%global __brp_check_rpaths %{nil} %global packname MetabolicSurv %global packver 1.1.2 %global rlibdir /usr/local/lib/R/library Name: R-CRAN-%{packname} Version: 1.1.2 Release: 1%{?dist}%{?buildtag} Summary: A Biomarker Validation Approach for Classification and Predicting Survival Using Metabolomics Signature License: GPL-3 URL: https://cran.r-project.org/package=%{packname} Source0: %{url}&version=%{packver}#/%{packname}_%{packver}.tar.gz BuildRequires: R-devel >= 4.1.0 Requires: R-core >= 4.1.0 BuildArch: noarch BuildRequires: R-CRAN-superpc BuildRequires: R-CRAN-glmnet BuildRequires: R-CRAN-matrixStats BuildRequires: R-CRAN-survminer BuildRequires: R-CRAN-survival BuildRequires: R-CRAN-rms BuildRequires: R-CRAN-tidyr BuildRequires: R-CRAN-pls BuildRequires: R-CRAN-Rdpack BuildRequires: R-methods BuildRequires: R-stats BuildRequires: R-CRAN-ggplot2 BuildRequires: R-CRAN-dplyr Requires: R-CRAN-superpc Requires: R-CRAN-glmnet Requires: R-CRAN-matrixStats Requires: R-CRAN-survminer Requires: R-CRAN-survival Requires: R-CRAN-rms Requires: R-CRAN-tidyr Requires: R-CRAN-pls Requires: R-CRAN-Rdpack Requires: R-methods Requires: R-stats Requires: R-CRAN-ggplot2 Requires: R-CRAN-dplyr %description An approach to identifies metabolic biomarker signature for metabolic data by discovering predictive metabolite for predicting survival and classifying patients into risk groups. Classifiers are constructed as a linear combination of predictive/important metabolites, prognostic factors and treatment effects if necessary. Several methods were implemented to reduce the metabolomics matrix such as the principle component analysis of Wold Svante et al. (1987) <doi:10.1016/0169-7439(87)80084-9> , the LASSO method by Robert Tibshirani (1998) <doi:10.1002/(SICI)1097-0258(19970228)16:4%%3C385::AID-SIM380%%3E3.0.CO;2-3>, the elastic net approach by Hui Zou and Trevor Hastie (2005) <doi:10.1111/j.1467-9868.2005.00503.x>. Sensitivity analysis on the quantile used for the classification can also be accessed to check the deviation of the classification group based on the quantile specified. Large scale cross validation can be performed in order to investigate the mostly selected predictive metabolites and for internal validation. During the evaluation process, validation is accessed using the hazard ratios (HR) distribution of the test set and inference is mainly based on resampling and permutations technique. %prep %setup -q -c -n %{packname} # fix end of executable files find -type f -executable -exec grep -Iq . {} \; -exec sed -i -e '$a\' {} \; # prevent binary stripping [ -d %{packname}/src ] && find %{packname}/src -type f -exec \ sed -i 's@/usr/bin/strip@/usr/bin/true@g' {} \; || true # don't allow local prefix in executable scripts find -type f -executable -exec sed -Ei 's@#!( )*/usr/local/bin@#!/usr/bin@g' {} \; %build %install mkdir -p %{buildroot}%{rlibdir} %{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) rm -f %{buildroot}%{rlibdir}/R.css # remove buildroot from installed files find %{buildroot}%{rlibdir} -type f -exec sed -i "s@%{buildroot}@@g" {} \; %files %{rlibdir}/%{packname}