prior_stan, 1136 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/inv_gamma_lpdf.hpp:105:43: required from ‘stan::return_type_t stan::math::inv_gamma_lpdf(const T_y&, const T_shape&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_shape = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 105 | = (beta_val * inv_y - alpha_val - 1) * inv_y; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~ stanExports_gMAP.h:1132:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1132 | lp_accum__.add(stan::math::inv_gamma_lpdf(tau, 1133 | stan::model::rvalue(tau_prior_stan, 1134 | "tau_prior_stan", stan::model::index_uni(1)), 1135 | stan::model::rvalue(tau_prior_stan, 1136 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::Array >, const Eigen::ArrayWrapper > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/inv_gamma_lpdf.hpp:105:48: required from ‘stan::return_type_t stan::math::inv_gamma_lpdf(const T_y&, const T_shape&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_shape = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 105 | = (beta_val * inv_y - alpha_val - 1) * inv_y; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~ stanExports_gMAP.h:1132:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1132 | lp_accum__.add(stan::math::inv_gamma_lpdf(tau, 1133 | stan::model::rvalue(tau_prior_stan, 1134 | "tau_prior_stan", stan::model::index_uni(1)), 1135 | stan::model::rvalue(tau_prior_stan, 1136 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/square.hpp:70:53: required from ‘stan::math::square, const Eigen::ArrayWrapper > > >(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&):: [with auto:239 = Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >]’ 70 | x, [](const auto& v) { return v.array().square(); }); | ~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:53:76: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/lognormal_lpdf.hpp:67:17: required from ‘stan::return_type_t stan::math::lognormal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 67 | square(inv_sigma)); | ~~~~~~^~~~~~~~~~~ stanExports_gMAP.h:1141:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1141 | lp_accum__.add(stan::math::lognormal_lpdf(tau, 1142 | stan::model::rvalue(tau_prior_stan, 1143 | "tau_prior_stan", stan::model::index_uni(1)), 1144 | stan::model::rvalue(tau_prior_stan, 1145 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/lognormal_lpdf.hpp:74:63: required from ‘stan::return_type_t stan::math::lognormal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 74 | = N * NEG_LOG_SQRT_TWO_PI - 0.5 * sum(square(logy_m_mu) * inv_sigma_sq); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ stanExports_gMAP.h:1141:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1141 | lp_accum__.add(stan::math::lognormal_lpdf(tau, 1142 | stan::model::rvalue(tau_prior_stan, 1143 | "tau_prior_stan", stan::model::index_uni(1)), 1144 | stan::model::rvalue(tau_prior_stan, 1145 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/lognormal_lpdf.hpp:89:39: required from ‘stan::return_type_t stan::math::lognormal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 89 | partials<0>(ops_partials) = -(1 + logy_m_mu_div_sigma) / y_val; | ~~~^~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1141:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1141 | lp_accum__.add(stan::math::lognormal_lpdf(tau, 1142 | stan::model::rvalue(tau_prior_stan, 1143 | "tau_prior_stan", stan::model::index_uni(1)), 1144 | stan::model::rvalue(tau_prior_stan, 1145 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/lognormal_lpdf.hpp:89:35: required from ‘stan::return_type_t stan::math::lognormal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 89 | partials<0>(ops_partials) = -(1 + logy_m_mu_div_sigma) / y_val; | ^~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1141:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1141 | lp_accum__.add(stan::math::lognormal_lpdf(tau, 1142 | stan::model::rvalue(tau_prior_stan, 1143 | "tau_prior_stan", stan::model::index_uni(1)), 1144 | stan::model::rvalue(tau_prior_stan, 1145 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > > >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > > >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > > >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > > >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > > >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/lognormal_lpdf.hpp:89:62: required from ‘stan::return_type_t stan::math::lognormal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 89 | partials<0>(ops_partials) = -(1 + logy_m_mu_div_sigma) / y_val; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~ stanExports_gMAP.h:1141:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1141 | lp_accum__.add(stan::math::lognormal_lpdf(tau, 1142 | stan::model::rvalue(tau_prior_stan, 1143 | "tau_prior_stan", stan::model::index_uni(1)), 1144 | stan::model::rvalue(tau_prior_stan, 1145 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/lognormal_lpdf.hpp:96:34: required from ‘stan::return_type_t stan::math::lognormal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 96 | = (logy_m_mu_div_sigma * logy_m_mu - 1) * inv_sigma; | ~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~ stanExports_gMAP.h:1141:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1141 | lp_accum__.add(stan::math::lognormal_lpdf(tau, 1142 | stan::model::rvalue(tau_prior_stan, 1143 | "tau_prior_stan", stan::model::index_uni(1)), 1144 | stan::model::rvalue(tau_prior_stan, 1145 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/lognormal_lpdf.hpp:96:46: required from ‘stan::return_type_t stan::math::lognormal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 96 | = (logy_m_mu_div_sigma * logy_m_mu - 1) * inv_sigma; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~ stanExports_gMAP.h:1141:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1141 | lp_accum__.add(stan::math::lognormal_lpdf(tau, 1142 | stan::model::rvalue(tau_prior_stan, 1143 | "tau_prior_stan", stan::model::index_uni(1)), 1144 | stan::model::rvalue(tau_prior_stan, 1145 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/lognormal_lpdf.hpp:96:51: required from ‘stan::return_type_t stan::math::lognormal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 96 | = (logy_m_mu_div_sigma * logy_m_mu - 1) * inv_sigma; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~ stanExports_gMAP.h:1141:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1141 | lp_accum__.add(stan::math::lognormal_lpdf(tau, 1142 | stan::model::rvalue(tau_prior_stan, 1143 | "tau_prior_stan", stan::model::index_uni(1)), 1144 | stan::model::rvalue(tau_prior_stan, 1145 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/cauchy_lpdf.hpp:81:39: required from ‘stan::return_type_t stan::math::cauchy_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 81 | logp -= sum(log1p(square(y_minus_mu * inv_sigma))); | ~~~~~~~~~~~^~~~~~~~~~~ stanExports_gMAP.h:1150:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1150 | lp_accum__.add(stan::math::cauchy_lpdf(tau, 1151 | stan::model::rvalue(tau_prior_stan, 1152 | "tau_prior_stan", stan::model::index_uni(1)), 1153 | stan::model::rvalue(tau_prior_stan, 1154 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/square.hpp:70:53: required from ‘stan::math::square, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >(const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >&):: [with auto:239 = Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >]’ 70 | x, [](const auto& v) { return v.array().square(); }); | ~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:53:76: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/cauchy_lpdf.hpp:81:27: required from ‘stan::return_type_t stan::math::cauchy_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 81 | logp -= sum(log1p(square(y_minus_mu * inv_sigma))); | ~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1150:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1150 | lp_accum__.add(stan::math::cauchy_lpdf(tau, 1151 | stan::model::rvalue(tau_prior_stan, 1152 | "tau_prior_stan", stan::model::index_uni(1)), 1153 | stan::model::rvalue(tau_prior_stan, 1154 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >&)::, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >&)::, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >&)::, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >&)::, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >&)::, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:62:23: required from ‘static auto stan::math::apply_scalar_unary::type>::value, void>::type>::apply(const T&) [with F = stan::math::log1p_fun; T = Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >]’ 62 | return x.unaryExpr([](auto&& x) { | ~~~~~~~~~~~^~~~~~~~~~~~~~~ 63 | return apply_scalar_unary>::apply(x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 64 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:72:38: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/cauchy_lpdf.hpp:81:20: required from ‘stan::return_type_t stan::math::cauchy_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 81 | logp -= sum(log1p(square(y_minus_mu * inv_sigma))); | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1150:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1150 | lp_accum__.add(stan::math::cauchy_lpdf(tau, 1151 | stan::model::rvalue(tau_prior_stan, 1152 | "tau_prior_stan", stan::model::index_uni(1)), 1153 | stan::model::rvalue(tau_prior_stan, 1154 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/cauchy_lpdf.hpp:97:13: required from ‘stan::return_type_t stan::math::cauchy_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 97 | 2 * y_minus_mu / (sigma_squared + y_minus_mu_squared)); | ~~^~~~~~~~~~~~ stanExports_gMAP.h:1150:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1150 | lp_accum__.add(stan::math::cauchy_lpdf(tau, 1151 | stan::model::rvalue(tau_prior_stan, 1152 | "tau_prior_stan", stan::model::index_uni(1)), 1153 | stan::model::rvalue(tau_prior_stan, 1154 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/cauchy_lpdf.hpp:97:43: required from ‘stan::return_type_t stan::math::cauchy_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 97 | 2 * y_minus_mu / (sigma_squared + y_minus_mu_squared)); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1150:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1150 | lp_accum__.add(stan::math::cauchy_lpdf(tau, 1151 | stan::model::rvalue(tau_prior_stan, 1152 | "tau_prior_stan", stan::model::index_uni(1)), 1153 | stan::model::rvalue(tau_prior_stan, 1154 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::Array > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/cauchy_lpdf.hpp:97:26: required from ‘stan::return_type_t stan::math::cauchy_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 97 | 2 * y_minus_mu / (sigma_squared + y_minus_mu_squared)); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1150:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1150 | lp_accum__.add(stan::math::cauchy_lpdf(tau, 1151 | stan::model::rvalue(tau_prior_stan, 1152 | "tau_prior_stan", stan::model::index_uni(1)), 1153 | stan::model::rvalue(tau_prior_stan, 1154 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::Array > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::Array > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::Array > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::Array > > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::Array > > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/cauchy_lpdf.hpp:100:39: required from ‘stan::return_type_t stan::math::cauchy_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 100 | partials<0>(ops_partials) = -mu_deriv; | ^~~~~~~~~ stanExports_gMAP.h:1150:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1150 | lp_accum__.add(stan::math::cauchy_lpdf(tau, 1151 | stan::model::rvalue(tau_prior_stan, 1152 | "tau_prior_stan", stan::model::index_uni(1)), 1153 | stan::model::rvalue(tau_prior_stan, 1154 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/cauchy_lpdf.hpp:110:55: required from ‘stan::return_type_t stan::math::cauchy_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 110 | partials<2>(ops_partials) = (y_minus_mu_squared - sigma_squared) | ~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ stanExports_gMAP.h:1150:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1150 | lp_accum__.add(stan::math::cauchy_lpdf(tau, 1151 | stan::model::rvalue(tau_prior_stan, 1152 | "tau_prior_stan", stan::model::index_uni(1)), 1153 | stan::model::rvalue(tau_prior_stan, 1154 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/cauchy_lpdf.hpp:111:35: required from ‘stan::return_type_t stan::math::cauchy_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 110 | partials<2>(ops_partials) = (y_minus_mu_squared - sigma_squared) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 111 | * inv_sigma | ^~~~~~~~~~~ stanExports_gMAP.h:1150:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1150 | lp_accum__.add(stan::math::cauchy_lpdf(tau, 1151 | stan::model::rvalue(tau_prior_stan, 1152 | "tau_prior_stan", stan::model::index_uni(1)), 1153 | stan::model::rvalue(tau_prior_stan, 1154 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::Array > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/cauchy_lpdf.hpp:112:35: required from ‘stan::return_type_t stan::math::cauchy_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 110 | partials<2>(ops_partials) = (y_minus_mu_squared - sigma_squared) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 111 | * inv_sigma | ~~~~~~~~~~~ 112 | / (sigma_squared + y_minus_mu_squared); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1150:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1150 | lp_accum__.add(stan::math::cauchy_lpdf(tau, 1151 | stan::model::rvalue(tau_prior_stan, 1152 | "tau_prior_stan", stan::model::index_uni(1)), 1153 | stan::model::rvalue(tau_prior_stan, 1154 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/exponential_lpdf.hpp:92:35: required from ‘stan::return_type_t stan::math::exponential_lpdf(const T_y&, const T_inv_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_inv_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 92 | partials<0>(ops_partials) = -forward_as(beta_val); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1159:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1159 | lp_accum__.add(stan::math::exponential_lpdf(tau, 1160 | stan::model::rvalue(tau_prior_stan, 1161 | "tau_prior_stan", stan::model::index_uni(1)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/exponential_lpdf.hpp:100:47: required from ‘stan::return_type_t stan::math::exponential_lpdf(const T_y&, const T_inv_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_inv_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 100 | partials<1>(ops_partials) = inv(beta_val) - y_val; | ~~~~~~~~~~~~~~^~~~~~~ stanExports_gMAP.h:1159:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1159 | lp_accum__.add(stan::math::exponential_lpdf(tau, 1160 | stan::model::rvalue(tau_prior_stan, 1161 | "tau_prior_stan", stan::model::index_uni(1)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/inv.hpp:55:54: required from ‘stan::math::inv, 0, Eigen::Stride<0, 0> > > >(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&):: [with auto:221 = Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >]’ 55 | x, [](const auto& v) { return v.array().inverse(); }); | ~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:53:76: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:76:68: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Map, 0, Eigen::Stride<0, 0> >; T_loc = Eigen::Matrix, -1, 1>; T_scale = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 76 | = to_ref_if::value>(inv(sigma_val)); | ~~~^~~~~~~~~~~ stanExports_gMAP.h:1176:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1176 | lp_accum__.add(stan::math::normal_lpdf(y, theta, y_se)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:77:40: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Map, 0, Eigen::Stride<0, 0> >; T_loc = Eigen::Matrix, -1, 1>; T_scale = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 77 | const auto& y_scaled = to_ref((y_val - mu_val) * inv_sigma); | ~~~~~~~^~~~~~~~~ stanExports_gMAP.h:1176:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1176 | lp_accum__.add(stan::math::normal_lpdf(y, theta, y_se)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:77:50: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Map, 0, Eigen::Stride<0, 0> >; T_loc = Eigen::Matrix, -1, 1>; T_scale = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 77 | const auto& y_scaled = to_ref((y_val - mu_val) * inv_sigma); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~ stanExports_gMAP.h:1176:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1176 | lp_accum__.add(stan::math::normal_lpdf(y, theta, y_se)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:66:50: required from ‘stan::math::log, 0, Eigen::Stride<0, 0> > > >(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&):: [with auto:170 = Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >]’ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:53:76: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:87:20: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Map, 0, Eigen::Stride<0, 0> >; T_loc = Eigen::Matrix, -1, 1>; T_scale = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 87 | logp -= sum(log(sigma_val)) * N / math::size(sigma); | ~~~^~~~~~~~~~~ stanExports_gMAP.h:1176:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1176 | lp_accum__.add(stan::math::normal_lpdf(y, theta, y_se)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, void>::apply(const Eigen::Array&)::, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, void>::apply(const Eigen::Array&)::, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, void>::apply(const Eigen::Array&)::, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, void>::apply(const Eigen::Array&)::, const Eigen::Array, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, void>::apply(const Eigen::Array&)::, const Eigen::Array >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:62:23: required from ‘static auto stan::math::apply_scalar_unary::type>::value, void>::type>::apply(const T&) [with F = stan::math::inv_logit_fun; T = Eigen::Array]’ 62 | return x.unaryExpr([](auto&& x) { | ~~~~~~~~~~~^~~~~~~~~~~~~~~ 63 | return apply_scalar_unary>::apply(x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 64 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:72:38: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/binomial_logit_lpmf.hpp:70:61: required from ‘stan::return_type_t stan::math::binomial_logit_lpmf(const T_n&, const T_N&, const T_prob&) [with bool propto = true; T_n = std::vector; T_N = std::vector; T_prob = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 70 | = to_ref_if::value>(inv_logit(alpha_val)); | ~~~~~~~~~^~~~~~~~~~~ stanExports_gMAP.h:1181:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1181 | lp_accum__.add(stan::math::binomial_logit_lpmf(r, r_n, 1182 | theta)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::Array >&)::, const Eigen::CwiseUnaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::Array >&)::, const Eigen::CwiseUnaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::Array >&)::, const Eigen::CwiseUnaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Array >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::Array >&)::, const Eigen::CwiseUnaryOp, const Eigen::Array >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Array >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::Array >&)::, const Eigen::CwiseUnaryOp, const Eigen::Array > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:62:23: required from ‘static auto stan::math::apply_scalar_unary::type>::value, void>::type>::apply(const T&) [with F = stan::math::inv_logit_fun; T = Eigen::CwiseUnaryOp, const Eigen::Array >]’ 62 | return x.unaryExpr([](auto&& x) { | ~~~~~~~~~~~^~~~~~~~~~~~~~~ 63 | return apply_scalar_unary>::apply(x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 64 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:72:38: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/binomial_logit_lpmf.hpp:72:61: required from ‘stan::return_type_t stan::math::binomial_logit_lpmf(const T_n&, const T_N&, const T_prob&) [with bool propto = true; T_n = std::vector; T_N = std::vector; T_prob = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 72 | = to_ref_if::value>(inv_logit(-alpha_val)); | ~~~~~~~~~^~~~~~~~~~~~ stanExports_gMAP.h:1181:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1181 | lp_accum__.add(stan::math::binomial_logit_lpmf(r, r_n, 1182 | theta)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/binomial_logit_lpmf.hpp:77:38: required from ‘stan::return_type_t stan::math::binomial_logit_lpmf(const T_n&, const T_N&, const T_prob&) [with bool propto = true; T_n = std::vector; T_N = std::vector; T_prob = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 77 | T_partials_return logp = sum(n_val * log_inv_logit_alpha | ~~~~~~^~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1181:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1181 | lp_accum__.add(stan::math::binomial_logit_lpmf(r, r_n, 1182 | theta)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/binomial_logit_lpmf.hpp:78:50: required from ‘stan::return_type_t stan::math::binomial_logit_lpmf(const T_n&, const T_N&, const T_prob&) [with bool propto = true; T_n = std::vector; T_N = std::vector; T_prob = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 78 | + (N_val - n_val) * log_inv_logit_neg_alpha); | ~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1181:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1181 | lp_accum__.add(stan::math::binomial_logit_lpmf(r, r_n, 1182 | theta)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryOp, const Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryOp, const Eigen::Array > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/binomial_logit_lpmf.hpp:78:32: required from ‘stan::return_type_t stan::math::binomial_logit_lpmf(const T_n&, const T_N&, const T_prob&) [with bool propto = true; T_n = std::vector; T_N = std::vector; T_prob = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 77 | T_partials_return logp = sum(n_val * log_inv_logit_alpha | ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 78 | + (N_val - n_val) * log_inv_logit_neg_alpha); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1181:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1181 | lp_accum__.add(stan::math::binomial_logit_lpmf(r, r_n, 1182 | theta)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0, Eigen::Stride<0, 0> > >, Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, 0, Eigen::Stride<0, 0> > >, Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, 0, Eigen::Stride<0, 0> > >, Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_binary.hpp:60:34: required from ‘stan::math::apply_scalar_binary, 0, Eigen::Stride<0, 0> > >&, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&, binomial_coefficient_log, 0, Eigen::Stride<0, 0> > >, Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&):: >(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&, binomial_coefficient_log, 0, Eigen::Stride<0, 0> > >, Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::&&):: [with auto:60 = stan::math::binomial_coefficient_log, 0, Eigen::Stride<0, 0> > >, Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::; auto:61 = const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >; auto:62 = const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >]’ 60 | return x_inner.binaryExpr(y_inner, f_inner); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/binomial_logit_lpmf.hpp:80:41: required from ‘stan::return_type_t stan::math::binomial_logit_lpmf(const T_n&, const T_N&, const T_prob&) [with bool propto = true; T_n = std::vector; T_N = std::vector; T_prob = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 80 | logp += sum(binomial_coefficient_log(N_val, n_val)) * maximum_size | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ stanExports_gMAP.h:1181:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1181 | lp_accum__.add(stan::math::binomial_logit_lpmf(r, r_n, 1182 | theta)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, stan::math::binomial_coefficient_log, 0, Eigen::Stride<0, 0> > >, Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&):: >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, stan::math::binomial_coefficient_log, 0, Eigen::Stride<0, 0> > >, Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&):: > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, 0, Eigen::Stride<0, 0> > >, Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, stan::math::binomial_coefficient_log, 0, Eigen::Stride<0, 0> > >, Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&):: > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:115:7: required from ‘class stan::math::Holder, 0, Eigen::Stride<0, 0> > >, Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, stan::math::binomial_coefficient_log, 0, Eigen::Stride<0, 0> > >, Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&):: >’ 115 | class Holder | ^~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:312:16: required from ‘auto stan::math::internal::make_holder_impl_construct_object(T&&, std::index_sequence, const std::tuple&) [with T = Eigen::CwiseBinaryOp, 0, Eigen::Stride<0, 0> > >, Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >; long unsigned int ...Is = {0}; Args = {stan::math::binomial_coefficient_log, 0, Eigen::Stride<0, 0> > >, Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::}; std::index_sequence = std::integer_sequence]’ 312 | return holder(std::forward(expr), std::get(ptrs)...); | ~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:330:43: required from ‘auto stan::math::internal::make_holder_impl(const F&, std::index_sequence, Args&& ...) [with F = stan::math::apply_scalar_binary, 0, Eigen::Stride<0, 0> > >&, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&, binomial_coefficient_log, 0, Eigen::Stride<0, 0> > >, Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&):: >(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&, binomial_coefficient_log, 0, Eigen::Stride<0, 0> > >, Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::&&)::; long unsigned int ...Is = {0, 1, 2}; Args = {stan::math::binomial_coefficient_log, 0, Eigen::Stride<0, 0> > >, Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >(const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&}; std::index_sequence = std::integer_sequence]’ 330 | return make_holder_impl_construct_object( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 331 | func(*std::get(res)...), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 332 | std::make_index_sequence::value>(), ptrs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:353:36: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/binomial_logit_lpmf.hpp:80:41: required from ‘stan::return_type_t stan::math::binomial_logit_lpmf(const T_n&, const T_N&, const T_prob&) [with bool propto = true; T_n = std::vector; T_N = std::vector; T_prob = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 80 | logp += sum(binomial_coefficient_log(N_val, n_val)) * maximum_size | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ stanExports_gMAP.h:1181:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1181 | lp_accum__.add(stan::math::binomial_logit_lpmf(r, r_n, 1182 | theta)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/binomial_logit_lpmf.hpp:88:19: required from ‘stan::return_type_t stan::math::binomial_logit_lpmf(const T_n&, const T_N&, const T_prob&) [with bool propto = true; T_n = std::vector; T_N = std::vector; T_prob = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 88 | = n_val * inv_logit_neg_alpha - (N_val - n_val) * inv_logit_alpha; | ~~~~~~^~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1181:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1181 | lp_accum__.add(stan::math::binomial_logit_lpmf(r, r_n, 1182 | theta)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/binomial_logit_lpmf.hpp:88:59: required from ‘stan::return_type_t stan::math::binomial_logit_lpmf(const T_n&, const T_N&, const T_prob&) [with bool propto = true; T_n = std::vector; T_N = std::vector; T_prob = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 88 | = n_val * inv_logit_neg_alpha - (N_val - n_val) * inv_logit_alpha; | ~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1181:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1181 | lp_accum__.add(stan::math::binomial_logit_lpmf(r, r_n, 1182 | theta)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/binomial_logit_lpmf.hpp:88:41: required from ‘stan::return_type_t stan::math::binomial_logit_lpmf(const T_n&, const T_N&, const T_prob&) [with bool propto = true; T_n = std::vector; T_N = std::vector; T_prob = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 88 | = n_val * inv_logit_neg_alpha - (N_val - n_val) * inv_logit_alpha; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1181:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1181 | lp_accum__.add(stan::math::binomial_logit_lpmf(r, r_n, 1182 | theta)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/binomial_logit_lpmf.hpp:93:11: required from ‘stan::return_type_t stan::math::binomial_logit_lpmf(const T_n&, const T_N&, const T_prob&) [with bool propto = true; T_n = std::vector; T_N = std::vector; T_prob = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 92 | sum_n * inv_logit_neg_alpha | ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 93 | - (sum(N_val) * maximum_size / math::size(N) - sum_n) | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 94 | * inv_logit_alpha); | ~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1181:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1181 | lp_accum__.add(stan::math::binomial_logit_lpmf(r, r_n, 1182 | theta)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Array, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Array >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/exp.hpp:63:50: required from ‘stan::math::exp >(const Eigen::Array&):: [with auto:216 = Eigen::Array]’ 63 | x, [](const auto& v) { return v.array().exp(); }); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:53:76: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/poisson_log_lpmf.hpp:72:0: required from ‘stan::return_type_t stan::math::poisson_log_lpmf(const T_n&, const T_log_rate&) [with bool propto = true; T_n = std::vector; T_log_rate = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 72 | = to_ref_if::value>(exp(alpha_val)); stanExports_gMAP.h:1187:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1187 | lp_accum__.add(stan::math::poisson_log_lpmf(count, 1188 | stan::math::add(log_offset, theta))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/poisson_log_lpmf.hpp:79:0: required from ‘stan::return_type_t stan::math::poisson_log_lpmf(const T_n&, const T_log_rate&) [with bool propto = true; T_n = std::vector; T_log_rate = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 79 | logp -= sum(lgamma(n_val + 1.0)) * N / math::size(n); stanExports_gMAP.h:1187:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1187 | lp_accum__.add(stan::math::poisson_log_lpmf(count, 1188 | stan::math::add(log_offset, theta))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:62:23: required from ‘static auto stan::math::apply_scalar_unary::type>::value, void>::type>::apply(const T&) [with F = stan::math::lgamma_fun; T = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >]’ 62 | return x.unaryExpr([](auto&& x) { | ~~~~~~~~~~~^~~~~~~~~~~~~~~ 63 | return apply_scalar_unary>::apply(x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 64 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:72:38: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/poisson_log_lpmf.hpp:79:0: required from ‘stan::return_type_t stan::math::poisson_log_lpmf(const T_n&, const T_log_rate&) [with bool propto = true; T_n = std::vector; T_log_rate = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 79 | logp -= sum(lgamma(n_val + 1.0)) * N / math::size(n); stanExports_gMAP.h:1187:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1187 | lp_accum__.add(stan::math::poisson_log_lpmf(count, 1188 | stan::math::add(log_offset, theta))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/poisson_log_lpmf.hpp:83:0: required from ‘stan::return_type_t stan::math::poisson_log_lpmf(const T_n&, const T_log_rate&) [with bool propto = true; T_n = std::vector; T_log_rate = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 83 | partials<0>(ops_partials) = n_val - exp_alpha; stanExports_gMAP.h:1187:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1187 | lp_accum__.add(stan::math::poisson_log_lpmf(count, 1188 | stan::math::add(log_offset, theta))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false>, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false>, -1, 1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false>, -1, 1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, true>, -1, 1, false>, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, true>, -1, 1, false>, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, true>, -1, 1, false>, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:363:59: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 363 | matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:268:7: required from ‘Eigen::MapBase::ScalarWithConstIfNotLvalue& Eigen::MapBase::coeffRef(Eigen::Index) [with Derived = Eigen::Block, -1, 1, true>; ScalarWithConstIfNotLvalue = double; Eigen::Index = long int]’ 15 | EIGEN_STATIC_ASSERT((int(internal::evaluator::Flags) & LinearAccessBit) || Derived::IsVectorAtCompileTime, \ | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:367:25: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 367 | matA.col(i).coeffRef(i+1) = 1; | ~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Jacobi/Jacobi.h:475:5: required from ‘void Eigen::internal::apply_rotation_in_the_plane(Eigen::DenseBase&, Eigen::DenseBase&, const Eigen::JacobiRotation&) [with VectorX = Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>; VectorY = Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, 1, true>; OtherScalar = double]’ 475 | EIGEN_PLAIN_ENUM_MIN(evaluator::Alignment, evaluator::Alignment), | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Jacobi/Jacobi.h:315:40: required from ‘void Eigen::MatrixBase::applyOnTheRight(Eigen::Index, Eigen::Index, const Eigen::JacobiRotation&) [with OtherScalar = double; Derived = Eigen::Map, 0, Eigen::Stride<0, 0> >; Eigen::Index = long int]’ 315 | internal::apply_rotation_in_the_plane(x, y, j.transpose()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:895:24: required from ‘void Eigen::internal::tridiagonal_qr_step(RealScalar*, RealScalar*, Index, Index, Scalar*, Index) [with int StorageOrder = 0; RealScalar = double; Scalar = double; Index = long int]’ 895 | q.applyOnTheRight(k,k+1,rot); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:548:87: required from ‘Eigen::ComputationInfo Eigen::internal::computeFromTridiagonal_impl(DiagType&, SubDiagType&, Eigen::Index, bool, MatrixType&) [with MatrixType = Eigen::Matrix; DiagType = Eigen::Matrix; SubDiagType = Eigen::Matrix; Eigen::Index = long int]’ 548 | internal::tridiagonal_qr_step(diag.data(), subdiag.data(), start, end, computeEigenvectors ? eivec.data() : (Scalar*)0, n); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:460:49: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 460 | m_info = internal::computeFromTridiagonal_impl(diag, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Visitor.h:79:51: required from ‘class Eigen::internal::visitor_evaluator, -1, 1, false> >’ 79 | CoeffReadCost = internal::evaluator::CoeffReadCost | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Visitor.h:123:17: required from ‘void Eigen::DenseBase::visit(Visitor&) const [with Visitor = Eigen::internal::min_coeff_visitor, -1, 1, false>, 0>; Derived = Eigen::Block, -1, 1, false>]’ 123 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Visitor.h:323:14: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::minCoeff(IndexType*) const [with int NaNPropagation = 0; IndexType = long int; Derived = Eigen::Block, -1, 1, false>; typename Eigen::internal::traits::Scalar = double]’ 323 | this->visit(minVisitor); | ~~~~~~~~~~~^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:496:37: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::minCoeff(IndexType*) const [with IndexType = long int; Derived = Eigen::Block, -1, 1, false>; typename Eigen::internal::traits::Scalar = double]’ 496 | return minCoeff(index); | ~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:563:35: required from ‘Eigen::ComputationInfo Eigen::internal::computeFromTridiagonal_impl(DiagType&, SubDiagType&, Eigen::Index, bool, MatrixType&) [with MatrixType = Eigen::Matrix; DiagType = Eigen::Matrix; SubDiagType = Eigen::Matrix; Eigen::Index = long int]’ 563 | diag.segment(i,n-i).minCoeff(&k); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:460:49: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 460 | m_info = internal::computeFromTridiagonal_impl(diag, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, 1, true>, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, 1, true>, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Block, -1, 1, true>, -1, 1, false>, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false> >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:221:22: required from ‘static typename Eigen::NumTraits::Scalar>::Real Eigen::internal::lpNorm_selector::run(const Eigen::MatrixBase&) [with Derived = Eigen::Block, -1, 1, true>, -1, 1, false>; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 221 | return m.cwiseAbs().sum(); | ~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:269:52: required from ‘typename Eigen::NumTraits::Scalar>::Real Eigen::MatrixBase::lpNorm() const [with int p = 1; Derived = Eigen::Block, -1, 1, true>, -1, 1, false>; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 269 | return internal::lpNorm_selector::run(*this); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:514:74: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 514 | abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, 1, -1, false>, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, 1, -1, false>, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, 1, -1, false>, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Block, 1, -1, false>, 1, -1, false>, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Block, 1, -1, false>, 1, -1, false> >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:221:22: required from ‘static typename Eigen::NumTraits::Scalar>::Real Eigen::internal::lpNorm_selector::run(const Eigen::MatrixBase&) [with Derived = Eigen::Block, 1, -1, false>, 1, -1, false>; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 221 | return m.cwiseAbs().sum(); | ~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:269:52: required from ‘typename Eigen::NumTraits::Scalar>::Real Eigen::MatrixBase::lpNorm() const [with int p = 1; Derived = Eigen::Block, 1, -1, false>, 1, -1, false>; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 269 | return internal::lpNorm_selector::run(*this); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:514:125: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 514 | abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, true>, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1384:41: required from ‘struct Eigen::internal::evaluator_wrapper_base, -1, 1, true>, -1, 1, false> > >’ 1384 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1464:8: required from ‘struct Eigen::internal::unary_evaluator, -1, 1, true>, -1, 1, false> >, Eigen::internal::IndexBased, double>’ 1464 | struct unary_evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, -1, 1, true>, -1, 1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1, true>, -1, 1, false> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::ArrayWrapper, -1, 1, true>, -1, 1, false> >, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:379:74: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 379 | ret = ret && (mat.col(j).tail(size-j-1).array()==Scalar(0)).all(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1384:41: required from ‘struct Eigen::internal::evaluator_wrapper_base, -1, 1, false> > >’ 1384 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1464:8: required from ‘struct Eigen::internal::unary_evaluator, -1, 1, false> >, Eigen::internal::IndexBased, double>’ 1464 | struct unary_evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, -1, 1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1, false> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::ArrayWrapper, -1, 1, false> >, const Eigen::CwiseNullaryOp, Eigen::Array > >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:387:50: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 387 | ret = ret && (A21.array()==Scalar(0)).all(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:77:50: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 77 | const auto& y_scaled = to_ref((y_val - mu_val) * inv_sigma); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~ stanExports_gMAP.h:1035:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1035 | lp_accum__.add(stan::math::normal_lpdf(xi_eta, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:99:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 99 | const auto& square_y_scaled = square((y_val - mu_val) / sigma_val); stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/square.hpp:70:53: required from ‘stan::math::square, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >(const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&):: [with auto:239 = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >]’ 70 | x, [](const auto& v) { return v.array().square(); }); | ~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:53:76: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:102:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 102 | square_y_scaled / nu_val); stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:62:23: required from ‘static auto stan::math::apply_scalar_unary::type>::value, void>::type>::apply(const T&) [with F = stan::math::log1p_fun; T = Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >]’ 62 | return x.unaryExpr([](auto&& x) { | ~~~~~~~~~~~^~~~~~~~~~~~~~~ 63 | return apply_scalar_unary>::apply(x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 64 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:72:38: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:107:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 107 | T_partials_return logp = -sum((half_nu + 0.5) * log1p_val); stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:124:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 124 | (nu_val + 1) * (y_val - mu_val) stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:125:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 125 | / ((1 + square_y_scaled_over_nu) * square_sigma * nu_val)); stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:125:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 125 | / ((1 + square_y_scaled_over_nu) * square_sigma * nu_val)); stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:125:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 125 | / ((1 + square_y_scaled_over_nu) * square_sigma * nu_val)); stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:125:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 124 | (nu_val + 1) * (y_val - mu_val) 125 | / ((1 + square_y_scaled_over_nu) * square_sigma * nu_val)); stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:127:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 127 | partials<0>(ops_partials) = -deriv_y_mu; stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:136:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 136 | (nu_val + 1) * square_y_scaled_over_nu / (1 + square_y_scaled_over_nu) stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:136:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 136 | (nu_val + 1) * square_y_scaled_over_nu / (1 + square_y_scaled_over_nu) stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:137:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 136 | (nu_val + 1) * square_y_scaled_over_nu / (1 + square_y_scaled_over_nu) 137 | - 1); stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:143:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 143 | * (digamma_half_nu_plus_half - digamma_half_nu - log1p_val stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:144:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 144 | + rep_deriv / nu_val); stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:144:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 143 | * (digamma_half_nu_plus_half - digamma_half_nu - log1p_val 144 | + rep_deriv / nu_val); stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:143:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 142 | = 0.5 143 | * (digamma_half_nu_plus_half - digamma_half_nu - log1p_val 144 | + rep_deriv / nu_val); stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:147:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 147 | partials<3>(ops_partials) = rep_deriv / sigma_val; stanExports_gMAP.h:1040:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1040 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1041 | re_dist_t_df, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/as_array_or_scalar.hpp:57:50: required from ‘stan::math::as_array_or_scalar, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&>(const Eigen::MatrixWrapper, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&):: [with auto:14 = const Eigen::MatrixWrapper, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >]’ 57 | return make_holder([](auto& x) { return x.array(); }, std::forward(v)); | ~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: required by substitution of ‘template()((declval)()...))>* > auto stan::math::make_holder(const F&, Args&& ...) [with F = stan::math::as_array_or_scalar, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&>(const Eigen::MatrixWrapper, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&)::; Args = {const Eigen::MatrixWrapper, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >&}; stan::require_plain_type_t()((declval)()...))>* = ]’ 370 | decltype(std::declval()(std::declval()...))>* = nullptr> | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/as_array_or_scalar.hpp:57:21: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_gMAP.h:1047:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1047 | lp_accum__.add(stan::math::normal_lpdf(xi_eta, 1048 | ((stan::model::rvalue(beta, "beta", 1049 | stan::model::index_uni(1)) - 1050 | stan::model::rvalue(beta_raw_guess, 1051 | "beta_raw_guess", stan::model::index_uni(1), 1052 | stan::model::index_uni(1))) / 1053 | stan::model::rvalue(beta_raw_guess, 1054 | "beta_raw_guess", stan::model::index_uni(2), 1055 | stan::model::index_uni(1))), 1056 | stan::math::divide( 1057 | stan::model::rvalue(tau, "tau", 1058 | stan::model::index_multi(tau_strata_gindex)), 1059 | stan::model::rvalue(beta_raw_guess, 1060 | "beta_raw_guess", stan::model::index_uni(2), 1061 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:77:50: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = double; T_scale = Eigen::MatrixWrapper, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 77 | const auto& y_scaled = to_ref((y_val - mu_val) * inv_sigma); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~ stanExports_gMAP.h:1047:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1047 | lp_accum__.add(stan::math::normal_lpdf(xi_eta, 1048 | ((stan::model::rvalue(beta, "beta", 1049 | stan::model::index_uni(1)) - 1050 | stan::model::rvalue(beta_raw_guess, 1051 | "beta_raw_guess", stan::model::index_uni(1), 1052 | stan::model::index_uni(1))) / 1053 | stan::model::rvalue(beta_raw_guess, 1054 | "beta_raw_guess", stan::model::index_uni(2), 1055 | stan::model::index_uni(1))), 1056 | stan::math::divide( 1057 | stan::model::rvalue(tau, "tau", 1058 | stan::model::index_multi(tau_strata_gindex)), 1059 | stan::model::rvalue(beta_raw_guess, 1060 | "beta_raw_guess", stan::model::index_uni(2), 1061 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:94:50: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = double; T_scale = Eigen::MatrixWrapper, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 94 | >= 2>(inv_sigma * y_scaled); | ~~~~~~~~~~^~~~~~~~~~ stanExports_gMAP.h:1047:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1047 | lp_accum__.add(stan::math::normal_lpdf(xi_eta, 1048 | ((stan::model::rvalue(beta, "beta", 1049 | stan::model::index_uni(1)) - 1050 | stan::model::rvalue(beta_raw_guess, 1051 | "beta_raw_guess", stan::model::index_uni(1), 1052 | stan::model::index_uni(1))) / 1053 | stan::model::rvalue(beta_raw_guess, 1054 | "beta_raw_guess", stan::model::index_uni(2), 1055 | stan::model::index_uni(1))), 1056 | stan::math::divide( 1057 | stan::model::rvalue(tau, "tau", 1058 | stan::model::index_multi(tau_strata_gindex)), 1059 | stan::model::rvalue(beta_raw_guess, 1060 | "beta_raw_guess", stan::model::index_uni(2), 1061 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::Array >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::Array > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:96:35: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = double; T_scale = Eigen::MatrixWrapper, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 96 | partials<0>(ops_partials) = -scaled_diff; | ^~~~~~~~~~~~ stanExports_gMAP.h:1047:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1047 | lp_accum__.add(stan::math::normal_lpdf(xi_eta, 1048 | ((stan::model::rvalue(beta, "beta", 1049 | stan::model::index_uni(1)) - 1050 | stan::model::rvalue(beta_raw_guess, 1051 | "beta_raw_guess", stan::model::index_uni(1), 1052 | stan::model::index_uni(1))) / 1053 | stan::model::rvalue(beta_raw_guess, 1054 | "beta_raw_guess", stan::model::index_uni(2), 1055 | stan::model::index_uni(1))), 1056 | stan::math::divide( 1057 | stan::model::rvalue(tau, "tau", 1058 | stan::model::index_multi(tau_strata_gindex)), 1059 | stan::model::rvalue(beta_raw_guess, 1060 | "beta_raw_guess", stan::model::index_uni(2), 1061 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:99:45: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = double; T_scale = Eigen::MatrixWrapper, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 99 | partials<2>(ops_partials) = inv_sigma * y_scaled_sq - inv_sigma; | ~~~~~~~~~~^~~~~~~~~~~~~ stanExports_gMAP.h:1047:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1047 | lp_accum__.add(stan::math::normal_lpdf(xi_eta, 1048 | ((stan::model::rvalue(beta, "beta", 1049 | stan::model::index_uni(1)) - 1050 | stan::model::rvalue(beta_raw_guess, 1051 | "beta_raw_guess", stan::model::index_uni(1), 1052 | stan::model::index_uni(1))) / 1053 | stan::model::rvalue(beta_raw_guess, 1054 | "beta_raw_guess", stan::model::index_uni(2), 1055 | stan::model::index_uni(1))), 1056 | stan::math::divide( 1057 | stan::model::rvalue(tau, "tau", 1058 | stan::model::index_multi(tau_strata_gindex)), 1059 | stan::model::rvalue(beta_raw_guess, 1060 | "beta_raw_guess", stan::model::index_uni(2), 1061 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:99:59: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = double; T_scale = Eigen::MatrixWrapper, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 99 | partials<2>(ops_partials) = inv_sigma * y_scaled_sq - inv_sigma; | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~ stanExports_gMAP.h:1047:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1047 | lp_accum__.add(stan::math::normal_lpdf(xi_eta, 1048 | ((stan::model::rvalue(beta, "beta", 1049 | stan::model::index_uni(1)) - 1050 | stan::model::rvalue(beta_raw_guess, 1051 | "beta_raw_guess", stan::model::index_uni(1), 1052 | stan::model::index_uni(1))) / 1053 | stan::model::rvalue(beta_raw_guess, 1054 | "beta_raw_guess", stan::model::index_uni(2), 1055 | stan::model::index_uni(1))), 1056 | stan::math::divide( 1057 | stan::model::rvalue(tau, "tau", 1058 | stan::model::index_multi(tau_strata_gindex)), 1059 | stan::model::rvalue(beta_raw_guess, 1060 | "beta_raw_guess", stan::model::index_uni(2), 1061 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:99:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = double; T_scale = Eigen::MatrixWrapper, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 99 | const auto& square_y_scaled = square((y_val - mu_val) / sigma_val); stanExports_gMAP.h:1066:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1066 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1067 | re_dist_t_df, 1068 | ((stan::model::rvalue(beta, "beta", 1069 | stan::model::index_uni(1)) - 1070 | stan::model::rvalue(beta_raw_guess, 1071 | "beta_raw_guess", stan::model::index_uni(1), 1072 | stan::model::index_uni(1))) / 1073 | stan::model::rvalue(beta_raw_guess, 1074 | "beta_raw_guess", stan::model::index_uni(2), 1075 | stan::model::index_uni(1))), 1076 | stan::math::divide( 1077 | stan::model::rvalue(tau, "tau", 1078 | stan::model::index_multi(tau_strata_gindex)), 1079 | stan::model::rvalue(beta_raw_guess, 1080 | "beta_raw_guess", stan::model::index_uni(2), 1081 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/square.hpp:70:53: required from ‘stan::math::square, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >(const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >&):: [with auto:239 = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >]’ 70 | x, [](const auto& v) { return v.array().square(); }); | ~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:53:76: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_gMAP.h:1066:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1066 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1067 | re_dist_t_df, 1068 | ((stan::model::rvalue(beta, "beta", 1069 | stan::model::index_uni(1)) - 1070 | stan::model::rvalue(beta_raw_guess, 1071 | "beta_raw_guess", stan::model::index_uni(1), 1072 | stan::model::index_uni(1))) / 1073 | stan::model::rvalue(beta_raw_guess, 1074 | "beta_raw_guess", stan::model::index_uni(2), 1075 | stan::model::index_uni(1))), 1076 | stan::math::divide( 1077 | stan::model::rvalue(tau, "tau", 1078 | stan::model::index_multi(tau_strata_gindex)), 1079 | stan::model::rvalue(beta_raw_guess, 1080 | "beta_raw_guess", stan::model::index_uni(2), 1081 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:102:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = double; T_scale = Eigen::MatrixWrapper, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 102 | square_y_scaled / nu_val); stanExports_gMAP.h:1066:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1066 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1067 | re_dist_t_df, 1068 | ((stan::model::rvalue(beta, "beta", 1069 | stan::model::index_uni(1)) - 1070 | stan::model::rvalue(beta_raw_guess, 1071 | "beta_raw_guess", stan::model::index_uni(1), 1072 | stan::model::index_uni(1))) / 1073 | stan::model::rvalue(beta_raw_guess, 1074 | "beta_raw_guess", stan::model::index_uni(2), 1075 | stan::model::index_uni(1))), 1076 | stan::math::divide( 1077 | stan::model::rvalue(tau, "tau", 1078 | stan::model::index_multi(tau_strata_gindex)), 1079 | stan::model::rvalue(beta_raw_guess, 1080 | "beta_raw_guess", stan::model::index_uni(2), 1081 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:62:23: required from ‘static auto stan::math::apply_scalar_unary::type>::value, void>::type>::apply(const T&) [with F = stan::math::log1p_fun; T = Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >]’ 62 | return x.unaryExpr([](auto&& x) { | ~~~~~~~~~~~^~~~~~~~~~~~~~~ 63 | return apply_scalar_unary>::apply(x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 64 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:72:38: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_gMAP.h:1066:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1066 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1067 | re_dist_t_df, 1068 | ((stan::model::rvalue(beta, "beta", 1069 | stan::model::index_uni(1)) - 1070 | stan::model::rvalue(beta_raw_guess, 1071 | "beta_raw_guess", stan::model::index_uni(1), 1072 | stan::model::index_uni(1))) / 1073 | stan::model::rvalue(beta_raw_guess, 1074 | "beta_raw_guess", stan::model::index_uni(2), 1075 | stan::model::index_uni(1))), 1076 | stan::math::divide( 1077 | stan::model::rvalue(tau, "tau", 1078 | stan::model::index_multi(tau_strata_gindex)), 1079 | stan::model::rvalue(beta_raw_guess, 1080 | "beta_raw_guess", stan::model::index_uni(2), 1081 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:107:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = double; T_scale = Eigen::MatrixWrapper, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 107 | T_partials_return logp = -sum((half_nu + 0.5) * log1p_val); stanExports_gMAP.h:1066:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1066 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1067 | re_dist_t_df, 1068 | ((stan::model::rvalue(beta, "beta", 1069 | stan::model::index_uni(1)) - 1070 | stan::model::rvalue(beta_raw_guess, 1071 | "beta_raw_guess", stan::model::index_uni(1), 1072 | stan::model::index_uni(1))) / 1073 | stan::model::rvalue(beta_raw_guess, 1074 | "beta_raw_guess", stan::model::index_uni(2), 1075 | stan::model::index_uni(1))), 1076 | stan::math::divide( 1077 | stan::model::rvalue(tau, "tau", 1078 | stan::model::index_multi(tau_strata_gindex)), 1079 | stan::model::rvalue(beta_raw_guess, 1080 | "beta_raw_guess", stan::model::index_uni(2), 1081 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:124:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = double; T_scale = Eigen::MatrixWrapper, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 124 | (nu_val + 1) * (y_val - mu_val) stanExports_gMAP.h:1066:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1066 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1067 | re_dist_t_df, 1068 | ((stan::model::rvalue(beta, "beta", 1069 | stan::model::index_uni(1)) - 1070 | stan::model::rvalue(beta_raw_guess, 1071 | "beta_raw_guess", stan::model::index_uni(1), 1072 | stan::model::index_uni(1))) / 1073 | stan::model::rvalue(beta_raw_guess, 1074 | "beta_raw_guess", stan::model::index_uni(2), 1075 | stan::model::index_uni(1))), 1076 | stan::math::divide( 1077 | stan::model::rvalue(tau, "tau", 1078 | stan::model::index_multi(tau_strata_gindex)), 1079 | stan::model::rvalue(beta_raw_guess, 1080 | "beta_raw_guess", stan::model::index_uni(2), 1081 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:125:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = double; T_scale = Eigen::MatrixWrapper, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 125 | / ((1 + square_y_scaled_over_nu) * square_sigma * nu_val)); stanExports_gMAP.h:1066:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1066 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1067 | re_dist_t_df, 1068 | ((stan::model::rvalue(beta, "beta", 1069 | stan::model::index_uni(1)) - 1070 | stan::model::rvalue(beta_raw_guess, 1071 | "beta_raw_guess", stan::model::index_uni(1), 1072 | stan::model::index_uni(1))) / 1073 | stan::model::rvalue(beta_raw_guess, 1074 | "beta_raw_guess", stan::model::index_uni(2), 1075 | stan::model::index_uni(1))), 1076 | stan::math::divide( 1077 | stan::model::rvalue(tau, "tau", 1078 | stan::model::index_multi(tau_strata_gindex)), 1079 | stan::model::rvalue(beta_raw_guess, 1080 | "beta_raw_guess", stan::model::index_uni(2), 1081 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseUnaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseUnaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseUnaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:125:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = double; T_scale = Eigen::MatrixWrapper, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 125 | / ((1 + square_y_scaled_over_nu) * square_sigma * nu_val)); stanExports_gMAP.h:1066:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1066 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1067 | re_dist_t_df, 1068 | ((stan::model::rvalue(beta, "beta", 1069 | stan::model::index_uni(1)) - 1070 | stan::model::rvalue(beta_raw_guess, 1071 | "beta_raw_guess", stan::model::index_uni(1), 1072 | stan::model::index_uni(1))) / 1073 | stan::model::rvalue(beta_raw_guess, 1074 | "beta_raw_guess", stan::model::index_uni(2), 1075 | stan::model::index_uni(1))), 1076 | stan::math::divide( 1077 | stan::model::rvalue(tau, "tau", 1078 | stan::model::index_multi(tau_strata_gindex)), 1079 | stan::model::rvalue(beta_raw_guess, 1080 | "beta_raw_guess", stan::model::index_uni(2), 1081 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:125:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = double; T_scale = Eigen::MatrixWrapper, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 125 | / ((1 + square_y_scaled_over_nu) * square_sigma * nu_val)); stanExports_gMAP.h:1066:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1066 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1067 | re_dist_t_df, 1068 | ((stan::model::rvalue(beta, "beta", 1069 | stan::model::index_uni(1)) - 1070 | stan::model::rvalue(beta_raw_guess, 1071 | "beta_raw_guess", stan::model::index_uni(1), 1072 | stan::model::index_uni(1))) / 1073 | stan::model::rvalue(beta_raw_guess, 1074 | "beta_raw_guess", stan::model::index_uni(2), 1075 | stan::model::index_uni(1))), 1076 | stan::math::divide( 1077 | stan::model::rvalue(tau, "tau", 1078 | stan::model::index_multi(tau_strata_gindex)), 1079 | stan::model::rvalue(beta_raw_guess, 1080 | "beta_raw_guess", stan::model::index_uni(2), 1081 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:125:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = double; T_scale = Eigen::MatrixWrapper, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 124 | (nu_val + 1) * (y_val - mu_val) 125 | / ((1 + square_y_scaled_over_nu) * square_sigma * nu_val)); stanExports_gMAP.h:1066:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1066 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1067 | re_dist_t_df, 1068 | ((stan::model::rvalue(beta, "beta", 1069 | stan::model::index_uni(1)) - 1070 | stan::model::rvalue(beta_raw_guess, 1071 | "beta_raw_guess", stan::model::index_uni(1), 1072 | stan::model::index_uni(1))) / 1073 | stan::model::rvalue(beta_raw_guess, 1074 | "beta_raw_guess", stan::model::index_uni(2), 1075 | stan::model::index_uni(1))), 1076 | stan::math::divide( 1077 | stan::model::rvalue(tau, "tau", 1078 | stan::model::index_multi(tau_strata_gindex)), 1079 | stan::model::rvalue(beta_raw_guess, 1080 | "beta_raw_guess", stan::model::index_uni(2), 1081 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:127:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = double; T_scale = Eigen::MatrixWrapper, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 127 | partials<0>(ops_partials) = -deriv_y_mu; stanExports_gMAP.h:1066:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1066 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1067 | re_dist_t_df, 1068 | ((stan::model::rvalue(beta, "beta", 1069 | stan::model::index_uni(1)) - 1070 | stan::model::rvalue(beta_raw_guess, 1071 | "beta_raw_guess", stan::model::index_uni(1), 1072 | stan::model::index_uni(1))) / 1073 | stan::model::rvalue(beta_raw_guess, 1074 | "beta_raw_guess", stan::model::index_uni(2), 1075 | stan::model::index_uni(1))), 1076 | stan::math::divide( 1077 | stan::model::rvalue(tau, "tau", 1078 | stan::model::index_multi(tau_strata_gindex)), 1079 | stan::model::rvalue(beta_raw_guess, 1080 | "beta_raw_guess", stan::model::index_uni(2), 1081 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:136:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = double; T_scale = Eigen::MatrixWrapper, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 136 | (nu_val + 1) * square_y_scaled_over_nu / (1 + square_y_scaled_over_nu) stanExports_gMAP.h:1066:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1066 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1067 | re_dist_t_df, 1068 | ((stan::model::rvalue(beta, "beta", 1069 | stan::model::index_uni(1)) - 1070 | stan::model::rvalue(beta_raw_guess, 1071 | "beta_raw_guess", stan::model::index_uni(1), 1072 | stan::model::index_uni(1))) / 1073 | stan::model::rvalue(beta_raw_guess, 1074 | "beta_raw_guess", stan::model::index_uni(2), 1075 | stan::model::index_uni(1))), 1076 | stan::math::divide( 1077 | stan::model::rvalue(tau, "tau", 1078 | stan::model::index_multi(tau_strata_gindex)), 1079 | stan::model::rvalue(beta_raw_guess, 1080 | "beta_raw_guess", stan::model::index_uni(2), 1081 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:136:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = double; T_scale = Eigen::MatrixWrapper, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 136 | (nu_val + 1) * square_y_scaled_over_nu / (1 + square_y_scaled_over_nu) stanExports_gMAP.h:1066:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1066 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1067 | re_dist_t_df, 1068 | ((stan::model::rvalue(beta, "beta", 1069 | stan::model::index_uni(1)) - 1070 | stan::model::rvalue(beta_raw_guess, 1071 | "beta_raw_guess", stan::model::index_uni(1), 1072 | stan::model::index_uni(1))) / 1073 | stan::model::rvalue(beta_raw_guess, 1074 | "beta_raw_guess", stan::model::index_uni(2), 1075 | stan::model::index_uni(1))), 1076 | stan::math::divide( 1077 | stan::model::rvalue(tau, "tau", 1078 | stan::model::index_multi(tau_strata_gindex)), 1079 | stan::model::rvalue(beta_raw_guess, 1080 | "beta_raw_guess", stan::model::index_uni(2), 1081 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:137:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = double; T_scale = Eigen::MatrixWrapper, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 136 | (nu_val + 1) * square_y_scaled_over_nu / (1 + square_y_scaled_over_nu) 137 | - 1); stanExports_gMAP.h:1066:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1066 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1067 | re_dist_t_df, 1068 | ((stan::model::rvalue(beta, "beta", 1069 | stan::model::index_uni(1)) - 1070 | stan::model::rvalue(beta_raw_guess, 1071 | "beta_raw_guess", stan::model::index_uni(1), 1072 | stan::model::index_uni(1))) / 1073 | stan::model::rvalue(beta_raw_guess, 1074 | "beta_raw_guess", stan::model::index_uni(2), 1075 | stan::model::index_uni(1))), 1076 | stan::math::divide( 1077 | stan::model::rvalue(tau, "tau", 1078 | stan::model::index_multi(tau_strata_gindex)), 1079 | stan::model::rvalue(beta_raw_guess, 1080 | "beta_raw_guess", stan::model::index_uni(2), 1081 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:143:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = double; T_scale = Eigen::MatrixWrapper, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 143 | * (digamma_half_nu_plus_half - digamma_half_nu - log1p_val stanExports_gMAP.h:1066:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1066 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1067 | re_dist_t_df, 1068 | ((stan::model::rvalue(beta, "beta", 1069 | stan::model::index_uni(1)) - 1070 | stan::model::rvalue(beta_raw_guess, 1071 | "beta_raw_guess", stan::model::index_uni(1), 1072 | stan::model::index_uni(1))) / 1073 | stan::model::rvalue(beta_raw_guess, 1074 | "beta_raw_guess", stan::model::index_uni(2), 1075 | stan::model::index_uni(1))), 1076 | stan::math::divide( 1077 | stan::model::rvalue(tau, "tau", 1078 | stan::model::index_multi(tau_strata_gindex)), 1079 | stan::model::rvalue(beta_raw_guess, 1080 | "beta_raw_guess", stan::model::index_uni(2), 1081 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:144:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = double; T_scale = Eigen::MatrixWrapper, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 144 | + rep_deriv / nu_val); stanExports_gMAP.h:1066:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1066 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1067 | re_dist_t_df, 1068 | ((stan::model::rvalue(beta, "beta", 1069 | stan::model::index_uni(1)) - 1070 | stan::model::rvalue(beta_raw_guess, 1071 | "beta_raw_guess", stan::model::index_uni(1), 1072 | stan::model::index_uni(1))) / 1073 | stan::model::rvalue(beta_raw_guess, 1074 | "beta_raw_guess", stan::model::index_uni(2), 1075 | stan::model::index_uni(1))), 1076 | stan::math::divide( 1077 | stan::model::rvalue(tau, "tau", 1078 | stan::model::index_multi(tau_strata_gindex)), 1079 | stan::model::rvalue(beta_raw_guess, 1080 | "beta_raw_guess", stan::model::index_uni(2), 1081 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:144:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = double; T_scale = Eigen::MatrixWrapper, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 143 | * (digamma_half_nu_plus_half - digamma_half_nu - log1p_val 144 | + rep_deriv / nu_val); stanExports_gMAP.h:1066:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1066 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1067 | re_dist_t_df, 1068 | ((stan::model::rvalue(beta, "beta", 1069 | stan::model::index_uni(1)) - 1070 | stan::model::rvalue(beta_raw_guess, 1071 | "beta_raw_guess", stan::model::index_uni(1), 1072 | stan::model::index_uni(1))) / 1073 | stan::model::rvalue(beta_raw_guess, 1074 | "beta_raw_guess", stan::model::index_uni(2), 1075 | stan::model::index_uni(1))), 1076 | stan::math::divide( 1077 | stan::model::rvalue(tau, "tau", 1078 | stan::model::index_multi(tau_strata_gindex)), 1079 | stan::model::rvalue(beta_raw_guess, 1080 | "beta_raw_guess", stan::model::index_uni(2), 1081 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, void>::apply(const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >&)::, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:143:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = double; T_scale = Eigen::MatrixWrapper, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 142 | = 0.5 143 | * (digamma_half_nu_plus_half - digamma_half_nu - log1p_val 144 | + rep_deriv / nu_val); stanExports_gMAP.h:1066:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1066 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1067 | re_dist_t_df, 1068 | ((stan::model::rvalue(beta, "beta", 1069 | stan::model::index_uni(1)) - 1070 | stan::model::rvalue(beta_raw_guess, 1071 | "beta_raw_guess", stan::model::index_uni(1), 1072 | stan::model::index_uni(1))) / 1073 | stan::model::rvalue(beta_raw_guess, 1074 | "beta_raw_guess", stan::model::index_uni(2), 1075 | stan::model::index_uni(1))), 1076 | stan::math::divide( 1077 | stan::model::rvalue(tau, "tau", 1078 | stan::model::index_multi(tau_strata_gindex)), 1079 | stan::model::rvalue(beta_raw_guess, 1080 | "beta_raw_guess", stan::model::index_uni(2), 1081 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:147:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_dof = double; T_loc = double; T_scale = Eigen::MatrixWrapper, const Eigen::ArrayWrapper&>(Eigen::Matrix&, const char*, const index_multi&)::::, Eigen::Matrix > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 147 | partials<3>(ops_partials) = rep_deriv / sigma_val; stanExports_gMAP.h:1066:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1066 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1067 | re_dist_t_df, 1068 | ((stan::model::rvalue(beta, "beta", 1069 | stan::model::index_uni(1)) - 1070 | stan::model::rvalue(beta_raw_guess, 1071 | "beta_raw_guess", stan::model::index_uni(1), 1072 | stan::model::index_uni(1))) / 1073 | stan::model::rvalue(beta_raw_guess, 1074 | "beta_raw_guess", stan::model::index_uni(2), 1075 | stan::model::index_uni(1))), 1076 | stan::math::divide( 1077 | stan::model::rvalue(tau, "tau", 1078 | stan::model::index_multi(tau_strata_gindex)), 1079 | stan::model::rvalue(beta_raw_guess, 1080 | "beta_raw_guess", stan::model::index_uni(2), 1081 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:77:50: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 77 | const auto& y_scaled = to_ref((y_val - mu_val) * inv_sigma); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~ stanExports_gMAP.h:1085:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1085 | lp_accum__.add(stan::math::normal_lpdf(beta, 1086 | stan::model::rvalue(beta_prior_stan, 1087 | "beta_prior_stan", stan::model::index_uni(1)), 1088 | stan::model::rvalue(beta_prior_stan, 1089 | "beta_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:94:50: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 94 | >= 2>(inv_sigma * y_scaled); | ~~~~~~~~~~^~~~~~~~~~ stanExports_gMAP.h:1085:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1085 | lp_accum__.add(stan::math::normal_lpdf(beta, 1086 | stan::model::rvalue(beta_prior_stan, 1087 | "beta_prior_stan", stan::model::index_uni(1)), 1088 | stan::model::rvalue(beta_prior_stan, 1089 | "beta_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::Array >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::Array > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:96:35: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 96 | partials<0>(ops_partials) = -scaled_diff; | ^~~~~~~~~~~~ stanExports_gMAP.h:1085:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1085 | lp_accum__.add(stan::math::normal_lpdf(beta, 1086 | stan::model::rvalue(beta_prior_stan, 1087 | "beta_prior_stan", stan::model::index_uni(1)), 1088 | stan::model::rvalue(beta_prior_stan, 1089 | "beta_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:99:45: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 99 | partials<2>(ops_partials) = inv_sigma * y_scaled_sq - inv_sigma; | ~~~~~~~~~~^~~~~~~~~~~~~ stanExports_gMAP.h:1085:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1085 | lp_accum__.add(stan::math::normal_lpdf(beta, 1086 | stan::model::rvalue(beta_prior_stan, 1087 | "beta_prior_stan", stan::model::index_uni(1)), 1088 | stan::model::rvalue(beta_prior_stan, 1089 | "beta_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:99:59: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 99 | partials<2>(ops_partials) = inv_sigma * y_scaled_sq - inv_sigma; | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~ stanExports_gMAP.h:1085:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1085 | lp_accum__.add(stan::math::normal_lpdf(beta, 1086 | stan::model::rvalue(beta_prior_stan, 1087 | "beta_prior_stan", stan::model::index_uni(1)), 1088 | stan::model::rvalue(beta_prior_stan, 1089 | "beta_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:77:50: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = int; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 77 | const auto& y_scaled = to_ref((y_val - mu_val) * inv_sigma); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~ stanExports_gMAP.h:1098:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1098 | lp_accum__.add(stan::math::normal_lpdf(tau, 0, 1099 | stan::model::rvalue(tau_prior_stan, 1100 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:109:26: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_shape = Eigen::Matrix; T_inv_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 109 | logp -= sum(beta_val * y_val) * N / max_size(beta, y); | ~~~~~~~~~^~~~~~~ stanExports_gMAP.h:1123:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1123 | lp_accum__.add(stan::math::gamma_lpdf(tau, 1124 | stan::model::rvalue(tau_prior_stan, 1125 | "tau_prior_stan", stan::model::index_uni(1)), 1126 | stan::model::rvalue(tau_prior_stan, 1127 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:113:49: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_shape = Eigen::Matrix; T_inv_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 113 | partials<0>(ops_partials) = (alpha_val - 1) / y_val - beta_val; | ~~~~~~~~~~~~~~~~^~~~~~~ stanExports_gMAP.h:1123:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1123 | lp_accum__.add(stan::math::gamma_lpdf(tau, 1124 | stan::model::rvalue(tau_prior_stan, 1125 | "tau_prior_stan", stan::model::index_uni(1)), 1126 | stan::model::rvalue(tau_prior_stan, 1127 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::ArrayWrapper > >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::ArrayWrapper > >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::ArrayWrapper > >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::ArrayWrapper > >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::ArrayWrapper > >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:113:57: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_shape = Eigen::Matrix; T_inv_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 113 | partials<0>(ops_partials) = (alpha_val - 1) / y_val - beta_val; | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~ stanExports_gMAP.h:1123:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1123 | lp_accum__.add(stan::math::gamma_lpdf(tau, 1124 | stan::model::rvalue(tau_prior_stan, 1125 | "tau_prior_stan", stan::model::index_uni(1)), 1126 | stan::model::rvalue(tau_prior_stan, 1127 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:116:54: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_shape = Eigen::Matrix; T_inv_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 116 | partials<2>(ops_partials) = alpha_val / beta_val - y_val; | ~~~~~~~~~~~~~~~~~~~~~^~~~~~~ stanExports_gMAP.h:1123:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1123 | lp_accum__.add(stan::math::gamma_lpdf(tau, 1124 | stan::model::rvalue(tau_prior_stan, 1125 | "tau_prior_stan", stan::model::index_uni(1)), 1126 | stan::model::rvalue(tau_prior_stan, 1127 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/inv_gamma_lpdf.hpp:102:26: required from ‘stan::return_type_t stan::math::inv_gamma_lpdf(const T_y&, const T_shape&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_shape = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 102 | logp -= sum(beta_val * inv_y) * N / max_size(y, beta); | ~~~~~~~~~^~~~~~~ stanExports_gMAP.h:1132:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1132 | lp_accum__.add(stan::math::inv_gamma_lpdf(tau, 1133 | stan::model::rvalue(tau_prior_stan, 1134 | "tau_prior_stan", stan::model::index_uni(1)), 1135 | stan::model::rvalue(tau_prior_stan, 1136 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/inv_gamma_lpdf.hpp:105:31: required from ‘stan::return_type_t stan::math::inv_gamma_lpdf(const T_y&, const T_shape&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_shape = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 105 | = (beta_val * inv_y - alpha_val - 1) * inv_y; | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~ stanExports_gMAP.h:1132:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1132 | lp_accum__.add(stan::math::inv_gamma_lpdf(tau, 1133 | stan::model::rvalue(tau_prior_stan, 1134 | "tau_prior_stan", stan::model::index_uni(1)), 1135 | stan::model::rvalue(tau_prior_stan, 1136 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::ArrayWrapper > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::ArrayWrapper > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::ArrayWrapper > >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::ArrayWrapper > >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::ArrayWrapper > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/inv_gamma_lpdf.hpp:105:43: required from ‘stan::return_type_t stan::math::inv_gamma_lpdf(const T_y&, const T_shape&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_shape = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 105 | = (beta_val * inv_y - alpha_val - 1) * inv_y; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~ stanExports_gMAP.h:1132:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1132 | lp_accum__.add(stan::math::inv_gamma_lpdf(tau, 1133 | stan::model::rvalue(tau_prior_stan, 1134 | "tau_prior_stan", stan::model::index_uni(1)), 1135 | stan::model::rvalue(tau_prior_stan, 1136 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::ArrayWrapper > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::ArrayWrapper > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::ArrayWrapper > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::ArrayWrapper > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::ArrayWrapper > >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/inv_gamma_lpdf.hpp:105:48: required from ‘stan::return_type_t stan::math::inv_gamma_lpdf(const T_y&, const T_shape&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_shape = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 105 | = (beta_val * inv_y - alpha_val - 1) * inv_y; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~ stanExports_gMAP.h:1132:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1132 | lp_accum__.add(stan::math::inv_gamma_lpdf(tau, 1133 | stan::model::rvalue(tau_prior_stan, 1134 | "tau_prior_stan", stan::model::index_uni(1)), 1135 | stan::model::rvalue(tau_prior_stan, 1136 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/inv_gamma_lpdf.hpp:108:56: required from ‘stan::return_type_t stan::math::inv_gamma_lpdf(const T_y&, const T_shape&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_shape = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 108 | partials<2>(ops_partials) = alpha_val / beta_val - inv_y; | ~~~~~~~~~~~~~~~~~~~~~^~~~~~~ stanExports_gMAP.h:1132:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1132 | lp_accum__.add(stan::math::inv_gamma_lpdf(tau, 1133 | stan::model::rvalue(tau_prior_stan, 1134 | "tau_prior_stan", stan::model::index_uni(1)), 1135 | stan::model::rvalue(tau_prior_stan, 1136 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/lognormal_lpdf.hpp:74:63: required from ‘stan::return_type_t stan::math::lognormal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 74 | = N * NEG_LOG_SQRT_TWO_PI - 0.5 * sum(square(logy_m_mu) * inv_sigma_sq); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ stanExports_gMAP.h:1141:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1141 | lp_accum__.add(stan::math::lognormal_lpdf(tau, 1142 | stan::model::rvalue(tau_prior_stan, 1143 | "tau_prior_stan", stan::model::index_uni(1)), 1144 | stan::model::rvalue(tau_prior_stan, 1145 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/lognormal_lpdf.hpp:87:37: required from ‘stan::return_type_t stan::math::lognormal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 87 | >= 2>(logy_m_mu * inv_sigma_sq); | ~~~~~~~~~~^~~~~~~~~~~~~~ stanExports_gMAP.h:1141:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1141 | lp_accum__.add(stan::math::lognormal_lpdf(tau, 1142 | stan::model::rvalue(tau_prior_stan, 1143 | "tau_prior_stan", stan::model::index_uni(1)), 1144 | stan::model::rvalue(tau_prior_stan, 1145 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/lognormal_lpdf.hpp:89:39: required from ‘stan::return_type_t stan::math::lognormal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 89 | partials<0>(ops_partials) = -(1 + logy_m_mu_div_sigma) / y_val; | ~~~^~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1141:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1141 | lp_accum__.add(stan::math::lognormal_lpdf(tau, 1142 | stan::model::rvalue(tau_prior_stan, 1143 | "tau_prior_stan", stan::model::index_uni(1)), 1144 | stan::model::rvalue(tau_prior_stan, 1145 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/lognormal_lpdf.hpp:89:35: required from ‘stan::return_type_t stan::math::lognormal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 89 | partials<0>(ops_partials) = -(1 + logy_m_mu_div_sigma) / y_val; | ^~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1141:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1141 | lp_accum__.add(stan::math::lognormal_lpdf(tau, 1142 | stan::model::rvalue(tau_prior_stan, 1143 | "tau_prior_stan", stan::model::index_uni(1)), 1144 | stan::model::rvalue(tau_prior_stan, 1145 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > > >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > > >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > > >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > > >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > > >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/lognormal_lpdf.hpp:89:62: required from ‘stan::return_type_t stan::math::lognormal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 89 | partials<0>(ops_partials) = -(1 + logy_m_mu_div_sigma) / y_val; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~ stanExports_gMAP.h:1141:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1141 | lp_accum__.add(stan::math::lognormal_lpdf(tau, 1142 | stan::model::rvalue(tau_prior_stan, 1143 | "tau_prior_stan", stan::model::index_uni(1)), 1144 | stan::model::rvalue(tau_prior_stan, 1145 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/lognormal_lpdf.hpp:96:34: required from ‘stan::return_type_t stan::math::lognormal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 96 | = (logy_m_mu_div_sigma * logy_m_mu - 1) * inv_sigma; | ~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~ stanExports_gMAP.h:1141:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1141 | lp_accum__.add(stan::math::lognormal_lpdf(tau, 1142 | stan::model::rvalue(tau_prior_stan, 1143 | "tau_prior_stan", stan::model::index_uni(1)), 1144 | stan::model::rvalue(tau_prior_stan, 1145 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/lognormal_lpdf.hpp:96:46: required from ‘stan::return_type_t stan::math::lognormal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 96 | = (logy_m_mu_div_sigma * logy_m_mu - 1) * inv_sigma; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~ stanExports_gMAP.h:1141:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1141 | lp_accum__.add(stan::math::lognormal_lpdf(tau, 1142 | stan::model::rvalue(tau_prior_stan, 1143 | "tau_prior_stan", stan::model::index_uni(1)), 1144 | stan::model::rvalue(tau_prior_stan, 1145 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, const Eigen::Array >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/lognormal_lpdf.hpp:96:51: required from ‘stan::return_type_t stan::math::lognormal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 96 | = (logy_m_mu_div_sigma * logy_m_mu - 1) * inv_sigma; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~ stanExports_gMAP.h:1141:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1141 | lp_accum__.add(stan::math::lognormal_lpdf(tau, 1142 | stan::model::rvalue(tau_prior_stan, 1143 | "tau_prior_stan", stan::model::index_uni(1)), 1144 | stan::model::rvalue(tau_prior_stan, 1145 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/square.hpp:70:53: required from ‘stan::math::square, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >(const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >&):: [with auto:239 = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >]’ 70 | x, [](const auto& v) { return v.array().square(); }); | ~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:53:76: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_gMAP.h:1150:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1150 | lp_accum__.add(stan::math::cauchy_lpdf(tau, 1151 | stan::model::rvalue(tau_prior_stan, 1152 | "tau_prior_stan", stan::model::index_uni(1)), 1153 | stan::model::rvalue(tau_prior_stan, 1154 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >&)::, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >&)::, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >&)::, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >&)::, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >&)::, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:62:23: required from ‘static auto stan::math::apply_scalar_unary::type>::value, void>::type>::apply(const T&) [with F = stan::math::log1p_fun; T = Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >]’ 62 | return x.unaryExpr([](auto&& x) { | ~~~~~~~~~~~^~~~~~~~~~~~~~~ 63 | return apply_scalar_unary>::apply(x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 64 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:72:38: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_gMAP.h:1150:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1150 | lp_accum__.add(stan::math::cauchy_lpdf(tau, 1151 | stan::model::rvalue(tau_prior_stan, 1152 | "tau_prior_stan", stan::model::index_uni(1)), 1153 | stan::model::rvalue(tau_prior_stan, 1154 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/square.hpp:70:53: required from ‘stan::math::square, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >(const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >&):: [with auto:239 = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >]’ 70 | x, [](const auto& v) { return v.array().square(); }); | ~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:53:76: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_gMAP.h:1150:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1150 | lp_accum__.add(stan::math::cauchy_lpdf(tau, 1151 | stan::model::rvalue(tau_prior_stan, 1152 | "tau_prior_stan", stan::model::index_uni(1)), 1153 | stan::model::rvalue(tau_prior_stan, 1154 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/cauchy_lpdf.hpp:97:13: required from ‘stan::return_type_t stan::math::cauchy_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 97 | 2 * y_minus_mu / (sigma_squared + y_minus_mu_squared)); | ~~^~~~~~~~~~~~ stanExports_gMAP.h:1150:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1150 | lp_accum__.add(stan::math::cauchy_lpdf(tau, 1151 | stan::model::rvalue(tau_prior_stan, 1152 | "tau_prior_stan", stan::model::index_uni(1)), 1153 | stan::model::rvalue(tau_prior_stan, 1154 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/cauchy_lpdf.hpp:97:43: required from ‘stan::return_type_t stan::math::cauchy_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 97 | 2 * y_minus_mu / (sigma_squared + y_minus_mu_squared)); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1150:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1150 | lp_accum__.add(stan::math::cauchy_lpdf(tau, 1151 | stan::model::rvalue(tau_prior_stan, 1152 | "tau_prior_stan", stan::model::index_uni(1)), 1153 | stan::model::rvalue(tau_prior_stan, 1154 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/cauchy_lpdf.hpp:97:26: required from ‘stan::return_type_t stan::math::cauchy_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 97 | 2 * y_minus_mu / (sigma_squared + y_minus_mu_squared)); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1150:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1150 | lp_accum__.add(stan::math::cauchy_lpdf(tau, 1151 | stan::model::rvalue(tau_prior_stan, 1152 | "tau_prior_stan", stan::model::index_uni(1)), 1153 | stan::model::rvalue(tau_prior_stan, 1154 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/cauchy_lpdf.hpp:100:39: required from ‘stan::return_type_t stan::math::cauchy_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 100 | partials<0>(ops_partials) = -mu_deriv; | ^~~~~~~~~ stanExports_gMAP.h:1150:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1150 | lp_accum__.add(stan::math::cauchy_lpdf(tau, 1151 | stan::model::rvalue(tau_prior_stan, 1152 | "tau_prior_stan", stan::model::index_uni(1)), 1153 | stan::model::rvalue(tau_prior_stan, 1154 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/cauchy_lpdf.hpp:110:55: required from ‘stan::return_type_t stan::math::cauchy_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 110 | partials<2>(ops_partials) = (y_minus_mu_squared - sigma_squared) | ~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ stanExports_gMAP.h:1150:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1150 | lp_accum__.add(stan::math::cauchy_lpdf(tau, 1151 | stan::model::rvalue(tau_prior_stan, 1152 | "tau_prior_stan", stan::model::index_uni(1)), 1153 | stan::model::rvalue(tau_prior_stan, 1154 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/cauchy_lpdf.hpp:111:35: required from ‘stan::return_type_t stan::math::cauchy_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 110 | partials<2>(ops_partials) = (y_minus_mu_squared - sigma_squared) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 111 | * inv_sigma | ^~~~~~~~~~~ stanExports_gMAP.h:1150:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1150 | lp_accum__.add(stan::math::cauchy_lpdf(tau, 1151 | stan::model::rvalue(tau_prior_stan, 1152 | "tau_prior_stan", stan::model::index_uni(1)), 1153 | stan::model::rvalue(tau_prior_stan, 1154 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/cauchy_lpdf.hpp:112:35: required from ‘stan::return_type_t stan::math::cauchy_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 110 | partials<2>(ops_partials) = (y_minus_mu_squared - sigma_squared) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 111 | * inv_sigma | ~~~~~~~~~~~ 112 | / (sigma_squared + y_minus_mu_squared); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1150:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1150 | lp_accum__.add(stan::math::cauchy_lpdf(tau, 1151 | stan::model::rvalue(tau_prior_stan, 1152 | "tau_prior_stan", stan::model::index_uni(1)), 1153 | stan::model::rvalue(tau_prior_stan, 1154 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/exponential_lpdf.hpp:100:47: required from ‘stan::return_type_t stan::math::exponential_lpdf(const T_y&, const T_inv_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_inv_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 100 | partials<1>(ops_partials) = inv(beta_val) - y_val; | ~~~~~~~~~~~~~~^~~~~~~ stanExports_gMAP.h:1159:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1159 | lp_accum__.add(stan::math::exponential_lpdf(tau, 1160 | stan::model::rvalue(tau_prior_stan, 1161 | "tau_prior_stan", stan::model::index_uni(1)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:77:40: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Map, 0, Eigen::Stride<0, 0> >; T_loc = Eigen::Matrix; T_scale = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 77 | const auto& y_scaled = to_ref((y_val - mu_val) * inv_sigma); | ~~~~~~~^~~~~~~~~ stanExports_gMAP.h:1176:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1176 | lp_accum__.add(stan::math::normal_lpdf(y, theta, y_se)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:77:50: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Map, 0, Eigen::Stride<0, 0> >; T_loc = Eigen::Matrix; T_scale = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 77 | const auto& y_scaled = to_ref((y_val - mu_val) * inv_sigma); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~ stanExports_gMAP.h:1176:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1176 | lp_accum__.add(stan::math::normal_lpdf(y, theta, y_se)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:94:50: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Map, 0, Eigen::Stride<0, 0> >; T_loc = Eigen::Matrix; T_scale = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 94 | >= 2>(inv_sigma * y_scaled); | ~~~~~~~~~~^~~~~~~~~~ stanExports_gMAP.h:1176:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1176 | lp_accum__.add(stan::math::normal_lpdf(y, theta, y_se)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::Array > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:96:35: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Map, 0, Eigen::Stride<0, 0> >; T_loc = Eigen::Matrix; T_scale = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 96 | partials<0>(ops_partials) = -scaled_diff; | ^~~~~~~~~~~~ stanExports_gMAP.h:1176:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1176 | lp_accum__.add(stan::math::normal_lpdf(y, theta, y_se)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:99:45: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Map, 0, Eigen::Stride<0, 0> >; T_loc = Eigen::Matrix; T_scale = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 99 | partials<2>(ops_partials) = inv_sigma * y_scaled_sq - inv_sigma; | ~~~~~~~~~~^~~~~~~~~~~~~ stanExports_gMAP.h:1176:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1176 | lp_accum__.add(stan::math::normal_lpdf(y, theta, y_se)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:99:59: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Map, 0, Eigen::Stride<0, 0> >; T_loc = Eigen::Matrix; T_scale = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 99 | partials<2>(ops_partials) = inv_sigma * y_scaled_sq - inv_sigma; | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~ stanExports_gMAP.h:1176:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1176 | lp_accum__.add(stan::math::normal_lpdf(y, theta, y_se)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:62:23: required from ‘static auto stan::math::apply_scalar_unary::type>::value, void>::type>::apply(const T&) [with F = stan::math::inv_logit_fun; T = Eigen::ArrayWrapper >]’ 62 | return x.unaryExpr([](auto&& x) { | ~~~~~~~~~~~^~~~~~~~~~~~~~~ 63 | return apply_scalar_unary>::apply(x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 64 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:72:38: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_gMAP.h:1181:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1181 | lp_accum__.add(stan::math::binomial_logit_lpmf(r, r_n, 1182 | theta)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:62:23: required from ‘static auto stan::math::apply_scalar_unary::type>::value, void>::type>::apply(const T&) [with F = stan::math::inv_logit_fun; T = Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >]’ 62 | return x.unaryExpr([](auto&& x) { | ~~~~~~~~~~~^~~~~~~~~~~~~~~ 63 | return apply_scalar_unary>::apply(x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 64 | }); | ~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_scalar_unary.hpp:72:38: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_gMAP.h:1181:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1181 | lp_accum__.add(stan::math::binomial_logit_lpmf(r, r_n, 1182 | theta)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:66:50: required from ‘stan::math::log >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > >(const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > >&):: [with auto:170 = Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > >]’ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:53:76: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_gMAP.h:1181:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1181 | lp_accum__.add(stan::math::binomial_logit_lpmf(r, r_n, 1182 | theta)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/log.hpp:66:50: required from ‘stan::math::log, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >&):: [with auto:170 = Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >]’ 66 | x, [](const auto& v) { return v.array().log(); }); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/functor/apply_vector_unary.hpp:53:76: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_gMAP.h:1181:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1181 | lp_accum__.add(stan::math::binomial_logit_lpmf(r, r_n, 1182 | theta)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/binomial_logit_lpmf.hpp:77:38: required from ‘stan::return_type_t stan::math::binomial_logit_lpmf(const T_n&, const T_N&, const T_prob&) [with bool propto = false; T_n = std::vector; T_N = std::vector; T_prob = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 77 | T_partials_return logp = sum(n_val * log_inv_logit_alpha | ~~~~~~^~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1181:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1181 | lp_accum__.add(stan::math::binomial_logit_lpmf(r, r_n, 1182 | theta)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/binomial_logit_lpmf.hpp:78:50: required from ‘stan::return_type_t stan::math::binomial_logit_lpmf(const T_n&, const T_N&, const T_prob&) [with bool propto = false; T_n = std::vector; T_N = std::vector; T_prob = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 78 | + (N_val - n_val) * log_inv_logit_neg_alpha); | ~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1181:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1181 | lp_accum__.add(stan::math::binomial_logit_lpmf(r, r_n, 1182 | theta)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/binomial_logit_lpmf.hpp:78:32: required from ‘stan::return_type_t stan::math::binomial_logit_lpmf(const T_n&, const T_N&, const T_prob&) [with bool propto = false; T_n = std::vector; T_N = std::vector; T_prob = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 77 | T_partials_return logp = sum(n_val * log_inv_logit_alpha | ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 78 | + (N_val - n_val) * log_inv_logit_neg_alpha); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1181:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1181 | lp_accum__.add(stan::math::binomial_logit_lpmf(r, r_n, 1182 | theta)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/binomial_logit_lpmf.hpp:88:19: required from ‘stan::return_type_t stan::math::binomial_logit_lpmf(const T_n&, const T_N&, const T_prob&) [with bool propto = false; T_n = std::vector; T_N = std::vector; T_prob = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 88 | = n_val * inv_logit_neg_alpha - (N_val - n_val) * inv_logit_alpha; | ~~~~~~^~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1181:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1181 | lp_accum__.add(stan::math::binomial_logit_lpmf(r, r_n, 1182 | theta)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/binomial_logit_lpmf.hpp:88:59: required from ‘stan::return_type_t stan::math::binomial_logit_lpmf(const T_n&, const T_N&, const T_prob&) [with bool propto = false; T_n = std::vector; T_N = std::vector; T_prob = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 88 | = n_val * inv_logit_neg_alpha - (N_val - n_val) * inv_logit_alpha; | ~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1181:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1181 | lp_accum__.add(stan::math::binomial_logit_lpmf(r, r_n, 1182 | theta)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/binomial_logit_lpmf.hpp:88:41: required from ‘stan::return_type_t stan::math::binomial_logit_lpmf(const T_n&, const T_N&, const T_prob&) [with bool propto = false; T_n = std::vector; T_N = std::vector; T_prob = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 88 | = n_val * inv_logit_neg_alpha - (N_val - n_val) * inv_logit_alpha; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1181:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1181 | lp_accum__.add(stan::math::binomial_logit_lpmf(r, r_n, 1182 | theta)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/binomial_logit_lpmf.hpp:92:17: required from ‘stan::return_type_t stan::math::binomial_logit_lpmf(const T_n&, const T_N&, const T_prob&) [with bool propto = false; T_n = std::vector; T_N = std::vector; T_prob = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 92 | sum_n * inv_logit_neg_alpha | ~~~~~~^~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1181:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1181 | lp_accum__.add(stan::math::binomial_logit_lpmf(r, r_n, 1182 | theta)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/binomial_logit_lpmf.hpp:94:17: required from ‘stan::return_type_t stan::math::binomial_logit_lpmf(const T_n&, const T_N&, const T_prob&) [with bool propto = false; T_n = std::vector; T_N = std::vector; T_prob = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 93 | - (sum(N_val) * maximum_size / math::size(N) - sum_n) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 94 | * inv_logit_alpha); | ^~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1181:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1181 | lp_accum__.add(stan::math::binomial_logit_lpmf(r, r_n, 1182 | theta)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, void>::apply(const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >&)::, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/binomial_logit_lpmf.hpp:93:11: required from ‘stan::return_type_t stan::math::binomial_logit_lpmf(const T_n&, const T_N&, const T_prob&) [with bool propto = false; T_n = std::vector; T_N = std::vector; T_prob = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 92 | sum_n * inv_logit_neg_alpha | ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 93 | - (sum(N_val) * maximum_size / math::size(N) - sum_n) | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 94 | * inv_logit_alpha); | ~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1181:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1181 | lp_accum__.add(stan::math::binomial_logit_lpmf(r, r_n, 1182 | theta)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayWrapper.h:42:7: required from ‘class Eigen::ArrayWrapper, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix > >’ 42 | class ArrayWrapper : public ArrayBase > | ^~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/as_array_or_scalar.hpp:57:50: required from ‘stan::math::as_array_or_scalar, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >&>(const Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >&):: [with auto:14 = const Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >]’ 57 | return make_holder([](auto& x) { return x.array(); }, std::forward(v)); | ~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/meta/holder.hpp:370:41: required by substitution of ‘template()((declval)()...))>* > auto stan::math::make_holder(const F&, Args&& ...) [with F = stan::math::as_array_or_scalar, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >&>(const Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >&)::; Args = {const Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >&}; stan::require_plain_type_t()((declval)()...))>* = ]’ 370 | decltype(std::declval()(std::declval()...))>* = nullptr> | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/as_array_or_scalar.hpp:57:21: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] stanExports_gMAP.h:1187:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1187 | lp_accum__.add(stan::math::poisson_log_lpmf(count, 1188 | stan::math::add(log_offset, theta))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::Array > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::Array > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::Array >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, const Eigen::Array > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/poisson_log_lpmf.hpp:83:0: required from ‘stan::return_type_t stan::math::poisson_log_lpmf(const T_n&, const T_log_rate&) [with bool propto = false; T_n = std::vector; T_log_rate = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 83 | partials<0>(ops_partials) = n_val - exp_alpha; stanExports_gMAP.h:1187:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1187 | lp_accum__.add(stan::math::poisson_log_lpmf(count, 1188 | stan::math::add(log_offset, theta))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:37:44: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Matrix; U = Eigen::Matrix; bool NeedToTranspose = false; ResScalar = double]’ 37 | return a.template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Matrix; Derived = Eigen::Matrix; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:199:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 199 | * CubicInterp(_gk_1.dot(_pk_1), _alphak_1, _fk - _fk_1, /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:103:7: required from ‘class Eigen::CwiseUnaryViewImpl, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >::val_Op, Eigen::Map, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 103 | class CwiseUnaryViewImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:58:7: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/accumulator.hpp:135:0: required from ‘stan::math::var stan::math::accumulator::type>::value, void>::type>::sum() const [with T = stan::math::var_value; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = stan::math::var_value; stan::math::var = stan::math::var_value]’ 135 | inline var sum() const { return stan::math::sum(buf_); } stanExports_gMAP.h:1196:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1196 | return lp_accum__.sum(); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:347:30: required from ‘Derived& Eigen::DenseBase::setConstant(const Scalar&) [with Derived = Eigen::Matrix; Scalar = double]’ 347 | return derived() = Constant(rows(), cols(), val); | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:548:10: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h:116:13: required from ‘static void Eigen::internal::general_matrix_matrix_triangular_product::run(Index, Index, const LhsScalar*, Index, const RhsScalar*, Index, ResScalar*, Index, Index, const ResScalar&, Eigen::internal::level3_blocking&) [with Index = long int; LhsScalar = double; int LhsStorageOrder = 1; bool ConjugateLhs = false; RhsScalar = double; int RhsStorageOrder = 0; bool ConjugateRhs = false; int ResInnerStride = 1; int UpLo = 2; int Version = 0; ResScalar = double]’ 116 | sybb(_res+resStride*i2 + resIncr*i2, resIncr, resStride, blockA, blockB + actual_kc*i2, actual_mc, actual_kc, alpha); | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:113:12: required from ‘static void Eigen::selfadjoint_product_selector::run(MatrixType&, const OtherType&, const typename MatrixType::Scalar&) [with MatrixType = Eigen::Matrix; OtherType = Eigen::Matrix; int UpLo = 2; typename MatrixType::Scalar = double]’ 109 | internal::general_matrix_matrix_triangular_product::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 111 | Scalar, OtherIsRowMajor ? ColMajor : RowMajor, (!OtherBlasTraits::NeedToConjugate) && NumTraits::IsComplex, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 112 | IsRowMajor ? RowMajor : ColMajor, MatrixType::InnerStrideAtCompileTime, UpLo> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 113 | ::run(size, depth, | ~~~~~^~~~~~~~~~~~~ 114 | actualOther.data(), actualOther.outerStride(), actualOther.data(), actualOther.outerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 115 | mat.data(), mat.innerStride(), mat.outerStride(), actualAlpha, blocking); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointProduct.h:126:62: required from ‘Eigen::SelfAdjointView& Eigen::SelfAdjointView::rankUpdate(const Eigen::MatrixBase&, const Scalar&) [with DerivedU = Eigen::Matrix; _MatrixType = Eigen::Matrix; unsigned int UpLo = 2; Scalar = double]’ 126 | selfadjoint_product_selector::run(_expression().const_cast_derived(), u.derived(), alpha); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:33:78: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 33 | return result.setZero().template selfadjointView().rankUpdate( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 34 | M_ref); | ~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseUnaryOp, const Eigen::Matrix >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseUnaryOp, const Eigen::Matrix >; Func = Eigen::internal::scalar_max_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Matrix > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_max_op; Derived = Eigen::CwiseUnaryOp, const Eigen::Matrix >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:448:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::maxCoeff() const [with int NaNPropagation = 0; Derived = Eigen::CwiseUnaryOp, const Eigen::Matrix >; typename Eigen::internal::traits::Scalar = double]’ 448 | return derived().redux(Eigen::internal::scalar_max_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:466:37: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::maxCoeff() const [with Derived = Eigen::CwiseUnaryOp, const Eigen::Matrix >; typename Eigen::internal::traits::Scalar = double]’ 466 | return maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:453:45: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 453 | RealScalar scale = mat.cwiseAbs().maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false>, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, false>, -1, 1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, true>, -1, 1, false>, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, true>, -1, 1, false>, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, true>, -1, 1, false>, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1, true>, -1, 1, false>, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:363:59: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 363 | matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/Householder.h:93:22: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:363:59: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 363 | matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, true>, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, true>, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, true>, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, true>, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:37:44: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:372:86: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 372 | hCoeffs.tail(n-i-1) += (conj(h)*RealScalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false>, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false>, -1, 1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false>, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, false>, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, false>, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1, false>, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:375:18: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 374 | matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView() | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 375 | .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), Scalar(-1)); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false>, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false>, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false>, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false>, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false>, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointRank2Update.h:34:74: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:375:18: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 374 | matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView() | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 375 | .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), Scalar(-1)); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointRank2Update.h:35:60: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:375:18: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 374 | matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView() | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 375 | .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), Scalar(-1)); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false>, -1, 1, false> >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false>, -1, 1, false> >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false>, -1, 1, false> >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false>, -1, 1, false> >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false>, -1, 1, false> >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointRank2Update.h:35:23: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:375:18: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 374 | matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView() | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 375 | .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), Scalar(-1)); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 0, Eigen::Stride<0, 0> > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:97:0: required from ‘stan::math::var stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; T2 = Eigen::Matrix, -1, 1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_row_and_col_vector_t* = 0; var = var_value]’ 97 | var res = arena_A_val.dot(arena_B_val); stanExports_gMAP.h:979:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 979 | (stan::math::multiply( 980 | stan::model::rvalue(X_param, "X_param", 981 | stan::model::index_uni(h)), beta) + stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:97:0: required from ‘stan::math::var stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; T2 = Eigen::Matrix, -1, 1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_row_and_col_vector_t* = 0; var = var_value]’ 97 | var res = arena_A_val.dot(arena_B_val); stanExports_gMAP.h:979:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 979 | (stan::math::multiply( 980 | stan::model::rvalue(X_param, "X_param", 981 | stan::model::index_uni(h)), beta) + stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::CwiseUnaryOp, -1, 1> >&>(arena_matrix, -1, 1> >&)::::, const Eigen::Map, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:109:0: required from ‘stan::math::var stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; T2 = Eigen::Matrix, -1, 1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_row_and_col_vector_t* = 0; var = var_value]’ 109 | var res = arena_A_val.dot(value_of(arena_B)); stanExports_gMAP.h:979:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 979 | (stan::math::multiply( 980 | stan::model::rvalue(X_param, "X_param", 981 | stan::model::index_uni(h)), beta) + stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1>, void>&>(arena_matrix, 1, -1>, void>&)::::, const Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1>, void>&>(arena_matrix, 1, -1>, void>&)::::, const Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1>, void>&>(arena_matrix, 1, -1>, void>&)::::, const Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 1, -1>, void>&>(arena_matrix, 1, -1>, void>&)::::, const Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 1, -1>, void>&>(arena_matrix, 1, -1>, void>&)::::, const Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:117:0: required from ‘stan::math::var stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; T2 = Eigen::Matrix, -1, 1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_row_and_col_vector_t* = 0; var = var_value]’ 117 | var res = value_of(arena_A).dot(arena_B_val); stanExports_gMAP.h:979:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 979 | (stan::math::multiply( 980 | stan::model::rvalue(X_param, "X_param", 981 | stan::model::index_uni(h)), beta) + stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1>, void>&>(arena_matrix, 1, -1>, void>&)::::, const Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1>, void>&>(arena_matrix, 1, -1>, void>&)::::, const Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1>, void>&>(arena_matrix, 1, -1>, void>&)::::, const Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1>, void>&>(arena_matrix, 1, -1>, void>&)::::, const Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1>, void>&>(arena_matrix, 1, -1>, void>&)::::, const Eigen::Map, 1, -1>, 0, Eigen::Stride<0, 0> > > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:117:0: required from ‘stan::math::var stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; T2 = Eigen::Matrix, -1, 1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_row_and_col_vector_t* = 0; var = var_value]’ 117 | var res = value_of(arena_A).dot(arena_B_val); stanExports_gMAP.h:979:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 979 | (stan::math::multiply( 980 | stan::model::rvalue(X_param, "X_param", 981 | stan::model::index_uni(h)), beta) + stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_not_nan >(const char*, const char*, const Eigen::Array&)::; T = Eigen::Array; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_not_nan.hpp:28:20: required from ‘void stan::math::check_not_nan(const char*, const char*, const T_y&) [with T_y = Eigen::Array]’ 28 | elementwise_check([](double x) { return !std::isnan(x); }, function, name, y, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 29 | "not nan"); | ~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:62:16: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 62 | check_not_nan(function, "Random variable", y_val); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1035:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1035 | lp_accum__.add(stan::math::normal_lpdf(xi_eta, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Array >, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/functor/operands_and_partials.hpp:67:0: required from ‘void stan::math::internal::update_adjoints(Matrix1&, const Matrix2&, const stan::math::var&) [with Matrix1 = stan::math::arena_matrix, -1, 1> >; Matrix2 = stan::math::arena_matrix >; stan::require_rev_matrix_t* = 0; stan::require_st_arithmetic* = 0; stan::math::var = stan::math::var_value]’ 67 | x.adj().array() += z.adj() * y.array(); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/functor/partials_propagator.hpp:91:0: [ skipping 4 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:105:28: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 105 | return ops_partials.build(logp); | ~~~~~~~~~~~~~~~~~~^~~~~~ stanExports_gMAP.h:1035:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1035 | lp_accum__.add(stan::math::normal_lpdf(xi_eta, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_positive >(const char*, const char*, const Eigen::Array&)::; T = Eigen::Array; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_positive.hpp:29:20: required from ‘void stan::math::check_positive(const char*, const char*, const T_y&) [with T_y = Eigen::Array]’ 29 | elementwise_check([](double x) { return x > 0; }, function, name, y, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 30 | "positive"); | ~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:64:17: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = var_value; T_scale = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 64 | check_positive(function, "Scale parameter", sigma_val); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1047:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1047 | lp_accum__.add(stan::math::normal_lpdf(xi_eta, 1048 | ((stan::model::rvalue(beta, "beta", 1049 | stan::model::index_uni(1)) - 1050 | stan::model::rvalue(beta_raw_guess, 1051 | "beta_raw_guess", stan::model::index_uni(1), 1052 | stan::model::index_uni(1))) / 1053 | stan::model::rvalue(beta_raw_guess, 1054 | "beta_raw_guess", stan::model::index_uni(2), 1055 | stan::model::index_uni(1))), 1056 | stan::math::divide( 1057 | stan::model::rvalue(tau, "tau", 1058 | stan::model::index_multi(tau_strata_gindex)), 1059 | stan::model::rvalue(beta_raw_guess, 1060 | "beta_raw_guess", stan::model::index_uni(2), 1061 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_positive_finite >(const char*, const char*, const Eigen::Array&)::; T = Eigen::Array; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_positive_finite.hpp:24:20: required from ‘void stan::math::check_positive_finite(const char*, const char*, const T_y&) [with T_y = Eigen::Array]’ 24 | elementwise_check([](double x) { return x > 0 && std::isfinite(x); }, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 25 | function, name, y, "positive finite"); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/student_t_lpdf.hpp:85:0: required from ‘stan::return_type_t stan::math::student_t_lpdf(const T_y&, const T_dof&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_dof = double; T_loc = var_value; T_scale = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 85 | check_positive_finite(function, "Scale parameter", sigma_val); stanExports_gMAP.h:1066:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1066 | lp_accum__.add(stan::math::student_t_lpdf(xi_eta, 1067 | re_dist_t_df, 1068 | ((stan::model::rvalue(beta, "beta", 1069 | stan::model::index_uni(1)) - 1070 | stan::model::rvalue(beta_raw_guess, 1071 | "beta_raw_guess", stan::model::index_uni(1), 1072 | stan::model::index_uni(1))) / 1073 | stan::model::rvalue(beta_raw_guess, 1074 | "beta_raw_guess", stan::model::index_uni(2), 1075 | stan::model::index_uni(1))), 1076 | stan::math::divide( 1077 | stan::model::rvalue(tau, "tau", 1078 | stan::model::index_multi(tau_strata_gindex)), 1079 | stan::model::rvalue(beta_raw_guess, 1080 | "beta_raw_guess", stan::model::index_uni(2), 1081 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_finite > >(const char*, const char*, const Eigen::ArrayWrapper >&)::; T = Eigen::ArrayWrapper >; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_finite.hpp:29:20: required from ‘void stan::math::check_finite(const char*, const char*, const T_y&) [with T_y = Eigen::ArrayWrapper >]’ 29 | elementwise_check([](double x) { return std::isfinite(x); }, function, name, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 30 | y, "finite"); | ~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:63:15: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 63 | check_finite(function, "Location parameter", mu_val); | ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1085:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1085 | lp_accum__.add(stan::math::normal_lpdf(beta, 1086 | stan::model::rvalue(beta_prior_stan, 1087 | "beta_prior_stan", stan::model::index_uni(1)), 1088 | stan::model::rvalue(beta_prior_stan, 1089 | "beta_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase > >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_positive > >(const char*, const char*, const Eigen::ArrayWrapper >&)::; T = Eigen::ArrayWrapper >; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_positive.hpp:29:20: required from ‘void stan::math::check_positive(const char*, const char*, const T_y&) [with T_y = Eigen::ArrayWrapper >]’ 29 | elementwise_check([](double x) { return x > 0; }, function, name, y, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 30 | "positive"); | ~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:64:17: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 64 | check_positive(function, "Scale parameter", sigma_val); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1085:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1085 | lp_accum__.add(stan::math::normal_lpdf(beta, 1086 | stan::model::rvalue(beta_prior_stan, 1087 | "beta_prior_stan", stan::model::index_uni(1)), 1088 | stan::model::rvalue(beta_prior_stan, 1089 | "beta_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase > >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_positive_finite > >(const char*, const char*, const Eigen::ArrayWrapper >&)::; T = Eigen::ArrayWrapper >; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_positive_finite.hpp:24:20: required from ‘void stan::math::check_positive_finite(const char*, const char*, const T_y&) [with T_y = Eigen::ArrayWrapper >]’ 24 | elementwise_check([](double x) { return x > 0 && std::isfinite(x); }, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 25 | function, name, y, "positive finite"); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:72:24: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_shape = Eigen::Matrix; T_inv_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 72 | check_positive_finite(function, "Shape parameter", alpha_val); | ~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1123:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1123 | lp_accum__.add(stan::math::gamma_lpdf(tau, 1124 | stan::model::rvalue(tau_prior_stan, 1125 | "tau_prior_stan", stan::model::index_uni(1)), 1126 | stan::model::rvalue(tau_prior_stan, 1127 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase > >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_nonnegative >(const char*, const char*, const Eigen::Array&)::; T = Eigen::Array; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_nonnegative.hpp:26:20: required from ‘void stan::math::check_nonnegative(const char*, const char*, const T_y&) [with T_y = Eigen::Array]’ 26 | elementwise_check([](double x) { return x >= 0; }, function, name, y, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 27 | "nonnegative"); | ~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/lognormal_lpdf.hpp:46:20: required from ‘stan::return_type_t stan::math::lognormal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 46 | check_nonnegative(function, "Random variable", y_val); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1141:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1141 | lp_accum__.add(stan::math::lognormal_lpdf(tau, 1142 | stan::model::rvalue(tau_prior_stan, 1143 | "tau_prior_stan", stan::model::index_uni(1)), 1144 | stan::model::rvalue(tau_prior_stan, 1145 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_not_nan, 0, Eigen::Stride<0, 0> > > >(const char*, const char*, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::; T = Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_not_nan.hpp:28:20: required from ‘void stan::math::check_not_nan(const char*, const char*, const T_y&) [with T_y = Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >]’ 28 | elementwise_check([](double x) { return !std::isnan(x); }, function, name, y, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 29 | "not nan"); | ~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:62:16: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Map, 0, Eigen::Stride<0, 0> >; T_loc = Eigen::Matrix, -1, 1>; T_scale = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 62 | check_not_nan(function, "Random variable", y_val); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1176:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1176 | lp_accum__.add(stan::math::normal_lpdf(y, theta, y_se)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase, 0, Eigen::Stride<0, 0> > > >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_finite >(const char*, const char*, const Eigen::Array&)::; T = Eigen::Array; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_finite.hpp:29:20: required from ‘void stan::math::check_finite(const char*, const char*, const T_y&) [with T_y = Eigen::Array]’ 29 | elementwise_check([](double x) { return std::isfinite(x); }, function, name, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 30 | y, "finite"); | ~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:63:15: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Map, 0, Eigen::Stride<0, 0> >; T_loc = Eigen::Matrix, -1, 1>; T_scale = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 63 | check_finite(function, "Location parameter", mu_val); | ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1176:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1176 | lp_accum__.add(stan::math::normal_lpdf(y, theta, y_se)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_positive, 0, Eigen::Stride<0, 0> > > >(const char*, const char*, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::; T = Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_positive.hpp:29:20: required from ‘void stan::math::check_positive(const char*, const char*, const T_y&) [with T_y = Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >]’ 29 | elementwise_check([](double x) { return x > 0; }, function, name, y, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 30 | "positive"); | ~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:64:17: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Map, 0, Eigen::Stride<0, 0> >; T_loc = Eigen::Matrix, -1, 1>; T_scale = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 64 | check_positive(function, "Scale parameter", sigma_val); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1176:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1176 | lp_accum__.add(stan::math::normal_lpdf(y, theta, y_se)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase, 0, Eigen::Stride<0, 0> > > >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_nonnegative, 0, Eigen::Stride<0, 0> > > >(const char*, const char*, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >&)::; T = Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_nonnegative.hpp:26:20: required from ‘void stan::math::check_nonnegative(const char*, const char*, const T_y&) [with T_y = Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > >]’ 26 | elementwise_check([](double x) { return x >= 0; }, function, name, y, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 27 | "nonnegative"); | ~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/binomial_logit_lpmf.hpp:60:20: required from ‘stan::return_type_t stan::math::binomial_logit_lpmf(const T_n&, const T_N&, const T_prob&) [with bool propto = true; T_n = std::vector; T_N = std::vector; T_prob = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 60 | check_nonnegative(function, "Population size parameter", N_val); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1181:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1181 | lp_accum__.add(stan::math::binomial_logit_lpmf(r, r_n, 1182 | theta)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase, 0, Eigen::Stride<0, 0> > > >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::Matrix >, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Matrix >, 1, -1, false> >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::Block, const Eigen::Matrix >, 1, -1, false>; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::Block, const Eigen::Matrix >, 1, -1, false>; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/VectorwiseOp.h:114:1: required from ‘ResultType Eigen::internal::member_sum::operator()(const XprType&) const [with XprType = Eigen::Block, const Eigen::Matrix >, 1, -1, false>; ResultType = double; Scalar = double]’ 97 | { return mat.MEMBER(); } \ | ~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PartialReduxEvaluator.h:183:21: required from ‘const Eigen::internal::evaluator >::Scalar Eigen::internal::evaluator >::coeff(Eigen::Index) const [with ArgType = const Eigen::CwiseUnaryOp, const Eigen::Matrix >; MemberOp = Eigen::internal::member_sum; int Direction = 1; Scalar = double; Eigen::Index = long int]’ 183 | return m_functor(m_arg.template subVector(index)); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:268:34: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; Func = Eigen::internal::scalar_max_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Matrix >, Eigen::internal::member_sum, 1> >; Scalar = double]’ 268 | res = func(res,eval.coeff(index)); | ~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_max_op; Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:448:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::maxCoeff() const [with int NaNPropagation = 0; Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; typename Eigen::internal::traits::Scalar = double]’ 448 | return derived().redux(Eigen::internal::scalar_max_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:466:37: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::maxCoeff() const [with Derived = Eigen::PartialReduxExpr, const Eigen::Matrix >, Eigen::internal::member_sum, 1>; typename Eigen::internal::traits::Scalar = double]’ 466 | return maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/matrix_exp_action_handler.hpp:106:49: required from here 106 | return x.cwiseAbs().rowwise().sum().maxCoeff(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block >, -1, 1, true>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block >, -1, 1, true>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block >, -1, 1, true>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::Block >, -1, 1, true>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::Block >, -1, 1, true>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::Block >, -1, 1, true>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase >, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense >, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator >, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator >, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval >, -1, 1, true>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:370:45: required from ‘struct Eigen::internal::generic_product_impl, const Eigen::Block >, -1, 1, true>, Eigen::DenseShape, Eigen::DenseShape, 7>’ 370 | typedef typename nested_eval::type RhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:479:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::Matrix; Rhs = Eigen::Transpose >; Scalar = double]’ 478 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 479 | ::scaleAndAddTo(dst_vec, a_lhs, a_rhs.col(0), alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Matrix; Rhs = Eigen::Transpose >]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, true>, Eigen::Transpose >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, true>, Eigen::Transpose >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, true>, Eigen::Transpose >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 1, -1, true>, Eigen::Transpose >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 1, -1, true>, Eigen::Transpose >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 1, -1, true>, Eigen::Transpose >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval, 1, -1, true>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:369:45: required from ‘struct Eigen::internal::generic_product_impl, 1, -1, true>, Eigen::Transpose >, Eigen::DenseShape, Eigen::DenseShape, 7>’ 369 | typedef typename nested_eval::type LhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:486:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::Matrix; Rhs = Eigen::Transpose >; Scalar = double]’ 485 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 486 | ::scaleAndAddTo(dst_vec, a_lhs.row(0), a_rhs, alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Matrix; Rhs = Eigen::Transpose >]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:98:40: required from ‘typename Eigen::NumTraits::Scalar>::Real Eigen::MatrixBase::squaredNorm() const [with Derived = Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 98 | return numext::real((*this).cwiseAbs2().sum()); | ~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/Householder.h:78:71: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:363:59: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 363 | matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, 1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase >, 1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense >, 1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: required from ‘static void Eigen::internal::Assignment, Eigen::internal::assign_op, Eigen::internal::Dense2Dense, typename Eigen::internal::enable_if<((Options == Eigen::DefaultProduct) || (Options == Eigen::AliasFreeProduct))>::type>::run(DstXprType&, const SrcXprType&, const Eigen::internal::assign_op&) [with DstXprType = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; int Options = 0; Scalar = double; SrcXprType = Eigen::Product >, Eigen::Matrix, 0>]’ 148 | generic_product_impl::evalTo(dst, src.lhs(), src.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Matrix; Src = Eigen::Product >, Eigen::Matrix, 0>; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; _Scalar = double; int _Rows = -1; int _Cols = 1; int _Options = 0; int _MaxRows = -1; int _MaxCols = 1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:22:0: required from here 22 | vector_d eigenprojections = eigenvectors.transpose() * g; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: required from ‘static void Eigen::internal::Assignment, Eigen::internal::assign_op, Eigen::internal::Dense2Dense, typename Eigen::internal::enable_if<((Options == Eigen::DefaultProduct) || (Options == Eigen::AliasFreeProduct))>::type>::run(DstXprType&, const SrcXprType&, const Eigen::internal::assign_op&) [with DstXprType = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; int Options = 0; Scalar = double; SrcXprType = Eigen::Product >, Eigen::Matrix, 0>]’ 148 | generic_product_impl::evalTo(dst, src.lhs(), src.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Matrix; Src = Eigen::Product >, Eigen::Matrix, 0>; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; _Scalar = double; int _Rows = -1; int _Cols = 1; int _Options = 0; int _MaxRows = -1; int _MaxCols = 1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:22:0: required from here 22 | vector_d eigenprojections = eigenvectors.transpose() * g; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1043:41: required from ‘struct Eigen::internal::evaluator, 1, -1, false>, 1, -1, false> >’ 1043 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 1, -1, false>, 1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:564:45: required from ‘struct Eigen::internal::unary_evaluator, const Eigen::Block, 1, -1, false>, 1, -1, false> >, Eigen::internal::IndexBased, double>’ 564 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Block, 1, -1, false>, 1, -1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Block, 1, -1, false>, 1, -1, false> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:269:52: required from ‘typename Eigen::NumTraits::Scalar>::Real Eigen::MatrixBase::lpNorm() const [with int p = 1; Derived = Eigen::Block, 1, -1, false>, 1, -1, false>; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 269 | return internal::lpNorm_selector::run(*this); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:514:125: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 514 | abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 1, -1, false>, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 1, -1, false>, 1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:564:45: required from ‘struct Eigen::internal::unary_evaluator, const Eigen::Block, 1, -1, false>, 1, -1, false> >, Eigen::internal::IndexBased, double>’ 564 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Block, 1, -1, false>, 1, -1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Block, 1, -1, false>, 1, -1, false> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseUnaryOp, const Eigen::Block, 1, -1, false>, 1, -1, false> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:269:52: required from ‘typename Eigen::NumTraits::Scalar>::Real Eigen::MatrixBase::lpNorm() const [with int p = 1; Derived = Eigen::Block, 1, -1, false>, 1, -1, false>; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 269 | return internal::lpNorm_selector::run(*this); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:514:125: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 514 | abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0>, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0>, -1, 1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:564:45: required from ‘struct Eigen::internal::unary_evaluator, const Eigen::Block, 0>, -1, 1, false> >, Eigen::internal::IndexBased, double>’ 564 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Block, 0>, -1, 1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Visitor.h:79:51: required from ‘class Eigen::internal::visitor_evaluator, const Eigen::Block, 0>, -1, 1, false> > >’ 79 | CoeffReadCost = internal::evaluator::CoeffReadCost | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Visitor.h:123:17: required from ‘void Eigen::DenseBase::visit(Visitor&) const [with Visitor = Eigen::internal::max_coeff_visitor, const Eigen::Block, 0>, -1, 1, false> >, 0>; Derived = Eigen::CwiseUnaryOp, const Eigen::Block, 0>, -1, 1, false> >]’ 123 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Visitor.h:374:14: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:325:54: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 325 | mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval, -1, -1, false>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:369:45: required from ‘struct Eigen::internal::generic_product_impl, -1, -1, false>, Eigen::Block, -1, 1, false>, Eigen::DenseShape, Eigen::DenseShape, 7>’ 369 | typedef typename nested_eval::type LhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:178:42: required from ‘static void Eigen::internal::Assignment, Eigen::internal::sub_assign_op, Eigen::internal::Dense2Dense, typename Eigen::internal::enable_if<((Options == Eigen::DefaultProduct) || (Options == Eigen::AliasFreeProduct))>::type>::run(DstXprType&, const SrcXprType&, const Eigen::internal::sub_assign_op&) [with DstXprType = Eigen::Block, -1, 1, false>; Lhs = Eigen::Block, -1, -1, false>; Rhs = Eigen::Block, -1, 1, false>; int Options = 0; Scalar = double; SrcXprType = Eigen::Product, -1, -1, false>, Eigen::Block, -1, 1, false>, 0>]’ 178 | generic_product_impl::subTo(dst, src.lhs(), src.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, -1, 1, false>; Src = Eigen::Product, -1, -1, false>, Eigen::Block, -1, 1, false>, 0>; Func = sub_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/NoAlias.h:59:31: required from ‘ExpressionType& Eigen::NoAlias::operator-=(const StorageBase&) [with OtherDerived = Eigen::Product, -1, -1, false>, Eigen::Block, -1, 1, false>, 0>; ExpressionType = Eigen::Block, -1, 1, false>; StorageBase = Eigen::MatrixBase]’ 59 | call_assignment_no_alias(m_expression, other.derived(), internal::sub_assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:361:25: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 361 | A21.noalias() -= A20 * temp.head(k); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_not_nan > >(const char*, const char*, const Eigen::ArrayWrapper >&)::; T = Eigen::ArrayWrapper >; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_not_nan.hpp:28:20: required from ‘void stan::math::check_not_nan(const char*, const char*, const T_y&) [with T_y = Eigen::ArrayWrapper >]’ 28 | elementwise_check([](double x) { return !std::isnan(x); }, function, name, y, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 29 | "not nan"); | ~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:62:16: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 62 | check_not_nan(function, "Random variable", y_val); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1035:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1035 | lp_accum__.add(stan::math::normal_lpdf(xi_eta, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase > >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp: In instantiation of ‘void stan::math::elementwise_check(const F&, const char*, const char*, const T&, const char*, const Indexings& ...) [with F = check_nonnegative > >(const char*, const char*, const Eigen::ArrayWrapper >&)::; T = Eigen::ArrayWrapper >; Indexings = {}; stan::require_eigen_t* = 0; std::enable_if_t<((bool)((Eigen::internal::traits<_Rhs>::Flags & Eigen::LinearAccessBit) || T::IsVectorAtCompileTime))>* = 0]’: /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_nonnegative.hpp:26:20: required from ‘void stan::math::check_nonnegative(const char*, const char*, const T_y&) [with T_y = Eigen::ArrayWrapper >]’ 26 | elementwise_check([](double x) { return x >= 0; }, function, name, y, | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 27 | "nonnegative"); | ~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/lognormal_lpdf.hpp:46:20: required from ‘stan::return_type_t stan::math::lognormal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 46 | check_nonnegative(function, "Random variable", y_val); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1141:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1141 | lp_accum__.add(stan::math::lognormal_lpdf(tau, 1142 | stan::model::rvalue(tau_prior_stan, 1143 | "tau_prior_stan", stan::model::index_uni(1)), 1144 | stan::model::rvalue(tau_prior_stan, 1145 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/elementwise_check.hpp:153:24: warning: comparison of integer expressions of different signedness: ‘size_t’ {aka ‘long unsigned int’} and ‘Eigen::EigenBase > >::Index’ {aka ‘long int’} [-Wsign-compare] 153 | for (size_t i = 0; i < x.size(); i++) { | ~~^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Transpose, 0, Eigen::Stride<0, 0> > >; SrcXprType = Eigen::Block, 1, -1, false>; Functor = assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Transpose, 0, Eigen::Stride<0, 0> > >; SrcXprType = Eigen::Block, 1, -1, false>; Functor = Eigen::internal::assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::Block, 1, -1, false>; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::Block, 1, -1, false>; Func = assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:836:18: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::Block, 1, -1, false>]’ 836 | call_assignment(dst, src, internal::assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Assign.h:66:28: required from ‘Derived& Eigen::MatrixBase::operator=(const Eigen::DenseBase&) [with OtherDerived = Eigen::Block, 1, -1, false>; Derived = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 66 | internal::call_assignment(derived(), other.derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/standalone_gqs.hpp:72:0: required from ‘int stan::services::standalone_generate(const Model&, const Eigen::MatrixXd&, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; Eigen::MatrixXd = Eigen::Matrix]’ 72 | Eigen::Map(&row[0], draws.cols()) = draws.row(i); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1253:0: required from ‘SEXPREC* rstan::stan_fit::standalone_gqs(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1253 | ret = stan::services::standalone_generate(model_, draws, 1254 | Rcpp::as(seed), interrupt, logger, *sample_writer_ptr); stanExports_gMAP.cc:30:0: required from here 30 | .method("standalone_gqs", &rstan::stan_fit ::standalone_gqs) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 16, Eigen::Stride<0, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 16, Eigen::Stride<0, 0> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 16, Eigen::Stride<0, 0> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 16, Eigen::Stride<0, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 16, Eigen::Stride<0, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 16, Eigen::Stride<0, 0> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:883:25: required from ‘void Eigen::PlainObjectBase::_init1(const Eigen::DenseBase&) [with T = Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0>; OtherDerived = Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 883 | this->_set_noalias(other); | ~~~~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:332:31: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const T&) [with T = Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 332 | Base::template _init1(x); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:850:41: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if::value, void*>::type) [with Dst = Eigen::Matrix; Src = Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0>; Func = add_assign_op; typename enable_if::value, void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 850 | typename plain_matrix_type::type tmp(src); | ^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:177:18: required from ‘Derived& Eigen::MatrixBase::operator+=(const Eigen::MatrixBase&) [with OtherDerived = Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 177 | call_assignment(derived(), other.derived(), internal::add_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/welford_covar_estimator.hpp:28:39: required from here 28 | m2_ += (q - m_) * delta.transpose(); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 16, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 16, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 16, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 16, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 16, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:280:48: required from ‘void Eigen::internal::outer_product_selector_run(Dst&, const Lhs&, const Rhs&, const Func&, const false_type&) [with Dst = Eigen::Matrix; Lhs = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; Rhs = Eigen::Transpose >; Func = generic_product_impl, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, Eigen::DenseShape, Eigen::DenseShape, 5>::set]’ 280 | func(dst.col(j), rhsEval.coeff(Index(0),j) * actual_lhs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:317:41: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:883:25: required from ‘void Eigen::PlainObjectBase::_init1(const Eigen::DenseBase&) [with T = Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0>; OtherDerived = Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 883 | this->_set_noalias(other); | ~~~~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:332:31: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const T&) [with T = Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 332 | Base::template _init1(x); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:850:41: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if::value, void*>::type) [with Dst = Eigen::Matrix; Src = Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0>; Func = add_assign_op; typename enable_if::value, void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 850 | typename plain_matrix_type::type tmp(src); | ^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:177:18: required from ‘Derived& Eigen::MatrixBase::operator+=(const Eigen::MatrixBase&) [with OtherDerived = Eigen::Product, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 177 | call_assignment(derived(), other.derived(), internal::add_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/welford_covar_estimator.hpp:28:39: required from here 28 | m2_ += (q - m_) * delta.transpose(); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Transpose >, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Transpose >, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Transpose >, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Transpose >, 1, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Transpose >, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Transpose >, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:462:68: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, -1, 1, true>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, -1, 1, true>, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, -1, 1, true>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, -1, 1, true>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase >, -1, 1, true>, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense >, -1, 1, true>, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, true>, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, true>, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 1, -1, true>, 1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 1, -1, true>, 1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ In file included from /usr/local/lib/R/library/RcppEigen/include/Eigen/Core:333: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h: In instantiation of ‘class Eigen::internal::gemv_traits’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:306:38: required from ‘struct Eigen::internal::general_matrix_vector_product, 1, false, double, Eigen::internal::const_blas_data_mapper, false, 0>’ 306 | typedef typename Traits::LhsPacket LhsPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:347:132: required from ‘static void Eigen::internal::gemv_dense_selector<2, 1, true>::run(const Lhs&, const Rhs&, Dest&, const typename Dest::Scalar&) [with Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; Dest = Eigen::Matrix; typename Dest::Scalar = double]’ 346 | general_matrix_vector_product | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 347 | ::run( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 348 | actualLhs.rows(), actualLhs.cols(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 349 | LhsMapper(actualLhs.data(), actualLhs.outerStride()), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 350 | RhsMapper(actualRhsPtr, 1), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 351 | dest.data(), dest.col(0).innerStride(), //NOTE if dest is not a vector at compile-time, then dest.innerStride() might be wrong. (bug 1166) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 352 | actualAlpha); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:388:34: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; Scalar = double]’ 385 | internal::gemv_dense_selector::HasUsableDirectAccess) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 388 | >::run(actual_lhs, actual_rhs, dst, alpha); | ~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:361:27: required from ‘static void Eigen::internal::generic_product_impl_base::scaleAndAddTo(Dst&, const Lhs&, const Rhs&, const Scalar&) [with Dst = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; Derived = Eigen::internal::generic_product_impl >, Eigen::Matrix, Eigen::DenseShape, Eigen::DenseShape, 7>; Scalar = double]’ 361 | { Derived::scaleAndAddTo(dst,lhs,rhs,alpha); } | ~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:349:33: required from ‘static void Eigen::internal::generic_product_impl_base::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; Derived = Eigen::internal::generic_product_impl >, Eigen::Matrix, Eigen::DenseShape, Eigen::DenseShape, 7>]’ 349 | { dst.setZero(); scaleAndAddTo(dst, lhs, rhs, Scalar(1)); } | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: required from ‘static void Eigen::internal::Assignment, Eigen::internal::assign_op, Eigen::internal::Dense2Dense, typename Eigen::internal::enable_if<((Options == Eigen::DefaultProduct) || (Options == Eigen::AliasFreeProduct))>::type>::run(DstXprType&, const SrcXprType&, const Eigen::internal::assign_op&) [with DstXprType = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; int Options = 0; Scalar = double; SrcXprType = Eigen::Product >, Eigen::Matrix, 0>]’ 148 | generic_product_impl::evalTo(dst, src.lhs(), src.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Matrix; Src = Eigen::Product >, Eigen::Matrix, 0>; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; _Scalar = double; int _Rows = -1; int _Cols = 1; int _Options = 0; int _MaxRows = -1; int _MaxCols = 1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:22:0: required from here 22 | vector_d eigenprojections = eigenvectors.transpose() * g; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:44:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 44 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:44:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 44 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:44:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 44 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:44:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 44 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:45:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 45 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:45:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 45 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:45:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 45 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:45:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 45 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:46:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 46 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:46:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 46 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:46:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 46 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:46:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 46 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:51:53: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 51 | Vectorizable = unpacket_traits<_LhsPacket>::vectorizable && | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:51:53: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:51:53: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:51:53: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:52:38: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 52 | unpacket_traits<_RhsPacket>::vectorizable && | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:52:38: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:52:38: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:52:38: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:42: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 53 | int(unpacket_traits<_LhsPacket>::size)==int(unpacket_traits<_RhsPacket>::size), | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:42: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:42: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:42: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:82: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 53 | int(unpacket_traits<_LhsPacket>::size)==int(unpacket_traits<_RhsPacket>::size), | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:82: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:82: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:82: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:54:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 54 | LhsPacketSize = Vectorizable ? unpacket_traits<_LhsPacket>::size : 1, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:54:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:54:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:54:69: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:55:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 55 | RhsPacketSize = Vectorizable ? unpacket_traits<_RhsPacket>::size : 1, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:55:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:55:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:55:69: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:56:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 56 | ResPacketSize = Vectorizable ? unpacket_traits<_ResPacket>::size : 1 | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:56:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:56:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:56:69: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:59:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 59 | typedef typename conditional::type LhsPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:59:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:59:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:59:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:60:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 60 | typedef typename conditional::type RhsPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:60:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:60:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:60:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:61:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 61 | typedef typename conditional::type ResPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:61:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:61:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:61:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h: In instantiation of ‘class Eigen::internal::gemv_traits’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:310:42: required from ‘struct Eigen::internal::general_matrix_vector_product, 1, false, double, Eigen::internal::const_blas_data_mapper, false, 0>’ 310 | typedef typename HalfTraits::LhsPacket LhsPacketHalf; | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:347:132: required from ‘static void Eigen::internal::gemv_dense_selector<2, 1, true>::run(const Lhs&, const Rhs&, Dest&, const typename Dest::Scalar&) [with Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; Dest = Eigen::Matrix; typename Dest::Scalar = double]’ 346 | general_matrix_vector_product | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 347 | ::run( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 348 | actualLhs.rows(), actualLhs.cols(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 349 | LhsMapper(actualLhs.data(), actualLhs.outerStride()), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 350 | RhsMapper(actualRhsPtr, 1), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 351 | dest.data(), dest.col(0).innerStride(), //NOTE if dest is not a vector at compile-time, then dest.innerStride() might be wrong. (bug 1166) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 352 | actualAlpha); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:388:34: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; Scalar = double]’ 385 | internal::gemv_dense_selector::HasUsableDirectAccess) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 388 | >::run(actual_lhs, actual_rhs, dst, alpha); | ~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:361:27: required from ‘static void Eigen::internal::generic_product_impl_base::scaleAndAddTo(Dst&, const Lhs&, const Rhs&, const Scalar&) [with Dst = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; Derived = Eigen::internal::generic_product_impl >, Eigen::Matrix, Eigen::DenseShape, Eigen::DenseShape, 7>; Scalar = double]’ 361 | { Derived::scaleAndAddTo(dst,lhs,rhs,alpha); } | ~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:349:33: required from ‘static void Eigen::internal::generic_product_impl_base::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; Derived = Eigen::internal::generic_product_impl >, Eigen::Matrix, Eigen::DenseShape, Eigen::DenseShape, 7>]’ 349 | { dst.setZero(); scaleAndAddTo(dst, lhs, rhs, Scalar(1)); } | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: required from ‘static void Eigen::internal::Assignment, Eigen::internal::assign_op, Eigen::internal::Dense2Dense, typename Eigen::internal::enable_if<((Options == Eigen::DefaultProduct) || (Options == Eigen::AliasFreeProduct))>::type>::run(DstXprType&, const SrcXprType&, const Eigen::internal::assign_op&) [with DstXprType = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; int Options = 0; Scalar = double; SrcXprType = Eigen::Product >, Eigen::Matrix, 0>]’ 148 | generic_product_impl::evalTo(dst, src.lhs(), src.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Matrix; Src = Eigen::Product >, Eigen::Matrix, 0>; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; _Scalar = double; int _Rows = -1; int _Cols = 1; int _Options = 0; int _MaxRows = -1; int _MaxCols = 1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:22:0: required from here 22 | vector_d eigenprojections = eigenvectors.transpose() * g; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:44:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 44 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:44:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 44 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:44:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 44 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:44:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 44 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:45:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 45 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:45:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 45 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:45:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 45 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:45:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 45 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:46:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 46 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:46:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 46 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:46:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 46 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:46:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 46 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:51:53: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 51 | Vectorizable = unpacket_traits<_LhsPacket>::vectorizable && | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:51:53: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:51:53: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:51:53: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:52:38: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 52 | unpacket_traits<_RhsPacket>::vectorizable && | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:52:38: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:52:38: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:52:38: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:42: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 53 | int(unpacket_traits<_LhsPacket>::size)==int(unpacket_traits<_RhsPacket>::size), | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:42: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:42: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:42: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:82: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 53 | int(unpacket_traits<_LhsPacket>::size)==int(unpacket_traits<_RhsPacket>::size), | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:82: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:82: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:82: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:54:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 54 | LhsPacketSize = Vectorizable ? unpacket_traits<_LhsPacket>::size : 1, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:54:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:54:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:54:69: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:55:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 55 | RhsPacketSize = Vectorizable ? unpacket_traits<_RhsPacket>::size : 1, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:55:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:55:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:55:69: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:56:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 56 | ResPacketSize = Vectorizable ? unpacket_traits<_ResPacket>::size : 1 | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:56:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:56:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:56:69: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:59:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 59 | typedef typename conditional::type LhsPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:59:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:59:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:59:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:60:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 60 | typedef typename conditional::type RhsPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:60:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:60:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:60:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:61:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 61 | typedef typename conditional::type ResPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:61:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:61:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:61:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h: In instantiation of ‘class Eigen::internal::gemv_traits’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:314:45: required from ‘struct Eigen::internal::general_matrix_vector_product, 1, false, double, Eigen::internal::const_blas_data_mapper, false, 0>’ 314 | typedef typename QuarterTraits::LhsPacket LhsPacketQuarter; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:347:132: required from ‘static void Eigen::internal::gemv_dense_selector<2, 1, true>::run(const Lhs&, const Rhs&, Dest&, const typename Dest::Scalar&) [with Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; Dest = Eigen::Matrix; typename Dest::Scalar = double]’ 346 | general_matrix_vector_product | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 347 | ::run( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 348 | actualLhs.rows(), actualLhs.cols(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 349 | LhsMapper(actualLhs.data(), actualLhs.outerStride()), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 350 | RhsMapper(actualRhsPtr, 1), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 351 | dest.data(), dest.col(0).innerStride(), //NOTE if dest is not a vector at compile-time, then dest.innerStride() might be wrong. (bug 1166) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 352 | actualAlpha); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:388:34: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; Scalar = double]’ 385 | internal::gemv_dense_selector::HasUsableDirectAccess) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 388 | >::run(actual_lhs, actual_rhs, dst, alpha); | ~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:361:27: required from ‘static void Eigen::internal::generic_product_impl_base::scaleAndAddTo(Dst&, const Lhs&, const Rhs&, const Scalar&) [with Dst = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; Derived = Eigen::internal::generic_product_impl >, Eigen::Matrix, Eigen::DenseShape, Eigen::DenseShape, 7>; Scalar = double]’ 361 | { Derived::scaleAndAddTo(dst,lhs,rhs,alpha); } | ~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:349:33: required from ‘static void Eigen::internal::generic_product_impl_base::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; Derived = Eigen::internal::generic_product_impl >, Eigen::Matrix, Eigen::DenseShape, Eigen::DenseShape, 7>]’ 349 | { dst.setZero(); scaleAndAddTo(dst, lhs, rhs, Scalar(1)); } | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: required from ‘static void Eigen::internal::Assignment, Eigen::internal::assign_op, Eigen::internal::Dense2Dense, typename Eigen::internal::enable_if<((Options == Eigen::DefaultProduct) || (Options == Eigen::AliasFreeProduct))>::type>::run(DstXprType&, const SrcXprType&, const Eigen::internal::assign_op&) [with DstXprType = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; int Options = 0; Scalar = double; SrcXprType = Eigen::Product >, Eigen::Matrix, 0>]’ 148 | generic_product_impl::evalTo(dst, src.lhs(), src.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Matrix; Src = Eigen::Product >, Eigen::Matrix, 0>; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; _Scalar = double; int _Rows = -1; int _Cols = 1; int _Options = 0; int _MaxRows = -1; int _MaxCols = 1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:22:0: required from here 22 | vector_d eigenprojections = eigenvectors.transpose() * g; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:44:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 44 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:44:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 44 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:44:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 44 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:44:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 44 | PACKET_DECL_COND_PREFIX(_, Lhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:45:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 45 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:45:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 45 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:45:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 45 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:45:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 45 | PACKET_DECL_COND_PREFIX(_, Rhs, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:46:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 46 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:46:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 46 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:46:27: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 46 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:46:27: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 46 | PACKET_DECL_COND_PREFIX(_, Res, _PacketSize); | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:42:3: note: in definition of macro ‘PACKET_DECL_COND_PREFIX’ 42 | prefix ## name ## Packet | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:51:53: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 51 | Vectorizable = unpacket_traits<_LhsPacket>::vectorizable && | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:51:53: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:51:53: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:51:53: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:52:38: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 52 | unpacket_traits<_RhsPacket>::vectorizable && | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:52:38: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:52:38: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:52:38: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:42: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 53 | int(unpacket_traits<_LhsPacket>::size)==int(unpacket_traits<_RhsPacket>::size), | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:42: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:42: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:42: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:82: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 53 | int(unpacket_traits<_LhsPacket>::size)==int(unpacket_traits<_RhsPacket>::size), | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:82: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:82: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:53:82: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:54:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 54 | LhsPacketSize = Vectorizable ? unpacket_traits<_LhsPacket>::size : 1, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:54:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:54:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:54:69: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:55:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 55 | RhsPacketSize = Vectorizable ? unpacket_traits<_RhsPacket>::size : 1, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:55:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:55:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:55:69: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:56:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 56 | ResPacketSize = Vectorizable ? unpacket_traits<_ResPacket>::size : 1 | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:56:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:56:69: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:56:69: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:59:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 59 | typedef typename conditional::type LhsPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:59:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:59:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:59:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:60:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 60 | typedef typename conditional::type RhsPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:60:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:60:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:60:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:61:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] 61 | typedef typename conditional::type ResPacket; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:61:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:61:73: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixVector.h:61:73: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: required from ‘static void Eigen::internal::Assignment, Eigen::internal::assign_op, Eigen::internal::Dense2Dense, typename Eigen::internal::enable_if<((Options == Eigen::DefaultProduct) || (Options == Eigen::AliasFreeProduct))>::type>::run(DstXprType&, const SrcXprType&, const Eigen::internal::assign_op&) [with DstXprType = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; int Options = 0; Scalar = double; SrcXprType = Eigen::Product >, Eigen::Matrix, 0>]’ 148 | generic_product_impl::evalTo(dst, src.lhs(), src.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Matrix; Src = Eigen::Product >, Eigen::Matrix, 0>; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; _Scalar = double; int _Rows = -1; int _Cols = 1; int _Options = 0; int _MaxRows = -1; int _MaxCols = 1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:22:0: required from here 22 | vector_d eigenprojections = eigenvectors.transpose() * g; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, true>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, true>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, true>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, true>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, true>, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:26: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, true> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:43: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:780:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>; SrcXprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; Functor = assign_op]’ 780 | DstEvaluatorType dstEvaluator(dst); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>; SrcXprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; Functor = Eigen::internal::assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, -1, -1, false>; Src = Eigen::Map, 0, Eigen::Stride<0, 0> >; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, -1, -1, false>; Src = Eigen::Map, 0, Eigen::Stride<0, 0> >; Func = assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:836:18: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&) [with Dst = Eigen::Block, -1, -1, false>; Src = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 836 | call_assignment(dst, src, internal::assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Assign.h:66:28: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CommaInitializer.h:159:10: required from ‘Eigen::CommaInitializer Eigen::DenseBase::operator<<(const Eigen::DenseBase&) [with OtherDerived = Eigen::Map, 0, Eigen::Stride<0, 0> >; Derived = Eigen::Matrix]’ 159 | return CommaInitializer(*static_cast(this), other); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/append_row.hpp:102:10: required from ‘Eigen::Matrix::type, -1, 1> stan::math::append_row(const ColVec&, const Scal&) [with ColVec = Eigen::Map, 0, Eigen::Stride<0, 0> >; Scal = double; stan::require_t >* = 0; stan::require_stan_scalar_t* = 0; typename stan::return_type::type = double]’ 102 | result << A.template cast(), B; | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:29:31: required from ‘T_return stan::math::internal::hypergeometric_3F2_infsum(const Ta&, const Tb&, const Tz&, double, int) [with Ta = std::vector; Tb = std::vector; Tz = double; T_return = double; ArrayAT = Eigen::Array; ArrayBT = Eigen::Array; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 29 | ArrayBT b_array = append_row(as_array_or_scalar(b), 1.0); | ~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:123:47: required from ‘auto stan::math::hypergeometric_3F2(const Ta&, const Tb&, const Tz&) [with Ta = std::vector; Tb = std::vector; Tz = double; stan::require_all_vector_t* = 0; stan::require_stan_scalar_t* = 0]’ 123 | return internal::hypergeometric_3F2_infsum(a, b, z); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/hypergeometric_3F2.hpp:148:28: required from ‘auto stan::math::hypergeometric_3F2(const std::initializer_list<_Tp>&, const std::initializer_list<_Value>&, const Tz&) [with Ta = double; Tb = double; Tz = double; stan::require_all_stan_scalar_t* = 0]’ 148 | return hypergeometric_3F2(std::vector(a), std::vector(b), z); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/inv_inc_beta.hpp:77:0: required from here 77 | + log(hypergeometric_3F2({a_val, a_val, one_m_b}, {ap1, ap1}, w)) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, true>, -1, 1, false>, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1, true>, -1, 1, false>, -1, 1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:564:45: required from ‘struct Eigen::internal::unary_evaluator, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> >, Eigen::internal::IndexBased, double>’ 564 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 4 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:363:59: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 363 | matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, 1, -1, true> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl >, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose >, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: required from ‘static void Eigen::internal::Assignment, Eigen::internal::assign_op, Eigen::internal::Dense2Dense, typename Eigen::internal::enable_if<((Options == Eigen::DefaultProduct) || (Options == Eigen::AliasFreeProduct))>::type>::run(DstXprType&, const SrcXprType&, const Eigen::internal::assign_op&) [with DstXprType = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; int Options = 0; Scalar = double; SrcXprType = Eigen::Product >, Eigen::Matrix, 0>]’ 148 | generic_product_impl::evalTo(dst, src.lhs(), src.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Matrix; Src = Eigen::Product >, Eigen::Matrix, 0>; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; _Scalar = double; int _Rows = -1; int _Cols = 1; int _Options = 0; int _MaxRows = -1; int _MaxCols = 1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:22:0: required from here 22 | vector_d eigenprojections = eigenvectors.transpose() * g; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block >, 1, -1, true>; U = Eigen::Block, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 4 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: required from ‘static void Eigen::internal::Assignment, Eigen::internal::assign_op, Eigen::internal::Dense2Dense, typename Eigen::internal::enable_if<((Options == Eigen::DefaultProduct) || (Options == Eigen::AliasFreeProduct))>::type>::run(DstXprType&, const SrcXprType&, const Eigen::internal::assign_op&) [with DstXprType = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; int Options = 0; Scalar = double; SrcXprType = Eigen::Product >, Eigen::Matrix, 0>]’ 148 | generic_product_impl::evalTo(dst, src.lhs(), src.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Matrix; Src = Eigen::Product >, Eigen::Matrix, 0>; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; _Scalar = double; int _Rows = -1; int _Cols = 1; int _Options = 0; int _MaxRows = -1; int _MaxCols = 1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:22:0: required from here 22 | vector_d eigenprojections = eigenvectors.transpose() * g; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Block, -1, 1, true>, -1, 1, false> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:221:28: required from ‘static typename Eigen::NumTraits::Scalar>::Real Eigen::internal::lpNorm_selector::run(const Eigen::MatrixBase&) [with Derived = Eigen::Block, -1, 1, true>, -1, 1, false>; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 221 | return m.cwiseAbs().sum(); | ~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:269:52: required from ‘typename Eigen::NumTraits::Scalar>::Real Eigen::MatrixBase::lpNorm() const [with int p = 1; Derived = Eigen::Block, -1, 1, true>, -1, 1, false>; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 269 | return internal::lpNorm_selector::run(*this); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:514:74: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 514 | abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:251:54: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Block, 1, -1, false>; Rhs = Eigen::Block, -1, 1, false>]’ 251 | dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:124:75: [ skipping 4 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:359:56: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 359 | mat.coeffRef(k,k) -= (A10 * temp.head(k)).value(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Matrix, const Eigen::Matrix > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:37:51: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Matrix; U = Eigen::Matrix; bool NeedToTranspose = false; ResScalar = double]’ 37 | return a.template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Matrix; Derived = Eigen::Matrix; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:199:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 199 | * CubicInterp(_gk_1.dot(_pk_1), _alphak_1, _fk - _fk_1, /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::Block >, -1, 1, false>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::Block >, -1, 1, false>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::Block >, -1, 1, false>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::Block >, -1, 1, false>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::Block >, -1, 1, false>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::Block >, -1, 1, false>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, -1, 1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase >, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense >, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator >, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator >, -1, 1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval >, -1, 1, false>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:370:45: required from ‘struct Eigen::internal::generic_product_impl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, const Eigen::Block >, -1, 1, false>, Eigen::DenseShape, Eigen::DenseShape, 7>’ 370 | typedef typename nested_eval::type RhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:479:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; Rhs = Eigen::Transpose >; Scalar = double]’ 478 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 479 | ::scaleAndAddTo(dst_vec, a_lhs, a_rhs.col(0), alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; Rhs = Eigen::Transpose >]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, Eigen::Transpose >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, Eigen::Transpose >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, Eigen::Transpose >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, Eigen::Transpose >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, Eigen::Transpose >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, Eigen::Transpose >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:113:15: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:369:45: required from ‘struct Eigen::internal::generic_product_impl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, Eigen::Transpose >, Eigen::DenseShape, Eigen::DenseShape, 7>’ 369 | typedef typename nested_eval::type LhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:486:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; Rhs = Eigen::Transpose >; Scalar = double]’ 485 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 486 | ::scaleAndAddTo(dst_vec, a_lhs.row(0), a_rhs, alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; Rhs = Eigen::Transpose >]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Array, const Eigen::Array > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/sum.hpp:47:15: required from ‘stan::value_type_t stan::math::sum(const T&) [with T = Eigen::CwiseBinaryOp, const Eigen::Array, const Eigen::Array >; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 47 | return m.sum(); | ~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:82:38: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = int; T_scale = int; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 82 | T_partials_return logp = -0.5 * sum(y_scaled_sq); | ~~~^~~~~~~~~~~~~ stanExports_gMAP.h:1035:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1035 | lp_accum__.add(stan::math::normal_lpdf(xi_eta, 0, 1)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::Array; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::Array; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::Array; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::Array; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/sum.hpp:47:15: required from ‘stan::value_type_t stan::math::sum(const T&) [with T = Eigen::Array; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 47 | return m.sum(); | ~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:82:38: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = var_value; T_scale = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 82 | T_partials_return logp = -0.5 * sum(y_scaled_sq); | ~~~^~~~~~~~~~~~~ stanExports_gMAP.h:1047:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1047 | lp_accum__.add(stan::math::normal_lpdf(xi_eta, 1048 | ((stan::model::rvalue(beta, "beta", 1049 | stan::model::index_uni(1)) - 1050 | stan::model::rvalue(beta_raw_guess, 1051 | "beta_raw_guess", stan::model::index_uni(1), 1052 | stan::model::index_uni(1))) / 1053 | stan::model::rvalue(beta_raw_guess, 1054 | "beta_raw_guess", stan::model::index_uni(2), 1055 | stan::model::index_uni(1))), 1056 | stan::math::divide( 1057 | stan::model::rvalue(tau, "tau", 1058 | stan::model::index_multi(tau_strata_gindex)), 1059 | stan::model::rvalue(beta_raw_guess, 1060 | "beta_raw_guess", stan::model::index_uni(2), 1061 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseUnaryOp, const Eigen::Array >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseUnaryOp, const Eigen::Array >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Array > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseUnaryOp, const Eigen::Array >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseUnaryOp, const Eigen::Array >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/sum.hpp:47:15: required from ‘stan::value_type_t stan::math::sum(const T&) [with T = Eigen::CwiseUnaryOp, const Eigen::Array >; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 47 | return m.sum(); | ~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:87:16: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = var_value; T_scale = Eigen::Matrix, -1, 1>; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 87 | logp -= sum(log(sigma_val)) * N / math::size(sigma); | ~~~^~~~~~~~~~~~~~~~ stanExports_gMAP.h:1047:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1047 | lp_accum__.add(stan::math::normal_lpdf(xi_eta, 1048 | ((stan::model::rvalue(beta, "beta", 1049 | stan::model::index_uni(1)) - 1050 | stan::model::rvalue(beta_raw_guess, 1051 | "beta_raw_guess", stan::model::index_uni(1), 1052 | stan::model::index_uni(1))) / 1053 | stan::model::rvalue(beta_raw_guess, 1054 | "beta_raw_guess", stan::model::index_uni(2), 1055 | stan::model::index_uni(1))), 1056 | stan::math::divide( 1057 | stan::model::rvalue(tau, "tau", 1058 | stan::model::index_multi(tau_strata_gindex)), 1059 | stan::model::rvalue(beta_raw_guess, 1060 | "beta_raw_guess", stan::model::index_uni(2), 1061 | stan::model::index_uni(1))))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::ArrayWrapper > > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/sum.hpp:47:15: required from ‘stan::value_type_t stan::math::sum(const T&) [with T = Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 47 | return m.sum(); | ~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:87:16: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 87 | logp -= sum(log(sigma_val)) * N / math::size(sigma); | ~~~^~~~~~~~~~~~~~~~ stanExports_gMAP.h:1085:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1085 | lp_accum__.add(stan::math::normal_lpdf(beta, 1086 | stan::model::rvalue(beta_prior_stan, 1087 | "beta_prior_stan", stan::model::index_uni(1)), 1088 | stan::model::rvalue(beta_prior_stan, 1089 | "beta_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/sum.hpp:47:15: required from ‘stan::value_type_t stan::math::sum(const T&) [with T = Eigen::CwiseUnaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 47 | return m.sum(); | ~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/uniform_lpdf.hpp:85:0: required from ‘stan::return_type_t stan::math::uniform_lpdf(const T_y&, const T_low&, const T_high&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_low = Eigen::Matrix; T_high = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 85 | logp -= sum(log(beta_val - alpha_val)) * N / max_size(alpha, beta); stanExports_gMAP.h:1114:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1114 | lp_accum__.add(stan::math::uniform_lpdf(tau, 1115 | stan::model::rvalue(tau_prior_stan, 1116 | "tau_prior_stan", stan::model::index_uni(1)), 1117 | stan::model::rvalue(tau_prior_stan, 1118 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/sum.hpp:47:15: required from ‘stan::value_type_t stan::math::sum(const T&) [with T = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 47 | return m.sum(); | ~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:100:16: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_shape = Eigen::Matrix; T_inv_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 100 | logp += sum(alpha_val * log_beta) * N / max_size(alpha, beta); | ~~~^~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1123:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1123 | lp_accum__.add(stan::math::gamma_lpdf(tau, 1124 | stan::model::rvalue(tau_prior_stan, 1125 | "tau_prior_stan", stan::model::index_uni(1)), 1126 | stan::model::rvalue(tau_prior_stan, 1127 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/sum.hpp:47:15: required from ‘stan::value_type_t stan::math::sum(const T&) [with T = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 47 | return m.sum(); | ~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:106:16: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_shape = Eigen::Matrix; T_inv_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 106 | logp += sum((alpha_val - 1.0) * log_y) * N / max_size(alpha, y); | ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1123:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1123 | lp_accum__.add(stan::math::gamma_lpdf(tau, 1124 | stan::model::rvalue(tau_prior_stan, 1125 | "tau_prior_stan", stan::model::index_uni(1)), 1126 | stan::model::rvalue(tau_prior_stan, 1127 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::Array >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::Array >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::ArrayWrapper >, const Eigen::Array > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::Array >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::Array >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/sum.hpp:47:15: required from ‘stan::value_type_t stan::math::sum(const T&) [with T = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::Array >; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 47 | return m.sum(); | ~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:109:16: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_shape = Eigen::Matrix; T_inv_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 109 | logp -= sum(beta_val * y_val) * N / max_size(beta, y); | ~~~^~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1123:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1123 | lp_accum__.add(stan::math::gamma_lpdf(tau, 1124 | stan::model::rvalue(tau_prior_stan, 1125 | "tau_prior_stan", stan::model::index_uni(1)), 1126 | stan::model::rvalue(tau_prior_stan, 1127 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/sum.hpp:47:15: required from ‘stan::value_type_t stan::math::sum(const T&) [with T = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::Array >; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 47 | return m.sum(); | ~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/inv_gamma_lpdf.hpp:96:16: required from ‘stan::return_type_t stan::math::inv_gamma_lpdf(const T_y&, const T_shape&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_shape = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 96 | logp -= sum((alpha_val + 1.0) * log_y) * N / max_size(y, alpha); | ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1132:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1132 | lp_accum__.add(stan::math::inv_gamma_lpdf(tau, 1133 | stan::model::rvalue(tau_prior_stan, 1134 | "tau_prior_stan", stan::model::index_uni(1)), 1135 | stan::model::rvalue(tau_prior_stan, 1136 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::Array >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::Array >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::Array > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::Array >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::Array >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/sum.hpp:47:15: required from ‘stan::value_type_t stan::math::sum(const T&) [with T = Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::Array >; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 47 | return m.sum(); | ~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/lognormal_lpdf.hpp:74:44: required from ‘stan::return_type_t stan::math::lognormal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix, -1, 1>; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 74 | = N * NEG_LOG_SQRT_TWO_PI - 0.5 * sum(square(logy_m_mu) * inv_sigma_sq); | ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1141:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1141 | lp_accum__.add(stan::math::lognormal_lpdf(tau, 1142 | stan::model::rvalue(tau_prior_stan, 1143 | "tau_prior_stan", stan::model::index_uni(1)), 1144 | stan::model::rvalue(tau_prior_stan, 1145 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/sum.hpp:47:15: required from ‘stan::value_type_t stan::math::sum(const T&) [with T = Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper, 0, Eigen::Stride<0, 0> > > >; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 47 | return m.sum(); | ~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/normal_lpdf.hpp:87:16: required from ‘stan::return_type_t stan::math::normal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Map, 0, Eigen::Stride<0, 0> >; T_loc = Eigen::Matrix, -1, 1>; T_scale = Eigen::Map, 0, Eigen::Stride<0, 0> >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = var_value]’ 87 | logp -= sum(log(sigma_val)) * N / math::size(sigma); | ~~~^~~~~~~~~~~~~~~~ stanExports_gMAP.h:1176:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 1176 | lp_accum__.add(stan::math::normal_lpdf(y, theta, y_se)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 1, -1, true>; U = Eigen::Block >, -1, 1, true>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 1, -1, true> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, true>, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, true>, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 1, -1, true>, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 1, -1, true>, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, true>, 1, -1, true> >, const Eigen::Block >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, true>, 1, -1, true> >, const Eigen::Block >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, true>, 1, -1, true> >, const Eigen::Block >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, true>, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true>, 1, -1, true> >, const Eigen::Block >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 1, -1, true>, 1, -1, true>; U = Eigen::Block >, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, false> >, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false> >, -1, 1, true>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false> >, -1, 1, true>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, false> >, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, false> >, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 1, -1, false> >, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1, false>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1, false>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, -1, false>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointMatrixVector.h:166:45: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:369:35: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 369 | hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView() | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 370 | * (conj(h) * matA.col(i).tail(remainingSize))); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, true>, -1, 1, false> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, true>, -1, 1, false> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, true>, -1, 1, false> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, true>, -1, 1, false> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, false>, const Eigen::Block, -1, 1, true>, -1, 1, false> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:37:51: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, 1, false>; U = Eigen::Block, -1, 1, true>, -1, 1, false>; bool NeedToTranspose = false; ResScalar = double]’ 37 | return a.template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Block, -1, 1, true>, -1, 1, false>; Derived = Eigen::Block, -1, 1, false>; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:372:86: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 372 | hCoeffs.tail(n-i-1) += (conj(h)*RealScalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 1, -1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, 1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1, false>, 1, -1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:361:25: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 361 | A21.noalias() -= A20 * temp.head(k); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false>, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, false>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, false>, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1, false>, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:361:25: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 361 | A21.noalias() -= A20 * temp.head(k); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/sum.hpp:47:15: required from ‘stan::value_type_t stan::math::sum(const T&) [with T = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::ArrayWrapper > >; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 47 | return m.sum(); | ~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/gamma_lpdf.hpp:109:16: required from ‘stan::return_type_t stan::math::gamma_lpdf(const T_y&, const T_shape&, const T_inv_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_shape = Eigen::Matrix; T_inv_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 109 | logp -= sum(beta_val * y_val) * N / max_size(beta, y); | ~~~^~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1123:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1123 | lp_accum__.add(stan::math::gamma_lpdf(tau, 1124 | stan::model::rvalue(tau_prior_stan, 1125 | "tau_prior_stan", stan::model::index_uni(1)), 1126 | stan::model::rvalue(tau_prior_stan, 1127 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/sum.hpp:47:15: required from ‘stan::value_type_t stan::math::sum(const T&) [with T = Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 47 | return m.sum(); | ~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/inv_gamma_lpdf.hpp:102:16: required from ‘stan::return_type_t stan::math::inv_gamma_lpdf(const T_y&, const T_shape&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_shape = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 102 | logp -= sum(beta_val * inv_y) * N / max_size(y, beta); | ~~~^~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1132:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1132 | lp_accum__.add(stan::math::inv_gamma_lpdf(tau, 1133 | stan::model::rvalue(tau_prior_stan, 1134 | "tau_prior_stan", stan::model::index_uni(1)), 1135 | stan::model::rvalue(tau_prior_stan, 1136 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/sum.hpp:47:15: required from ‘stan::value_type_t stan::math::sum(const T&) [with T = Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::Array >, const Eigen::CwiseUnaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 47 | return m.sum(); | ~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/lognormal_lpdf.hpp:74:44: required from ‘stan::return_type_t stan::math::lognormal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = false; T_y = Eigen::Matrix; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 74 | = N * NEG_LOG_SQRT_TWO_PI - 0.5 * sum(square(logy_m_mu) * inv_sigma_sq); | ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1141:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1141 | lp_accum__.add(stan::math::lognormal_lpdf(tau, 1142 | stan::model::rvalue(tau_prior_stan, 1143 | "tau_prior_stan", stan::model::index_uni(1)), 1144 | stan::model::rvalue(tau_prior_stan, 1145 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/sum.hpp:47:15: required from ‘stan::value_type_t stan::math::sum(const T&) [with T = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 47 | return m.sum(); | ~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/accumulator.hpp:53:35: required from ‘void stan::math::accumulator >::add(const S&) [with S = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; stan::require_matrix_t* = 0; T = double; = void]’ 53 | buf_.push_back(stan::math::sum(m)); | ~~~~~~~~~~~~~~~^~~ stanExports_gMAP.h:1166:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1166 | lp_accum__.add(stan::math::multiply( 1167 | stan::model::rvalue(tau_raw_guess, 1168 | "tau_raw_guess", stan::model::index_uni(2)), 1169 | tau_raw)); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseUnaryOp, const Eigen::Array >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseUnaryOp, const Eigen::Array >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Array > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseUnaryOp, const Eigen::Array >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseUnaryOp, const Eigen::Array >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/sum.hpp:47:15: required from ‘stan::value_type_t stan::math::sum(const T&) [with T = Eigen::CwiseUnaryOp, const Eigen::Array >; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 47 | return m.sum(); | ~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/poisson_log_lpmf.hpp:76:0: required from ‘stan::return_type_t stan::math::poisson_log_lpmf(const T_n&, const T_log_rate&) [with bool propto = false; T_n = std::vector; T_log_rate = Eigen::CwiseBinaryOp, const Eigen::Map, 0, Eigen::Stride<0, 0> >, const Eigen::Matrix >; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 76 | logp -= sum(exp_alpha) * N / math::size(alpha); stanExports_gMAP.h:1187:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; VecR = std::vector; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1187 | lp_accum__.add(stan::math::poisson_log_lpmf(count, 1188 | stan::math::add(log_offset, theta))); stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = false; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/newton.hpp:56:0: required from ‘int stan::services::optimize::newton(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, bool, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 56 | lp = model.template log_prob(cont_vector, disc_vector, 57 | &message); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:502:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 502 | = stan::services::optimize::newton(model, *init_context_ptr, 503 | random_seed, id, init_radius, 504 | num_iterations, 505 | save_iterations, 506 | interrupt, logger, 507 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Transpose >, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Transpose >, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Transpose >, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Transpose >, 1, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Transpose >, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Transpose >, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:469:72: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product, Eigen::Transpose >, 1> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product, Eigen::Transpose >, 1> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product, Eigen::Transpose >, 1> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product, Eigen::Transpose >, 1>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Product, Eigen::Transpose >, 1> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:469:55: required from ‘static void Eigen::internal::generic_product_impl::eval_dynamic_impl(Dst&, const LhsT&, const RhsT&, const Func&, const Scalar&, Eigen::internal::true_type) [with Dst = Eigen::Matrix; LhsT = Eigen::Matrix; RhsT = Eigen::Transpose >; Func = Eigen::internal::assign_op; Scalar = double; Lhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; Rhs = Eigen::Transpose >]’ 469 | call_restricted_packet_assignment_no_alias(dst, s * lhs.lazyProduct(rhs), func); | ~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:446:22: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, -1, 1, false>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, -1, 1, false>, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, -1, 1, false>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, -1, 1, false>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase >, -1, 1, false>, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense >, -1, 1, false>, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:43: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:63: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Map, 0, Eigen::Stride<0, 0> >; U = Eigen::Map, 0, Eigen::Stride<0, 0> >; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Map, 0, Eigen::Stride<0, 0> >; Derived = Eigen::Map, 0, Eigen::Stride<0, 0> >; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply.hpp:97:0: required from ‘stan::math::var stan::math::multiply(const T1&, const T2&) [with T1 = Eigen::Block, 0, Eigen::Stride<0, 0> >, 1, -1, false>; T2 = Eigen::Matrix, -1, 1>; stan::require_all_matrix_t* = 0; stan::require_return_type_t* = 0; stan::require_row_and_col_vector_t* = 0; var = var_value]’ 97 | var res = arena_A_val.dot(arena_B_val); stanExports_gMAP.h:979:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; VecR = std::vector, std::allocator > >; VecI = std::vector; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = stan::math::var_value; std::ostream = std::basic_ostream]’ 979 | (stan::math::multiply( 980 | stan::model::rvalue(X_param, "X_param", 981 | stan::model::index_uni(h)), beta) + stanExports_gMAP.h:1680:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(std::vector&, std::vector&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = true; T_ = stan::math::var_value; std::ostream = std::basic_ostream]’ 1680 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/log_prob_grad.hpp:40:0: required from ‘double stan::model::log_prob_grad(const M&, std::vector&, std::vector&, std::vector&, std::ostream*) [with bool propto = true; bool jacobian_adjust_transform = true; M = model_gMAP_namespace::model_gMAP; std::ostream = std::basic_ostream]’ 40 | var adLogProb = model.template log_prob( 41 | ad_params_r, params_i, msgs); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1183:0: required from ‘SEXPREC* rstan::stan_fit::grad_log_prob(SEXP, SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1183 | lp = stan::model::log_prob_grad(model_, par_r, par_i, gradient, &rstan::io::rcout); stanExports_gMAP.cc:23:0: required from here 23 | .method("grad_log_prob", &rstan::stan_fit ::grad_log_prob) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseUnaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:98:46: required from ‘typename Eigen::NumTraits::Scalar>::Real Eigen::MatrixBase::squaredNorm() const [with Derived = Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 98 | return numext::real((*this).cwiseAbs2().sum()); | ~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/Householder.h:78:71: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:363:59: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 363 | matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 2, Eigen::Stride<0, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 2, Eigen::Stride<0, 0> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 2, Eigen::Stride<0, 0> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 2, Eigen::Stride<0, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 2, Eigen::Stride<0, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 2, Eigen::Stride<0, 0> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:369:35: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 369 | hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView() | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 370 | * (conj(h) * matA.col(i).tail(remainingSize))); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, false>, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1, false>, -1, 1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false>, -1, 1, false> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false>, -1, 1, false> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false>, -1, 1, false> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false>, -1, 1, false> >, const Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false> > >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:375:18: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 374 | matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView() | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 375 | .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), Scalar(-1)); | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator >, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator >, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator >, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator >, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator >, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: required from ‘static void Eigen::internal::Assignment, Eigen::internal::assign_op, Eigen::internal::Dense2Dense, typename Eigen::internal::enable_if<((Options == Eigen::DefaultProduct) || (Options == Eigen::AliasFreeProduct))>::type>::run(DstXprType&, const SrcXprType&, const Eigen::internal::assign_op&) [with DstXprType = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; int Options = 0; Scalar = double; SrcXprType = Eigen::Product >, Eigen::Matrix, 0>]’ 148 | generic_product_impl::evalTo(dst, src.lhs(), src.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Matrix; Src = Eigen::Product >, Eigen::Matrix, 0>; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; _Scalar = double; int _Rows = -1; int _Cols = 1; int _Options = 0; int _MaxRows = -1; int _MaxCols = 1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:22:0: required from here 22 | vector_d eigenprojections = eigenvectors.transpose() * g; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: required from ‘static void Eigen::internal::Assignment, Eigen::internal::assign_op, Eigen::internal::Dense2Dense, typename Eigen::internal::enable_if<((Options == Eigen::DefaultProduct) || (Options == Eigen::AliasFreeProduct))>::type>::run(DstXprType&, const SrcXprType&, const Eigen::internal::assign_op&) [with DstXprType = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; int Options = 0; Scalar = double; SrcXprType = Eigen::Product >, Eigen::Matrix, 0>]’ 148 | generic_product_impl::evalTo(dst, src.lhs(), src.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Matrix; Src = Eigen::Product >, Eigen::Matrix, 0>; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; _Scalar = double; int _Rows = -1; int _Cols = 1; int _Options = 0; int _MaxRows = -1; int _MaxCols = 1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:22:0: required from here 22 | vector_d eigenprojections = eigenvectors.transpose() * g; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 2, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 2, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 2, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 2, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 2, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:296:40: required from ‘static void Eigen::internal::gemv_dense_selector<2, 0, true>::run(const Lhs&, const Rhs&, Dest&, const typename Dest::Scalar&) [with Lhs = Eigen::Block, -1, -1, false>; Rhs = Eigen::Block, -1, 1, false>; Dest = Eigen::Block, -1, 1, false>; typename Dest::Scalar = double]’ 296 | dest.matrix() += actualAlpha * MappedDest(actualDestPtr, dest.size()); | ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:388:34: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:361:25: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 361 | A21.noalias() -= A20 * temp.head(k); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:26: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:43: required from ‘static void Eigen::internal::gemv_dense_selector<1, StorageOrder, BlasCompatible>::run(const Lhs&, const Rhs&, Dest&, const typename Dest::Scalar&) [with Lhs = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>; Rhs = Eigen::Transpose >; Dest = Eigen::Block, 1, -1, false>; int StorageOrder = 1; bool BlasCompatible = true; typename Dest::Scalar = double]’ 207 | ::run(rhs.transpose(), lhs.transpose(), destT, alpha); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:388:34: [ skipping 6 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator >, -1, 1, true>, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator >, -1, 1, true>, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 1, -1, true>, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 1, -1, true>, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, 1, -1, true>, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, 1, -1, true>, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 1, -1, true>, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, 1, -1, true>, 1, -1, true> >, const Eigen::Block >, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp: In instantiation of ‘static void boost::concepts::requirement::failed() [with Model = boost::concepts::usage_requirements > > >]’: /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:167:5: required from ‘struct boost::CopyConstructible<__gnu_cxx::__normal_iterator > >’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:125:16: required from ‘struct boost::range_detail::IncrementableIteratorConcept<__gnu_cxx::__normal_iterator > >’ 125 | struct IncrementableIteratorConcept : CopyConstructible | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:147:16: required from ‘struct boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >’ 147 | struct SinglePassIteratorConcept | ^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied > > >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: warning: ‘this’ pointer is null [-Wnonnull] 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ In file included from /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:31: /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:20:5: note: in a call to non-static member function ‘boost::concepts::usage_requirements::~usage_requirements() [with Model = boost::CopyConstructible<__gnu_cxx::__normal_iterator > >]’ 20 | ~usage_requirements() { ((Model*)0)->~Model(); } | ^ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp: In instantiation of ‘static void boost::concepts::requirement::failed() [with Model = boost::concepts::usage_requirements >]’: /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:208:5: required from ‘struct boost::Convertible’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::Convertible]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: required from ‘struct boost::concepts::not_satisfied >’ 45 | typedef boost::integral_constant type; | ^~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:72:8: required from ‘struct boost::concepts::requirement_)>’ 72 | struct requirement_ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/iterator/iterator_concepts.hpp:114:7: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: warning: ‘this’ pointer is null [-Wnonnull] 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:20:5: note: in a call to non-static member function ‘boost::concepts::usage_requirements::~usage_requirements() [with Model = boost::Convertible]’ 20 | ~usage_requirements() { ((Model*)0)->~Model(); } | ^ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp: In instantiation of ‘static void boost::concepts::requirement::failed() [with Model = boost::Convertible]’: /usr/local/lib/R/library/BH/include/boost/iterator/iterator_concepts.hpp:114:7: required from ‘struct boost::range_detail::IncrementableIteratorConcept<__gnu_cxx::__normal_iterator > >’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:147:16: required from ‘struct boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >’ 147 | struct SinglePassIteratorConcept | ^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied > > >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: required from ‘struct boost::concepts::not_satisfied > > >’ 45 | typedef boost::integral_constant type; | ^~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:72:8: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: warning: ‘this’ pointer is null [-Wnonnull] 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:37:7: note: in a call to non-static member function ‘boost::Convertible::~Convertible() [with X = boost::iterators::random_access_traversal_tag; Y = boost::iterators::incrementable_traversal_tag]’ 37 | ~model() | ^ /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:208:5: note: in expansion of macro ‘BOOST_CONCEPT_USAGE’ 208 | BOOST_CONCEPT_USAGE(Convertible) { | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp: In instantiation of ‘static void boost::concepts::requirement::failed() [with Model = boost::concepts::usage_requirements > > >]’: /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:136:13: required from ‘struct boost::range_detail::IncrementableIteratorConcept<__gnu_cxx::__normal_iterator > >’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:147:16: required from ‘struct boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >’ 147 | struct SinglePassIteratorConcept | ^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied > > >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: required from ‘struct boost::concepts::not_satisfied > > >’ 45 | typedef boost::integral_constant type; | ^~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:72:8: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: warning: ‘this’ pointer is null [-Wnonnull] 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:20:5: note: in a call to non-static member function ‘boost::concepts::usage_requirements::~usage_requirements() [with Model = boost::range_detail::IncrementableIteratorConcept<__gnu_cxx::__normal_iterator > >]’ 20 | ~usage_requirements() { ((Model*)0)->~Model(); } | ^ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp: In instantiation of ‘static void boost::concepts::requirement::failed() [with Model = boost::concepts::usage_requirements > > >]’: /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:233:5: required from ‘struct boost::EqualityComparable<__gnu_cxx::__normal_iterator > >’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:147:16: required from ‘struct boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >’ 147 | struct SinglePassIteratorConcept | ^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied > > >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: required from ‘struct boost::concepts::not_satisfied > > >’ 45 | typedef boost::integral_constant type; | ^~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:72:8: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: warning: ‘this’ pointer is null [-Wnonnull] 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:20:5: note: in a call to non-static member function ‘boost::concepts::usage_requirements::~usage_requirements() [with Model = boost::EqualityComparable<__gnu_cxx::__normal_iterator > >]’ 20 | ~usage_requirements() { ((Model*)0)->~Model(); } | ^ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp: In instantiation of ‘static void boost::concepts::requirement::failed() [with Model = boost::concepts::usage_requirements >]’: /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:208:5: required from ‘struct boost::Convertible’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::Convertible]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: required from ‘struct boost::concepts::not_satisfied >’ 45 | typedef boost::integral_constant type; | ^~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:72:8: required from ‘struct boost::concepts::requirement_)>’ 72 | struct requirement_ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:152:13: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: warning: ‘this’ pointer is null [-Wnonnull] 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:20:5: note: in a call to non-static member function ‘boost::concepts::usage_requirements::~usage_requirements() [with Model = boost::Convertible]’ 20 | ~usage_requirements() { ((Model*)0)->~Model(); } | ^ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp: In instantiation of ‘static void boost::concepts::requirement::failed() [with Model = boost::Convertible]’: /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:152:13: required from ‘struct boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied > > >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: required from ‘struct boost::concepts::not_satisfied > > >’ 45 | typedef boost::integral_constant type; | ^~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:72:8: required from ‘struct boost::concepts::requirement_ > >)>’ 72 | struct requirement_ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:278:9: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: warning: ‘this’ pointer is null [-Wnonnull] 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:37:7: note: in a call to non-static member function ‘boost::Convertible::~Convertible() [with X = boost::iterators::random_access_traversal_tag; Y = boost::iterators::single_pass_traversal_tag]’ 37 | ~model() | ^ /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:208:5: note: in expansion of macro ‘BOOST_CONCEPT_USAGE’ 208 | BOOST_CONCEPT_USAGE(Convertible) { | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp: In instantiation of ‘static void boost::concepts::requirement::failed() [with Model = boost::concepts::usage_requirements > > >]’: /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:158:13: required from ‘struct boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied > > >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: required from ‘struct boost::concepts::not_satisfied > > >’ 45 | typedef boost::integral_constant type; | ^~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:72:8: required from ‘struct boost::concepts::requirement_ > >)>’ 72 | struct requirement_ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:278:9: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: warning: ‘this’ pointer is null [-Wnonnull] 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:20:5: note: in a call to non-static member function ‘boost::concepts::usage_requirements::~usage_requirements() [with Model = boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >]’ 20 | ~usage_requirements() { ((Model*)0)->~Model(); } | ^ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp: In instantiation of ‘static void boost::concepts::requirement::failed() [with Model = boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >]’: /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:278:9: required from ‘struct boost::SinglePassRangeConcept > > >’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::SinglePassRangeConcept > > >]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied > > > >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: required from ‘struct boost::concepts::not_satisfied > > > >’ 45 | typedef boost::integral_constant type; | ^~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:72:8: required from ‘struct boost::concepts::requirement_ > > >)>’ 72 | struct requirement_ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/range/algorithm/equal.hpp:174:13: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: warning: ‘this’ pointer is null [-Wnonnull] 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:37:7: note: in a call to non-static member function ‘boost::range_detail::SinglePassIteratorConcept::~SinglePassIteratorConcept() [with Iterator = __gnu_cxx::__normal_iterator >]’ 37 | ~model() | ^ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:158:13: note: in expansion of macro ‘BOOST_CONCEPT_USAGE’ 158 | BOOST_CONCEPT_USAGE(SinglePassIteratorConcept) | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp: In instantiation of ‘static void boost::concepts::requirement::failed() [with Model = boost::concepts::usage_requirements > > > >]’: /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:284:9: required from ‘struct boost::SinglePassRangeConcept > > >’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::SinglePassRangeConcept > > >]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied > > > >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: required from ‘struct boost::concepts::not_satisfied > > > >’ 45 | typedef boost::integral_constant type; | ^~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:72:8: required from ‘struct boost::concepts::requirement_ > > >)>’ 72 | struct requirement_ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/range/algorithm/equal.hpp:174:13: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: warning: ‘this’ pointer is null [-Wnonnull] 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:20:5: note: in a call to non-static member function ‘boost::concepts::usage_requirements::~usage_requirements() [with Model = boost::SinglePassRangeConcept > > >]’ 20 | ~usage_requirements() { ((Model*)0)->~Model(); } | ^ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp: In instantiation of ‘static void boost::concepts::requirement::failed() [with Model = boost::SinglePassRangeConcept > > >]’: /usr/local/lib/R/library/BH/include/boost/range/algorithm/equal.hpp:174:13: required from ‘bool boost::range::equal(const SinglePassRange1&, const SinglePassRange2&) [with SinglePassRange1 = boost::iterator_range<__gnu_cxx::__normal_iterator > >; SinglePassRange2 = boost::iterator_range<__gnu_cxx::__normal_iterator > >]’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/range/iterator_range_core.hpp:644:32: required from ‘bool boost::operator==(const iterator_range&, const iterator_range&) [with Iterator1T = __gnu_cxx::__normal_iterator >; Iterator2T = __gnu_cxx::__normal_iterator >]’ 644 | return boost::equal( l, r ); | ~~~~~~~~~~~~^~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/find_iterator.hpp:359:0: required from ‘bool boost::algorithm::split_iterator::equal(const boost::algorithm::split_iterator&) const [with IteratorT = __gnu_cxx::__normal_iterator >]’ 359 | m_Match==Other.m_Match && /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:649:26: required from ‘static bool boost::iterators::iterator_core_access::equal(const Facade1&, const Facade2&, mpl_::true_) [with Facade1 = boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >; Facade2 = boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >; mpl_::true_ = mpl_::bool_]’ 649 | return f1.equal(f2); | ~~~~~~~~^~~~ /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:981:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator==(const iterator_facade&, const iterator_facade&) [with Derived1 = boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >; V1 = const boost::iterator_range<__gnu_cxx::__normal_iterator > >; TC1 = forward_traversal_tag; Reference1 = const boost::iterator_range<__gnu_cxx::__normal_iterator > >&; Difference1 = long int; Derived2 = boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >; V2 = const boost::iterator_range<__gnu_cxx::__normal_iterator > >; TC2 = forward_traversal_tag; Reference2 = const boost::iterator_range<__gnu_cxx::__normal_iterator > >&; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/local/lib/R/library/BH/include/boost/iterator/iterator_adaptor.hpp:305:29: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: warning: ‘this’ pointer is null [-Wnonnull] 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:37:7: note: in a call to non-static member function ‘boost::SinglePassRangeConcept::~SinglePassRangeConcept() [with T = const boost::iterator_range<__gnu_cxx::__normal_iterator > >]’ 37 | ~model() | ^ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:284:9: note: in expansion of macro ‘BOOST_CONCEPT_USAGE’ 284 | BOOST_CONCEPT_USAGE(SinglePassRangeConcept) | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:457:74: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/TriangularMatrix.h:856:103: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; SrcXprType = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Functor = Eigen::internal::add_assign_op]’ 856 | call_triangular_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::TriangularShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/EigenBase.h:145:18: required from ‘Derived& Eigen::DenseBase::operator+=(const Eigen::EigenBase&) [with OtherDerived = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Derived = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 145 | call_assignment(derived(), other.derived(), internal::add_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:31:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 31 | arena_L.adj() += ((res.adj().transpose() + res.adj()) 32 | * arena_L_val.template triangularView()) 33 | .template triangularView(); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, true>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, true>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/TriangularMatrix.h:856:103: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; SrcXprType = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Functor = Eigen::internal::add_assign_op]’ 856 | call_triangular_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::TriangularShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/EigenBase.h:145:18: required from ‘Derived& Eigen::DenseBase::operator+=(const Eigen::EigenBase&) [with OtherDerived = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Derived = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 145 | call_assignment(derived(), other.derived(), internal::add_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:31:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 31 | arena_L.adj() += ((res.adj().transpose() + res.adj()) 32 | * arena_L_val.template triangularView()) 33 | .template triangularView(); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:462:74: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/TriangularMatrix.h:856:103: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; SrcXprType = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Functor = Eigen::internal::add_assign_op]’ 856 | call_triangular_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::TriangularShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/EigenBase.h:145:18: required from ‘Derived& Eigen::DenseBase::operator+=(const Eigen::EigenBase&) [with OtherDerived = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Derived = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 145 | call_assignment(derived(), other.derived(), internal::add_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:31:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 31 | arena_L.adj() += ((res.adj().transpose() + res.adj()) 32 | * arena_L_val.template triangularView()) 33 | .template triangularView(); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:462:59: required from ‘static void Eigen::internal::triangular_product_impl::run(Dest&, const Lhs&, const Rhs&, const typename Dest::Scalar&) [with Dest = Eigen::Matrix; int Mode = 1; bool LhsIsTriangular = false; Lhs = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >; Rhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; typename Dest::Scalar = double]’ 462 | dst.leftCols(diagSize) -= (rhs_alpha-RhsScalar(1))*a_lhs.leftCols(diagSize); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:783:113: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/TriangularMatrix.h:856:103: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; SrcXprType = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Functor = Eigen::internal::add_assign_op]’ 856 | call_triangular_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::TriangularShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/EigenBase.h:145:18: required from ‘Derived& Eigen::DenseBase::operator+=(const Eigen::EigenBase&) [with OtherDerived = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Derived = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 145 | call_assignment(derived(), other.derived(), internal::add_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:31:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 31 | arena_L.adj() += ((res.adj().transpose() + res.adj()) 32 | * arena_L_val.template triangularView()) 33 | .template triangularView(); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, true>, -1, 1, false>, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:780:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >; Functor = assign_op]’ 780 | DstEvaluatorType dstEvaluator(dst); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >; Functor = Eigen::internal::assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>; Src = Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>; Src = Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >; Func = assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:836:18: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&) [with Dst = Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>; Src = Eigen::CwiseBinaryOp, const Eigen::Block, -1, 1, true>, -1, 1, false>, -1, 1, false>, const Eigen::CwiseNullaryOp, const Eigen::Matrix > >]’ 836 | call_assignment(dst, src, internal::assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Assign.h:66:28: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:363:59: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 363 | matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ In file included from /usr/local/lib/R/library/RcppEigen/include/Eigen/Core:337: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointMatrixVector.h: In instantiation of ‘static void Eigen::internal::selfadjoint_matrix_vector_product::run(Index, const Scalar*, Index, const Scalar*, Scalar*, Scalar) [with Scalar = double; Index = long int; int StorageOrder = 0; int UpLo = 1; bool ConjugateLhs = false; bool ConjugateRhs = false; int Version = 0]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointMatrixVector.h:229:7: required from ‘static void Eigen::internal::selfadjoint_product_impl::run(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Block, -1, 1, false>; Lhs = Eigen::Block, -1, -1, false>; int LhsMode = 17; Rhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >; Scalar = double]’ 227 | internal::selfadjoint_matrix_vector_product::Flags&RowMajorBit) ? RowMajor : ColMajor, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 228 | int(LhsUpLo), bool(LhsBlasTraits::NeedToConjugate), bool(RhsBlasTraits::NeedToConjugate)>::run | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 229 | ( | ^ 230 | lhs.rows(), // size | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 231 | &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 232 | actualRhsPtr, // rhs info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 233 | actualDestPtr, // result info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 234 | actualAlpha // scale factor | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 235 | ); | ~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:805:109: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Block, -1, 1, false>; Lhs = Eigen::SelfAdjointView, -1, -1, false>, 1>; Rhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >; int ProductTag = 7; Scalar = double]’ 805 | selfadjoint_product_impl::run(dst, lhs.nestedExpression(), rhs, alpha); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:361:27: required from ‘static void Eigen::internal::generic_product_impl_base::scaleAndAddTo(Dst&, const Lhs&, const Rhs&, const Scalar&) [with Dst = Eigen::Block, -1, 1, false>; Lhs = Eigen::SelfAdjointView, -1, -1, false>, 1>; Rhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >; Derived = Eigen::internal::generic_product_impl, -1, -1, false>, 1>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, Eigen::SelfAdjointShape, Eigen::DenseShape, 7>; Scalar = double]’ 361 | { Derived::scaleAndAddTo(dst,lhs,rhs,alpha); } | ~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:349:33: required from ‘static void Eigen::internal::generic_product_impl_base::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Block, -1, 1, false>; Lhs = Eigen::SelfAdjointView, -1, -1, false>, 1>; Rhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >; Derived = Eigen::internal::generic_product_impl, -1, -1, false>, 1>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, Eigen::SelfAdjointShape, Eigen::DenseShape, 7>]’ 349 | { dst.setZero(); scaleAndAddTo(dst, lhs, rhs, Scalar(1)); } | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: required from ‘static void Eigen::internal::Assignment, Eigen::internal::assign_op, Eigen::internal::Dense2Dense, typename Eigen::internal::enable_if<((Options == Eigen::DefaultProduct) || (Options == Eigen::AliasFreeProduct))>::type>::run(DstXprType&, const SrcXprType&, const Eigen::internal::assign_op&) [with DstXprType = Eigen::Block, -1, 1, false>; Lhs = Eigen::SelfAdjointView, -1, -1, false>, 1>; Rhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >; int Options = 0; Scalar = double; SrcXprType = Eigen::Product, -1, -1, false>, 1>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, 0>]’ 148 | generic_product_impl::evalTo(dst, src.lhs(), src.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:369:35: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 369 | hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView() | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 370 | * (conj(h) * matA.col(i).tail(remainingSize))); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointMatrixVector.h:62:121: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 62 | conj_helper::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, IsRowMajor), ConjugateRhs> pcj0; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointMatrixVector.h:62:121: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointMatrixVector.h:63:121: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 63 | conj_helper::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> pcj1; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointMatrixVector.h:63:121: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 1, -1, false> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, -1, false>, 1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, -1, false>, 1, -1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:361:25: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 361 | A21.noalias() -= A20 * temp.head(k); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, -1, false>, 1, -1, false>; U = Eigen::Block, -1, 1, false>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:361:25: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 361 | A21.noalias() -= A20 * temp.head(k); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>; U = Eigen::Block >, -1, 1, false>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true>; U = Eigen::Block >, -1, 1, false>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true>; U = Eigen::Block >, -1, 1, false>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 7 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/BlasUtil.h:506:13: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h: In instantiation of ‘struct Eigen::internal::gemm_pack_rhs, 4, 1, false, false>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:81:75: required from ‘static void Eigen::internal::general_matrix_matrix_product::run(Index, Index, Index, const LhsScalar*, Index, const RhsScalar*, Index, ResScalar*, Index, Index, ResScalar, Eigen::internal::level3_blocking&, Eigen::internal::GemmParallelInfo*) [with Index = long int; LhsScalar = double; int LhsStorageOrder = 0; bool ConjugateLhs = false; RhsScalar = double; int RhsStorageOrder = 1; bool ConjugateRhs = false; int ResInnerStride = 1; ResScalar = double]’ 81 | gemm_pack_rhs pack_rhs; | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:230:14: required from ‘void Eigen::internal::gemm_functor::operator()(Index, Index, Index, Index, Eigen::internal::GemmParallelInfo*) const [with Scalar = double; Index = long int; Gemm = Eigen::internal::general_matrix_matrix_product; Lhs = Eigen::Matrix; Rhs = Eigen::Transpose >; Dest = Eigen::Matrix; BlockingType = Eigen::internal::gemm_blocking_space<0, double, double, -1, -1, -1, 1, false>]’ 230 | Gemm::run(rows, cols, m_lhs.cols(), | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ 231 | &m_lhs.coeffRef(row,0), m_lhs.outerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 232 | &m_rhs.coeffRef(0,col), m_rhs.outerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 233 | (Scalar*)&(m_dest.coeffRef(row,col)), m_dest.innerStride(), m_dest.outerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 234 | m_actualAlpha, m_blocking, info); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/Parallelizer.h:114:7: required from ‘void Eigen::internal::parallelize_gemm(const Functor&, Index, Index, Index, bool) [with bool Condition = true; Functor = gemm_functor, Eigen::Matrix, Eigen::Transpose >, Eigen::Matrix, gemm_blocking_space<0, double, double, -1, -1, -1, 1, false> >; Index = long int]’ 114 | func(0,rows, 0,cols); | ~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:509:9: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; Rhs = Eigen::Transpose >; Scalar = double]’ 508 | internal::parallelize_gemm<(Dest::MaxRowsAtCompileTime>32 || Dest::MaxRowsAtCompileTime==Dynamic)> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 509 | (GemmFunctor(lhs, rhs, dst, actualAlpha, blocking), a_lhs.rows(), a_rhs.cols(), a_lhs.cols(), Dest::Flags&RowMajorBit); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; Rhs = Eigen::Transpose >]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2504:50: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 2504 | typedef typename unpacket_traits::half HalfPacket; | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2505:82: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 2505 | typedef typename unpacket_traits::half>::half QuarterPacket; | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2505:82: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2508:56: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 2508 | HalfPacketSize = unpacket_traits::size, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2508:56: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2509:70: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 2509 | QuarterPacketSize = unpacket_traits::size}; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2509:70: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2509:70: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, Eigen::Transpose, 1, -1, false> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, Eigen::Transpose, 1, -1, false> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, Eigen::Transpose, 1, -1, false> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1, false>, Eigen::Transpose, 1, -1, false> >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1, false>, Eigen::Transpose, 1, -1, false> >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, -1, false>, Eigen::Transpose, 1, -1, false> >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:332:45: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/run_adaptive_sampler.hpp:57:0: required from ‘void stan::services::util::run_adaptive_sampler(Sampler&, Model&, std::vector&, int, int, int, int, bool, RNG&, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, size_t, size_t) [with Sampler = stan::mcmc::adapt_dense_e_nuts, boost::random::linear_congruential_engine > >; Model = model_gMAP_namespace::model_gMAP; RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; size_t = long unsigned int]’ 57 | sampler.init_stepsize(logger); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:97:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 97 | util::run_adaptive_sampler( 98 | sampler, model, cont_vector, num_warmup, num_samples, num_thin, refresh, 99 | save_warmup, rng, interrupt, logger, sample_writer, diagnostic_writer); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:150:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 150 | return hmc_nuts_dense_e_adapt( 151 | model, init, unit_e_metric, random_seed, chain, init_radius, num_warmup, 152 | num_samples, num_thin, save_warmup, refresh, stepsize, stepsize_jitter, 153 | max_depth, delta, gamma, kappa, t0, init_buffer, term_buffer, window, 154 | interrupt, logger, init_writer, sample_writer, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:638:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 637 | return_code = stan::services::sample 638 | ::hmc_nuts_dense_e_adapt(model, *init_context_ptr, 639 | random_seed, id, init_radius, 640 | num_warmup, num_samples, 641 | num_thin, save_warmup, refresh, 642 | stepsize, stepsize_jitter, max_depth, 643 | delta, gamma, kappa, 644 | t0, init_buffer, term_buffer, window, 645 | interrupt, logger, init_writer, 646 | *sample_writer_ptr, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, 1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, 1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/run_adaptive_sampler.hpp:57:0: required from ‘void stan::services::util::run_adaptive_sampler(Sampler&, Model&, std::vector&, int, int, int, int, bool, RNG&, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, size_t, size_t) [with Sampler = stan::mcmc::adapt_dense_e_nuts, boost::random::linear_congruential_engine > >; Model = model_gMAP_namespace::model_gMAP; RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; size_t = long unsigned int]’ 57 | sampler.init_stepsize(logger); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:97:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 97 | util::run_adaptive_sampler( 98 | sampler, model, cont_vector, num_warmup, num_samples, num_thin, refresh, 99 | save_warmup, rng, interrupt, logger, sample_writer, diagnostic_writer); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:150:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 150 | return hmc_nuts_dense_e_adapt( 151 | model, init, unit_e_metric, random_seed, chain, init_radius, num_warmup, 152 | num_samples, num_thin, save_warmup, refresh, stepsize, stepsize_jitter, 153 | max_depth, delta, gamma, kappa, t0, init_buffer, term_buffer, window, 154 | interrupt, logger, init_writer, sample_writer, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:638:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 637 | return_code = stan::services::sample 638 | ::hmc_nuts_dense_e_adapt(model, *init_context_ptr, 639 | random_seed, id, init_radius, 640 | num_warmup, num_samples, 641 | num_thin, save_warmup, refresh, 642 | stepsize, stepsize_jitter, max_depth, 643 | delta, gamma, kappa, 644 | t0, init_buffer, term_buffer, window, 645 | interrupt, logger, init_writer, 646 | *sample_writer_ptr, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 1, -1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 1, -1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, 1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/run_adaptive_sampler.hpp:57:0: required from ‘void stan::services::util::run_adaptive_sampler(Sampler&, Model&, std::vector&, int, int, int, int, bool, RNG&, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, size_t, size_t) [with Sampler = stan::mcmc::adapt_dense_e_nuts, boost::random::linear_congruential_engine > >; Model = model_gMAP_namespace::model_gMAP; RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; size_t = long unsigned int]’ 57 | sampler.init_stepsize(logger); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:97:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 97 | util::run_adaptive_sampler( 98 | sampler, model, cont_vector, num_warmup, num_samples, num_thin, refresh, 99 | save_warmup, rng, interrupt, logger, sample_writer, diagnostic_writer); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:150:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 150 | return hmc_nuts_dense_e_adapt( 151 | model, init, unit_e_metric, random_seed, chain, init_radius, num_warmup, 152 | num_samples, num_thin, save_warmup, refresh, stepsize, stepsize_jitter, 153 | max_depth, delta, gamma, kappa, t0, init_buffer, term_buffer, window, 154 | interrupt, logger, init_writer, sample_writer, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:638:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 637 | return_code = stan::services::sample 638 | ::hmc_nuts_dense_e_adapt(model, *init_context_ptr, 639 | random_seed, id, init_radius, 640 | num_warmup, num_samples, 641 | num_thin, save_warmup, refresh, 642 | stepsize, stepsize_jitter, max_depth, 643 | delta, gamma, kappa, 644 | t0, init_buffer, term_buffer, window, 645 | interrupt, logger, init_writer, 646 | *sample_writer_ptr, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, -1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/run_adaptive_sampler.hpp:57:0: required from ‘void stan::services::util::run_adaptive_sampler(Sampler&, Model&, std::vector&, int, int, int, int, bool, RNG&, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, size_t, size_t) [with Sampler = stan::mcmc::adapt_dense_e_nuts, boost::random::linear_congruential_engine > >; Model = model_gMAP_namespace::model_gMAP; RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; size_t = long unsigned int]’ 57 | sampler.init_stepsize(logger); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:97:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 97 | util::run_adaptive_sampler( 98 | sampler, model, cont_vector, num_warmup, num_samples, num_thin, refresh, 99 | save_warmup, rng, interrupt, logger, sample_writer, diagnostic_writer); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:150:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 150 | return hmc_nuts_dense_e_adapt( 151 | model, init, unit_e_metric, random_seed, chain, init_radius, num_warmup, 152 | num_samples, num_thin, save_warmup, refresh, stepsize, stepsize_jitter, 153 | max_depth, delta, gamma, kappa, t0, init_buffer, term_buffer, window, 154 | interrupt, logger, init_writer, sample_writer, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:638:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 637 | return_code = stan::services::sample 638 | ::hmc_nuts_dense_e_adapt(model, *init_context_ptr, 639 | random_seed, id, init_radius, 640 | num_warmup, num_samples, 641 | num_thin, save_warmup, refresh, 642 | stepsize, stepsize_jitter, max_depth, 643 | delta, gamma, kappa, 644 | t0, init_buffer, term_buffer, window, 645 | interrupt, logger, init_writer, 646 | *sample_writer_ptr, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 1, -1, false> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, -1, false>, 1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, -1, false>, 1, -1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:332:58: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/run_adaptive_sampler.hpp:57:0: required from ‘void stan::services::util::run_adaptive_sampler(Sampler&, Model&, std::vector&, int, int, int, int, bool, RNG&, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, size_t, size_t) [with Sampler = stan::mcmc::adapt_dense_e_nuts, boost::random::linear_congruential_engine > >; Model = model_gMAP_namespace::model_gMAP; RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; size_t = long unsigned int]’ 57 | sampler.init_stepsize(logger); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:97:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 97 | util::run_adaptive_sampler( 98 | sampler, model, cont_vector, num_warmup, num_samples, num_thin, refresh, 99 | save_warmup, rng, interrupt, logger, sample_writer, diagnostic_writer); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:150:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 150 | return hmc_nuts_dense_e_adapt( 151 | model, init, unit_e_metric, random_seed, chain, init_radius, num_warmup, 152 | num_samples, num_thin, save_warmup, refresh, stepsize, stepsize_jitter, 153 | max_depth, delta, gamma, kappa, t0, init_buffer, term_buffer, window, 154 | interrupt, logger, init_writer, sample_writer, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:638:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 637 | return_code = stan::services::sample 638 | ::hmc_nuts_dense_e_adapt(model, *init_context_ptr, 639 | random_seed, id, init_radius, 640 | num_warmup, num_samples, 641 | num_thin, save_warmup, refresh, 642 | stepsize, stepsize_jitter, max_depth, 643 | delta, gamma, kappa, 644 | t0, init_buffer, term_buffer, window, 645 | interrupt, logger, init_writer, 646 | *sample_writer_ptr, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, Eigen::Transpose, -1, -1, false>, 1, -1, false> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, -1, false>, Eigen::Transpose, -1, -1, false>, 1, -1, false> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, -1, false>, Eigen::Transpose, -1, -1, false>, 1, -1, false> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1, false>, -1, -1, false>, Eigen::Transpose, -1, -1, false>, 1, -1, false> >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1, false>, -1, -1, false>, Eigen::Transpose, -1, -1, false>, 1, -1, false> >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, -1, false>, -1, -1, false>, Eigen::Transpose, -1, -1, false>, 1, -1, false> >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:332:45: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/run_adaptive_sampler.hpp:57:0: required from ‘void stan::services::util::run_adaptive_sampler(Sampler&, Model&, std::vector&, int, int, int, int, bool, RNG&, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, size_t, size_t) [with Sampler = stan::mcmc::adapt_dense_e_nuts, boost::random::linear_congruential_engine > >; Model = model_gMAP_namespace::model_gMAP; RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; size_t = long unsigned int]’ 57 | sampler.init_stepsize(logger); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:97:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 97 | util::run_adaptive_sampler( 98 | sampler, model, cont_vector, num_warmup, num_samples, num_thin, refresh, 99 | save_warmup, rng, interrupt, logger, sample_writer, diagnostic_writer); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:150:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 150 | return hmc_nuts_dense_e_adapt( 151 | model, init, unit_e_metric, random_seed, chain, init_radius, num_warmup, 152 | num_samples, num_thin, save_warmup, refresh, stepsize, stepsize_jitter, 153 | max_depth, delta, gamma, kappa, t0, init_buffer, term_buffer, window, 154 | interrupt, logger, init_writer, sample_writer, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:638:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 637 | return_code = stan::services::sample 638 | ::hmc_nuts_dense_e_adapt(model, *init_context_ptr, 639 | random_seed, id, init_radius, 640 | num_warmup, num_samples, 641 | num_thin, save_warmup, refresh, 642 | stepsize, stepsize_jitter, max_depth, 643 | delta, gamma, kappa, 644 | t0, init_buffer, term_buffer, window, 645 | interrupt, logger, init_writer, 646 | *sample_writer_ptr, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:52: required from ‘const Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::CoeffReturnType Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::coeff(Eigen::Index, Eigen::Index) const [with Lhs = Eigen::Matrix; Rhs = Eigen::Transpose >; int ProductTag = 8; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Matrix; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Transpose >; CoeffReturnType = double; Eigen::Index = long int]’ 606 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:654:63: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp: In instantiation of ‘boost::concepts::usage_requirements::~usage_requirements() [with Model = boost::CopyConstructible<__gnu_cxx::__normal_iterator > >]’: /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: required from ‘static void boost::concepts::requirement::failed() [with Model = boost::concepts::usage_requirements > > >]’ 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:167:5: required from ‘struct boost::CopyConstructible<__gnu_cxx::__normal_iterator > >’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:125:16: required from ‘struct boost::range_detail::IncrementableIteratorConcept<__gnu_cxx::__normal_iterator > >’ 125 | struct IncrementableIteratorConcept : CopyConstructible | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:147:16: required from ‘struct boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >’ 147 | struct SinglePassIteratorConcept | ^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:20:48: warning: ‘this’ pointer is null [-Wnonnull] 20 | ~usage_requirements() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:37:7: note: in a call to non-static member function ‘boost::CopyConstructible::~CopyConstructible() [with TT = __gnu_cxx::__normal_iterator >]’ 37 | ~model() | ^ /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:167:5: note: in expansion of macro ‘BOOST_CONCEPT_USAGE’ 167 | BOOST_CONCEPT_USAGE(CopyConstructible) { | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp: In instantiation of ‘boost::concepts::usage_requirements::~usage_requirements() [with Model = boost::Convertible]’: /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: required from ‘static void boost::concepts::requirement::failed() [with Model = boost::concepts::usage_requirements >]’ 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:208:5: required from ‘struct boost::Convertible’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::Convertible]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: required from ‘struct boost::concepts::not_satisfied >’ 45 | typedef boost::integral_constant type; | ^~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:72:8: [ skipping 19 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:20:48: warning: ‘this’ pointer is null [-Wnonnull] 20 | ~usage_requirements() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:37:7: note: in a call to non-static member function ‘boost::Convertible::~Convertible() [with X = boost::iterators::random_access_traversal_tag; Y = boost::iterators::incrementable_traversal_tag]’ 37 | ~model() | ^ /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:208:5: note: in expansion of macro ‘BOOST_CONCEPT_USAGE’ 208 | BOOST_CONCEPT_USAGE(Convertible) { | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp: In instantiation of ‘boost::concepts::usage_requirements::~usage_requirements() [with Model = boost::range_detail::IncrementableIteratorConcept<__gnu_cxx::__normal_iterator > >]’: /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: required from ‘static void boost::concepts::requirement::failed() [with Model = boost::concepts::usage_requirements > > >]’ 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:136:13: required from ‘struct boost::range_detail::IncrementableIteratorConcept<__gnu_cxx::__normal_iterator > >’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:147:16: required from ‘struct boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >’ 147 | struct SinglePassIteratorConcept | ^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied > > >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:20:48: warning: ‘this’ pointer is null [-Wnonnull] 20 | ~usage_requirements() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:37:7: note: in a call to non-static member function ‘boost::range_detail::IncrementableIteratorConcept::~IncrementableIteratorConcept() [with Iterator = __gnu_cxx::__normal_iterator >]’ 37 | ~model() | ^ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:136:13: note: in expansion of macro ‘BOOST_CONCEPT_USAGE’ 136 | BOOST_CONCEPT_USAGE(IncrementableIteratorConcept) | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp: In instantiation of ‘boost::concepts::usage_requirements::~usage_requirements() [with Model = boost::EqualityComparable<__gnu_cxx::__normal_iterator > >]’: /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: required from ‘static void boost::concepts::requirement::failed() [with Model = boost::concepts::usage_requirements > > >]’ 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:233:5: required from ‘struct boost::EqualityComparable<__gnu_cxx::__normal_iterator > >’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:147:16: required from ‘struct boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >’ 147 | struct SinglePassIteratorConcept | ^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied > > >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:20:48: warning: ‘this’ pointer is null [-Wnonnull] 20 | ~usage_requirements() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:37:7: note: in a call to non-static member function ‘boost::EqualityComparable::~EqualityComparable() [with TT = __gnu_cxx::__normal_iterator >]’ 37 | ~model() | ^ /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:233:5: note: in expansion of macro ‘BOOST_CONCEPT_USAGE’ 233 | BOOST_CONCEPT_USAGE(EqualityComparable) { | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp: In instantiation of ‘boost::concepts::usage_requirements::~usage_requirements() [with Model = boost::Convertible]’: /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: required from ‘static void boost::concepts::requirement::failed() [with Model = boost::concepts::usage_requirements >]’ 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:208:5: required from ‘struct boost::Convertible’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::Convertible]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: required from ‘struct boost::concepts::not_satisfied >’ 45 | typedef boost::integral_constant type; | ^~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:72:8: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:20:48: warning: ‘this’ pointer is null [-Wnonnull] 20 | ~usage_requirements() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:37:7: note: in a call to non-static member function ‘boost::Convertible::~Convertible() [with X = boost::iterators::random_access_traversal_tag; Y = boost::iterators::single_pass_traversal_tag]’ 37 | ~model() | ^ /usr/local/lib/R/library/BH/include/boost/concept_check.hpp:208:5: note: in expansion of macro ‘BOOST_CONCEPT_USAGE’ 208 | BOOST_CONCEPT_USAGE(Convertible) { | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp: In instantiation of ‘boost::concepts::usage_requirements::~usage_requirements() [with Model = boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >]’: /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: required from ‘static void boost::concepts::requirement::failed() [with Model = boost::concepts::usage_requirements > > >]’ 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:158:13: required from ‘struct boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::range_detail::SinglePassIteratorConcept<__gnu_cxx::__normal_iterator > >]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied > > >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: required from ‘struct boost::concepts::not_satisfied > > >’ 45 | typedef boost::integral_constant type; | ^~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:72:8: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:20:48: warning: ‘this’ pointer is null [-Wnonnull] 20 | ~usage_requirements() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:37:7: note: in a call to non-static member function ‘boost::range_detail::SinglePassIteratorConcept::~SinglePassIteratorConcept() [with Iterator = __gnu_cxx::__normal_iterator >]’ 37 | ~model() | ^ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:158:13: note: in expansion of macro ‘BOOST_CONCEPT_USAGE’ 158 | BOOST_CONCEPT_USAGE(SinglePassIteratorConcept) | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp: In instantiation of ‘boost::concepts::usage_requirements::~usage_requirements() [with Model = boost::SinglePassRangeConcept > > >]’: /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:50:47: required from ‘static void boost::concepts::requirement::failed() [with Model = boost::concepts::usage_requirements > > > >]’ 50 | static void failed() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:284:9: required from ‘struct boost::SinglePassRangeConcept > > >’ 92 | &::boost::concepts::requirement_::failed> \ | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:32:62: required by substitution of ‘template boost::concepts::detail::yes boost::concepts::detail::has_constraints_(Model*, wrap_constraints*) [with Model = boost::SinglePassRangeConcept > > >]’ 32 | inline yes has_constraints_(Model*, wrap_constraints* = 0); | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:42:5: required from ‘const bool boost::concepts::not_satisfied > > > >::value’ 44 | , value = sizeof( detail::has_constraints_((Model*)0) ) == sizeof(detail::yes) ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/has_constraints.hpp:45:51: required from ‘struct boost::concepts::not_satisfied > > > >’ 45 | typedef boost::integral_constant type; | ^~~~ /usr/local/lib/R/library/BH/include/boost/concept/detail/general.hpp:72:8: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/BH/include/boost/iterator/iterator_facade.hpp:982:3: required from ‘typename boost::iterators::detail::enable_if_interoperable::type>::type boost::iterators::operator!=(const iterator_facade&, const iterator_facade&) [with Derived1 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V1 = std::__cxx11::basic_string; TC1 = forward_traversal_tag; Reference1 = std::__cxx11::basic_string; Difference1 = long int; Derived2 = transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; V2 = std::__cxx11::basic_string; TC2 = forward_traversal_tag; Reference2 = std::__cxx11::basic_string; Difference2 = long int; typename detail::enable_if_interoperable::type>::type = bool; typename boost::mpl::apply2::type = bool]’ 966 | return_prefix iterator_core_access::base_op( \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 967 | *static_cast(&lhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 968 | , *static_cast(&rhs) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 969 | , BOOST_ITERATOR_CONVERTIBLE(Derived2,Derived1) \ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 970 | ); \ | ~ /usr/include/c++/14/bits/stl_vector.h:1673:21: required from ‘void std::vector<_Tp, _Alloc>::_M_range_initialize(_InputIterator, _InputIterator, std::input_iterator_tag) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >]’ 1673 | for (; __first != __last; ++__first) | ~~~~~~~~^~~~~~~~~ /usr/include/c++/14/bits/stl_vector.h:711:23: required from ‘std::vector<_Tp, _Alloc>::vector(_InputIterator, _InputIterator, const allocator_type&) [with _InputIterator = boost::iterators::transform_iterator, __gnu_cxx::__normal_iterator > >, boost::algorithm::split_iterator<__gnu_cxx::__normal_iterator > >, boost::use_default, boost::use_default>; = void; _Tp = std::__cxx11::basic_string; _Alloc = std::allocator >; allocator_type = std::allocator >]’ 711 | _M_range_initialize(__first, __last, | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~ 712 | std::__iterator_category(__first)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/BH/include/boost/algorithm/string/iter_find.hpp:186:0: required from ‘SequenceSequenceT& boost::algorithm::iter_split(SequenceSequenceT&, RangeT&&, FinderT) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; FinderT = detail::token_finderF >]’ 186 | SequenceSequenceT Tmp(itBegin, itEnd); /usr/local/lib/R/library/BH/include/boost/algorithm/string/split.hpp:158:0: required from ‘SequenceSequenceT& boost::algorithm::split(SequenceSequenceT&, RangeT&&, PredicateT, token_compress_mode_type) [with SequenceSequenceT = std::vector >; RangeT = std::__cxx11::basic_string&; PredicateT = detail::is_any_ofF]’ 158 | return ::boost::algorithm::iter_split( 159 | Result, 160 | Input, 161 | ::boost::algorithm::token_finder( Pred, eCompress ) ); /usr/local/lib/R/library/StanHeaders/include/src/stan/io/stan_csv_reader.hpp:19:0: required from here 19 | boost::split(parts, variable, boost::is_any_of(":")); /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:20:48: warning: ‘this’ pointer is null [-Wnonnull] 20 | ~usage_requirements() { ((Model*)0)->~Model(); } | ~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/BH/include/boost/concept/usage.hpp:37:7: note: in a call to non-static member function ‘boost::SinglePassRangeConcept::~SinglePassRangeConcept() [with T = const boost::iterator_range<__gnu_cxx::__normal_iterator > >]’ 37 | ~model() | ^ /usr/local/lib/R/library/BH/include/boost/range/concepts.hpp:284:9: note: in expansion of macro ‘BOOST_CONCEPT_USAGE’ 284 | BOOST_CONCEPT_USAGE(SinglePassRangeConcept) | ^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Diagonal.h:63:53: required from ‘class Eigen::Diagonal, 0>’ 63 | template class Diagonal | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:303:32: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/TriangularMatrix.h:856:103: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; SrcXprType = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Functor = Eigen::internal::add_assign_op]’ 856 | call_triangular_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::TriangularShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/EigenBase.h:145:18: required from ‘Derived& Eigen::DenseBase::operator+=(const Eigen::EigenBase&) [with OtherDerived = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Derived = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 145 | call_assignment(derived(), other.derived(), internal::add_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:31:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 31 | arena_L.adj() += ((res.adj().transpose() + res.adj()) 32 | * arena_L_val.template triangularView()) 33 | .template triangularView(); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ In file included from /usr/local/lib/R/library/RcppEigen/include/Eigen/Core:166: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/Memory.h: In instantiation of ‘Index Eigen::internal::first_default_aligned(const Scalar*, Index) [with Scalar = double; Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointMatrixVector.h:89:68: required from ‘static void Eigen::internal::selfadjoint_matrix_vector_product::run(Index, const Scalar*, Index, const Scalar*, Scalar*, Scalar) [with Scalar = double; Index = long int; int StorageOrder = 0; int UpLo = 1; bool ConjugateLhs = false; bool ConjugateRhs = false; int Version = 0]’ 89 | Index alignedStart = (starti) + internal::first_default_aligned(&res[starti], endi-starti); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/SelfadjointMatrixVector.h:229:7: required from ‘static void Eigen::internal::selfadjoint_product_impl::run(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Block, -1, 1, false>; Lhs = Eigen::Block, -1, -1, false>; int LhsMode = 17; Rhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >; Scalar = double]’ 227 | internal::selfadjoint_matrix_vector_product::Flags&RowMajorBit) ? RowMajor : ColMajor, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 228 | int(LhsUpLo), bool(LhsBlasTraits::NeedToConjugate), bool(RhsBlasTraits::NeedToConjugate)>::run | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 229 | ( | ^ 230 | lhs.rows(), // size | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 231 | &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 232 | actualRhsPtr, // rhs info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 233 | actualDestPtr, // result info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 234 | actualAlpha // scale factor | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 235 | ); | ~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:805:109: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Block, -1, 1, false>; Lhs = Eigen::SelfAdjointView, -1, -1, false>, 1>; Rhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >; int ProductTag = 7; Scalar = double]’ 805 | selfadjoint_product_impl::run(dst, lhs.nestedExpression(), rhs, alpha); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:361:27: required from ‘static void Eigen::internal::generic_product_impl_base::scaleAndAddTo(Dst&, const Lhs&, const Rhs&, const Scalar&) [with Dst = Eigen::Block, -1, 1, false>; Lhs = Eigen::SelfAdjointView, -1, -1, false>, 1>; Rhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >; Derived = Eigen::internal::generic_product_impl, -1, -1, false>, 1>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, Eigen::SelfAdjointShape, Eigen::DenseShape, 7>; Scalar = double]’ 361 | { Derived::scaleAndAddTo(dst,lhs,rhs,alpha); } | ~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:349:33: required from ‘static void Eigen::internal::generic_product_impl_base::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Block, -1, 1, false>; Lhs = Eigen::SelfAdjointView, -1, -1, false>, 1>; Rhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >; Derived = Eigen::internal::generic_product_impl, -1, -1, false>, 1>, Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, true>, -1, 1, false> >, Eigen::SelfAdjointShape, Eigen::DenseShape, 7>]’ 349 | { dst.setZero(); scaleAndAddTo(dst, lhs, rhs, Scalar(1)); } | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:369:35: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, CoeffVectorType&) [with MatrixType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 369 | hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView() | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 370 | * (conj(h) * matA.col(i).tail(remainingSize))); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:449:31: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 449 | tridiagonalization_inplace(mat, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/Memory.h:500:60: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 500 | return first_aligned::alignment>(array, size); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, Eigen::Block, -1, 1, false>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, -1, false>, Eigen::Block, -1, 1, false>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, -1, false>, Eigen::Block, -1, 1, false>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1, false>, -1, -1, false>, Eigen::Block, -1, 1, false>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1, false>, -1, -1, false>, Eigen::Block, -1, 1, false>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, -1, false>, -1, -1, false>, Eigen::Block, -1, 1, false>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/Householder.h:167:27: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, 1, true>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, 1, true>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/Householder.h:169:25: required from ‘void Eigen::MatrixBase::applyHouseholderOnTheRight(const EssentialPart&, const Scalar&, Scalar*) [with EssentialPart = Eigen::Block, -1, 1, false>; Derived = Eigen::Block, -1, -1, false>; Scalar = double]’ 169 | this->col(0) -= tau * tmp; | ~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/HouseholderSequence.h:304:43: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, 1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, 1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/Householder.h:170:53: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, -1, 1, false> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, -1, 1, false> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, -1, 1, false> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, -1, 1, false> >, 0, 5>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, -1, 1, false> >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::Transpose, -1, 1, false> >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/Householder.h:170:34: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false> >, Eigen::Block, -1, -1, false>, -1, -1, false>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false> >, Eigen::Block, -1, -1, false>, -1, -1, false>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, false> >, Eigen::Block, -1, -1, false>, -1, -1, false>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, 1, false> >, Eigen::Block, -1, -1, false>, -1, -1, false>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, 1, false> >, Eigen::Block, -1, -1, false>, -1, -1, false>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, 1, false> >, Eigen::Block, -1, -1, false>, -1, -1, false>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/Householder.h:129:41: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/Householder.h:131:25: required from ‘void Eigen::MatrixBase::applyHouseholderOnTheLeft(const EssentialPart&, const Scalar&, Scalar*) [with EssentialPart = Eigen::Block, -1, 1, false>; Derived = Eigen::Block, -1, -1, false>; Scalar = double]’ 131 | this->row(0) -= tau * tmp; | ~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/HouseholderSequence.h:307:42: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/Householder.h:132:29: required from ‘void Eigen::MatrixBase::applyHouseholderOnTheLeft(const EssentialPart&, const Scalar&, Scalar*) [with EssentialPart = Eigen::Block, -1, 1, false>; Derived = Eigen::Block, -1, -1, false>; Scalar = double]’ 132 | bottom.noalias() -= tau * essential * tmp; | ~~~~^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/HouseholderSequence.h:307:42: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, 5>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, 1, false> >, Eigen::Map, 0, Eigen::Stride<0, 0> >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/Householder.h:132:41: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:63: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block >, 1, -1, true>; U = Eigen::Block, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Block, -1, 1, true>; Derived = Eigen::Block >, 1, -1, true>; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:62: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: required from ‘static void Eigen::internal::Assignment, Eigen::internal::assign_op, Eigen::internal::Dense2Dense, typename Eigen::internal::enable_if<((Options == Eigen::DefaultProduct) || (Options == Eigen::AliasFreeProduct))>::type>::run(DstXprType&, const SrcXprType&, const Eigen::internal::assign_op&) [with DstXprType = Eigen::Matrix; Lhs = Eigen::Transpose >; Rhs = Eigen::Matrix; int Options = 0; Scalar = double; SrcXprType = Eigen::Product >, Eigen::Matrix, 0>]’ 148 | generic_product_impl::evalTo(dst, src.lhs(), src.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Matrix; Src = Eigen::Product >, Eigen::Matrix, 0>; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product >, Eigen::Matrix, 0>; _Scalar = double; int _Rows = -1; int _Cols = 1; int _Options = 0; int _MaxRows = -1; int _MaxCols = 1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:22:0: required from here 22 | vector_d eigenprojections = eigenvectors.transpose() * g; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 1, -1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:332:31: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const T&) [with T = Eigen::Product, Eigen::Matrix, 0>; _Scalar = double; int _Rows = -1; int _Cols = 1; int _Options = 0; int _MaxRows = -1; int _MaxCols = 1]’ 332 | Base::template _init1(x); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:850:41: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if::value, void*>::type) [with Dst = Eigen::Matrix; Src = Eigen::Product, Eigen::Matrix, 0>; Func = assign_op; typename enable_if::value, void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 850 | typename plain_matrix_type::type tmp(src); | ^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:836:18: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&) [with Dst = Eigen::Matrix; Src = Eigen::Product, Eigen::Matrix, 0>]’ 836 | call_assignment(dst, src, internal::assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:779:32: required from ‘Derived& Eigen::PlainObjectBase::_set(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 779 | internal::call_assignment(this->derived(), other.derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:225:24: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Matrix, 0>; _Scalar = double; int _Rows = -1; int _Cols = 1; int _Options = 0; int _MaxRows = -1; int _MaxCols = 1]’ 225 | return Base::_set(other); | ~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:26:0: required from here 26 | g = eigenvectors * eigenprojections; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 1, -1, false>; U = Eigen::Block, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:332:31: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const T&) [with T = Eigen::Product, Eigen::Matrix, 0>; _Scalar = double; int _Rows = -1; int _Cols = 1; int _Options = 0; int _MaxRows = -1; int _MaxCols = 1]’ 332 | Base::template _init1(x); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:850:41: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if::value, void*>::type) [with Dst = Eigen::Matrix; Src = Eigen::Product, Eigen::Matrix, 0>; Func = assign_op; typename enable_if::value, void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 850 | typename plain_matrix_type::type tmp(src); | ^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:836:18: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&) [with Dst = Eigen::Matrix; Src = Eigen::Product, Eigen::Matrix, 0>]’ 836 | call_assignment(dst, src, internal::assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:779:32: required from ‘Derived& Eigen::PlainObjectBase::_set(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Matrix, 0>; Derived = Eigen::Matrix]’ 779 | internal::call_assignment(this->derived(), other.derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:225:24: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Matrix, 0>; _Scalar = double; int _Rows = -1; int _Cols = 1; int _Options = 0; int _MaxRows = -1; int _MaxCols = 1]’ 225 | return Base::_set(other); | ~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:26:0: required from here 26 | g = eigenvectors * eigenprojections; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h: In instantiation of ‘void Eigen::internal::gemm_pack_lhs::operator()(Scalar*, const DataMapper&, Index, Index, Index, Index) [with Scalar = double; Index = long int; DataMapper = Eigen::internal::const_blas_data_mapper; int Pack1 = 4; int Pack2 = 2; Packet = __vector(2) double; bool Conjugate = false; bool PanelMode = false]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:184:17: required from ‘static void Eigen::internal::general_matrix_matrix_product::run(Index, Index, Index, const LhsScalar*, Index, const RhsScalar*, Index, ResScalar*, Index, Index, ResScalar, Eigen::internal::level3_blocking&, Eigen::internal::GemmParallelInfo*) [with Index = long int; LhsScalar = double; int LhsStorageOrder = 0; bool ConjugateLhs = false; RhsScalar = double; int RhsStorageOrder = 1; bool ConjugateRhs = false; int ResInnerStride = 1; ResScalar = double]’ 184 | pack_lhs(blockA, lhs.getSubMapper(i2,k2), actual_kc, actual_mc); | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:230:14: required from ‘void Eigen::internal::gemm_functor::operator()(Index, Index, Index, Index, Eigen::internal::GemmParallelInfo*) const [with Scalar = double; Index = long int; Gemm = Eigen::internal::general_matrix_matrix_product; Lhs = Eigen::Matrix; Rhs = Eigen::Transpose >; Dest = Eigen::Matrix; BlockingType = Eigen::internal::gemm_blocking_space<0, double, double, -1, -1, -1, 1, false>]’ 230 | Gemm::run(rows, cols, m_lhs.cols(), | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ 231 | &m_lhs.coeffRef(row,0), m_lhs.outerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 232 | &m_rhs.coeffRef(0,col), m_rhs.outerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 233 | (Scalar*)&(m_dest.coeffRef(row,col)), m_dest.innerStride(), m_dest.outerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 234 | m_actualAlpha, m_blocking, info); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/Parallelizer.h:114:7: required from ‘void Eigen::internal::parallelize_gemm(const Functor&, Index, Index, Index, bool) [with bool Condition = true; Functor = gemm_functor, Eigen::Matrix, Eigen::Transpose >, Eigen::Matrix, gemm_blocking_space<0, double, double, -1, -1, -1, 1, false> >; Index = long int]’ 114 | func(0,rows, 0,cols); | ~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:509:9: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; Rhs = Eigen::Transpose >; Scalar = double]’ 508 | internal::parallelize_gemm<(Dest::MaxRowsAtCompileTime>32 || Dest::MaxRowsAtCompileTime==Dynamic)> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 509 | (GemmFunctor(lhs, rhs, dst, actualAlpha, blocking), a_lhs.rows(), a_rhs.cols(), a_lhs.cols(), Dest::Flags&RowMajorBit); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >; Rhs = Eigen::Transpose >]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2100:82: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 2100 | typedef typename unpacket_traits::half>::half QuarterPacket; | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2102:56: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 2102 | HalfPacketSize = unpacket_traits::size, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2103:62: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 2103 | QuarterPacketSize = unpacket_traits::size, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2103:62: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Block, 1, -1, false>, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Block, 1, -1, false> >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:98:40: required from ‘typename Eigen::NumTraits::Scalar>::Real Eigen::MatrixBase::squaredNorm() const [with Derived = Eigen::Block, 1, -1, false>; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 98 | return numext::real((*this).cwiseAbs2().sum()); | ~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:328:36: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/run_adaptive_sampler.hpp:57:0: required from ‘void stan::services::util::run_adaptive_sampler(Sampler&, Model&, std::vector&, int, int, int, int, bool, RNG&, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, size_t, size_t) [with Sampler = stan::mcmc::adapt_dense_e_nuts, boost::random::linear_congruential_engine > >; Model = model_gMAP_namespace::model_gMAP; RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; size_t = long unsigned int]’ 57 | sampler.init_stepsize(logger); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:97:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 97 | util::run_adaptive_sampler( 98 | sampler, model, cont_vector, num_warmup, num_samples, num_thin, refresh, 99 | save_warmup, rng, interrupt, logger, sample_writer, diagnostic_writer); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:150:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 150 | return hmc_nuts_dense_e_adapt( 151 | model, init, unit_e_metric, random_seed, chain, init_radius, num_warmup, 152 | num_samples, num_thin, save_warmup, refresh, stepsize, stepsize_jitter, 153 | max_depth, delta, gamma, kappa, t0, init_buffer, term_buffer, window, 154 | interrupt, logger, init_writer, sample_writer, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:638:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 637 | return_code = stan::services::sample 638 | ::hmc_nuts_dense_e_adapt(model, *init_context_ptr, 639 | random_seed, id, init_radius, 640 | num_warmup, num_samples, 641 | num_thin, save_warmup, refresh, 642 | stepsize, stepsize_jitter, max_depth, 643 | delta, gamma, kappa, 644 | t0, init_buffer, term_buffer, window, 645 | interrupt, logger, init_writer, 646 | *sample_writer_ptr, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, -1, false>, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, -1, false>, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, -1, false>, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:94:7: required from ‘class Eigen::CwiseUnaryOpImpl, const Eigen::Block, -1, -1, false>, 1, -1, false>, Eigen::Dense>’ 94 | class CwiseUnaryOpImpl | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryOp.h:55:7: required from ‘class Eigen::CwiseUnaryOp, const Eigen::Block, -1, -1, false>, 1, -1, false> >’ 55 | class CwiseUnaryOp : public CwiseUnaryOpImpl::StorageKind>, internal::no_assignment_operator | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:98:40: required from ‘typename Eigen::NumTraits::Scalar>::Real Eigen::MatrixBase::squaredNorm() const [with Derived = Eigen::Block, -1, -1, false>, 1, -1, false>; typename Eigen::NumTraits::Scalar>::Real = double; typename Eigen::internal::traits::Scalar = double]’ 98 | return numext::real((*this).cwiseAbs2().sum()); | ~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:328:36: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/run_adaptive_sampler.hpp:57:0: required from ‘void stan::services::util::run_adaptive_sampler(Sampler&, Model&, std::vector&, int, int, int, int, bool, RNG&, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, size_t, size_t) [with Sampler = stan::mcmc::adapt_dense_e_nuts, boost::random::linear_congruential_engine > >; Model = model_gMAP_namespace::model_gMAP; RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; size_t = long unsigned int]’ 57 | sampler.init_stepsize(logger); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:97:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 97 | util::run_adaptive_sampler( 98 | sampler, model, cont_vector, num_warmup, num_samples, num_thin, refresh, 99 | save_warmup, rng, interrupt, logger, sample_writer, diagnostic_writer); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:150:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 150 | return hmc_nuts_dense_e_adapt( 151 | model, init, unit_e_metric, random_seed, chain, init_radius, num_warmup, 152 | num_samples, num_thin, save_warmup, refresh, stepsize, stepsize_jitter, 153 | max_depth, delta, gamma, kappa, t0, init_buffer, term_buffer, window, 154 | interrupt, logger, init_writer, sample_writer, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:638:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 637 | return_code = stan::services::sample 638 | ::hmc_nuts_dense_e_adapt(model, *init_context_ptr, 639 | random_seed, id, init_radius, 640 | num_warmup, num_samples, 641 | num_thin, save_warmup, refresh, 642 | stepsize, stepsize_jitter, max_depth, 643 | delta, gamma, kappa, 644 | t0, init_buffer, term_buffer, window, 645 | interrupt, logger, init_writer, 646 | *sample_writer_ptr, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, -1, 1, true> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, -1, 1, true> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, -1, 1, true> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:63: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 1, -1, true>; U = Eigen::Block >, -1, 1, true>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Block >, -1, 1, true>, -1, 1, true>; Derived = Eigen::Block, 1, -1, true>; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:62: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true>, 1, -1, true> >, const Eigen::Block >, -1, 1, true> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true>, 1, -1, true> >, const Eigen::Block >, -1, 1, true> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose, 1, -1, true>, 1, -1, true> >, const Eigen::Block >, -1, 1, true> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true>, 1, -1, true> >, const Eigen::Block >, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true>, 1, -1, true> >, const Eigen::Block >, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:63: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 1, -1, true>, 1, -1, true>; U = Eigen::Block >, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Block >, -1, 1, true>; Derived = Eigen::Block, 1, -1, true>, 1, -1, true>; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:62: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h: In instantiation of ‘void Eigen::internal::gemm_pack_rhs::operator()(Scalar*, const DataMapper&, Index, Index, Index, Index) [with Scalar = double; Index = long int; DataMapper = Eigen::internal::const_blas_data_mapper; int nr = 4; bool Conjugate = false; bool PanelMode = true]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:346:25: required from ‘static void Eigen::internal::product_triangular_matrix_matrix::run(Index, Index, Index, const Scalar*, Index, const Scalar*, Index, Scalar*, Index, Index, const Scalar&, Eigen::internal::level3_blocking&) [with Scalar = double; Index = long int; int Mode = 1; int LhsStorageOrder = 1; bool ConjugateLhs = false; int RhsStorageOrder = 0; bool ConjugateRhs = false; int ResInnerStride = 1; int Version = 0]’ 346 | pack_rhs_panel(blockB+j2*actual_kc, | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ 347 | rhs.getSubMapper(actual_k2+panelOffset, actual_j2), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 348 | panelLength, actualPanelWidth, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 349 | actual_kc, panelOffset); | ~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:443:12: required from ‘static void Eigen::internal::triangular_product_impl::run(Dest&, const Lhs&, const Rhs&, const typename Dest::Scalar&) [with Dest = Eigen::Matrix; int Mode = 1; bool LhsIsTriangular = false; Lhs = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >; Rhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; typename Dest::Scalar = double]’ 438 | internal::product_triangular_matrix_matrix::Flags&RowMajorBit) ? RowMajor : ColMajor, LhsBlasTraits::NeedToConjugate, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 441 | (internal::traits::Flags&RowMajorBit) ? RowMajor : ColMajor, RhsBlasTraits::NeedToConjugate, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 442 | (internal::traits::Flags&RowMajorBit) ? RowMajor : ColMajor, Dest::InnerStrideAtCompileTime> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 443 | ::run( | ~~~~~^ 444 | stripedRows, stripedCols, stripedDepth, // sizes | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 445 | &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 446 | &rhs.coeffRef(0,0), rhs.outerStride(), // rhs info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 447 | &dst.coeffRef(0,0), dst.innerStride(), dst.outerStride(), // result info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 448 | actualAlpha, blocking | ~~~~~~~~~~~~~~~~~~~~~ 449 | ); | ~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:783:113: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >; Rhs = Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>; int ProductTag = 8; Scalar = double]’ 783 | triangular_product_impl::run(dst, lhs, rhs.nestedExpression(), alpha); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:361:27: required from ‘static void Eigen::internal::generic_product_impl_base::scaleAndAddTo(Dst&, const Lhs&, const Rhs&, const Scalar&) [with Dst = Eigen::Matrix; Lhs = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >; Rhs = Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>; Derived = Eigen::internal::generic_product_impl, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, Eigen::DenseShape, Eigen::TriangularShape, 8>; Scalar = double]’ 361 | { Derived::scaleAndAddTo(dst,lhs,rhs,alpha); } | ~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:349:33: required from ‘static void Eigen::internal::generic_product_impl_base::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >; Rhs = Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>; Derived = Eigen::internal::generic_product_impl, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, Eigen::DenseShape, Eigen::TriangularShape, 8>]’ 349 | { dst.setZero(); scaleAndAddTo(dst, lhs, rhs, Scalar(1)); } | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:124:75: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/TriangularMatrix.h:856:103: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; SrcXprType = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Functor = Eigen::internal::add_assign_op]’ 856 | call_triangular_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::TriangularShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/EigenBase.h:145:18: required from ‘Derived& Eigen::DenseBase::operator+=(const Eigen::EigenBase&) [with OtherDerived = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Derived = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 145 | call_assignment(derived(), other.derived(), internal::add_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:31:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 31 | arena_L.adj() += ((res.adj().transpose() + res.adj()) 32 | * arena_L_val.template triangularView()) 33 | .template triangularView(); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2459:62: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 2459 | PacketBlock kernel; | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false> >, 6>, Eigen::Block, -1, -1, false>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false> >, 6>, Eigen::Block, -1, -1, false>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false> >, 6>, Eigen::Block, -1, -1, false>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1, false> >, 6>, Eigen::Block, -1, -1, false>, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1, false> >, 6>, Eigen::Block, -1, -1, false>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, -1, false> >, 6>, Eigen::Block, -1, -1, false>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/BlockHouseholder.h:99:96: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 2>, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 2>, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 2>, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 2>, Eigen::Matrix, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 2>, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 2>, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/BlockHouseholder.h:101:66: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 1>, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, 1>, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, 1>, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base >, 1>, Eigen::Matrix, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl >, 1>, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product >, 1>, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/BlockHouseholder.h:102:66: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 5>, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, 5>, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, 5>, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, -1, -1, false>, 5>, Eigen::Matrix, 0, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, -1, -1, false>, 5>, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, -1, -1, false>, 5>, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/BlockHouseholder.h:103:22: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false>, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, 1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, -1, -1, false>, 1, -1, false> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, 1, -1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, 1, -1, false> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:361:25: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 361 | A21.noalias() -= A20 * temp.head(k); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, false>, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1, false>, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:361:25: required from ‘static bool Eigen::internal::ldlt_inplace<1>::unblocked(MatrixType&, TranspositionType&, Workspace&, Eigen::internal::SignMatrix&) [with MatrixType = Eigen::Matrix; TranspositionType = Eigen::Transpositions<-1, -1, int>; Workspace = Eigen::Matrix]’ 361 | A21.noalias() -= A20 * temp.head(k); | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:526:51: required from ‘Eigen::LDLT<_MatrixType, _UpLo>& Eigen::LDLT::compute(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 526 | m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:120:14: required from ‘Eigen::LDLT::LDLT(const Eigen::EigenBase&) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix; int _UpLo = 1]’ 120 | compute(matrix.derived()); | ~~~~~~~^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LDLT.h:683:10: required from ‘const Eigen::LDLT::PlainObject> Eigen::MatrixBase::ldlt() const [with Derived = Eigen::Matrix; typename Eigen::DenseBase::PlainObject = Eigen::Matrix]’ 683 | return LDLT(derived()); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/err/check_pos_definite.hpp:45:67: required from ‘void stan::math::check_pos_definite(const char*, const char*, const EigMat&) [with EigMat = Eigen::Matrix; stan::require_matrix_t* = 0]’ 45 | Eigen::LDLT cholesky = value_of_rec(y_ref).ldlt(); | ~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/validate_dense_inv_metric.hpp:21:0: required from here 21 | stan::math::check_pos_definite("check_pos_definite", "inv_metric", 22 | inv_metric); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator >, -1, 1, false>, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator >, -1, 1, false>, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h: In instantiation of ‘struct Eigen::internal::gemm_pack_rhs, 4, 1, false, true>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularSolverMatrix.h:233:85: required from ‘static void Eigen::internal::triangular_solve_matrix::run(Index, Index, const Scalar*, Index, Scalar*, Index, Index, Eigen::internal::level3_blocking&) [with Scalar = double; Index = long int; int Mode = 2; bool Conjugate = false; int TriStorageOrder = 1; int OtherInnerStride = 1]’ 233 | gemm_pack_rhs pack_rhs_panel; | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/SolveTriangular.h:102:12: required from ‘static void Eigen::internal::triangular_solver_selector::run(const Lhs&, Rhs&) [with Lhs = const Eigen::Transpose, -1, -1, false> >; Rhs = Eigen::Block, -1, -1, false>; int Side = 2; int Mode = 2]’ 100 | triangular_solve_matrix | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 102 | ::run(size, othersize, &actualLhs.coeffRef(0,0), actualLhs.outerStride(), &rhs.coeffRef(0,0), rhs.innerStride(), rhs.outerStride(), blocking); | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/SolveTriangular.h:182:21: required from ‘void Eigen::TriangularViewImpl<_MatrixType, _Mode, Eigen::Dense>::solveInPlace(const Eigen::MatrixBase&) const [with int Side = 2; OtherDerived = Eigen::Block, -1, -1, false>; _MatrixType = const Eigen::Transpose, -1, -1, false> >; unsigned int _Mode = 2]’ 181 | internal::triangular_solver_selector::type, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 182 | Side, Mode>::run(derived().nestedExpression(), otherCopy); | ~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:364:96: required from ‘static Eigen::Index Eigen::internal::llt_inplace::blocked(MatrixType&) [with MatrixType = Eigen::Matrix; Scalar = double; Eigen::Index = long int]’ 364 | if(rs>0) A11.adjoint().template triangularView().template solveInPlace(A21); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:408:68: required from ‘static bool Eigen::internal::LLT_Traits::inplace_decomposition(MatrixType&) [with MatrixType = Eigen::Matrix]’ 408 | { return llt_inplace::blocked(m)==-1; } | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:456:42: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/run_adaptive_sampler.hpp:57:0: required from ‘void stan::services::util::run_adaptive_sampler(Sampler&, Model&, std::vector&, int, int, int, int, bool, RNG&, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, size_t, size_t) [with Sampler = stan::mcmc::adapt_dense_e_nuts, boost::random::linear_congruential_engine > >; Model = model_gMAP_namespace::model_gMAP; RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; size_t = long unsigned int]’ 57 | sampler.init_stepsize(logger); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:97:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 97 | util::run_adaptive_sampler( 98 | sampler, model, cont_vector, num_warmup, num_samples, num_thin, refresh, 99 | save_warmup, rng, interrupt, logger, sample_writer, diagnostic_writer); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:150:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 150 | return hmc_nuts_dense_e_adapt( 151 | model, init, unit_e_metric, random_seed, chain, init_radius, num_warmup, 152 | num_samples, num_thin, save_warmup, refresh, stepsize, stepsize_jitter, 153 | max_depth, delta, gamma, kappa, t0, init_buffer, term_buffer, window, 154 | interrupt, logger, init_writer, sample_writer, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:638:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 637 | return_code = stan::services::sample 638 | ::hmc_nuts_dense_e_adapt(model, *init_context_ptr, 639 | random_seed, id, init_radius, 640 | num_warmup, num_samples, 641 | num_thin, save_warmup, refresh, 642 | stepsize, stepsize_jitter, max_depth, 643 | delta, gamma, kappa, 644 | t0, init_buffer, term_buffer, window, 645 | interrupt, logger, init_writer, 646 | *sample_writer_ptr, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2504:50: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 2504 | typedef typename unpacket_traits::half HalfPacket; | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2505:82: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 2505 | typedef typename unpacket_traits::half>::half QuarterPacket; | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2505:82: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2508:56: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 2508 | HalfPacketSize = unpacket_traits::size, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2508:56: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2509:70: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 2509 | QuarterPacketSize = unpacket_traits::size}; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2509:70: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2509:70: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:457:59: required from ‘static void Eigen::internal::triangular_product_impl::run(Dest&, const Lhs&, const Rhs&, const typename Dest::Scalar&) [with Dest = Eigen::Matrix; int Mode = 1; bool LhsIsTriangular = true; Lhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; Rhs = Eigen::Transpose, 0, Eigen::Stride<0, 0> > >; typename Dest::Scalar = double]’ 457 | dst.topRows(diagSize) -= ((lhs_alpha-LhsScalar(1))*a_rhs).topRows(diagSize); | ~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:770:14: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:123:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>& stan::math::arena_matrix::type>::value, void>::type>::operator=(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 123 | Base::operator=(a); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:68:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>::arena_matrix(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_eigen_t* = 0; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 68 | *this = other; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/vari.hpp:722:0: required from ‘stan::math::vari_value::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type>::vari_value(const S&, bool) [with S = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix; typename stan::plain_type::type = Eigen::Matrix]’ 722 | : val_(x), /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/var.hpp:366:0: required from ‘stan::math::var_value::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type>::var_value(S&&) [with S = const Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type = void; typename stan::value_type::type = double]’ 366 | var_value(S&& x) : vi_(new vari_type(std::forward(x), false)) {} // NOLINT /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:27:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 27 | arena_t res = arena_L_val.template triangularView() /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >, -1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >, -1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >, -1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >, -1, -1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >, -1, -1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >, -1, -1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:457:74: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:123:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>& stan::math::arena_matrix::type>::value, void>::type>::operator=(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 123 | Base::operator=(a); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:68:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>::arena_matrix(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_eigen_t* = 0; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 68 | *this = other; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/vari.hpp:722:0: required from ‘stan::math::vari_value::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type>::vari_value(const S&, bool) [with S = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix; typename stan::plain_type::type = Eigen::Matrix]’ 722 | : val_(x), /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/var.hpp:366:0: required from ‘stan::math::var_value::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type>::var_value(S&&) [with S = const Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type = void; typename stan::value_type::type = double]’ 366 | var_value(S&& x) : vi_(new vari_type(std::forward(x), false)) {} // NOLINT /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:27:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 27 | arena_t res = arena_L_val.template triangularView() /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, -1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, -1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, -1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::Stride<0, 0> >, -1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:123:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>& stan::math::arena_matrix::type>::value, void>::type>::operator=(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 123 | Base::operator=(a); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:68:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>::arena_matrix(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_eigen_t* = 0; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 68 | *this = other; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/vari.hpp:722:0: required from ‘stan::math::vari_value::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type>::vari_value(const S&, bool) [with S = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix; typename stan::plain_type::type = Eigen::Matrix]’ 722 | : val_(x), /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/var.hpp:366:0: required from ‘stan::math::var_value::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type>::var_value(S&&) [with S = const Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type = void; typename stan::value_type::type = double]’ 366 | var_value(S&& x) : vi_(new vari_type(std::forward(x), false)) {} // NOLINT /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:27:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 27 | arena_t res = arena_L_val.template triangularView() /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, -1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, -1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:462:59: required from ‘static void Eigen::internal::triangular_product_impl::run(Dest&, const Lhs&, const Rhs&, const typename Dest::Scalar&) [with Dest = Eigen::Matrix; int Mode = 1; bool LhsIsTriangular = true; Lhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; Rhs = Eigen::Transpose, 0, Eigen::Stride<0, 0> > >; typename Dest::Scalar = double]’ 462 | dst.leftCols(diagSize) -= (rhs_alpha-RhsScalar(1))*a_lhs.leftCols(diagSize); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:770:14: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:123:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>& stan::math::arena_matrix::type>::value, void>::type>::operator=(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 123 | Base::operator=(a); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:68:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>::arena_matrix(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_eigen_t* = 0; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 68 | *this = other; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/vari.hpp:722:0: required from ‘stan::math::vari_value::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type>::vari_value(const S&, bool) [with S = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix; typename stan::plain_type::type = Eigen::Matrix]’ 722 | : val_(x), /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/var.hpp:366:0: required from ‘stan::math::var_value::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type>::var_value(S&&) [with S = const Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type = void; typename stan::value_type::type = double]’ 366 | var_value(S&& x) : vi_(new vari_type(std::forward(x), false)) {} // NOLINT /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:27:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 27 | arena_t res = arena_L_val.template triangularView() /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:347:30: required from ‘Derived& Eigen::DenseBase::setConstant(const Scalar&) [with Derived = Eigen::Diagonal, 0>; Scalar = double]’ 347 | return derived() = Constant(rows(), cols(), val); | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:548:10: required from ‘Derived& Eigen::DenseBase::setZero() [with Derived = Eigen::Diagonal, 0>]’ 548 | return setConstant(Scalar(0)); | ^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:303:42: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/TriangularMatrix.h:856:103: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; SrcXprType = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Functor = Eigen::internal::add_assign_op]’ 856 | call_triangular_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::TriangularShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/EigenBase.h:145:18: required from ‘Derived& Eigen::DenseBase::operator+=(const Eigen::EigenBase&) [with OtherDerived = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Derived = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 145 | call_assignment(derived(), other.derived(), internal::add_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:31:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 31 | arena_L.adj() += ((res.adj().transpose() + res.adj()) 32 | * arena_L_val.template triangularView()) 33 | .template triangularView(); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 1, -1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 1, -1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, true>, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, true>, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 1, -1, true>, 1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1, false>, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, 1, true>, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, 1, true>, -1, 1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, 1, true>, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, 1, true>, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, -1, 1, true>, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1, false>, -1, 1, true>, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, 1, true>, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, 1, true>, -1, 1, false> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, 1, true>, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, 1, true>, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, -1, false>, -1, 1, true>, -1, 1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/BlockHouseholder.h:63:90: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/BlockHouseholder.h:63:57: required from ‘void Eigen::internal::make_block_householder_triangular_factor(TriangularFactorType&, const VectorsType&, const CoeffsType&) [with TriangularFactorType = Eigen::Matrix; VectorsType = Eigen::Block, -1, -1, false>; CoeffsType = Eigen::VectorBlock, -1>]’ 63 | triFactor.row(i).tail(rt).noalias() = -hCoeffs(i) * vectors.col(i).tail(rs).adjoint() | ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/BlockHouseholder.h:92:55: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, -1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1, false>, -1, -1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > >, Eigen::TriangularView, -1, -1, false>, -1, -1, false>, 5>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > >, Eigen::TriangularView, -1, -1, false>, -1, -1, false>, 5>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > >, Eigen::TriangularView, -1, -1, false>, -1, -1, false>, 5>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > >, Eigen::TriangularView, -1, -1, false>, -1, -1, false>, 5>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > >, Eigen::TriangularView, -1, -1, false>, -1, -1, false>, 5>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > >, Eigen::TriangularView, -1, -1, false>, -1, -1, false>, 5>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/BlockHouseholder.h:64:57: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 1, -1, true>, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 1, -1, true>, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 1, -1, true>, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 1, -1, true>, 1, -1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 1, -1, true>, 1, -1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/BlockHouseholder.h:73:50: required from ‘void Eigen::internal::make_block_householder_triangular_factor(TriangularFactorType&, const VectorsType&, const CoeffsType&) [with TriangularFactorType = Eigen::Matrix; VectorsType = Eigen::Block, -1, -1, false>; CoeffsType = Eigen::VectorBlock, -1>]’ 73 | triFactor.row(i).tail(nbVecs-j-1) += z * triFactor.row(j).tail(nbVecs-j-1); | ~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/BlockHouseholder.h:92:55: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix, 0>, const Eigen::Block >, -1, 1, false>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix, 0>, const Eigen::Block >, -1, 1, false>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix, 0>, const Eigen::Block >, -1, 1, false>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Matrix, 0>, const Eigen::Block >, -1, 1, false>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Matrix, 0>, const Eigen::Block >, -1, 1, false>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Matrix, 0>, const Eigen::Block >, -1, 1, false>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Transpose >, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Transpose >, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Transpose >, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Transpose >, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Transpose >, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Transpose >, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix, 0>, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix, 0>, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix, 0>, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, Eigen::Matrix, 0>, 1, -1, false, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, Eigen::Matrix, 0>, 1, -1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, Eigen::Matrix, 0>, 1, -1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:113:15: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, Eigen::Matrix, 0>, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, Eigen::Matrix, 0>, 1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:369:45: required from ‘struct Eigen::internal::generic_product_impl, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Transpose >, Eigen::DenseShape, Eigen::DenseShape, 7>’ 369 | typedef typename nested_eval::type LhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:486:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::Product, Eigen::Matrix, 0>; Rhs = Eigen::Transpose >; Scalar = double]’ 485 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 486 | ::scaleAndAddTo(dst_vec, a_lhs.row(0), a_rhs, alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Product, Eigen::Matrix, 0>; Rhs = Eigen::Transpose >]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false>, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, 1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:564:45: required from ‘struct Eigen::internal::unary_evaluator, const Eigen::Block, -1, -1, false>, 1, -1, false> >, Eigen::internal::IndexBased, double>’ 564 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Block, -1, -1, false>, 1, -1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Block, -1, -1, false>, 1, -1, false> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseUnaryOp, const Eigen::Block, -1, -1, false>, 1, -1, false> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/run_adaptive_sampler.hpp:57:0: required from ‘void stan::services::util::run_adaptive_sampler(Sampler&, Model&, std::vector&, int, int, int, int, bool, RNG&, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, size_t, size_t) [with Sampler = stan::mcmc::adapt_dense_e_nuts, boost::random::linear_congruential_engine > >; Model = model_gMAP_namespace::model_gMAP; RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; size_t = long unsigned int]’ 57 | sampler.init_stepsize(logger); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:97:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 97 | util::run_adaptive_sampler( 98 | sampler, model, cont_vector, num_warmup, num_samples, num_thin, refresh, 99 | save_warmup, rng, interrupt, logger, sample_writer, diagnostic_writer); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:150:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 150 | return hmc_nuts_dense_e_adapt( 151 | model, init, unit_e_metric, random_seed, chain, init_radius, num_warmup, 152 | num_samples, num_thin, save_warmup, refresh, stepsize, stepsize_jitter, 153 | max_depth, delta, gamma, kappa, t0, init_buffer, term_buffer, window, 154 | interrupt, logger, init_writer, sample_writer, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:638:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 637 | return_code = stan::services::sample 638 | ::hmc_nuts_dense_e_adapt(model, *init_context_ptr, 639 | random_seed, id, init_radius, 640 | num_warmup, num_samples, 641 | num_thin, save_warmup, refresh, 642 | stepsize, stepsize_jitter, max_depth, 643 | delta, gamma, kappa, 644 | t0, init_buffer, term_buffer, window, 645 | interrupt, logger, init_writer, 646 | *sample_writer_ptr, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval, -1, -1, false>, -1, -1, false>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:369:45: required from ‘struct Eigen::internal::generic_product_impl, -1, -1, false>, -1, -1, false>, Eigen::Transpose, -1, -1, false>, 1, -1, false> >, Eigen::DenseShape, Eigen::DenseShape, 7>’ 369 | typedef typename nested_eval::type LhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:178:42: required from ‘static void Eigen::internal::Assignment, Eigen::internal::sub_assign_op, Eigen::internal::Dense2Dense, typename Eigen::internal::enable_if<((Options == Eigen::DefaultProduct) || (Options == Eigen::AliasFreeProduct))>::type>::run(DstXprType&, const SrcXprType&, const Eigen::internal::sub_assign_op&) [with DstXprType = Eigen::Block, -1, -1, false>, -1, 1, false>; Lhs = Eigen::Block, -1, -1, false>, -1, -1, false>; Rhs = Eigen::Transpose, -1, -1, false>, 1, -1, false> >; int Options = 0; Scalar = double; SrcXprType = Eigen::Product, -1, -1, false>, -1, -1, false>, Eigen::Transpose, -1, -1, false>, 1, -1, false> >, 0>]’ 178 | generic_product_impl::subTo(dst, src.lhs(), src.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, -1, -1, false>, -1, 1, false>; Src = Eigen::Product, -1, -1, false>, -1, -1, false>, Eigen::Transpose, -1, -1, false>, 1, -1, false> >, 0>; Func = sub_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/NoAlias.h:59:31: required from ‘ExpressionType& Eigen::NoAlias::operator-=(const StorageBase&) [with OtherDerived = Eigen::Product, -1, -1, false>, -1, -1, false>, Eigen::Transpose, -1, -1, false>, 1, -1, false> >, 0>; ExpressionType = Eigen::Block, -1, -1, false>, -1, 1, false>; StorageBase = Eigen::MatrixBase]’ 59 | call_assignment_no_alias(m_expression, other.derived(), internal::sub_assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:332:38: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/run_adaptive_sampler.hpp:57:0: required from ‘void stan::services::util::run_adaptive_sampler(Sampler&, Model&, std::vector&, int, int, int, int, bool, RNG&, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, size_t, size_t) [with Sampler = stan::mcmc::adapt_dense_e_nuts, boost::random::linear_congruential_engine > >; Model = model_gMAP_namespace::model_gMAP; RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; size_t = long unsigned int]’ 57 | sampler.init_stepsize(logger); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:97:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 97 | util::run_adaptive_sampler( 98 | sampler, model, cont_vector, num_warmup, num_samples, num_thin, refresh, 99 | save_warmup, rng, interrupt, logger, sample_writer, diagnostic_writer); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:150:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 150 | return hmc_nuts_dense_e_adapt( 151 | model, init, unit_e_metric, random_seed, chain, init_radius, num_warmup, 152 | num_samples, num_thin, save_warmup, refresh, stepsize, stepsize_jitter, 153 | max_depth, delta, gamma, kappa, t0, init_buffer, term_buffer, window, 154 | interrupt, logger, init_writer, sample_writer, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:638:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 637 | return_code = stan::services::sample 638 | ::hmc_nuts_dense_e_adapt(model, *init_context_ptr, 639 | random_seed, id, init_radius, 640 | num_warmup, num_samples, 641 | num_thin, save_warmup, refresh, 642 | stepsize, stepsize_jitter, max_depth, 643 | delta, gamma, kappa, 644 | t0, init_buffer, term_buffer, window, 645 | interrupt, logger, init_writer, 646 | *sample_writer_ptr, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h: In instantiation of ‘void Eigen::internal::gemm_pack_lhs::operator()(Scalar*, const DataMapper&, Index, Index, Index, Index) [with Scalar = double; Index = long int; DataMapper = Eigen::internal::blas_data_mapper; int Pack1 = 4; int Pack2 = 2; Packet = __vector(2) double; bool Conjugate = false; bool PanelMode = true]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularSolverMatrix.h:319:27: required from ‘static void Eigen::internal::triangular_solve_matrix::run(Index, Index, const Scalar*, Index, Scalar*, Index, Index, Eigen::internal::level3_blocking&) [with Scalar = double; Index = long int; int Mode = 2; bool Conjugate = false; int TriStorageOrder = 1; int OtherInnerStride = 1]’ 319 | pack_lhs_panel(blockA, lhs.getSubMapper(i2,absolute_j2), | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 320 | actualPanelWidth, actual_mc, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 321 | actual_kc, j2); | ~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/SolveTriangular.h:102:12: required from ‘static void Eigen::internal::triangular_solver_selector::run(const Lhs&, Rhs&) [with Lhs = const Eigen::Transpose, -1, -1, false> >; Rhs = Eigen::Block, -1, -1, false>; int Side = 2; int Mode = 2]’ 100 | triangular_solve_matrix | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 102 | ::run(size, othersize, &actualLhs.coeffRef(0,0), actualLhs.outerStride(), &rhs.coeffRef(0,0), rhs.innerStride(), rhs.outerStride(), blocking); | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/SolveTriangular.h:182:21: required from ‘void Eigen::TriangularViewImpl<_MatrixType, _Mode, Eigen::Dense>::solveInPlace(const Eigen::MatrixBase&) const [with int Side = 2; OtherDerived = Eigen::Block, -1, -1, false>; _MatrixType = const Eigen::Transpose, -1, -1, false> >; unsigned int _Mode = 2]’ 181 | internal::triangular_solver_selector::type, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 182 | Side, Mode>::run(derived().nestedExpression(), otherCopy); | ~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:364:96: required from ‘static Eigen::Index Eigen::internal::llt_inplace::blocked(MatrixType&) [with MatrixType = Eigen::Matrix; Scalar = double; Eigen::Index = long int]’ 364 | if(rs>0) A11.adjoint().template triangularView().template solveInPlace(A21); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:408:68: required from ‘static bool Eigen::internal::LLT_Traits::inplace_decomposition(MatrixType&) [with MatrixType = Eigen::Matrix]’ 408 | { return llt_inplace::blocked(m)==-1; } | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:456:42: [ skipping 5 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/run_adaptive_sampler.hpp:57:0: required from ‘void stan::services::util::run_adaptive_sampler(Sampler&, Model&, std::vector&, int, int, int, int, bool, RNG&, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, size_t, size_t) [with Sampler = stan::mcmc::adapt_dense_e_nuts, boost::random::linear_congruential_engine > >; Model = model_gMAP_namespace::model_gMAP; RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; size_t = long unsigned int]’ 57 | sampler.init_stepsize(logger); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:97:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 97 | util::run_adaptive_sampler( 98 | sampler, model, cont_vector, num_warmup, num_samples, num_thin, refresh, 99 | save_warmup, rng, interrupt, logger, sample_writer, diagnostic_writer); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:150:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 150 | return hmc_nuts_dense_e_adapt( 151 | model, init, unit_e_metric, random_seed, chain, init_radius, num_warmup, 152 | num_samples, num_thin, save_warmup, refresh, stepsize, stepsize_jitter, 153 | max_depth, delta, gamma, kappa, t0, init_buffer, term_buffer, window, 154 | interrupt, logger, init_writer, sample_writer, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:638:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 637 | return_code = stan::services::sample 638 | ::hmc_nuts_dense_e_adapt(model, *init_context_ptr, 639 | random_seed, id, init_radius, 640 | num_warmup, num_samples, 641 | num_thin, save_warmup, refresh, 642 | stepsize, stepsize_jitter, max_depth, 643 | delta, gamma, kappa, 644 | t0, init_buffer, term_buffer, window, 645 | interrupt, logger, init_writer, 646 | *sample_writer_ptr, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2100:82: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 2100 | typedef typename unpacket_traits::half>::half QuarterPacket; | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2102:56: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 2102 | HalfPacketSize = unpacket_traits::size, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2103:62: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] 2103 | QuarterPacketSize = unpacket_traits::size, | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralBlockPanelKernel.h:2103:62: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:457:59: required from ‘static void Eigen::internal::triangular_product_impl::run(Dest&, const Lhs&, const Rhs&, const typename Dest::Scalar&) [with Dest = Eigen::Matrix; int Mode = 2; bool LhsIsTriangular = false; Lhs = Eigen::Matrix; Rhs = const Eigen::Transpose >; typename Dest::Scalar = double]’ 457 | dst.topRows(diagSize) -= ((lhs_alpha-LhsScalar(1))*a_rhs).topRows(diagSize); | ~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:783:113: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 1; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/to_ref.hpp:18:27: required from ‘stan::ref_type_t stan::math::to_ref(T&&) [with T = const Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >&; stan::ref_type_t = Eigen::Matrix]’ 18 | return std::forward(a); | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:27:29: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 27 | const auto& M_ref = to_ref(M); | ~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, -1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, -1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, -1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, -1, -1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, -1, -1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, -1, -1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:457:74: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 1; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/to_ref.hpp:18:27: required from ‘stan::ref_type_t stan::math::to_ref(T&&) [with T = const Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >&; stan::ref_type_t = Eigen::Matrix]’ 18 | return std::forward(a); | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:27:29: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 27 | const auto& M_ref = to_ref(M); | ~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 1; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/to_ref.hpp:18:27: required from ‘stan::ref_type_t stan::math::to_ref(T&&) [with T = const Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >&; stan::ref_type_t = Eigen::Matrix]’ 18 | return std::forward(a); | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:27:29: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 27 | const auto& M_ref = to_ref(M); | ~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:462:59: required from ‘static void Eigen::internal::triangular_product_impl::run(Dest&, const Lhs&, const Rhs&, const typename Dest::Scalar&) [with Dest = Eigen::Matrix; int Mode = 2; bool LhsIsTriangular = false; Lhs = Eigen::Matrix; Rhs = const Eigen::Transpose >; typename Dest::Scalar = double]’ 462 | dst.leftCols(diagSize) -= (rhs_alpha-RhsScalar(1))*a_lhs.leftCols(diagSize); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:783:113: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 1; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/to_ref.hpp:18:27: required from ‘stan::ref_type_t stan::math::to_ref(T&&) [with T = const Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >&; stan::ref_type_t = Eigen::Matrix]’ 18 | return std::forward(a); | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:27:29: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 27 | const auto& M_ref = to_ref(M); | ~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h: In instantiation of ‘struct Eigen::internal::find_best_packet’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:22:57: required from ‘struct Eigen::internal::traits >’ 22 | typedef typename find_best_packet<_Scalar,size>::type PacketScalar; | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: required from ‘class Eigen::Matrix’ 178 | class Matrix | ^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:150:68: required from ‘static void Eigen::internal::product_triangular_matrix_matrix::run(Index, Index, Index, const Scalar*, Index, const Scalar*, Index, Scalar*, Index, Index, const Scalar&, Eigen::internal::level3_blocking&) [with Scalar = double; Index = long int; int Mode = 1; int LhsStorageOrder = 0; bool ConjugateLhs = false; int RhsStorageOrder = 1; bool ConjugateRhs = false; int ResInnerStride = 1; int Version = 0]’ 150 | Matrix triangularBuffer(a); | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:443:12: required from ‘static void Eigen::internal::triangular_product_impl::run(Dest&, const Lhs&, const Rhs&, const typename Dest::Scalar&) [with Dest = Eigen::Matrix; int Mode = 1; bool LhsIsTriangular = true; Lhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; Rhs = Eigen::Transpose, 0, Eigen::Stride<0, 0> > >; typename Dest::Scalar = double]’ 438 | internal::product_triangular_matrix_matrix::Flags&RowMajorBit) ? RowMajor : ColMajor, LhsBlasTraits::NeedToConjugate, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 441 | (internal::traits::Flags&RowMajorBit) ? RowMajor : ColMajor, RhsBlasTraits::NeedToConjugate, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 442 | (internal::traits::Flags&RowMajorBit) ? RowMajor : ColMajor, Dest::InnerStrideAtCompileTime> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 443 | ::run( | ~~~~~^ 444 | stripedRows, stripedCols, stripedDepth, // sizes | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 445 | &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 446 | &rhs.coeffRef(0,0), rhs.outerStride(), // rhs info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 447 | &dst.coeffRef(0,0), dst.innerStride(), dst.outerStride(), // result info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 448 | actualAlpha, blocking | ~~~~~~~~~~~~~~~~~~~~~ 449 | ); | ~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:770:14: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:123:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>& stan::math::arena_matrix::type>::value, void>::type>::operator=(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 123 | Base::operator=(a); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:68:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>::arena_matrix(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_eigen_t* = 0; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 68 | *this = other; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/vari.hpp:722:0: required from ‘stan::math::vari_value::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type>::vari_value(const S&, bool) [with S = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix; typename stan::plain_type::type = Eigen::Matrix]’ 722 | : val_(x), /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/var.hpp:366:0: required from ‘stan::math::var_value::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type>::var_value(S&&) [with S = const Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type = void; typename stan::value_type::type = double]’ 366 | var_value(S&& x) : vi_(new vari_type(std::forward(x), false)) {} // NOLINT /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:27:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 27 | arena_t res = arena_L_val.template triangularView() /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:44: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:208:88: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 208 | typedef typename find_best_packet_helper::type>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:123:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>& stan::math::arena_matrix::type>::value, void>::type>::operator=(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 123 | Base::operator=(a); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:68:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>::arena_matrix(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_eigen_t* = 0; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 68 | *this = other; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/vari.hpp:722:0: required from ‘stan::math::vari_value::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type>::vari_value(const S&, bool) [with S = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix; typename stan::plain_type::type = Eigen::Matrix]’ 722 | : val_(x), /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/var.hpp:366:0: required from ‘stan::math::var_value::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type>::var_value(S&&) [with S = const Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type = void; typename stan::value_type::type = double]’ 366 | var_value(S&& x) : vi_(new vari_type(std::forward(x), false)) {} // NOLINT /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:27:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 27 | arena_t res = arena_L_val.template triangularView() /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Diagonal.h:63:53: required from ‘class Eigen::Diagonal, 0>’ 63 | template class Diagonal | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:153:32: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:123:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>& stan::math::arena_matrix::type>::value, void>::type>::operator=(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 123 | Base::operator=(a); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:68:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>::arena_matrix(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_eigen_t* = 0; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 68 | *this = other; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/vari.hpp:722:0: required from ‘stan::math::vari_value::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type>::vari_value(const S&, bool) [with S = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix; typename stan::plain_type::type = Eigen::Matrix]’ 722 | : val_(x), /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/var.hpp:366:0: required from ‘stan::math::var_value::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type>::var_value(S&&) [with S = const Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type = void; typename stan::value_type::type = double]’ 366 | var_value(S&& x) : vi_(new vari_type(std::forward(x), false)) {} // NOLINT /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:27:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 27 | arena_t res = arena_L_val.template triangularView() /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h: In instantiation of ‘struct Eigen::internal::find_best_packet’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:179:81: required from ‘class Eigen::DenseBase, 0> >’ 179 | typedef typename internal::find_best_packet::type PacketScalar; | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Diagonal.h:63:53: required from ‘class Eigen::Diagonal, 0>’ 63 | template class Diagonal | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:153:32: required from ‘static void Eigen::internal::product_triangular_matrix_matrix::run(Index, Index, Index, const Scalar*, Index, const Scalar*, Index, Scalar*, Index, Index, const Scalar&, Eigen::internal::level3_blocking&) [with Scalar = double; Index = long int; int Mode = 1; int LhsStorageOrder = 0; bool ConjugateLhs = false; int RhsStorageOrder = 1; bool ConjugateRhs = false; int ResInnerStride = 1; int Version = 0]’ 153 | triangularBuffer.diagonal().setZero(); | ~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:443:12: required from ‘static void Eigen::internal::triangular_product_impl::run(Dest&, const Lhs&, const Rhs&, const typename Dest::Scalar&) [with Dest = Eigen::Matrix; int Mode = 1; bool LhsIsTriangular = true; Lhs = Eigen::Map, 0, Eigen::Stride<0, 0> >; Rhs = Eigen::Transpose, 0, Eigen::Stride<0, 0> > >; typename Dest::Scalar = double]’ 438 | internal::product_triangular_matrix_matrix::Flags&RowMajorBit) ? RowMajor : ColMajor, LhsBlasTraits::NeedToConjugate, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 441 | (internal::traits::Flags&RowMajorBit) ? RowMajor : ColMajor, RhsBlasTraits::NeedToConjugate, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 442 | (internal::traits::Flags&RowMajorBit) ? RowMajor : ColMajor, Dest::InnerStrideAtCompileTime> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 443 | ::run( | ~~~~~^ 444 | stripedRows, stripedCols, stripedDepth, // sizes | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 445 | &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 446 | &rhs.coeffRef(0,0), rhs.outerStride(), // rhs info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 447 | &dst.coeffRef(0,0), dst.innerStride(), dst.outerStride(), // result info | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 448 | actualAlpha, blocking | ~~~~~~~~~~~~~~~~~~~~~ 449 | ); | ~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:770:14: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:123:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>& stan::math::arena_matrix::type>::value, void>::type>::operator=(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 123 | Base::operator=(a); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:68:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>::arena_matrix(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_eigen_t* = 0; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 68 | *this = other; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/vari.hpp:722:0: required from ‘stan::math::vari_value::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type>::vari_value(const S&, bool) [with S = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix; typename stan::plain_type::type = Eigen::Matrix]’ 722 | : val_(x), /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/var.hpp:366:0: required from ‘stan::math::var_value::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type>::var_value(S&&) [with S = const Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type = void; typename stan::value_type::type = double]’ 366 | var_value(S&& x) : vi_(new vari_type(std::forward(x), false)) {} // NOLINT /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:27:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 27 | arena_t res = arena_L_val.template triangularView() /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:44: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 190 | bool Stop = Size==Dynamic || (Size%unpacket_traits::size)==0 || is_same::half>::value> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:190:83: warning: ignoring attributes on template argument ‘Eigen::internal::unpacket_traits<__vector(2) double>::half’ {aka ‘__m128d’} [-Wignored-attributes] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:208:88: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 208 | typedef typename find_best_packet_helper::type>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval, -1, 1, false>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:370:45: required from ‘struct Eigen::internal::generic_product_impl, -1, -1, false>, -1, -1, false>, Eigen::Block, -1, 1, false>, Eigen::DenseShape, Eigen::DenseShape, 7>’ 370 | typedef typename nested_eval::type RhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: required from ‘static void Eigen::internal::Assignment, Eigen::internal::assign_op, Eigen::internal::Dense2Dense, typename Eigen::internal::enable_if<((Options == Eigen::DefaultProduct) || (Options == Eigen::AliasFreeProduct))>::type>::run(DstXprType&, const SrcXprType&, const Eigen::internal::assign_op&) [with DstXprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; Lhs = Eigen::Block, -1, -1, false>, -1, -1, false>; Rhs = Eigen::Block, -1, 1, false>; int Options = 0; Scalar = double; SrcXprType = Eigen::Product, -1, -1, false>, -1, -1, false>, Eigen::Block, -1, 1, false>, 0>]’ 148 | generic_product_impl::evalTo(dst, src.lhs(), src.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::Product, -1, -1, false>, -1, -1, false>, Eigen::Block, -1, 1, false>, 0>; Func = assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/NoAlias.h:43:31: required from ‘ExpressionType& Eigen::NoAlias::operator=(const StorageBase&) [with OtherDerived = Eigen::Product, -1, -1, false>, -1, -1, false>, Eigen::Block, -1, 1, false>, 0>; ExpressionType = Eigen::Map, 0, Eigen::Stride<0, 0> >; StorageBase = Eigen::MatrixBase]’ 43 | call_assignment_no_alias(m_expression, other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/Householder.h:167:19: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, -1, 1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase >, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense >, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block >, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block >, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block >, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block >, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:52: required from ‘const Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::CoeffReturnType Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::coeff(Eigen::Index, Eigen::Index) const [with Lhs = Eigen::Matrix; Rhs = Eigen::Transpose >; int ProductTag = 8; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Matrix; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Transpose >; CoeffReturnType = double; Eigen::Index = long int]’ 606 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:769:69: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix, 0>, Eigen::Transpose >, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix, 0>, Eigen::Transpose >, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix, 0>, Eigen::Transpose >, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Matrix, 0>, Eigen::Transpose >, 1, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Matrix, 0>, Eigen::Transpose >, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Matrix, 0>, Eigen::Transpose >, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:462:68: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:347:30: required from ‘Derived& Eigen::DenseBase::setConstant(const Scalar&) [with Derived = Eigen::Matrix; Scalar = double]’ 347 | return derived() = Constant(rows(), cols(), val); | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:548:10: required from ‘Derived& Eigen::DenseBase::setZero() [with Derived = Eigen::Matrix]’ 548 | return setConstant(Scalar(0)); | ^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:444:18: [ skipping 10 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:43: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 1; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/to_ref.hpp:18:27: required from ‘stan::ref_type_t stan::math::to_ref(T&&) [with T = const Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >&; stan::ref_type_t = Eigen::Matrix]’ 18 | return std::forward(a); | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:27:29: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 27 | const auto& M_ref = to_ref(M); | ~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Diagonal.h:63:53: required from ‘class Eigen::Diagonal, 0>’ 63 | template class Diagonal | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:303:32: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 1; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/to_ref.hpp:18:27: required from ‘stan::ref_type_t stan::math::to_ref(T&&) [with T = const Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >&; stan::ref_type_t = Eigen::Matrix]’ 18 | return std::forward(a); | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:27:29: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 27 | const auto& M_ref = to_ref(M); | ~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, true> >, const Eigen::Block >, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:75: required from ‘const Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::CoeffReturnType Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::coeff(Eigen::Index, Eigen::Index) const [with Lhs = Eigen::Matrix; Rhs = Eigen::Transpose >; int ProductTag = 8; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Matrix; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Transpose >; CoeffReturnType = double; Eigen::Index = long int]’ 606 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:654:63: required from ‘void Eigen::internal::generic_dense_assignment_kernel::assignCoeff(Eigen::Index, Eigen::Index) [with DstEvaluatorTypeT = Eigen::internal::evaluator >; SrcEvaluatorTypeT = Eigen::internal::evaluator, Eigen::Transpose >, 1> >; Functor = Eigen::internal::assign_op; int Version = 1; Eigen::Index = long int]’ 654 | m_functor.assignCoeff(m_dst.coeffRef(row,col), m_src.coeff(row,col)); | ~~~~~~~~~~~^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:668:16: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:797:41: required from ‘Derived& Eigen::PlainObjectBase::_set_noalias(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 797 | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Product, Eigen::Transpose >, 0>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:29:18: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 29 | return M_ref * M_ref.transpose(); | ~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>; SrcXprType = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false>; Functor = sub_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>; SrcXprType = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false>; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, -1, -1, false>; Src = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false>; Func = sub_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, -1, -1, false>; Src = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false>; Func = sub_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:164:18: required from ‘Derived& Eigen::MatrixBase::operator-=(const Eigen::MatrixBase&) [with OtherDerived = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false>; Derived = Eigen::Block, -1, -1, false>]’ 164 | call_assignment(derived(), other.derived(), internal::sub_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:457:31: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/TriangularMatrix.h:856:103: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; SrcXprType = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Functor = Eigen::internal::add_assign_op]’ 856 | call_triangular_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::TriangularShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/EigenBase.h:145:18: required from ‘Derived& Eigen::DenseBase::operator+=(const Eigen::EigenBase&) [with OtherDerived = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Derived = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 145 | call_assignment(derived(), other.derived(), internal::add_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:31:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 31 | arena_L.adj() += ((res.adj().transpose() + res.adj()) 32 | * arena_L_val.template triangularView()) 33 | .template triangularView(); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> >; Functor = sub_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> >; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/TriangularMatrix.h:856:103: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; SrcXprType = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Functor = Eigen::internal::add_assign_op]’ 856 | call_triangular_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::TriangularShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/EigenBase.h:145:18: required from ‘Derived& Eigen::DenseBase::operator+=(const Eigen::EigenBase&) [with OtherDerived = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Derived = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 145 | call_assignment(derived(), other.derived(), internal::add_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:31:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 31 | arena_L.adj() += ((res.adj().transpose() + res.adj()) 32 | * arena_L_val.template triangularView()) 33 | .template triangularView(); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:780:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> >; Functor = sub_assign_op]’ 780 | DstEvaluatorType dstEvaluator(dst); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> >; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, -1, -1, true>; Src = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> >; Func = sub_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, -1, -1, true>; Src = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> >; Func = sub_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:164:18: required from ‘Derived& Eigen::MatrixBase::operator-=(const Eigen::MatrixBase&) [with OtherDerived = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, -1, -1, false> >; Derived = Eigen::Block, -1, -1, true>]’ 164 | call_assignment(derived(), other.derived(), internal::sub_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:462:32: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/TriangularMatrix.h:856:103: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; SrcXprType = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Functor = Eigen::internal::add_assign_op]’ 856 | call_triangular_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Func = add_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::TriangularShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/EigenBase.h:145:18: required from ‘Derived& Eigen::DenseBase::operator+=(const Eigen::EigenBase&) [with OtherDerived = Eigen::TriangularView, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::TriangularView, 0, Eigen::Stride<0, 0> >, 1>, 0>, 1>; Derived = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 145 | call_assignment(derived(), other.derived(), internal::add_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:31:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 31 | arena_L.adj() += ((res.adj().transpose() + res.adj()) 32 | * arena_L_val.template triangularView()) 33 | .template triangularView(); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:142:7: required from ‘Eigen::DenseCoeffsBase::CoeffReturnType Eigen::DenseCoeffsBase::coeff(Eigen::Index) const [with Derived = Eigen::Block, -1, 1, false>; CoeffReturnType = double; Eigen::Index = long int]’ 142 | EIGEN_STATIC_ASSERT(internal::evaluator::Flags & LinearAccessBit, | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:182:19: required from ‘Eigen::DenseCoeffsBase::CoeffReturnType Eigen::DenseCoeffsBase::operator()(Eigen::Index) const [with Derived = Eigen::Block, -1, 1, false>; CoeffReturnType = double; Eigen::Index = long int]’ 182 | return coeff(index); | ~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/BlockHouseholder.h:63:53: required from ‘void Eigen::internal::make_block_householder_triangular_factor(TriangularFactorType&, const VectorsType&, const CoeffsType&) [with TriangularFactorType = Eigen::Matrix; VectorsType = Eigen::Block, -1, -1, false>; CoeffsType = Eigen::VectorBlock, -1>]’ 63 | triFactor.row(i).tail(rt).noalias() = -hCoeffs(i) * vectors.col(i).tail(rs).adjoint() | ~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/BlockHouseholder.h:92:55: required from ‘void Eigen::internal::apply_block_householder_on_the_left(MatrixType&, const VectorsType&, const CoeffsType&, bool) [with MatrixType = Eigen::Block, -1, -1, false>; VectorsType = Eigen::Block, -1, -1, false>; CoeffsType = Eigen::VectorBlock, -1>]’ 92 | if(forward) make_block_householder_triangular_factor(T, vectors, hCoeffs); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/HouseholderSequence.h:399:46: required from ‘void Eigen::HouseholderSequence::applyThisOnTheLeft(Dest&, Workspace&, bool) const [with Dest = Eigen::Matrix; Workspace = Eigen::Matrix; VectorsType = Eigen::Matrix; CoeffsType = Eigen::Matrix; int Side = 1]’ 399 | apply_block_householder_on_the_left(sub_dst, sub_vecs, m_coeffs.segment(k, bs), !m_reverse); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/HouseholderSequence.h:320:29: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, true> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, true> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:43: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:780:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>, -1, 1, false>; SrcXprType = Eigen::CwiseNullaryOp, Eigen::Matrix >; Functor = div_assign_op]’ 780 | DstEvaluatorType dstEvaluator(dst); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>, -1, 1, false>; SrcXprType = Eigen::CwiseNullaryOp, Eigen::Matrix >; Functor = Eigen::internal::div_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, -1, -1, false>, -1, 1, false>; Src = Eigen::CwiseNullaryOp, Eigen::Matrix >; Func = div_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, -1, -1, false>, -1, 1, false>; Src = Eigen::CwiseNullaryOp, Eigen::Matrix >; Func = div_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/SelfCwiseBinaryOp.h:41:28: required from ‘Derived& Eigen::DenseBase::operator/=(const Scalar&) [with Derived = Eigen::Block, -1, -1, false>, -1, 1, false>; Scalar = double]’ 41 | internal::call_assignment(this->derived(), PlainObject::Constant(rows(),cols(),other), internal::div_assign_op()); | ~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Cholesky/LLT.h:333:21: [ skipping 8 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/run_adaptive_sampler.hpp:57:0: required from ‘void stan::services::util::run_adaptive_sampler(Sampler&, Model&, std::vector&, int, int, int, int, bool, RNG&, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, size_t, size_t) [with Sampler = stan::mcmc::adapt_dense_e_nuts, boost::random::linear_congruential_engine > >; Model = model_gMAP_namespace::model_gMAP; RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; size_t = long unsigned int]’ 57 | sampler.init_stepsize(logger); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:97:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 97 | util::run_adaptive_sampler( 98 | sampler, model, cont_vector, num_warmup, num_samples, num_thin, refresh, 99 | save_warmup, rng, interrupt, logger, sample_writer, diagnostic_writer); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:150:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 150 | return hmc_nuts_dense_e_adapt( 151 | model, init, unit_e_metric, random_seed, chain, init_radius, num_warmup, 152 | num_samples, num_thin, save_warmup, refresh, stepsize, stepsize_jitter, 153 | max_depth, delta, gamma, kappa, t0, init_buffer, term_buffer, window, 154 | interrupt, logger, init_writer, sample_writer, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:638:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 637 | return_code = stan::services::sample 638 | ::hmc_nuts_dense_e_adapt(model, *init_context_ptr, 639 | random_seed, id, init_radius, 640 | num_warmup, num_samples, 641 | num_thin, save_warmup, refresh, 642 | stepsize, stepsize_jitter, max_depth, 643 | delta, gamma, kappa, 644 | t0, init_buffer, term_buffer, window, 645 | interrupt, logger, init_writer, 646 | *sample_writer_ptr, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::OuterStride<> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Map.h:94:79: required from ‘class Eigen::Map, 0, Eigen::OuterStride<> >’ 94 | template class Map | ^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularSolverVector.h:39:18: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/run_adaptive_sampler.hpp:57:0: required from ‘void stan::services::util::run_adaptive_sampler(Sampler&, Model&, std::vector&, int, int, int, int, bool, RNG&, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, size_t, size_t) [with Sampler = stan::mcmc::adapt_dense_e_nuts, boost::random::linear_congruential_engine > >; Model = model_gMAP_namespace::model_gMAP; RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; size_t = long unsigned int]’ 57 | sampler.init_stepsize(logger); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:97:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 97 | util::run_adaptive_sampler( 98 | sampler, model, cont_vector, num_warmup, num_samples, num_thin, refresh, 99 | save_warmup, rng, interrupt, logger, sample_writer, diagnostic_writer); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:150:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 150 | return hmc_nuts_dense_e_adapt( 151 | model, init, unit_e_metric, random_seed, chain, init_radius, num_warmup, 152 | num_samples, num_thin, save_warmup, refresh, stepsize, stepsize_jitter, 153 | max_depth, delta, gamma, kappa, t0, init_buffer, term_buffer, window, 154 | interrupt, logger, init_writer, sample_writer, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:638:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 637 | return_code = stan::services::sample 638 | ::hmc_nuts_dense_e_adapt(model, *init_context_ptr, 639 | random_seed, id, init_radius, 640 | num_warmup, num_samples, 641 | num_thin, save_warmup, refresh, 642 | stepsize, stepsize_jitter, max_depth, 643 | delta, gamma, kappa, 644 | t0, init_buffer, term_buffer, window, 645 | interrupt, logger, init_writer, 646 | *sample_writer_ptr, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> >, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> >, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::OuterStride<> >, 1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/run_adaptive_sampler.hpp:57:0: required from ‘void stan::services::util::run_adaptive_sampler(Sampler&, Model&, std::vector&, int, int, int, int, bool, RNG&, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, size_t, size_t) [with Sampler = stan::mcmc::adapt_dense_e_nuts, boost::random::linear_congruential_engine > >; Model = model_gMAP_namespace::model_gMAP; RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; size_t = long unsigned int]’ 57 | sampler.init_stepsize(logger); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:97:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 97 | util::run_adaptive_sampler( 98 | sampler, model, cont_vector, num_warmup, num_samples, num_thin, refresh, 99 | save_warmup, rng, interrupt, logger, sample_writer, diagnostic_writer); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:150:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 150 | return hmc_nuts_dense_e_adapt( 151 | model, init, unit_e_metric, random_seed, chain, init_radius, num_warmup, 152 | num_samples, num_thin, save_warmup, refresh, stepsize, stepsize_jitter, 153 | max_depth, delta, gamma, kappa, t0, init_buffer, term_buffer, window, 154 | interrupt, logger, init_writer, sample_writer, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:638:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 637 | return_code = stan::services::sample 638 | ::hmc_nuts_dense_e_adapt(model, *init_context_ptr, 639 | random_seed, id, init_radius, 640 | num_warmup, num_samples, 641 | num_thin, save_warmup, refresh, 642 | stepsize, stepsize_jitter, max_depth, 643 | delta, gamma, kappa, 644 | t0, init_buffer, term_buffer, window, 645 | interrupt, logger, init_writer, 646 | *sample_writer_ptr, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/run_adaptive_sampler.hpp:57:0: required from ‘void stan::services::util::run_adaptive_sampler(Sampler&, Model&, std::vector&, int, int, int, int, bool, RNG&, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, size_t, size_t) [with Sampler = stan::mcmc::adapt_dense_e_nuts, boost::random::linear_congruential_engine > >; Model = model_gMAP_namespace::model_gMAP; RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; size_t = long unsigned int]’ 57 | sampler.init_stepsize(logger); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:97:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 97 | util::run_adaptive_sampler( 98 | sampler, model, cont_vector, num_warmup, num_samples, num_thin, refresh, 99 | save_warmup, rng, interrupt, logger, sample_writer, diagnostic_writer); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:150:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 150 | return hmc_nuts_dense_e_adapt( 151 | model, init, unit_e_metric, random_seed, chain, init_radius, num_warmup, 152 | num_samples, num_thin, save_warmup, refresh, stepsize, stepsize_jitter, 153 | max_depth, delta, gamma, kappa, t0, init_buffer, term_buffer, window, 154 | interrupt, logger, init_writer, sample_writer, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:638:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 637 | return_code = stan::services::sample 638 | ::hmc_nuts_dense_e_adapt(model, *init_context_ptr, 639 | random_seed, id, init_radius, 640 | num_warmup, num_samples, 641 | num_thin, save_warmup, refresh, 642 | stepsize, stepsize_jitter, max_depth, 643 | delta, gamma, kappa, 644 | t0, init_buffer, term_buffer, window, 645 | interrupt, logger, init_writer, 646 | *sample_writer_ptr, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularSolverVector.h:78:57: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/run_adaptive_sampler.hpp:57:0: required from ‘void stan::services::util::run_adaptive_sampler(Sampler&, Model&, std::vector&, int, int, int, int, bool, RNG&, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, size_t, size_t) [with Sampler = stan::mcmc::adapt_dense_e_nuts, boost::random::linear_congruential_engine > >; Model = model_gMAP_namespace::model_gMAP; RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; size_t = long unsigned int]’ 57 | sampler.init_stepsize(logger); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:97:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 97 | util::run_adaptive_sampler( 98 | sampler, model, cont_vector, num_warmup, num_samples, num_thin, refresh, 99 | save_warmup, rng, interrupt, logger, sample_writer, diagnostic_writer); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:150:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 150 | return hmc_nuts_dense_e_adapt( 151 | model, init, unit_e_metric, random_seed, chain, init_radius, num_warmup, 152 | num_samples, num_thin, save_warmup, refresh, stepsize, stepsize_jitter, 153 | max_depth, delta, gamma, kappa, t0, init_buffer, term_buffer, window, 154 | interrupt, logger, init_writer, sample_writer, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:638:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 637 | return_code = stan::services::sample 638 | ::hmc_nuts_dense_e_adapt(model, *init_context_ptr, 639 | random_seed, id, init_radius, 640 | num_warmup, num_samples, 641 | num_thin, save_warmup, refresh, 642 | stepsize, stepsize_jitter, max_depth, 643 | delta, gamma, kappa, 644 | t0, init_buffer, term_buffer, window, 645 | interrupt, logger, init_writer, 646 | *sample_writer_ptr, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >, const Eigen::Map, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularSolverVector.h:78:72: required from ‘static void Eigen::internal::triangular_solve_vector::run(Index, const LhsScalar*, Index, RhsScalar*) [with LhsScalar = double; RhsScalar = double; Index = long int; int Mode = 2; bool Conjugate = false]’ 78 | rhs[i] -= (cjLhs.row(i).segment(s,k).transpose().cwiseProduct(Map >(rhs+s,k))).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/SolveTriangular.h:73:12: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/run_adaptive_sampler.hpp:57:0: required from ‘void stan::services::util::run_adaptive_sampler(Sampler&, Model&, std::vector&, int, int, int, int, bool, RNG&, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, size_t, size_t) [with Sampler = stan::mcmc::adapt_dense_e_nuts, boost::random::linear_congruential_engine > >; Model = model_gMAP_namespace::model_gMAP; RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; size_t = long unsigned int]’ 57 | sampler.init_stepsize(logger); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:97:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 97 | util::run_adaptive_sampler( 98 | sampler, model, cont_vector, num_warmup, num_samples, num_thin, refresh, 99 | save_warmup, rng, interrupt, logger, sample_writer, diagnostic_writer); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:150:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 150 | return hmc_nuts_dense_e_adapt( 151 | model, init, unit_e_metric, random_seed, chain, init_radius, num_warmup, 152 | num_samples, num_thin, save_warmup, refresh, stepsize, stepsize_jitter, 153 | max_depth, delta, gamma, kappa, t0, init_buffer, term_buffer, window, 154 | interrupt, logger, init_writer, sample_writer, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:638:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 637 | return_code = stan::services::sample 638 | ::hmc_nuts_dense_e_adapt(model, *init_context_ptr, 639 | random_seed, id, init_radius, 640 | num_warmup, num_samples, 641 | num_thin, save_warmup, refresh, 642 | stepsize, stepsize_jitter, max_depth, 643 | delta, gamma, kappa, 644 | t0, init_buffer, term_buffer, window, 645 | interrupt, logger, init_writer, 646 | *sample_writer_ptr, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:347:30: required from ‘Derived& Eigen::DenseBase::setConstant(const Scalar&) [with Derived = Eigen::Matrix; Scalar = double]’ 347 | return derived() = Constant(rows(), cols(), val); | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:548:10: required from ‘Derived& Eigen::DenseBase::setZero() [with Derived = Eigen::Matrix]’ 548 | return setConstant(Scalar(0)); | ^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:151:29: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:123:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>& stan::math::arena_matrix::type>::value, void>::type>::operator=(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 123 | Base::operator=(a); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:68:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>::arena_matrix(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_eigen_t* = 0; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 68 | *this = other; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/vari.hpp:722:0: required from ‘stan::math::vari_value::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type>::vari_value(const S&, bool) [with S = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix; typename stan::plain_type::type = Eigen::Matrix]’ 722 | : val_(x), /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/var.hpp:366:0: required from ‘stan::math::var_value::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type>::var_value(S&&) [with S = const Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type = void; typename stan::value_type::type = double]’ 366 | var_value(S&& x) : vi_(new vari_type(std::forward(x), false)) {} // NOLINT /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:27:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 27 | arena_t res = arena_L_val.template triangularView() /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:347:30: required from ‘Derived& Eigen::DenseBase::setConstant(const Scalar&) [with Derived = Eigen::Diagonal, 0>; Scalar = double]’ 347 | return derived() = Constant(rows(), cols(), val); | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:548:10: required from ‘Derived& Eigen::DenseBase::setZero() [with Derived = Eigen::Diagonal, 0>]’ 548 | return setConstant(Scalar(0)); | ^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:153:42: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:123:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>& stan::math::arena_matrix::type>::value, void>::type>::operator=(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 123 | Base::operator=(a); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:68:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>::arena_matrix(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_eigen_t* = 0; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 68 | *this = other; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/vari.hpp:722:0: required from ‘stan::math::vari_value::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type>::vari_value(const S&, bool) [with S = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix; typename stan::plain_type::type = Eigen::Matrix]’ 722 | : val_(x), /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/var.hpp:366:0: required from ‘stan::math::var_value::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type>::var_value(S&&) [with S = const Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type = void; typename stan::value_type::type = double]’ 366 | var_value(S&& x) : vi_(new vari_type(std::forward(x), false)) {} // NOLINT /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:27:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 27 | arena_t res = arena_L_val.template triangularView() /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; SrcXprType = Eigen::Block, -1, -1, false>, -1, 1, true>; Functor = add_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Map, 0, Eigen::Stride<0, 0> >; SrcXprType = Eigen::Block, -1, -1, false>, -1, 1, true>; Functor = Eigen::internal::add_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::Block, -1, -1, false>, -1, 1, true>; Func = add_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Map, 0, Eigen::Stride<0, 0> >; Src = Eigen::Block, -1, -1, false>, -1, 1, true>; Func = add_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:177:18: required from ‘Derived& Eigen::MatrixBase::operator+=(const Eigen::MatrixBase&) [with OtherDerived = Eigen::Block, -1, -1, false>, -1, 1, true>; Derived = Eigen::Map, 0, Eigen::Stride<0, 0> >]’ 177 | call_assignment(derived(), other.derived(), internal::add_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Householder/Householder.h:168:9: [ skipping 9 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, -1, 1, true>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, -1, 1, true>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, -1, false>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, -1, false>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, -1, -1, false>, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator >, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator >, -1, 1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block >, -1, 1, false> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block >, -1, 1, false> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block >, -1, 1, false> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block >, -1, 1, false> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:37:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 37 | _Hk.noalias() = ((1.0 / B0fact) * Hupd) * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix, 0>, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix, 0>, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix, 0>, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, Eigen::Matrix, 0>, 1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, Eigen::Matrix, 0>, 1, -1, false>; U = Eigen::Block >, -1, 1, false>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false> >, const Eigen::Block >, -1, 1, false>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, Eigen::Matrix, 0>, 1, -1, false>; U = Eigen::Block >, -1, 1, false>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true>; U = Eigen::Block >, -1, 1, false>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true>; U = Eigen::Block >, -1, 1, false>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, false> >, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false> >, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, false> >, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, false> >, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 1, -1, false> >, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 1, -1, false> >, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/run_adaptive_sampler.hpp:57:0: required from ‘void stan::services::util::run_adaptive_sampler(Sampler&, Model&, std::vector&, int, int, int, int, bool, RNG&, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, size_t, size_t) [with Sampler = stan::mcmc::adapt_dense_e_nuts, boost::random::linear_congruential_engine > >; Model = model_gMAP_namespace::model_gMAP; RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; size_t = long unsigned int]’ 57 | sampler.init_stepsize(logger); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:97:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 97 | util::run_adaptive_sampler( 98 | sampler, model, cont_vector, num_warmup, num_samples, num_thin, refresh, 99 | save_warmup, rng, interrupt, logger, sample_writer, diagnostic_writer); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:150:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 150 | return hmc_nuts_dense_e_adapt( 151 | model, init, unit_e_metric, random_seed, chain, init_radius, num_warmup, 152 | num_samples, num_thin, save_warmup, refresh, stepsize, stepsize_jitter, 153 | max_depth, delta, gamma, kappa, t0, init_buffer, term_buffer, window, 154 | interrupt, logger, init_writer, sample_writer, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:638:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 637 | return_code = stan::services::sample 638 | ::hmc_nuts_dense_e_adapt(model, *init_context_ptr, 639 | random_seed, id, init_radius, 640 | num_warmup, num_samples, 641 | num_thin, save_warmup, refresh, 642 | stepsize, stepsize_jitter, max_depth, 643 | delta, gamma, kappa, 644 | t0, init_buffer, term_buffer, window, 645 | interrupt, logger, init_writer, 646 | *sample_writer_ptr, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, 1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, 1, -1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, -1, false>, 1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, -1, false>, 1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, -1, -1, false>, 1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1, false>, -1, -1, false>, 1, -1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/run_adaptive_sampler.hpp:57:0: required from ‘void stan::services::util::run_adaptive_sampler(Sampler&, Model&, std::vector&, int, int, int, int, bool, RNG&, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, size_t, size_t) [with Sampler = stan::mcmc::adapt_dense_e_nuts, boost::random::linear_congruential_engine > >; Model = model_gMAP_namespace::model_gMAP; RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; size_t = long unsigned int]’ 57 | sampler.init_stepsize(logger); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:97:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 97 | util::run_adaptive_sampler( 98 | sampler, model, cont_vector, num_warmup, num_samples, num_thin, refresh, 99 | save_warmup, rng, interrupt, logger, sample_writer, diagnostic_writer); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:150:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 150 | return hmc_nuts_dense_e_adapt( 151 | model, init, unit_e_metric, random_seed, chain, init_radius, num_warmup, 152 | num_samples, num_thin, save_warmup, refresh, stepsize, stepsize_jitter, 153 | max_depth, delta, gamma, kappa, t0, init_buffer, term_buffer, window, 154 | interrupt, logger, init_writer, sample_writer, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:638:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 637 | return_code = stan::services::sample 638 | ::hmc_nuts_dense_e_adapt(model, *init_context_ptr, 639 | random_seed, id, init_radius, 640 | num_warmup, num_samples, 641 | num_thin, save_warmup, refresh, 642 | stepsize, stepsize_jitter, max_depth, 643 | delta, gamma, kappa, 644 | t0, init_buffer, term_buffer, window, 645 | interrupt, logger, init_writer, 646 | *sample_writer_ptr, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 1, -1, false> >, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 1, -1, false> >, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, 1, -1, false> >, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, 1, -1, false> >, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, 1, -1, false> >, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1, false>, 1, -1, false> >, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/run_adaptive_sampler.hpp:57:0: required from ‘void stan::services::util::run_adaptive_sampler(Sampler&, Model&, std::vector&, int, int, int, int, bool, RNG&, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, size_t, size_t) [with Sampler = stan::mcmc::adapt_dense_e_nuts, boost::random::linear_congruential_engine > >; Model = model_gMAP_namespace::model_gMAP; RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; size_t = long unsigned int]’ 57 | sampler.init_stepsize(logger); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:97:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 97 | util::run_adaptive_sampler( 98 | sampler, model, cont_vector, num_warmup, num_samples, num_thin, refresh, 99 | save_warmup, rng, interrupt, logger, sample_writer, diagnostic_writer); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:150:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 150 | return hmc_nuts_dense_e_adapt( 151 | model, init, unit_e_metric, random_seed, chain, init_radius, num_warmup, 152 | num_samples, num_thin, save_warmup, refresh, stepsize, stepsize_jitter, 153 | max_depth, delta, gamma, kappa, t0, init_buffer, term_buffer, window, 154 | interrupt, logger, init_writer, sample_writer, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:638:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 637 | return_code = stan::services::sample 638 | ::hmc_nuts_dense_e_adapt(model, *init_context_ptr, 639 | random_seed, id, init_radius, 640 | num_warmup, num_samples, 641 | num_thin, save_warmup, refresh, 642 | stepsize, stepsize_jitter, max_depth, 643 | delta, gamma, kappa, 644 | t0, init_buffer, term_buffer, window, 645 | interrupt, logger, init_writer, 646 | *sample_writer_ptr, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:347:30: required from ‘Derived& Eigen::DenseBase::setConstant(const Scalar&) [with Derived = Eigen::Matrix; Scalar = double]’ 347 | return derived() = Constant(rows(), cols(), val); | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:548:10: required from ‘Derived& Eigen::DenseBase::setZero() [with Derived = Eigen::Matrix]’ 548 | return setConstant(Scalar(0)); | ^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:301:29: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 1; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/to_ref.hpp:18:27: required from ‘stan::ref_type_t stan::math::to_ref(T&&) [with T = const Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >&; stan::ref_type_t = Eigen::Matrix]’ 18 | return std::forward(a); | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:27:29: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 27 | const auto& M_ref = to_ref(M); | ~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false>, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, false>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, false>, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1, false>, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false> >, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false> >, 1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false> >, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, false> >, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, false> >, 1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1, false> >, 1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, -1, false>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, -1, false>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, -1, -1, false>, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1, false>, -1, -1, false>, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1043:41: required from ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >’ 1043 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: [ skipping 19 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/run_adaptive_sampler.hpp:57:0: required from ‘void stan::services::util::run_adaptive_sampler(Sampler&, Model&, std::vector&, int, int, int, int, bool, RNG&, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, size_t, size_t) [with Sampler = stan::mcmc::adapt_dense_e_nuts, boost::random::linear_congruential_engine > >; Model = model_gMAP_namespace::model_gMAP; RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; size_t = long unsigned int]’ 57 | sampler.init_stepsize(logger); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:97:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 97 | util::run_adaptive_sampler( 98 | sampler, model, cont_vector, num_warmup, num_samples, num_thin, refresh, 99 | save_warmup, rng, interrupt, logger, sample_writer, diagnostic_writer); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:150:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 150 | return hmc_nuts_dense_e_adapt( 151 | model, init, unit_e_metric, random_seed, chain, init_radius, num_warmup, 152 | num_samples, num_thin, save_warmup, refresh, stepsize, stepsize_jitter, 153 | max_depth, delta, gamma, kappa, t0, init_buffer, term_buffer, window, 154 | interrupt, logger, init_writer, sample_writer, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:638:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 637 | return_code = stan::services::sample 638 | ::hmc_nuts_dense_e_adapt(model, *init_context_ptr, 639 | random_seed, id, init_radius, 640 | num_warmup, num_samples, 641 | num_thin, save_warmup, refresh, 642 | stepsize, stepsize_jitter, max_depth, 643 | delta, gamma, kappa, 644 | t0, init_buffer, term_buffer, window, 645 | interrupt, logger, init_writer, 646 | *sample_writer_ptr, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/run_adaptive_sampler.hpp:57:0: required from ‘void stan::services::util::run_adaptive_sampler(Sampler&, Model&, std::vector&, int, int, int, int, bool, RNG&, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, size_t, size_t) [with Sampler = stan::mcmc::adapt_dense_e_nuts, boost::random::linear_congruential_engine > >; Model = model_gMAP_namespace::model_gMAP; RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; size_t = long unsigned int]’ 57 | sampler.init_stepsize(logger); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:97:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 97 | util::run_adaptive_sampler( 98 | sampler, model, cont_vector, num_warmup, num_samples, num_thin, refresh, 99 | save_warmup, rng, interrupt, logger, sample_writer, diagnostic_writer); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:150:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 150 | return hmc_nuts_dense_e_adapt( 151 | model, init, unit_e_metric, random_seed, chain, init_radius, num_warmup, 152 | num_samples, num_thin, save_warmup, refresh, stepsize, stepsize_jitter, 153 | max_depth, delta, gamma, kappa, t0, init_buffer, term_buffer, window, 154 | interrupt, logger, init_writer, sample_writer, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:638:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 637 | return_code = stan::services::sample 638 | ::hmc_nuts_dense_e_adapt(model, *init_context_ptr, 639 | random_seed, id, init_radius, 640 | num_warmup, num_samples, 641 | num_thin, save_warmup, refresh, 642 | stepsize, stepsize_jitter, max_depth, 643 | delta, gamma, kappa, 644 | t0, init_buffer, term_buffer, window, 645 | interrupt, logger, init_writer, 646 | *sample_writer_ptr, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:123:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>& stan::math::arena_matrix::type>::value, void>::type>::operator=(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 123 | Base::operator=(a); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:68:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>::arena_matrix(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_eigen_t* = 0; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 68 | *this = other; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/vari.hpp:722:0: required from ‘stan::math::vari_value::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type>::vari_value(const S&, bool) [with S = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix; typename stan::plain_type::type = Eigen::Matrix]’ 722 | : val_(x), /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/var.hpp:366:0: required from ‘stan::math::var_value::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type>::var_value(S&&) [with S = const Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type = void; typename stan::value_type::type = double]’ 366 | var_value(S&& x) : vi_(new vari_type(std::forward(x), false)) {} // NOLINT /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:27:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 27 | arena_t res = arena_L_val.template triangularView() /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >, -1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>; SrcXprType = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >, -1, -1, true>; Functor = sub_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>; SrcXprType = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >, -1, -1, true>; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, -1, -1, false>; Src = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >, -1, -1, true>; Func = sub_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, -1, -1, false>; Src = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >, -1, -1, true>; Func = sub_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:164:18: required from ‘Derived& Eigen::MatrixBase::operator-=(const Eigen::MatrixBase&) [with OtherDerived = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, 0, Eigen::Stride<0, 0> > > >, -1, -1, true>; Derived = Eigen::Block, -1, -1, false>]’ 164 | call_assignment(derived(), other.derived(), internal::sub_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:457:31: [ skipping 12 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:123:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>& stan::math::arena_matrix::type>::value, void>::type>::operator=(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 123 | Base::operator=(a); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:68:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>::arena_matrix(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_eigen_t* = 0; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 68 | *this = other; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/vari.hpp:722:0: required from ‘stan::math::vari_value::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type>::vari_value(const S&, bool) [with S = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix; typename stan::plain_type::type = Eigen::Matrix]’ 722 | : val_(x), /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/var.hpp:366:0: required from ‘stan::math::var_value::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type>::var_value(S&&) [with S = const Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type = void; typename stan::value_type::type = double]’ 366 | var_value(S&& x) : vi_(new vari_type(std::forward(x), false)) {} // NOLINT /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:27:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 27 | arena_t res = arena_L_val.template triangularView() /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, -1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, -1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, -1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, -1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, -1, true> >; Functor = sub_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 0, Eigen::Stride<0, 0> >, -1, -1, true> >; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:123:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>& stan::math::arena_matrix::type>::value, void>::type>::operator=(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 123 | Base::operator=(a); /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/arena_matrix.hpp:68:0: required from ‘stan::math::arena_matrix::type>::value, void>::type>::arena_matrix(const T&) [with T = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_eigen_t* = 0; MatrixType = Eigen::Matrix; typename std::enable_if::type>::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix]’ 68 | *this = other; /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/vari.hpp:722:0: required from ‘stan::math::vari_value::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type>::vari_value(const S&, bool) [with S = Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::type, typename stan::plain_type::type>, stan::is_eigen_dense_base >::value, void>::type = void; typename std::decay<_Tp>::type = Eigen::Matrix; typename stan::plain_type::type = Eigen::Matrix]’ 722 | : val_(x), /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/var.hpp:366:0: required from ‘stan::math::var_value::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type>::var_value(S&&) [with S = const Eigen::Product, 0, Eigen::Stride<0, 0> >, 1>, Eigen::Transpose, 0, Eigen::Stride<0, 0> > >, 0>; stan::require_assignable_t* = 0; T = Eigen::Matrix; typename std::enable_if::value || stan::is_kernel_expression_and_not_scalar::value) && std::is_floating_point::type>::value)>::value, void>::type = void; typename stan::value_type::type = double]’ 366 | var_value(S&& x) : vi_(new vari_type(std::forward(x), false)) {} // NOLINT /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/multiply_lower_tri_self_transpose.hpp:27:0: required from ‘auto stan::math::multiply_lower_tri_self_transpose(const T&) [with T = var_value >; stan::require_rev_matrix_t* = 0]’ 27 | arena_t res = arena_L_val.template triangularView() /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/fun/cov_matrix_constrain.hpp:59:0: required from here 59 | return multiply_lower_tri_self_transpose(L); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, -1, false>, -1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, -1, false>, -1, -1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:26: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false> > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, false> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, 1, false> >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, 1, false> > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:43: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1043:41: required from ‘struct Eigen::internal::evaluator, 1, -1, true>, 1, -1, false> >’ 1043 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 1, -1, true>, 1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 1, -1, true>, 1, -1, false> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 1, -1, true>, 1, -1, false> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, 1, -1, true>, 1, -1, false>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 1, -1, true>, 1, -1, false> >; Functor = add_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 1, -1, true>, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 1, -1, true>, 1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 1, -1, true>, 1, -1, false> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 1, -1, true>, 1, -1, false> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, 1, -1, true>, 1, -1, false>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 1, -1, true>, 1, -1, false> >; Functor = add_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, 1, -1, true>, 1, -1, false>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, 1, -1, true>, 1, -1, false> >; Functor = Eigen::internal::add_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: [ skipping 14 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, Eigen::Matrix, 0>, 1, -1, false>, 1, -1, true> >, const Eigen::Block >, -1, 1, false> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, 1, -1, false> >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, 1, -1, false> >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, 1, -1, false> >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, 1, -1, false> >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, 1, -1, false> >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, -1, false>, 1, -1, false>; U = Eigen::Block, 1, -1, false> >, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/run_adaptive_sampler.hpp:57:0: required from ‘void stan::services::util::run_adaptive_sampler(Sampler&, Model&, std::vector&, int, int, int, int, bool, RNG&, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, size_t, size_t) [with Sampler = stan::mcmc::adapt_dense_e_nuts, boost::random::linear_congruential_engine > >; Model = model_gMAP_namespace::model_gMAP; RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; size_t = long unsigned int]’ 57 | sampler.init_stepsize(logger); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:97:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 97 | util::run_adaptive_sampler( 98 | sampler, model, cont_vector, num_warmup, num_samples, num_thin, refresh, 99 | save_warmup, rng, interrupt, logger, sample_writer, diagnostic_writer); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:150:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 150 | return hmc_nuts_dense_e_adapt( 151 | model, init, unit_e_metric, random_seed, chain, init_radius, num_warmup, 152 | num_samples, num_thin, save_warmup, refresh, stepsize, stepsize_jitter, 153 | max_depth, delta, gamma, kappa, t0, init_buffer, term_buffer, window, 154 | interrupt, logger, init_writer, sample_writer, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:638:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 637 | return_code = stan::services::sample 638 | ::hmc_nuts_dense_e_adapt(model, *init_context_ptr, 639 | random_seed, id, init_radius, 640 | num_warmup, num_samples, 641 | num_thin, save_warmup, refresh, 642 | stepsize, stepsize_jitter, max_depth, 643 | delta, gamma, kappa, 644 | t0, init_buffer, term_buffer, window, 645 | interrupt, logger, init_writer, 646 | *sample_writer_ptr, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false>, 1, -1, false> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, -1, false>, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, -1, false>, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, -1, false>, -1, -1, false>, 1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/run_adaptive_sampler.hpp:57:0: required from ‘void stan::services::util::run_adaptive_sampler(Sampler&, Model&, std::vector&, int, int, int, int, bool, RNG&, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, size_t, size_t) [with Sampler = stan::mcmc::adapt_dense_e_nuts, boost::random::linear_congruential_engine > >; Model = model_gMAP_namespace::model_gMAP; RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; size_t = long unsigned int]’ 57 | sampler.init_stepsize(logger); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:97:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 97 | util::run_adaptive_sampler( 98 | sampler, model, cont_vector, num_warmup, num_samples, num_thin, refresh, 99 | save_warmup, rng, interrupt, logger, sample_writer, diagnostic_writer); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:150:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 150 | return hmc_nuts_dense_e_adapt( 151 | model, init, unit_e_metric, random_seed, chain, init_radius, num_warmup, 152 | num_samples, num_thin, save_warmup, refresh, stepsize, stepsize_jitter, 153 | max_depth, delta, gamma, kappa, t0, init_buffer, term_buffer, window, 154 | interrupt, logger, init_writer, sample_writer, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:638:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 637 | return_code = stan::services::sample 638 | ::hmc_nuts_dense_e_adapt(model, *init_context_ptr, 639 | random_seed, id, init_radius, 640 | num_warmup, num_samples, 641 | num_thin, save_warmup, refresh, 642 | stepsize, stepsize_jitter, max_depth, 643 | delta, gamma, kappa, 644 | t0, init_buffer, term_buffer, window, 645 | interrupt, logger, init_writer, 646 | *sample_writer_ptr, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, -1, false>, 1, -1, false> >, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, -1, false>, 1, -1, false> >, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, -1, false>, 1, -1, false> >, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, -1, false>, 1, -1, false> >, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, -1, false>, 1, -1, false> >, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, -1, false>, -1, -1, false>, 1, -1, false>; U = Eigen::Block, -1, -1, false>, 1, -1, false> >, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/run_adaptive_sampler.hpp:57:0: required from ‘void stan::services::util::run_adaptive_sampler(Sampler&, Model&, std::vector&, int, int, int, int, bool, RNG&, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, size_t, size_t) [with Sampler = stan::mcmc::adapt_dense_e_nuts, boost::random::linear_congruential_engine > >; Model = model_gMAP_namespace::model_gMAP; RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; size_t = long unsigned int]’ 57 | sampler.init_stepsize(logger); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:97:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 97 | util::run_adaptive_sampler( 98 | sampler, model, cont_vector, num_warmup, num_samples, num_thin, refresh, 99 | save_warmup, rng, interrupt, logger, sample_writer, diagnostic_writer); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:150:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 150 | return hmc_nuts_dense_e_adapt( 151 | model, init, unit_e_metric, random_seed, chain, init_radius, num_warmup, 152 | num_samples, num_thin, save_warmup, refresh, stepsize, stepsize_jitter, 153 | max_depth, delta, gamma, kappa, t0, init_buffer, term_buffer, window, 154 | interrupt, logger, init_writer, sample_writer, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:638:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 637 | return_code = stan::services::sample 638 | ::hmc_nuts_dense_e_adapt(model, *init_context_ptr, 639 | random_seed, id, init_radius, 640 | num_warmup, num_samples, 641 | num_thin, save_warmup, refresh, 642 | stepsize, stepsize_jitter, max_depth, 643 | delta, gamma, kappa, 644 | t0, init_buffer, term_buffer, window, 645 | interrupt, logger, init_writer, 646 | *sample_writer_ptr, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, -1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>; SrcXprType = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, -1, -1, true>; Functor = sub_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>; SrcXprType = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, -1, -1, true>; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, -1, -1, false>; Src = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, -1, -1, true>; Func = sub_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, -1, -1, false>; Src = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, -1, -1, true>; Func = sub_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:164:18: required from ‘Derived& Eigen::MatrixBase::operator-=(const Eigen::MatrixBase&) [with OtherDerived = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, -1, -1, true>; Derived = Eigen::Block, -1, -1, false>]’ 164 | call_assignment(derived(), other.derived(), internal::sub_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:457:31: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 1; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/to_ref.hpp:18:27: required from ‘stan::ref_type_t stan::math::to_ref(T&&) [with T = const Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >&; stan::ref_type_t = Eigen::Matrix]’ 18 | return std::forward(a); | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:27:29: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 27 | const auto& M_ref = to_ref(M); | ~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, true> >; Functor = sub_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, true> >; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:594:19: required from ‘Eigen::PlainObjectBase::PlainObjectBase(const Eigen::DenseBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; Derived = Eigen::Matrix]’ 594 | _set_noalias(other); | ~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:423:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::Matrix(const Eigen::EigenBase&) [with OtherDerived = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 1; int _MaxRows = -1; int _MaxCols = -1]’ 423 | : Base(other.derived()) | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/to_ref.hpp:18:27: required from ‘stan::ref_type_t stan::math::to_ref(T&&) [with T = const Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >&; stan::ref_type_t = Eigen::Matrix]’ 18 | return std::forward(a); | ^ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/tcrossprod.hpp:27:29: required from ‘Eigen::Matrix::type, T::RowsAtCompileTime, T::RowsAtCompileTime> stan::math::tcrossprod(const T&) [with T = Eigen::Transpose, Eigen::TriangularView >, 2>, 0> >; stan::require_eigen_vt* = 0; typename stan::value_type::type = double]’ 27 | const auto& M_ref = to_ref(M); | ~~~~~~^~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/crossprod.hpp:21:20: required from ‘auto stan::math::crossprod(const EigMat&) [with EigMat = Eigen::Product, Eigen::TriangularView >, 2>, 0>; stan::require_eigen_t* = 0]’ 21 | return tcrossprod(M.transpose()); | ~~~~~~~~~~^~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/wishart_rng.hpp:34:19: required from here 34 | return crossprod(B * llt_of_S.matrixU()); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, -1, false>, -1, -1, false>, 1, -1, false>; U = Eigen::Block, -1, 1, false>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, false> >, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, false> >, 1, -1, true> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, false> >, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, false> >, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, 1, false> >, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, 1, false> >, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, 1, false> >, 1, -1, true>; U = Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> > >, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 21 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, -1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, -1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, -1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, -1, -1, false, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, -1, -1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, -1, -1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:457:74: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, true>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, true>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, -1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 21 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, -1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1, false>, -1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 19 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, -1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, -1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, -1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, -1, -1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, -1, -1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:462:59: required from ‘static void Eigen::internal::triangular_product_impl::run(Dest&, const Lhs&, const Rhs&, const typename Dest::Scalar&) [with Dest = Eigen::Block, -1, -1, false>; int Mode = 5; bool LhsIsTriangular = true; Lhs = const Eigen::Block, -1, -1, false>; Rhs = Eigen::Matrix; typename Dest::Scalar = double]’ 462 | dst.leftCols(diagSize) -= (rhs_alpha-RhsScalar(1))*a_lhs.leftCols(diagSize); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:770:14: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >, const Eigen::Map, 0, Eigen::Stride<0, 0> > > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false> >, const Eigen::Map, 0, Eigen::Stride<0, 0> > >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularSolverVector.h:78:127: required from ‘static void Eigen::internal::triangular_solve_vector::run(Index, const LhsScalar*, Index, RhsScalar*) [with LhsScalar = double; RhsScalar = double; Index = long int; int Mode = 2; bool Conjugate = false]’ 78 | rhs[i] -= (cjLhs.row(i).segment(s,k).transpose().cwiseProduct(Map >(rhs+s,k))).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/SolveTriangular.h:73:12: required from ‘static void Eigen::internal::triangular_solver_selector::run(const Lhs&, Rhs&) [with Lhs = const Eigen::Transpose >; Rhs = Eigen::Matrix; int Side = 1; int Mode = 2]’ 71 | triangular_solve_vector | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 73 | ::run(actualLhs.cols(), actualLhs.data(), actualLhs.outerStride(), actualRhs); | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/SolveTriangular.h:182:21: [ skipping 11 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/run_adaptive_sampler.hpp:57:0: required from ‘void stan::services::util::run_adaptive_sampler(Sampler&, Model&, std::vector&, int, int, int, int, bool, RNG&, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, size_t, size_t) [with Sampler = stan::mcmc::adapt_dense_e_nuts, boost::random::linear_congruential_engine > >; Model = model_gMAP_namespace::model_gMAP; RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; size_t = long unsigned int]’ 57 | sampler.init_stepsize(logger); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:97:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 97 | util::run_adaptive_sampler( 98 | sampler, model, cont_vector, num_warmup, num_samples, num_thin, refresh, 99 | save_warmup, rng, interrupt, logger, sample_writer, diagnostic_writer); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:150:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 150 | return hmc_nuts_dense_e_adapt( 151 | model, init, unit_e_metric, random_seed, chain, init_radius, num_warmup, 152 | num_samples, num_thin, save_warmup, refresh, stepsize, stepsize_jitter, 153 | max_depth, delta, gamma, kappa, t0, init_buffer, term_buffer, window, 154 | interrupt, logger, init_writer, sample_writer, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:638:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 637 | return_code = stan::services::sample 638 | ::hmc_nuts_dense_e_adapt(model, *init_context_ptr, 639 | random_seed, id, init_radius, 640 | num_warmup, num_samples, 641 | num_thin, save_warmup, refresh, 642 | stepsize, stepsize_jitter, max_depth, 643 | delta, gamma, kappa, 644 | t0, init_buffer, term_buffer, window, 645 | interrupt, logger, init_writer, 646 | *sample_writer_ptr, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 1, -1, false> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 1, -1, false> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, true>, 1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, true>, 1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 1, -1, true>, 1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: [ skipping 19 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, -1, false> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, -1, false>, -1, -1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, -1, false>, -1, -1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixVector.h:194:32: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixVector.h:194:48: required from ‘static void Eigen::internal::triangular_product_impl::run(Dest&, const Lhs&, const Rhs&, const typename Dest::Scalar&) [with Dest = Eigen::Block, 1, -1, true>, 1, -1, false>; int Mode = 5; Lhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > >; Rhs = const Eigen::Block, -1, -1, false>, -1, -1, false>; typename Dest::Scalar = double]’ 194 | ::run(rhs.transpose(),lhs.transpose(), dstT, alpha); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:783:113: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:780:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, 1, false>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 2, Eigen::Stride<0, 0> > >; Functor = add_assign_op]’ 780 | DstEvaluatorType dstEvaluator(dst); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, 1, false>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 2, Eigen::Stride<0, 0> > >; Functor = Eigen::internal::add_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, -1, 1, false>; Src = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 2, Eigen::Stride<0, 0> > >; Func = add_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, -1, 1, false>; Src = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 2, Eigen::Stride<0, 0> > >; Func = add_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:177:18: required from ‘Derived& Eigen::MatrixBase::operator+=(const Eigen::MatrixBase&) [with OtherDerived = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 2, Eigen::Stride<0, 0> > >; Derived = Eigen::Block, -1, 1, false>]’ 177 | call_assignment(derived(), other.derived(), internal::add_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:296:25: [ skipping 13 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, -1, 1, true>, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, -1, 1, true>, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, -1, 1, true>, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, const Eigen::Block, -1, 1, true>, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, const Eigen::Block, -1, 1, true>, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, const Eigen::Block, -1, 1, true>, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 20 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 23 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/XprHelper.h:372:102: required from ‘struct Eigen::internal::plain_object_eval, -1, 1, true>, Eigen::Dense>’ 372 | typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; | ^~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:370:45: required from ‘struct Eigen::internal::generic_product_impl, const Eigen::Block, -1, 1, true>, Eigen::DenseShape, Eigen::DenseShape, 7>’ 370 | typedef typename nested_eval::type RhsNested; | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:479:24: required from ‘static void Eigen::internal::generic_product_impl::scaleAndAddTo(Dest&, const Lhs&, const Rhs&, const Scalar&) [with Dest = Eigen::Matrix; Lhs = Eigen::Matrix; Rhs = Eigen::Matrix; Scalar = double]’ 478 | return internal::generic_product_impl | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 479 | ::scaleAndAddTo(dst_vec, a_lhs, a_rhs.col(0), alpha); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/GeneralMatrixMatrix.h:445:20: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Matrix; Rhs = Eigen::Matrix]’ 445 | scaleAndAddTo(dst, lhs, rhs, Scalar(1)); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:148:43: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, false>, Eigen::Matrix, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, false>, Eigen::Matrix, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, false>, Eigen::Matrix, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, 1, -1, false>, Eigen::Matrix, 0, 7>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, 1, -1, false>, Eigen::Matrix, 0, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, 1, -1, false>, Eigen::Matrix, 0>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:345:45: [ skipping 20 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 1, -1, false> >, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 1, -1, false> >, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, 1, -1, false> >, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, 1, -1, false> >, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, 1, -1, false> >, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false>, 1, -1, false> >, const Eigen::Block, 1, -1, false> >, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/run_adaptive_sampler.hpp:57:0: required from ‘void stan::services::util::run_adaptive_sampler(Sampler&, Model&, std::vector&, int, int, int, int, bool, RNG&, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, size_t, size_t) [with Sampler = stan::mcmc::adapt_dense_e_nuts, boost::random::linear_congruential_engine > >; Model = model_gMAP_namespace::model_gMAP; RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; size_t = long unsigned int]’ 57 | sampler.init_stepsize(logger); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:97:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 97 | util::run_adaptive_sampler( 98 | sampler, model, cont_vector, num_warmup, num_samples, num_thin, refresh, 99 | save_warmup, rng, interrupt, logger, sample_writer, diagnostic_writer); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:150:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 150 | return hmc_nuts_dense_e_adapt( 151 | model, init, unit_e_metric, random_seed, chain, init_radius, num_warmup, 152 | num_samples, num_thin, save_warmup, refresh, stepsize, stepsize_jitter, 153 | max_depth, delta, gamma, kappa, t0, init_buffer, term_buffer, window, 154 | interrupt, logger, init_writer, sample_writer, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:638:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 637 | return_code = stan::services::sample 638 | ::hmc_nuts_dense_e_adapt(model, *init_context_ptr, 639 | random_seed, id, init_radius, 640 | num_warmup, num_samples, 641 | num_thin, save_warmup, refresh, 642 | stepsize, stepsize_jitter, max_depth, 643 | delta, gamma, kappa, 644 | t0, init_buffer, term_buffer, window, 645 | interrupt, logger, init_writer, 646 | *sample_writer_ptr, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, -1, false>, 1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, -1, false>, 1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, -1, -1, false>, -1, -1, false>, 1, -1, false> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, -1, false>, 1, -1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, -1, false>, 1, -1, false> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, -1, false>, 1, -1, false> >, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 20 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/run_adaptive_sampler.hpp:57:0: required from ‘void stan::services::util::run_adaptive_sampler(Sampler&, Model&, std::vector&, int, int, int, int, bool, RNG&, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, size_t, size_t) [with Sampler = stan::mcmc::adapt_dense_e_nuts, boost::random::linear_congruential_engine > >; Model = model_gMAP_namespace::model_gMAP; RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; size_t = long unsigned int]’ 57 | sampler.init_stepsize(logger); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:97:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 97 | util::run_adaptive_sampler( 98 | sampler, model, cont_vector, num_warmup, num_samples, num_thin, refresh, 99 | save_warmup, rng, interrupt, logger, sample_writer, diagnostic_writer); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:150:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 150 | return hmc_nuts_dense_e_adapt( 151 | model, init, unit_e_metric, random_seed, chain, init_radius, num_warmup, 152 | num_samples, num_thin, save_warmup, refresh, stepsize, stepsize_jitter, 153 | max_depth, delta, gamma, kappa, t0, init_buffer, term_buffer, window, 154 | interrupt, logger, init_writer, sample_writer, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:638:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 637 | return_code = stan::services::sample 638 | ::hmc_nuts_dense_e_adapt(model, *init_context_ptr, 639 | random_seed, id, init_radius, 640 | num_warmup, num_samples, 641 | num_thin, save_warmup, refresh, 642 | stepsize, stepsize_jitter, max_depth, 643 | delta, gamma, kappa, 644 | t0, init_buffer, term_buffer, window, 645 | interrupt, logger, init_writer, 646 | *sample_writer_ptr, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false>, 1, -1, false> >, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, 1, -1, false> >, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, -1, false>, 1, -1, false> >, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, -1, false>, 1, -1, false> >, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, -1, false>, 1, -1, false> >, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, -1, false>, 1, -1, false> >, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/services/util/run_adaptive_sampler.hpp:57:0: required from ‘void stan::services::util::run_adaptive_sampler(Sampler&, Model&, std::vector&, int, int, int, int, bool, RNG&, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, size_t, size_t) [with Sampler = stan::mcmc::adapt_dense_e_nuts, boost::random::linear_congruential_engine > >; Model = model_gMAP_namespace::model_gMAP; RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; size_t = long unsigned int]’ 57 | sampler.init_stepsize(logger); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:97:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 97 | util::run_adaptive_sampler( 98 | sampler, model, cont_vector, num_warmup, num_samples, num_thin, refresh, 99 | save_warmup, rng, interrupt, logger, sample_writer, diagnostic_writer); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/sample/hmc_nuts_dense_e_adapt.hpp:150:0: required from ‘int stan::services::sample::hmc_nuts_dense_e_adapt(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, int, int, int, bool, int, double, double, int, double, double, double, double, unsigned int, unsigned int, unsigned int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP]’ 150 | return hmc_nuts_dense_e_adapt( 151 | model, init, unit_e_metric, random_seed, chain, init_radius, num_warmup, 152 | num_samples, num_thin, save_warmup, refresh, stepsize, stepsize_jitter, 153 | max_depth, delta, gamma, kappa, t0, init_buffer, term_buffer, window, 154 | interrupt, logger, init_writer, sample_writer, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:638:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 637 | return_code = stan::services::sample 638 | ::hmc_nuts_dense_e_adapt(model, *init_context_ptr, 639 | random_seed, id, init_radius, 640 | num_warmup, num_samples, 641 | num_thin, save_warmup, refresh, 642 | stepsize, stepsize_jitter, max_depth, 643 | delta, gamma, kappa, 644 | t0, init_buffer, term_buffer, window, 645 | interrupt, logger, init_writer, 646 | *sample_writer_ptr, diagnostic_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, false>, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1, false>, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, -1, false>, -1, -1, false>, 1, -1, false> >, const Eigen::Block, -1, 1, false>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, false> >, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1, false> >, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, -1, 1, false> >, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, -1, 1, false> >, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1, false> >, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 21 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, -1, false>, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, -1, false>, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, 1, true>, -1, 1, false> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, -1, 1, true>, -1, 1, false> > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, -1, -1, false>, -1, 1, true>, -1, 1, false> >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/BlasUtil.h:506:13: [ skipping 20 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 1, -1, false> >, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 1, -1, false> >, -1, 1, false>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, true>, 1, -1, false> >, -1, 1, false>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, true>, 1, -1, false> >, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, true>, 1, -1, false> >, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 1, -1, true>, 1, -1, false> >, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 24 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/VectorBlock.h:56:47: [ skipping 20 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixVector.h:341:54: required from ‘static void Eigen::internal::trmv_selector::run(const Lhs&, const Rhs&, Dest&, const typename Dest::Scalar&) [with Lhs = Eigen::Transpose, -1, -1, false>, -1, -1, false> >; Rhs = Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >; Dest = Eigen::Transpose, 1, -1, true>, 1, -1, false> >; int Mode = 6; typename Dest::Scalar = double]’ 341 | dest.head(diagSize) -= (lhs_alpha-LhsScalar(1))*rhs.head(diagSize); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixVector.h:194:18: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:457:59: required from ‘static void Eigen::internal::triangular_product_impl::run(Dest&, const Lhs&, const Rhs&, const typename Dest::Scalar&) [with Dest = Eigen::Matrix; int Mode = 6; bool LhsIsTriangular = true; Lhs = const Eigen::Transpose, -1, -1, false> >; Rhs = Eigen::Block, -1, -1, false>; typename Dest::Scalar = double]’ 457 | dst.topRows(diagSize) -= ((lhs_alpha-LhsScalar(1))*a_rhs).topRows(diagSize); | ~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:770:14: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:457:74: [ skipping 19 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false> >, -1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false> >, -1, -1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false> >, -1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false> >, -1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false> >, -1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1, false> >, -1, -1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 21 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:462:59: required from ‘static void Eigen::internal::triangular_product_impl::run(Dest&, const Lhs&, const Rhs&, const typename Dest::Scalar&) [with Dest = Eigen::Matrix; int Mode = 6; bool LhsIsTriangular = true; Lhs = const Eigen::Transpose, -1, -1, false> >; Rhs = Eigen::Block, -1, -1, false>; typename Dest::Scalar = double]’ 462 | dst.leftCols(diagSize) -= (rhs_alpha-RhsScalar(1))*a_lhs.leftCols(diagSize); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:770:14: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix, 1>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix, 1> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix, 1> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:120:7: required from ‘class Eigen::internal::dense_product_base, Eigen::Matrix, 1, 8>’ 120 | class dense_product_base | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:152:7: required from ‘class Eigen::ProductImpl, Eigen::Matrix, 1, Eigen::Dense>’ 152 | class ProductImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:71:7: required from ‘class Eigen::Product, Eigen::Matrix, 1>’ 71 | class Product : public ProductImpl<_Lhs,_Rhs,Option, | ^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:462:68: [ skipping 19 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, true>, -1, 1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, true>, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, 1, true>, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, 1, true>, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, 1, true>, -1, 1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 21 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, false>, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false>, 1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, false>, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, false>, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 1, -1, false>, 1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 1, -1, false>, 1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 21 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, -1, false>, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:780:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 16, Eigen::Stride<0, 0> > >; Functor = sub_assign_op]’ 780 | DstEvaluatorType dstEvaluator(dst); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 16, Eigen::Stride<0, 0> > >; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true>; Src = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 16, Eigen::Stride<0, 0> > >; Func = sub_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true>; Src = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 16, Eigen::Stride<0, 0> > >; Func = sub_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:164:18: required from ‘Derived& Eigen::MatrixBase::operator-=(const Eigen::MatrixBase&) [with OtherDerived = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Map, 16, Eigen::Stride<0, 0> > >; Derived = Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true>]’ 164 | call_assignment(derived(), other.derived(), internal::sub_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:305:153: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::InnerStride<> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::InnerStride<> >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::InnerStride<> >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::InnerStride<> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::InnerStride<> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::InnerStride<> >, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 22 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, 1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, 1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, -1, 1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, -1, 1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, 0, Eigen::Stride<0, 0> >, -1, 1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, 0, Eigen::Stride<0, 0> >, -1, 1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 23 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, 1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 0, Eigen::Stride<0, 0> >, -1, 1, false> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0, Eigen::Stride<0, 0> >, -1, 1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0, Eigen::Stride<0, 0> >, -1, 1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 0, Eigen::Stride<0, 0> >, -1, 1, false>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 0, Eigen::Stride<0, 0> >, -1, 1, false> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixVector.h:137:106: [ skipping 20 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, -1, 1, false> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, -1, 1, false> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, -1, 1, false> > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, -1, 1, false> >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, -1, 1, false> > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixVector.h:137:77: required from ‘static void Eigen::internal::triangular_matrix_vector_product::run(Index, Index, const LhsScalar*, Index, const RhsScalar*, Index, ResScalar*, Index, const ResScalar&) [with Index = long int; int Mode = 6; LhsScalar = double; bool ConjLhs = false; RhsScalar = double; bool ConjRhs = false; int Version = 0; ResScalar = double]’ 137 | res.coeffRef(i) += alpha * (cjLhs.row(i).segment(s,r).cwiseProduct(cjRhs.segment(s,r).transpose())).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixVector.h:332:12: [ skipping 19 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/PlainObjectBase.h:98:7: required from ‘class Eigen::PlainObjectBase >’ 98 | class PlainObjectBase : public internal::dense_xpr_base::type | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:178:7: [ skipping 21 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 0>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, 0>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, 0>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 0> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 0> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Diagonal.h:63:53: required from ‘class Eigen::Diagonal, 0>’ 63 | template class Diagonal | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:153:32: [ skipping 20 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, -1, 1, false> >, 1, -1, true> >, const Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:63: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, -1, 1, false> >, 1, -1, true>; U = Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Block, -1, -1, false>, -1, -1, false>, -1, 1, true>; Derived = Eigen::Block, -1, 1, false> >, 1, -1, true>; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:62: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 1, -1, false>; U = Eigen::Block, -1, 1, true>, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 20 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, 1, -1, false>, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, 1, -1, false>, 1, -1, true> >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, 1, -1, false>, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, 1, -1, false>, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, 1, -1, false>, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, 1, -1, false>, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: [ skipping 21 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, 1, -1, false>, 1, -1, true>; U = Eigen::Block, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 20 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, -1, 1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, 0, Eigen::Stride<0, 0> >, -1, 1, false> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, -1, 1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 0, Eigen::Stride<0, 0> >, -1, 1, false> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, -1, 1, false> > >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 24 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:60:7: required from ‘class Eigen::CwiseNullaryOp, Eigen::Matrix >’ 60 | class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp >::type, internal::no_assignment_operator | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:347:30: required from ‘Derived& Eigen::DenseBase::setConstant(const Scalar&) [with Derived = Eigen::Matrix; Scalar = double]’ 347 | return derived() = Constant(rows(), cols(), val); | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseNullaryOp.h:548:10: required from ‘Derived& Eigen::DenseBase::setZero() [with Derived = Eigen::Matrix]’ 548 | return setConstant(Scalar(0)); | ^~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:151:29: [ skipping 20 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, -1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>, -1, -1, false>; SrcXprType = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, -1, -1, false>; Functor = sub_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>, -1, -1, false>; SrcXprType = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, -1, -1, false>; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, -1, -1, false>, -1, -1, false>; Src = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, -1, -1, false>; Func = sub_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, -1, -1, false>, -1, -1, false>; Src = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, -1, -1, false>; Func = sub_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:164:18: required from ‘Derived& Eigen::MatrixBase::operator-=(const Eigen::MatrixBase&) [with OtherDerived = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Matrix >, -1, -1, false>; Derived = Eigen::Block, -1, -1, false>, -1, -1, false>]’ 164 | call_assignment(derived(), other.derived(), internal::sub_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:457:31: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, -1, -1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, -1, -1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, -1, -1, true> >; Functor = sub_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, -1, -1, true> >; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: [ skipping 20 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:780:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, -1, -1, true> >; Functor = sub_assign_op]’ 780 | DstEvaluatorType dstEvaluator(dst); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, -1, -1, true> >; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, -1, -1, false>, -1, -1, true>; Src = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, -1, -1, true> >; Func = sub_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, -1, -1, false>, -1, -1, true>; Src = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, -1, -1, true> >; Func = sub_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:164:18: required from ‘Derived& Eigen::MatrixBase::operator-=(const Eigen::MatrixBase&) [with OtherDerived = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, -1, -1, true> >; Derived = Eigen::Block, -1, -1, false>, -1, -1, true>]’ 164 | call_assignment(derived(), other.derived(), internal::sub_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:462:32: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase, -1, -1, false>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, -1, false> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, -1, -1, false> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase, -1, -1, false>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense, -1, -1, false, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 25 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:462:59: required from ‘static void Eigen::internal::triangular_product_impl::run(Dest&, const Lhs&, const Rhs&, const typename Dest::Scalar&) [with Dest = Eigen::Matrix; int Mode = 2; bool LhsIsTriangular = true; Lhs = Eigen::Matrix; Rhs = Eigen::Matrix; typename Dest::Scalar = double]’ 462 | dst.leftCols(diagSize) -= (rhs_alpha-RhsScalar(1))*a_lhs.leftCols(diagSize); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:770:14: [ skipping 22 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, -1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase >, -1, -1, true>, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, -1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, -1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase >, -1, -1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:329:7: required from ‘class Eigen::internal::BlockImpl_dense >, -1, -1, true, true>’ 329 | class BlockImpl_dense | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: [ skipping 25 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block >, -1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block >, -1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block >, -1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block >, -1, -1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block >, -1, -1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:462:59: required from ‘static void Eigen::internal::triangular_product_impl::run(Dest&, const Lhs&, const Rhs&, const typename Dest::Scalar&) [with Dest = Eigen::Matrix; int Mode = 1; bool LhsIsTriangular = true; Lhs = const Eigen::Transpose >; Rhs = Eigen::Matrix; typename Dest::Scalar = double]’ 462 | dst.leftCols(diagSize) -= (rhs_alpha-RhsScalar(1))*a_lhs.leftCols(diagSize); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:770:14: [ skipping 22 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, 1, true>, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, 1, true>, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:357:7: required from ‘class Eigen::internal::redux_evaluator, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, true> > >’ 357 | class redux_evaluator : public internal::evaluator<_XprType> | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:414:17: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true>, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 414 | ThisEvaluator thisEval(derived()); | ^~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: [ skipping 22 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 1, -1, false>, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 1, -1, false>, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, 1, -1, false>, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, 1, -1, false>, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, 1, -1, false>, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, 1, -1, false>, 1, -1, true> >, const Eigen::Block, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 25 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, -1, 1, false> > >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, -1, 1, false> > >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, -1, 1, false> > > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, -1, 1, false> > >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Block, 0, Eigen::OuterStride<> >, 1, -1, true>, 1, -1, false>, const Eigen::Transpose, 0, Eigen::Stride<0, 0> >, -1, 1, false> > >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixVector.h:137:114: required from ‘static void Eigen::internal::triangular_matrix_vector_product::run(Index, Index, const LhsScalar*, Index, const RhsScalar*, Index, ResScalar*, Index, const ResScalar&) [with Index = long int; int Mode = 6; LhsScalar = double; bool ConjLhs = false; RhsScalar = double; bool ConjRhs = false; int Version = 0; ResScalar = double]’ 137 | res.coeffRef(i) += alpha * (cjLhs.row(i).segment(s,r).cwiseProduct(cjRhs.segment(s,r).transpose())).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixVector.h:332:12: required from ‘static void Eigen::internal::trmv_selector::run(const Lhs&, const Rhs&, Dest&, const typename Dest::Scalar&) [with Lhs = Eigen::Transpose, -1, -1, false>, -1, -1, false> >; Rhs = Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >; Dest = Eigen::Transpose, 1, -1, true>, 1, -1, false> >; int Mode = 6; typename Dest::Scalar = double]’ 327 | internal::triangular_matrix_vector_product | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 328 | | ~~~~~~~~~ 332 | ::run(actualLhs.rows(),actualLhs.cols(), | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 333 | actualLhs.data(),actualLhs.outerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 334 | actualRhsPtr,1, | ~~~~~~~~~~~~~~~ 335 | dest.data(),dest.innerStride(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 336 | actualAlpha); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixVector.h:194:18: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, 1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, 1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1043:41: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, 1, true>, -1, 1, false> >’ 1043 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, 1, true>, -1, 1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, -1, -1, false>, -1, 1, true>, -1, 1, false> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, 1, true>, -1, 1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: [ skipping 37 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, 1, true>, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, 1, true>, -1, 1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, -1, -1, false>, -1, 1, true>, -1, 1, false> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, 1, true>, -1, 1, false> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false>, -1, 1, true>, -1, 1, false> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 35 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, 1, -1, true>, 1, -1, false> >, -1, 1, false>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> >; Functor = sub_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, 1, -1, true>, 1, -1, false> >, -1, 1, false>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> >; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: [ skipping 22 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, 1, -1, true>, 1, -1, false> >, -1, 1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:780:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, 1, -1, true>, 1, -1, false> >, -1, 1, false>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> >; Functor = sub_assign_op]’ 780 | DstEvaluatorType dstEvaluator(dst); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, 1, -1, true>, 1, -1, false> >, -1, 1, false>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> >; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, 1, -1, true>, 1, -1, false> >, -1, 1, false>; Src = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> >; Func = sub_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, 1, -1, true>, 1, -1, false> >, -1, 1, false>; Src = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> >; Func = sub_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:164:18: required from ‘Derived& Eigen::MatrixBase::operator-=(const Eigen::MatrixBase&) [with OtherDerived = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose, -1, -1, false>, -1, 1, true>, -1, 1, false> > > >, -1, 1, false> >; Derived = Eigen::Block, 1, -1, true>, 1, -1, false> >, -1, 1, false>]’ 164 | call_assignment(derived(), other.derived(), internal::sub_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixVector.h:341:27: [ skipping 19 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>; SrcXprType = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false>; Functor = sub_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, false>; SrcXprType = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false>; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: required from ‘void Eigen::internal::call_assignment_no_alias(Dst&, const Src&, const Func&) [with Dst = Eigen::Block, -1, -1, false>; Src = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false>; Func = sub_assign_op]’ 890 | Assignment::run(actualDst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:858:27: required from ‘void Eigen::internal::call_assignment(Dst&, const Src&, const Func&, typename enable_if<(! evaluator_assume_aliasing::value), void*>::type) [with Dst = Eigen::Block, -1, -1, false>; Src = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false>; Func = sub_assign_op; typename enable_if<(! evaluator_assume_aliasing::value), void*>::type = void*; typename evaluator_traits::Shape = Eigen::DenseShape]’ 858 | call_assignment_no_alias(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:164:18: required from ‘Derived& Eigen::MatrixBase::operator-=(const Eigen::MatrixBase&) [with OtherDerived = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false>; Derived = Eigen::Block, -1, -1, false>]’ 164 | call_assignment(derived(), other.derived(), internal::sub_assign_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/products/TriangularMatrixMatrix.h:457:31: [ skipping 19 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false> >, -1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false> >, -1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false> >; Functor = sub_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, -1, -1, false> >; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: [ skipping 22 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, 1, -1, false> >, const Eigen::Block, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:606:52: required from ‘const Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::CoeffReturnType Eigen::internal::product_evaluator, ProductTag, Eigen::DenseShape, Eigen::DenseShape>::coeff(Eigen::Index, Eigen::Index) const [with Lhs = Eigen::Matrix; Rhs = Eigen::Matrix; int ProductTag = 8; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Matrix; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Matrix; CoeffReturnType = double; Eigen::Index = long int]’ 606 | return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:654:63: [ skipping 23 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs_update.hpp:40:0: required from ‘Scalar stan::optimization::BFGSUpdate_HInv::update(const VectorT&, const VectorT&, bool) [with Scalar = double; int DimAtCompile = -1; VectorT = Eigen::Matrix]’ 40 | _Hk = Hupd * _Hk * Hupd.transpose(); /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/bfgs.hpp:246:0: required from ‘int stan::optimization::BFGSMinimizer::step() [with FunctorType = stan::optimization::ModelAdaptor; QNUpdateType = stan::optimization::BFGSUpdate_HInv<>; Scalar = double; int DimAtCompile = -1]’ 246 | Scalar B0fact = _qn.update(yk, sk, true); /usr/local/lib/R/library/StanHeaders/include/src/stan/services/optimize/bfgs.hpp:117:0: required from ‘int stan::services::optimize::bfgs(Model&, const stan::io::var_context&, unsigned int, unsigned int, double, double, double, double, double, double, double, int, bool, int, stan::callbacks::interrupt&, stan::callbacks::logger&, stan::callbacks::writer&, stan::callbacks::writer&) [with Model = model_gMAP_namespace::model_gMAP; bool jacobian = false]’ 117 | ret = bfgs.step(); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:517:0: required from ‘int rstan::{anonymous}::command(rstan::stan_args&, Model&, Rcpp::List&, const std::vector&, const std::vector >&, RNG_t&) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Rcpp::List = Rcpp::Vector<19>]’ 517 | = stan::services::optimize::bfgs(model, *init_context_ptr, 518 | random_seed, id, init_radius, 519 | init_alpha, 520 | tol_obj, 521 | tol_rel_obj, 522 | tol_grad, 523 | tol_rel_grad, 524 | tol_param, 525 | num_iterations, 526 | save_iterations, 527 | refresh, 528 | interrupt, logger, 529 | init_writer, sample_writer); /usr/local/lib/R/library/rstan/include/rstan/stan_fit.hpp:1215:0: required from ‘SEXPREC* rstan::stan_fit::call_sampler(SEXP) [with Model = model_gMAP_namespace::model_gMAP; RNG_t = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; SEXP = SEXPREC*]’ 1215 | ret = command(args, model_, holder, names_oi_tidx_, 1216 | fnames_oi_, base_rng); stanExports_gMAP.cc:15:0: required from here 15 | .method("call_sampler", &rstan::stan_fit ::call_sampler) /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, -1, -1, false> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, -1, -1, false> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >; Functor = sub_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block, -1, -1, false> >; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: [ skipping 26 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator >, -1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator >, -1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:78: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block >, -1, -1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block >, -1, -1, true> > >’ 722 | struct evaluator > | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:774:20: required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block >, -1, -1, true> >; Functor = sub_assign_op]’ 774 | SrcEvaluatorType srcEvaluator(src); | ^~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:954:31: required from ‘static void Eigen::internal::Assignment::run(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Block, -1, -1, true>; SrcXprType = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Block >, -1, -1, true> >; Functor = Eigen::internal::sub_assign_op; Weak = void]’ 954 | call_dense_assignment_loop(dst, src, func); | ~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/AssignEvaluator.h:890:49: [ skipping 26 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Matrix.h:238:29: required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::EigenBase&) [with OtherDerived = Eigen::HouseholderSequence, Eigen::Matrix, 1>; _Scalar = double; int _Rows = -1; int _Cols = -1; int _Options = 0; int _MaxRows = -1; int _MaxCols = -1]’ 238 | return Base::operator=(other); | ~~~~~~~~~~~~~~~^~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:453:11: required from ‘static void Eigen::internal::tridiagonalization_inplace_selector::run(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; MatrixType = Eigen::Matrix; int Size = -1; bool IsComplex = false; CoeffVectorType = Eigen::Matrix]’ 453 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) | ~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 454 | .setLength(mat.rows() - 1) | ~~~~~~~~~~~~~~~~~~~~~~~~~~ 455 | .setShift(1); | ~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/Tridiagonalization.h:434:55: required from ‘void Eigen::internal::tridiagonalization_inplace(MatrixType&, DiagonalType&, SubDiagonalType&, CoeffVectorType&, bool) [with MatrixType = Eigen::Matrix; DiagonalType = Eigen::Matrix; SubDiagonalType = Eigen::Matrix; CoeffVectorType = Eigen::Matrix]’ 434 | tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:458:39: required from ‘Eigen::SelfAdjointEigenSolver& Eigen::SelfAdjointEigenSolver<_MatrixType>::compute(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 458 | internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h:181:14: required from ‘Eigen::SelfAdjointEigenSolver<_MatrixType>::SelfAdjointEigenSolver(const Eigen::EigenBase&, int) [with InputType = Eigen::Matrix; _MatrixType = Eigen::Matrix]’ 181 | compute(matrix.derived(), options); | ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/optimization/newton.hpp:19:0: required from here 19 | Eigen::SelfAdjointEigenSolver solver(H); /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:103:7: required from ‘class Eigen::CwiseUnaryViewImpl, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> >, Eigen::Dense>’ 103 | class CwiseUnaryViewImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseUnaryView.h:58:7: required from ‘class Eigen::CwiseUnaryView, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >::adj_Op, Eigen::Map, -1, 1, 0, -1, 1>, 0, Eigen::Stride<0, 0> > >’ 58 | class CwiseUnaryView : public CwiseUnaryViewImpl::StorageKind> | ^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/callback_vari.hpp:21:0: recursively required from ‘void stan::math::internal::callback_vari::chain() [with T = double; F = stan::math::sum > >(const std::vector, arena_allocator > >&)::]’ 21 | inline void chain() final { rev_functor_(*this); } /usr/local/lib/R/library/StanHeaders/include/stan/math/rev/core/callback_vari.hpp:21:0: required from here /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:37:44: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Matrix; U = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; bool NeedToTranspose = false; ResScalar = double]’ 37 | return a.template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; Derived = Eigen::Matrix; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/diag_e_metric.hpp:21:0: required from ‘double stan::mcmc::diag_e_metric::T(stan::mcmc::diag_e_point&) [with Model = model_gMAP_namespace::model_gMAP; BaseRNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >]’ 21 | return 0.5 * z.p.dot(z.inv_e_metric_.cwiseProduct(z.p)); /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/diag_e_metric.hpp:20:0: required from here 20 | double T(diag_e_point& z) { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ stanExports_gMAP.h: In instantiation of ‘void model_gMAP_namespace::model_gMAP::write_array_impl(RNG&, VecR&, VecI&, VecVar&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; VecR = Eigen::Matrix; VecI = std::vector; VecVar = Eigen::Matrix; stan::require_vector_like_vt* = 0; stan::require_vector_like_vt* = 0; stan::require_vector_vt* = 0; std::ostream = std::basic_ostream]’: stanExports_gMAP.h:1652:0: required from ‘void model_gMAP_namespace::model_gMAP::write_array(RNG&, Eigen::Matrix&, Eigen::Matrix&, bool, bool, std::ostream*) const [with RNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; std::ostream = std::basic_ostream]’ 1652 | write_array_impl(base_rng, params_r, params_i, vars, 1653 | emit_transformed_parameters, emit_generated_quantities, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/model_base_crtp.hpp:140:0: required from ‘void stan::model::model_base_crtp::write_array(boost::random::ecuyer1988&, Eigen::VectorXd&, Eigen::VectorXd&, bool, bool, std::ostream*) const [with M = model_gMAP_namespace::model_gMAP; boost::random::ecuyer1988 = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >; Eigen::VectorXd = Eigen::Matrix; std::ostream = std::basic_ostream]’ 140 | return static_cast(this)->write_array( 141 | rng, theta, vars, include_tparams, include_gqs, msgs); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/model_base_crtp.hpp:136:0: required from here 136 | void write_array(boost::ecuyer1988& rng, Eigen::VectorXd& theta, stanExports_gMAP.h:1223: warning: unused variable ‘jacobian__’ [-Wunused-variable] 1223 | constexpr bool jacobian__ = false; /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::CwiseUnaryOp >, void>::apply(const Eigen::ArrayWrapper >&)::, const Eigen::ArrayWrapper > > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/inv_gamma_lpdf.hpp:92:65: required from ‘stan::return_type_t stan::math::inv_gamma_lpdf(const T_y&, const T_shape&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix; T_shape = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 92 | partials<1>(ops_partials) = log_beta - digamma(alpha_val) - log_y; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~ stanExports_gMAP.h:1132:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = false; VecR = Eigen::Matrix; VecI = Eigen::Matrix; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1132 | lp_accum__.add(stan::math::inv_gamma_lpdf(tau, 1133 | stan::model::rvalue(tau_prior_stan, 1134 | "tau_prior_stan", stan::model::index_uni(1)), 1135 | stan::model::rvalue(tau_prior_stan, 1136 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1675:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(Eigen::Matrix&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1675 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/model_base_crtp.hpp:115:0: required from ‘double stan::model::model_base_crtp::log_prob_propto(Eigen::VectorXd&, std::ostream*) const [with M = model_gMAP_namespace::model_gMAP; Eigen::VectorXd = Eigen::Matrix; std::ostream = std::basic_ostream]’ 115 | return static_cast(this)->template log_prob(theta, 116 | msgs); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/model_base_crtp.hpp:113:0: required from here 113 | inline double log_prob_propto(Eigen::VectorXd& theta, /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/inv_gamma_lpdf.hpp:96:35: required from ‘stan::return_type_t stan::math::inv_gamma_lpdf(const T_y&, const T_shape&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix; T_shape = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 96 | logp -= sum((alpha_val + 1.0) * log_y) * N / max_size(y, alpha); | ~~~~~~~~~~~~~~~~~~^~~~~~~ stanExports_gMAP.h:1132:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = false; VecR = Eigen::Matrix; VecI = Eigen::Matrix; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1132 | lp_accum__.add(stan::math::inv_gamma_lpdf(tau, 1133 | stan::model::rvalue(tau_prior_stan, 1134 | "tau_prior_stan", stan::model::index_uni(1)), 1135 | stan::model::rvalue(tau_prior_stan, 1136 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1675:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(Eigen::Matrix&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1675 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/model_base_crtp.hpp:115:0: required from ‘double stan::model::model_base_crtp::log_prob_propto(Eigen::VectorXd&, std::ostream*) const [with M = model_gMAP_namespace::model_gMAP; Eigen::VectorXd = Eigen::Matrix; std::ostream = std::basic_ostream]’ 115 | return static_cast(this)->template log_prob(theta, 116 | msgs); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/model_base_crtp.hpp:113:0: required from here 113 | inline double log_prob_propto(Eigen::VectorXd& theta, /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::ArrayWrapper > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::ArrayWrapper > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ArrayBase.h:39:34: required from ‘class Eigen::ArrayBase, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::ArrayWrapper > > >’ 39 | template class ArrayBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::ArrayWrapper >, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > >, const Eigen::ArrayWrapper > >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/lognormal_lpdf.hpp:70:40: required from ‘stan::return_type_t stan::math::lognormal_lpdf(const T_y&, const T_loc&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix; T_loc = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 70 | const auto& logy_m_mu = to_ref(log_y - mu_val); | ~~~~~~^~~~~~~~ stanExports_gMAP.h:1141:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = false; VecR = Eigen::Matrix; VecI = Eigen::Matrix; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1141 | lp_accum__.add(stan::math::lognormal_lpdf(tau, 1142 | stan::model::rvalue(tau_prior_stan, 1143 | "tau_prior_stan", stan::model::index_uni(1)), 1144 | stan::model::rvalue(tau_prior_stan, 1145 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1675:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(Eigen::Matrix&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1675 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/model_base_crtp.hpp:115:0: required from ‘double stan::model::model_base_crtp::log_prob_propto(Eigen::VectorXd&, std::ostream*) const [with M = model_gMAP_namespace::model_gMAP; Eigen::VectorXd = Eigen::Matrix; std::ostream = std::basic_ostream]’ 115 | return static_cast(this)->template log_prob(theta, 116 | msgs); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/model_base_crtp.hpp:113:0: required from here 113 | inline double log_prob_propto(Eigen::VectorXd& theta, /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:251:39: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix]’ 251 | dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:124:75: required from ‘Eigen::internal::product_evaluator, ProductTag, LhsShape, RhsShape>::product_evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; int ProductTag = 6; LhsShape = Eigen::DenseShape; RhsShape = Eigen::DenseShape; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Matrix; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 124 | generic_product_impl::evalTo(m_result, xpr.lhs(), xpr.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:35:90: required from ‘Eigen::internal::evaluator >::evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 35 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {} | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:137:22: required from ‘Eigen::internal::dense_product_base::operator const Scalar() const [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Option = 0; Scalar = double]’ 137 | return internal::evaluator(derived()).coeff(0,0); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from ‘double stan::mcmc::dense_e_metric::T(stan::mcmc::dense_e_point&) [with Model = model_gMAP_namespace::model_gMAP; BaseRNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >]’ 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:21:0: required from here 21 | double T(dense_e_point& z) { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> >, const Eigen::Matrix >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> >, const Eigen::Matrix > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> >, const Eigen::Matrix > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> >, const Eigen::Matrix, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> >, const Eigen::Matrix >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:251:54: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix]’ 251 | dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:124:75: required from ‘Eigen::internal::product_evaluator, ProductTag, LhsShape, RhsShape>::product_evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; int ProductTag = 6; LhsShape = Eigen::DenseShape; RhsShape = Eigen::DenseShape; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Matrix; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 124 | generic_product_impl::evalTo(m_result, xpr.lhs(), xpr.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:35:90: required from ‘Eigen::internal::evaluator >::evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 35 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {} | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:137:22: required from ‘Eigen::internal::dense_product_base::operator const Scalar() const [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Option = 0; Scalar = double]’ 137 | return internal::evaluator(derived()).coeff(0,0); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from ‘double stan::mcmc::dense_e_metric::T(stan::mcmc::dense_e_point&) [with Model = model_gMAP_namespace::model_gMAP; BaseRNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >]’ 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:21:0: required from here 21 | double T(dense_e_point& z) { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix > >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:37:51: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Matrix; U = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; bool NeedToTranspose = false; ResScalar = double]’ 37 | return a.template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::CwiseBinaryOp, const Eigen::Matrix, const Eigen::Matrix >; Derived = Eigen::Matrix; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/diag_e_metric.hpp:21:0: required from ‘double stan::mcmc::diag_e_metric::T(stan::mcmc::diag_e_point&) [with Model = model_gMAP_namespace::model_gMAP; BaseRNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >]’ 21 | return 0.5 * z.p.dot(z.inv_e_metric_.cwiseProduct(z.p)); /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/diag_e_metric.hpp:20:0: required from here 20 | double T(diag_e_point& z) { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> >, const Eigen::Matrix >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> >, const Eigen::Matrix >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> >, const Eigen::Matrix > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> >, const Eigen::Matrix >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0> >, const Eigen::Matrix >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:251:64: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix]’ 251 | dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:124:75: required from ‘Eigen::internal::product_evaluator, ProductTag, LhsShape, RhsShape>::product_evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; int ProductTag = 6; LhsShape = Eigen::DenseShape; RhsShape = Eigen::DenseShape; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Matrix; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 124 | generic_product_impl::evalTo(m_result, xpr.lhs(), xpr.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:35:90: required from ‘Eigen::internal::evaluator >::evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 35 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {} | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:137:22: required from ‘Eigen::internal::dense_product_base::operator const Scalar() const [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Option = 0; Scalar = double]’ 137 | return internal::evaluator(derived()).coeff(0,0); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from ‘double stan::mcmc::dense_e_metric::T(stan::mcmc::dense_e_point&) [with Model = model_gMAP_namespace::model_gMAP; BaseRNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >]’ 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:21:0: required from here 21 | double T(dense_e_point& z) { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/fun/sum.hpp:47:15: required from ‘stan::value_type_t stan::math::sum(const T&) [with T = Eigen::CwiseBinaryOp, const Eigen::CwiseBinaryOp, const Eigen::ArrayWrapper >, const Eigen::CwiseNullaryOp, const Eigen::Array > >, const Eigen::CwiseUnaryOp, const Eigen::ArrayWrapper > > >; stan::require_eigen_vt* = 0; stan::value_type_t = double]’ 47 | return m.sum(); | ~~~~~^~ /usr/local/lib/R/library/StanHeaders/include/stan/math/prim/prob/inv_gamma_lpdf.hpp:96:16: required from ‘stan::return_type_t stan::math::inv_gamma_lpdf(const T_y&, const T_shape&, const T_scale&) [with bool propto = true; T_y = Eigen::Matrix; T_shape = Eigen::Matrix; T_scale = Eigen::Matrix; stan::require_all_not_nonscalar_prim_or_rev_kernel_expression_t* = 0; stan::return_type_t = double]’ 96 | logp -= sum((alpha_val + 1.0) * log_y) * N / max_size(y, alpha); | ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ stanExports_gMAP.h:1132:0: required from ‘stan::scalar_type_t model_gMAP_namespace::model_gMAP::log_prob_impl(VecR&, VecI&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = false; VecR = Eigen::Matrix; VecI = Eigen::Matrix; stan::require_vector_like_t* = 0; stan::require_vector_like_vt* = 0; stan::scalar_type_t = double; std::ostream = std::basic_ostream]’ 1132 | lp_accum__.add(stan::math::inv_gamma_lpdf(tau, 1133 | stan::model::rvalue(tau_prior_stan, 1134 | "tau_prior_stan", stan::model::index_uni(1)), 1135 | stan::model::rvalue(tau_prior_stan, 1136 | "tau_prior_stan", stan::model::index_uni(2)))); stanExports_gMAP.h:1675:0: required from ‘T_ model_gMAP_namespace::model_gMAP::log_prob(Eigen::Matrix&, std::ostream*) const [with bool propto__ = true; bool jacobian__ = false; T_ = double; std::ostream = std::basic_ostream]’ 1675 | return log_prob_impl(params_r, params_i, pstream); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/model_base_crtp.hpp:115:0: required from ‘double stan::model::model_base_crtp::log_prob_propto(Eigen::VectorXd&, std::ostream*) const [with M = model_gMAP_namespace::model_gMAP; Eigen::VectorXd = Eigen::Matrix; std::ostream = std::basic_ostream]’ 115 | return static_cast(this)->template log_prob(theta, 116 | msgs); /usr/local/lib/R/library/StanHeaders/include/src/stan/model/model_base_crtp.hpp:113:0: required from here 113 | inline double log_prob_propto(Eigen::VectorXd& theta, /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:172:103: required from ‘class Eigen::internal::BlockImpl_dense, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true, false>’ 172 | template class BlockImpl_dense | ^~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:154:7: required from ‘class Eigen::BlockImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true, Eigen::Dense>’ 154 | class BlockImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Block.h:103:81: required from ‘class Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>’ 103 | template class Block | ^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:43: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:251:64: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix]’ 251 | dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:124:75: required from ‘Eigen::internal::product_evaluator, ProductTag, LhsShape, RhsShape>::product_evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; int ProductTag = 6; LhsShape = Eigen::DenseShape; RhsShape = Eigen::DenseShape; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Matrix; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 124 | generic_product_impl::evalTo(m_result, xpr.lhs(), xpr.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:35:90: required from ‘Eigen::internal::evaluator >::evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 35 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {} | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:137:22: required from ‘Eigen::internal::dense_product_base::operator const Scalar() const [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Option = 0; Scalar = double]’ 137 | return internal::evaluator(derived()).coeff(0,0); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from ‘double stan::mcmc::dense_e_metric::T(stan::mcmc::dense_e_point&) [with Model = model_gMAP_namespace::model_gMAP; BaseRNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >]’ 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:21:0: required from here 21 | double T(dense_e_point& z) { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase >, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase >, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: [ skipping 17 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:251:64: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix]’ 251 | dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:124:75: required from ‘Eigen::internal::product_evaluator, ProductTag, LhsShape, RhsShape>::product_evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; int ProductTag = 6; LhsShape = Eigen::DenseShape; RhsShape = Eigen::DenseShape; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Matrix; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 124 | generic_product_impl::evalTo(m_result, xpr.lhs(), xpr.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:35:90: required from ‘Eigen::internal::evaluator >::evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 35 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {} | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:137:22: required from ‘Eigen::internal::dense_product_base::operator const Scalar() const [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Option = 0; Scalar = double]’ 137 | return internal::evaluator(derived()).coeff(0,0); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from ‘double stan::mcmc::dense_e_metric::T(stan::mcmc::dense_e_point&) [with Model = model_gMAP_namespace::model_gMAP; BaseRNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >]’ 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:21:0: required from here 21 | double T(dense_e_point& z) { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/GeneralProduct.h:207:43: required from ‘static void Eigen::internal::gemv_dense_selector<1, StorageOrder, BlasCompatible>::run(const Lhs&, const Rhs&, Dest&, const typename Dest::Scalar&) [with Lhs = Eigen::CwiseBinaryOp, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >; Rhs = Eigen::Matrix; Dest = Eigen::Matrix; int StorageOrder = 0; bool BlasCompatible = true; typename Dest::Scalar = double]’ 207 | ::run(rhs.transpose(), lhs.transpose(), destT, alpha); | ~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:388:34: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:251:64: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix]’ 251 | dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:124:75: required from ‘Eigen::internal::product_evaluator, ProductTag, LhsShape, RhsShape>::product_evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; int ProductTag = 6; LhsShape = Eigen::DenseShape; RhsShape = Eigen::DenseShape; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Matrix; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 124 | generic_product_impl::evalTo(m_result, xpr.lhs(), xpr.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:35:90: required from ‘Eigen::internal::evaluator >::evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 35 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {} | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:137:22: required from ‘Eigen::internal::dense_product_base::operator const Scalar() const [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Option = 0; Scalar = double]’ 137 | return internal::evaluator(derived()).coeff(0,0); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from ‘double stan::mcmc::dense_e_metric::T(stan::mcmc::dense_e_point&) [with Model = model_gMAP_namespace::model_gMAP; BaseRNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >]’ 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:21:0: required from here 21 | double T(dense_e_point& z) { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:23: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>; U = Eigen::Block, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:251:64: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix]’ 251 | dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:124:75: required from ‘Eigen::internal::product_evaluator, ProductTag, LhsShape, RhsShape>::product_evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; int ProductTag = 6; LhsShape = Eigen::DenseShape; RhsShape = Eigen::DenseShape; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Matrix; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 124 | generic_product_impl::evalTo(m_result, xpr.lhs(), xpr.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:35:90: required from ‘Eigen::internal::evaluator >::evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 35 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {} | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:137:22: required from ‘Eigen::internal::dense_product_base::operator const Scalar() const [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Option = 0; Scalar = double]’ 137 | return internal::evaluator(derived()).coeff(0,0); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from ‘double stan::mcmc::dense_e_metric::T(stan::mcmc::dense_e_point&) [with Model = model_gMAP_namespace::model_gMAP; BaseRNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >]’ 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:21:0: required from here 21 | double T(dense_e_point& z) { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:148:7: required from ‘class Eigen::CwiseBinaryOpImpl, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, const Eigen::Block, -1, 1, true>, Eigen::Dense>’ 148 | class CwiseBinaryOpImpl | ^~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CwiseBinaryOp.h:77:7: required from ‘class Eigen::CwiseBinaryOp, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >’ 77 | class CwiseBinaryOp : | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:56: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>; U = Eigen::Block, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: [ skipping 16 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:251:64: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix]’ 251 | dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:124:75: required from ‘Eigen::internal::product_evaluator, ProductTag, LhsShape, RhsShape>::product_evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; int ProductTag = 6; LhsShape = Eigen::DenseShape; RhsShape = Eigen::DenseShape; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Matrix; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 124 | generic_product_impl::evalTo(m_result, xpr.lhs(), xpr.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:35:90: required from ‘Eigen::internal::evaluator >::evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 35 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {} | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:137:22: required from ‘Eigen::internal::dense_product_base::operator const Scalar() const [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Option = 0; Scalar = double]’ 137 | return internal::evaluator(derived()).coeff(0,0); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from ‘double stan::mcmc::dense_e_metric::T(stan::mcmc::dense_e_point&) [with Model = model_gMAP_namespace::model_gMAP; BaseRNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >]’ 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:21:0: required from here 21 | double T(dense_e_point& z) { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase > >, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:481:7: required from ‘class Eigen::DenseCoeffsBase > >, 2>’ 481 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase > > >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase > > >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:118:37: required from ‘class Eigen::TransposeImpl >, Eigen::Dense>’ 118 | template class TransposeImpl | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Transpose.h:52:37: required from ‘class Eigen::Transpose > >’ 52 | template class Transpose | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/util/BlasUtil.h:506:13: [ skipping 18 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:251:64: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix]’ 251 | dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:124:75: required from ‘Eigen::internal::product_evaluator, ProductTag, LhsShape, RhsShape>::product_evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; int ProductTag = 6; LhsShape = Eigen::DenseShape; RhsShape = Eigen::DenseShape; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Matrix; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 124 | generic_product_impl::evalTo(m_result, xpr.lhs(), xpr.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:35:90: required from ‘Eigen::internal::evaluator >::evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 35 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {} | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:137:22: required from ‘Eigen::internal::dense_product_base::operator const Scalar() const [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Option = 0; Scalar = double]’ 137 | return internal::evaluator(derived()).coeff(0,0); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from ‘double stan::mcmc::dense_e_metric::T(stan::mcmc::dense_e_point&) [with Model = model_gMAP_namespace::model_gMAP; BaseRNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >]’ 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:21:0: required from here 21 | double T(dense_e_point& z) { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘class Eigen::DenseCoeffsBase >, -1, 1, true>, 0>’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:302:7: required from ‘class Eigen::DenseCoeffsBase >, -1, 1, true>, 1>’ 302 | class DenseCoeffsBase : public DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:555:7: required from ‘class Eigen::DenseCoeffsBase >, -1, 1, true>, 3>’ 555 | class DenseCoeffsBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseBase.h:41:34: required from ‘class Eigen::DenseBase >, -1, 1, true> >’ 41 | template class DenseBase | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MatrixBase.h:48:34: required from ‘class Eigen::MatrixBase >, -1, 1, true> >’ 48 | template class MatrixBase | ^~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:37:34: required from ‘class Eigen::MapBase >, -1, 1, true>, 0>’ 37 | template class MapBase | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/MapBase.h:223:34: [ skipping 21 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:251:64: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix]’ 251 | dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:124:75: required from ‘Eigen::internal::product_evaluator, ProductTag, LhsShape, RhsShape>::product_evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; int ProductTag = 6; LhsShape = Eigen::DenseShape; RhsShape = Eigen::DenseShape; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Matrix; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 124 | generic_product_impl::evalTo(m_result, xpr.lhs(), xpr.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:35:90: required from ‘Eigen::internal::evaluator >::evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 35 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {} | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:137:22: required from ‘Eigen::internal::dense_product_base::operator const Scalar() const [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Option = 0; Scalar = double]’ 137 | return internal::evaluator(derived()).coeff(0,0); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from ‘double stan::mcmc::dense_e_metric::T(stan::mcmc::dense_e_point&) [with Model = model_gMAP_namespace::model_gMAP; BaseRNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >]’ 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:21:0: required from here 21 | double T(dense_e_point& z) { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:56:30: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 56 | >::type PacketReturnType; | ^~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h: In instantiation of ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:311:41: required from ‘struct Eigen::internal::unary_evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, Eigen::internal::IndexBased, double>’ 311 | CoeffReadCost = evaluator::CoeffReadCost, | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:90:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> > >’ 90 | struct evaluator : public unary_evaluator | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:100:8: required from ‘struct Eigen::internal::evaluator, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> > >’ 100 | struct evaluator | ^~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:739:41: required from ‘struct Eigen::internal::binary_evaluator, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >, Eigen::internal::IndexBased, Eigen::internal::IndexBased, double, double>’ 739 | CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), | ^~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:722:8: [ skipping 21 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:251:64: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix]’ 251 | dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:124:75: required from ‘Eigen::internal::product_evaluator, ProductTag, LhsShape, RhsShape>::product_evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; int ProductTag = 6; LhsShape = Eigen::DenseShape; RhsShape = Eigen::DenseShape; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Matrix; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 124 | generic_product_impl::evalTo(m_result, xpr.lhs(), xpr.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:35:90: required from ‘Eigen::internal::evaluator >::evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 35 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {} | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:137:22: required from ‘Eigen::internal::dense_product_base::operator const Scalar() const [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Option = 0; Scalar = double]’ 137 | return internal::evaluator(derived()).coeff(0,0); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from ‘double stan::mcmc::dense_e_metric::T(stan::mcmc::dense_e_point&) [with Model = model_gMAP_namespace::model_gMAP; BaseRNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >]’ 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:21:0: required from here 21 | double T(dense_e_point& z) { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/CoreEvaluators.h:1071:54: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 1071 | PacketAlignment = unpacket_traits::alignment, | ^~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h: In instantiation of ‘Eigen::Index Eigen::internal::first_default_aligned(const Eigen::DenseBase&) [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; Eigen::Index = long int]’: /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:243:63: required from ‘static Eigen::internal::redux_impl::Scalar Eigen::internal::redux_impl::run(const Evaluator&, const Func&, const XprType&) [with XprType = Eigen::CwiseBinaryOp, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; Func = Eigen::internal::scalar_sum_op; Evaluator = Eigen::internal::redux_evaluator, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> > >; Scalar = double]’ 243 | const Index alignedStart = internal::first_default_aligned(xpr); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:418:56: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::redux(const Func&) const [with BinaryOp = Eigen::internal::scalar_sum_op; Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 418 | return internal::redux_impl::run(thisEval, func, derived()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Redux.h:463:25: required from ‘typename Eigen::internal::traits::Scalar Eigen::DenseBase::sum() const [with Derived = Eigen::CwiseBinaryOp, const Eigen::Transpose, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true> >, const Eigen::Block, -1, 1, true> >; typename Eigen::internal::traits::Scalar = double]’ 463 | return derived().redux(Eigen::internal::scalar_sum_op()); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:50:63: required from ‘static Eigen::internal::dot_nocheck::ResScalar Eigen::internal::dot_nocheck::run(const Eigen::MatrixBase&, const Eigen::MatrixBase&) [with T = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>; U = Eigen::Block, -1, 1, true>; ResScalar = double]’ 50 | return a.transpose().template binaryExpr(b).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Dot.h:84:58: required from ‘typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType Eigen::MatrixBase::dot(const Eigen::MatrixBase&) const [with OtherDerived = Eigen::Block, -1, 1, true>; Derived = Eigen::Block, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, 1, -1, true>; typename Eigen::ScalarBinaryOpTraits::Scalar, typename Eigen::internal::traits::Scalar>::ReturnType = double; typename Eigen::internal::traits::Scalar = double; typename Eigen::internal::traits::Scalar = double]’ 84 | return internal::dot_nocheck::run(*this, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:380:62: [ skipping 15 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:251:64: required from ‘static void Eigen::internal::generic_product_impl::evalTo(Dst&, const Lhs&, const Rhs&) [with Dst = Eigen::Matrix; Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix]’ 251 | dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:124:75: required from ‘Eigen::internal::product_evaluator, ProductTag, LhsShape, RhsShape>::product_evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; int ProductTag = 6; LhsShape = Eigen::DenseShape; RhsShape = Eigen::DenseShape; typename Eigen::internal::traits::Lhs>::Scalar = double; typename Eigen::Product::Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; typename Eigen::internal::traits::Rhs>::Scalar = double; typename Eigen::Product::Rhs = Eigen::Matrix; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 124 | generic_product_impl::evalTo(m_result, xpr.lhs(), xpr.rhs()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/ProductEvaluators.h:35:90: required from ‘Eigen::internal::evaluator >::evaluator(const XprType&) [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Options = 0; XprType = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>, Eigen::Matrix, 0>]’ 35 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {} | ^ /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/Product.h:137:22: required from ‘Eigen::internal::dense_product_base::operator const Scalar() const [with Lhs = Eigen::Product, const Eigen::CwiseNullaryOp, const Eigen::Matrix >, const Eigen::Transpose > >, Eigen::Matrix, 0>; Rhs = Eigen::Matrix; int Option = 0; Scalar = double]’ 137 | return internal::evaluator(derived()).coeff(0,0); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:22:0: required from ‘double stan::mcmc::dense_e_metric::T(stan::mcmc::dense_e_point&) [with Model = model_gMAP_namespace::model_gMAP; BaseRNG = boost::random::additive_combine_engine, boost::random::linear_congruential_engine >]’ 22 | return 0.5 * z.p.transpose() * z.inv_e_metric_ * z.p; /usr/local/lib/R/library/StanHeaders/include/src/stan/mcmc/hmc/hamiltonians/dense_e_metric.hpp:21:0: required from here 21 | double T(dense_e_point& z) { /usr/local/lib/R/library/RcppEigen/include/Eigen/src/Core/DenseCoeffsBase.h:654:74: warning: ignoring attributes on template argument ‘Eigen::internal::packet_traits::type’ {aka ‘__m128d’} [-Wignored-attributes] 654 | return internal::first_aligned::alignment),Derived>(m); | ^~~~~~~~~ g++ -std=gnu++17 -shared -L/usr/lib64/R/lib -Wl,-z,relro -Wl,--as-needed -Wl,-z,pack-relative-relocs -Wl,-z,now -specs=/usr/lib/rpm/redhat/redhat-hardened-ld -specs=/usr/lib/rpm/redhat/redhat-annobin-cc1 -Wl,--build-id=sha1 -o RBesT.so RcppExports.o stanExports_gMAP.o -L/usr/lib64 -Wl,-rpath,/usr/lib64 -ltbb -ltbbmalloc -L/usr/local/lib/R/library/RcppParallel/lib/ -Wl,-rpath,/usr/local/lib/R/library/RcppParallel/lib/ -ltbb -ltbbmalloc -L/usr/lib64/R/lib -lR installing to /builddir/build/BUILDROOT/R-CRAN-RBesT-1.8.0-1.fc40.copr8491729.x86_64/usr/local/lib/R/library/00LOCK-RBesT/00new/RBesT/libs ** R ** data *** moving datasets to lazyload DB ** demo ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices converting help for package ‘RBesT’ finding HTML links ... done AS html BinaryExactCI html Curry html RBesT-package html SimSum html automixfit html chains2sample html colVars html colitis html crohn html dBetaBinomial html decision1S html decision1S_boundary html decision2S html decision2S_boundary html dlink-set html ess html fill html forest_plot html gMAP html integrate_density_log html knn html likelihood html lodds html logLik.EM html log_inv_logit html mix html mixbeta html mixcombine html mixdiff html mixdist3 html mixfit html mixgamma html mixlink html mixmvnorm html mixnorm html mixplot html mixstanvar html oc1S html oc2S html plot.EM html plot.gMAP html pos1S html pos2S html postmix html preddist html predict.gMAP html robustify html support html transplant html uniroot_int html ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** checking absolute paths in shared objects and dynamic libraries ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (RBesT) + test -d RBesT/src + cd RBesT/src + rm -f RcppExports.o stanExports_gMAP.o RBesT.so + rm -f /builddir/build/BUILDROOT/R-CRAN-RBesT-1.8.0-1.fc40.copr8491729.x86_64/usr/local/lib/R/library/R.css + find /builddir/build/BUILDROOT/R-CRAN-RBesT-1.8.0-1.fc40.copr8491729.x86_64/usr/local/lib/R/library -type f -exec sed -i s@/builddir/build/BUILDROOT/R-CRAN-RBesT-1.8.0-1.fc40.copr8491729.x86_64@@g '{}' ';' + /usr/bin/find-debuginfo -j2 --strict-build-id -m -i --build-id-seed 1.8.0-1.fc40.copr8491729 --unique-debug-suffix -1.8.0-1.fc40.copr8491729.x86_64 --unique-debug-src-base R-CRAN-RBesT-1.8.0-1.fc40.copr8491729.x86_64 --run-dwz --dwz-low-mem-die-limit 10000000 --dwz-max-die-limit 110000000 -S debugsourcefiles.list /builddir/build/BUILD/RBesT find-debuginfo: starting Extracting debug info from 1 files DWARF-compressing 1 files sepdebugcrcfix: Updated 1 CRC32s, 0 CRC32s did match. Creating .debug symlinks for symlinks to ELF files Copying sources found by 'debugedit -l' to /usr/src/debug/R-CRAN-RBesT-1.8.0-1.fc40.copr8491729.x86_64 162 blocks find-debuginfo: done + /usr/lib/rpm/check-buildroot + /usr/lib/rpm/redhat/brp-ldconfig + /usr/lib/rpm/brp-compress + /usr/lib/rpm/redhat/brp-strip-lto /usr/bin/strip + /usr/lib/rpm/brp-strip-static-archive /usr/bin/strip + /usr/lib/rpm/redhat/brp-mangle-shebangs mangling shebang in /usr/local/lib/R/library/RBesT/sbc/make_reference_rankhist.R from /usr/bin/env Rscript to #!/usr/bin/Rscript + /usr/lib/rpm/brp-remove-la-files + env /usr/lib/rpm/redhat/brp-python-bytecompile '' 1 0 -j2 + /usr/lib/rpm/redhat/brp-python-hardlink Processing files: R-CRAN-RBesT-1.8.0-1.fc40.copr8491729.x86_64 Provides: R-CRAN-RBesT = 1.8.0-1.fc40.copr8491729 R-CRAN-RBesT(x86-64) = 1.8.0-1.fc40.copr8491729 Requires(rpmlib): rpmlib(CompressedFileNames) <= 3.0.4-1 rpmlib(FileDigests) <= 4.6.0-1 rpmlib(PayloadFilesHavePrefix) <= 4.0-1 Requires: /usr/bin/Rscript ld-linux-x86-64.so.2()(64bit) ld-linux-x86-64.so.2(GLIBC_2.3)(64bit) libR.so()(64bit) libc.so.6()(64bit) libc.so.6(GLIBC_2.11)(64bit) libc.so.6(GLIBC_2.14)(64bit) libc.so.6(GLIBC_2.2.5)(64bit) libc.so.6(GLIBC_2.3.4)(64bit) libc.so.6(GLIBC_2.38)(64bit) libc.so.6(GLIBC_2.4)(64bit) libc.so.6(GLIBC_ABI_DT_RELR)(64bit) libgcc_s.so.1()(64bit) libgcc_s.so.1(GCC_3.0)(64bit) libgcc_s.so.1(GCC_3.3.1)(64bit) libm.so.6()(64bit) libm.so.6(GLIBC_2.2.5)(64bit) libm.so.6(GLIBC_2.29)(64bit) libstdc++.so.6()(64bit) libstdc++.so.6(CXXABI_1.3)(64bit) libstdc++.so.6(CXXABI_1.3.15)(64bit) libstdc++.so.6(CXXABI_1.3.5)(64bit) libstdc++.so.6(CXXABI_1.3.9)(64bit) libstdc++.so.6(GLIBCXX_3.4)(64bit) libstdc++.so.6(GLIBCXX_3.4.11)(64bit) libstdc++.so.6(GLIBCXX_3.4.15)(64bit) libstdc++.so.6(GLIBCXX_3.4.18)(64bit) libstdc++.so.6(GLIBCXX_3.4.19)(64bit) libstdc++.so.6(GLIBCXX_3.4.20)(64bit) libstdc++.so.6(GLIBCXX_3.4.21)(64bit) libstdc++.so.6(GLIBCXX_3.4.26)(64bit) libstdc++.so.6(GLIBCXX_3.4.29)(64bit) libstdc++.so.6(GLIBCXX_3.4.30)(64bit) libstdc++.so.6(GLIBCXX_3.4.32)(64bit) libstdc++.so.6(GLIBCXX_3.4.9)(64bit) libtbb.so.12()(64bit) rtld(GNU_HASH) Recommends: pandoc Processing files: R-CRAN-RBesT-debugsource-1.8.0-1.fc40.copr8491729.x86_64 Provides: R-CRAN-RBesT-debugsource = 1.8.0-1.fc40.copr8491729 R-CRAN-RBesT-debugsource(x86-64) = 1.8.0-1.fc40.copr8491729 Requires(rpmlib): rpmlib(CompressedFileNames) <= 3.0.4-1 rpmlib(FileDigests) <= 4.6.0-1 rpmlib(PayloadFilesHavePrefix) <= 4.0-1 Processing files: R-CRAN-RBesT-debuginfo-1.8.0-1.fc40.copr8491729.x86_64 Provides: R-CRAN-RBesT-debuginfo = 1.8.0-1.fc40.copr8491729 R-CRAN-RBesT-debuginfo(x86-64) = 1.8.0-1.fc40.copr8491729 debuginfo(build-id) = a4ff578f30408b4b286a6ab32f21ef05d4947f85 Requires(rpmlib): rpmlib(CompressedFileNames) <= 3.0.4-1 rpmlib(FileDigests) <= 4.6.0-1 rpmlib(PayloadFilesHavePrefix) <= 4.0-1 Recommends: R-CRAN-RBesT-debugsource(x86-64) = 1.8.0-1.fc40.copr8491729 Checking for unpackaged file(s): /usr/lib/rpm/check-files /builddir/build/BUILDROOT/R-CRAN-RBesT-1.8.0-1.fc40.copr8491729.x86_64 Wrote: /builddir/build/RPMS/R-CRAN-RBesT-1.8.0-1.fc40.copr8491729.x86_64.rpm Wrote: /builddir/build/RPMS/R-CRAN-RBesT-debugsource-1.8.0-1.fc40.copr8491729.x86_64.rpm Wrote: /builddir/build/RPMS/R-CRAN-RBesT-debuginfo-1.8.0-1.fc40.copr8491729.x86_64.rpm Executing(%clean): /bin/sh -e /var/tmp/rpm-tmp.UVuiVz + umask 022 + cd /builddir/build/BUILD + cd RBesT + /usr/bin/rm -rf /builddir/build/BUILDROOT/R-CRAN-RBesT-1.8.0-1.fc40.copr8491729.x86_64 + RPM_EC=0 ++ jobs -p + exit 0 Executing(rmbuild): /bin/sh -e /var/tmp/rpm-tmp.9IamRt + umask 022 + cd /builddir/build/BUILD + rm -rf /builddir/build/BUILD/RBesT-SPECPARTS + rm -rf RBesT RBesT.gemspec + RPM_EC=0 ++ jobs -p + exit 0 RPM build warnings: source_date_epoch_from_changelog set but %changelog is missing Finish: rpmbuild R-CRAN-RBesT-1.8.0-1.fc40.copr8491729.src.rpm Finish: build phase for R-CRAN-RBesT-1.8.0-1.fc40.copr8491729.src.rpm INFO: chroot_scan: 1 files copied to /var/lib/copr-rpmbuild/results/chroot_scan INFO: /var/lib/mock/fedora-40-x86_64-1736389900.755663/root/var/log/dnf5.log INFO: chroot_scan: creating tarball /var/lib/copr-rpmbuild/results/chroot_scan.tar.gz /bin/tar: Removing leading `/' from member names INFO: Done(/var/lib/copr-rpmbuild/results/R-CRAN-RBesT-1.8.0-1.fc40.copr8491729.src.rpm) Config(child) 4 minutes 6 seconds INFO: Results and/or logs in: /var/lib/copr-rpmbuild/results INFO: Cleaning up build root ('cleanup_on_success=True') Start: clean chroot INFO: unmounting tmpfs. Finish: clean chroot Finish: run Running RPMResults tool Package info: { "packages": [ { "name": "R-CRAN-RBesT", "epoch": null, "version": "1.8.0", "release": "1.fc40.copr8491729", "arch": "src" }, { "name": "R-CRAN-RBesT-debugsource", "epoch": null, "version": "1.8.0", "release": "1.fc40.copr8491729", "arch": "x86_64" }, { "name": "R-CRAN-RBesT-debuginfo", "epoch": null, "version": "1.8.0", "release": "1.fc40.copr8491729", "arch": "x86_64" }, { "name": "R-CRAN-RBesT", "epoch": null, "version": "1.8.0", "release": "1.fc40.copr8491729", "arch": "x86_64" } ] } RPMResults finished