%global __brp_check_rpaths %{nil} %global packname semiArtificial %global packver 2.4.1 %global rlibdir /usr/local/lib/R/library Name: R-CRAN-%{packname} Version: 2.4.1 Release: 1%{?dist}%{?buildtag} Summary: Generator of Semi-Artificial Data License: GPL-3 URL: https://cran.r-project.org/package=%{packname} Source0: %{url}&version=%{packver}#/%{packname}_%{packver}.tar.gz BuildRequires: R-devel Requires: R-core BuildArch: noarch BuildRequires: R-CRAN-CORElearn >= 1.50.3 BuildRequires: R-CRAN-RSNNS BuildRequires: R-CRAN-MASS BuildRequires: R-CRAN-nnet BuildRequires: R-CRAN-cluster BuildRequires: R-CRAN-fpc BuildRequires: R-stats BuildRequires: R-CRAN-timeDate BuildRequires: R-CRAN-robustbase BuildRequires: R-CRAN-ks BuildRequires: R-CRAN-logspline BuildRequires: R-methods BuildRequires: R-CRAN-mcclust BuildRequires: R-CRAN-flexclust BuildRequires: R-CRAN-StatMatch Requires: R-CRAN-CORElearn >= 1.50.3 Requires: R-CRAN-RSNNS Requires: R-CRAN-MASS Requires: R-CRAN-nnet Requires: R-CRAN-cluster Requires: R-CRAN-fpc Requires: R-stats Requires: R-CRAN-timeDate Requires: R-CRAN-robustbase Requires: R-CRAN-ks Requires: R-CRAN-logspline Requires: R-methods Requires: R-CRAN-mcclust Requires: R-CRAN-flexclust Requires: R-CRAN-StatMatch %description Contains methods to generate and evaluate semi-artificial data sets. Based on a given data set different methods learn data properties using machine learning algorithms and generate new data with the same properties. The package currently includes the following data generators: i) a RBF network based generator using rbfDDA() from package 'RSNNS', ii) a Random Forest based generator for both classification and regression problems iii) a density forest based generator for unsupervised data Data evaluation support tools include: a) single attribute based statistical evaluation: mean, median, standard deviation, skewness, kurtosis, medcouple, L/RMC, KS test, Hellinger distance b) evaluation based on clustering using Adjusted Rand Index (ARI) and FM c) evaluation based on classification performance with various learning models, e.g., random forests. %prep %setup -q -c -n %{packname} # fix end of executable files find -type f -executable -exec grep -Iq . {} \; -exec sed -i -e '$a\' {} \; # prevent binary stripping [ -d %{packname}/src ] && find %{packname}/src -type f -exec \ sed -i 's@/usr/bin/strip@/usr/bin/true@g' {} \; || true [ -d %{packname}/src ] && find %{packname}/src/Make* -type f -exec \ sed -i 's@-g0@@g' {} \; || true # don't allow local prefix in executable scripts find -type f -executable -exec sed -Ei 's@#!( )*/usr/local/bin@#!/usr/bin@g' {} \; %build %install mkdir -p %{buildroot}%{rlibdir} %{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) rm -f %{buildroot}%{rlibdir}/R.css # remove buildroot from installed files find %{buildroot}%{rlibdir} -type f -exec sed -i "s@%{buildroot}@@g" {} \; %files %{rlibdir}/%{packname}