bootstrapfun {GaussianHMM1d} | R Documentation |
Function to perform parametric bootstrap
Description
This function simulates the data under the null hypothesis of a Gaussian HMM and compute the Cramér-von Mises test statistic.
Usage
bootstrapfun(mu, sigma, Q, max_iter, prec, n)
Arguments
mu |
vector of means for each regime (r x 1); |
sigma |
vector of standard deviations for each regime (r x 1); |
Q |
transition probality matrix (r x r); |
max_iter |
maximum number of iterations of the EM algorithm; suggestion 10 000; |
prec |
precision (stopping criteria); suggestion 0.0001; |
n |
length of the time series. |
Value
f |
values of the density function at time n+k |
w |
weights of the mixture |
Author(s)
Bouchra R Nasri and Bruno N Rémillard, January 31, 2019
References
Chapter 10.2 of B. Rémillard (2013). Statistical Methods for Financial Engineering, Chapman and Hall/CRC Financial Mathematics Series, Taylor & Francis.
Examples
mu <- c(-0.3 ,0.7) ; sigma <- c(0.15,0.05); Q <- matrix(c(0.8, 0.3, 0.2, 0.7),2,2) ;
data <- Sim.HMM.Gaussian.1d(mu,sigma,Q,eta0=1,100)$x
out <- bootstrapfun(mu,sigma,Q,max_iter=10000,prec=0.0001,n=100)
[Package GaussianHMM1d version 1.1.1 Index]