%global __brp_check_rpaths %{nil} %global packname nonet %global packver 0.4.0 %global rlibdir /usr/local/lib/R/library Name: R-CRAN-%{packname} Version: 0.4.0 Release: 3%{?dist}%{?buildtag} Summary: Weighted Average Ensemble without Training Labels License: MIT + file LICENSE URL: https://cran.r-project.org/package=%{packname} Source0: %{url}&version=%{packver}#/%{packname}_%{packver}.tar.gz BuildRequires: R-devel >= 3.5.0 Requires: R-core >= 3.5.0 BuildArch: noarch BuildRequires: R-CRAN-caret >= 6.0.78 BuildRequires: R-CRAN-pROC >= 1.13.0 BuildRequires: R-CRAN-rlist >= 0.4.6.1 BuildRequires: R-CRAN-rlang >= 0.2.1 BuildRequires: R-CRAN-dplyr BuildRequires: R-CRAN-randomForest BuildRequires: R-CRAN-ggplot2 BuildRequires: R-CRAN-glmnet BuildRequires: R-CRAN-tidyverse BuildRequires: R-CRAN-e1071 BuildRequires: R-CRAN-purrr Requires: R-CRAN-caret >= 6.0.78 Requires: R-CRAN-pROC >= 1.13.0 Requires: R-CRAN-rlist >= 0.4.6.1 Requires: R-CRAN-rlang >= 0.2.1 Requires: R-CRAN-dplyr Requires: R-CRAN-randomForest Requires: R-CRAN-ggplot2 Requires: R-CRAN-glmnet Requires: R-CRAN-tidyverse Requires: R-CRAN-e1071 Requires: R-CRAN-purrr %description It provides ensemble capabilities to supervised and unsupervised learning models predictions without using training labels. It decides the relative weights of the different models predictions by using best models predictions as response variable and rest of the mo. User can decide the best model, therefore, It provides freedom to user to ensemble models based on their design solutions. %prep %setup -q -c -n %{packname} %build %install mkdir -p %{buildroot}%{rlibdir} %{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) rm -f %{buildroot}%{rlibdir}/R.css %files %{rlibdir}/%{packname}