%global __brp_check_rpaths %{nil} %global packname oddstream %global packver 0.5.0 %global rlibdir /usr/local/lib/R/library Name: R-CRAN-%{packname} Version: 0.5.0 Release: 3%{?dist}%{?buildtag} Summary: Outlier Detection in Data Streams License: GPL-3 URL: https://cran.r-project.org/package=%{packname} Source0: %{url}&version=%{packver}#/%{packname}_%{packver}.tar.gz BuildRequires: R-devel >= 3.4.0 Requires: R-core >= 3.4.0 BuildArch: noarch BuildRequires: R-CRAN-pcaPP BuildRequires: R-stats BuildRequires: R-CRAN-ggplot2 BuildRequires: R-CRAN-ks BuildRequires: R-MASS BuildRequires: R-CRAN-RcppRoll BuildRequires: R-mgcv BuildRequires: R-CRAN-moments BuildRequires: R-CRAN-RColorBrewer BuildRequires: R-CRAN-mvtsplot BuildRequires: R-CRAN-tibble BuildRequires: R-CRAN-reshape BuildRequires: R-CRAN-dplyr BuildRequires: R-graphics BuildRequires: R-CRAN-tidyr BuildRequires: R-CRAN-kernlab BuildRequires: R-CRAN-magrittr Requires: R-CRAN-pcaPP Requires: R-stats Requires: R-CRAN-ggplot2 Requires: R-CRAN-ks Requires: R-MASS Requires: R-CRAN-RcppRoll Requires: R-mgcv Requires: R-CRAN-moments Requires: R-CRAN-RColorBrewer Requires: R-CRAN-mvtsplot Requires: R-CRAN-tibble Requires: R-CRAN-reshape Requires: R-CRAN-dplyr Requires: R-graphics Requires: R-CRAN-tidyr Requires: R-CRAN-kernlab Requires: R-CRAN-magrittr %description We proposes a framework that provides real time support for early detection of anomalous series within a large collection of streaming time series data. By definition, anomalies are rare in comparison to a system's typical behaviour. We define an anomaly as an observation that is very unlikely given the forecast distribution. The algorithm first forecasts a boundary for the system's typical behaviour using a representative sample of the typical behaviour of the system. An approach based on extreme value theory is used for this boundary prediction process. Then a sliding window is used to test for anomalous series within the newly arrived collection of series. Feature based representation of time series is used as the input to the model. To cope with concept drift, the forecast boundary for the system's typical behaviour is updated periodically. More details regarding the algorithm can be found in Talagala, P. D., Hyndman, R. J., Smith-Miles, K., et al. (2019) . %prep %setup -q -c -n %{packname} %build %install mkdir -p %{buildroot}%{rlibdir} %{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) rm -f %{buildroot}%{rlibdir}/R.css %files %{rlibdir}/%{packname}