%global __brp_check_rpaths %{nil} %global __requires_exclude ^libmpi %global packname bakR %global packver 1.0.1 %global rlibdir /usr/local/lib/R/library Name: R-CRAN-%{packname} Version: 1.0.1 Release: 1%{?dist}%{?buildtag} Summary: Analyze and Compare Nucleotide Recoding RNA Sequencing Datasets License: MIT + file LICENSE URL: https://cran.r-project.org/package=%{packname} Source0: %{url}&version=%{packver}#/%{packname}_%{packver}.tar.gz BuildRequires: R-devel >= 3.5.0 Requires: R-core >= 3.5.0 BuildRequires: R-CRAN-RcppParallel >= 5.0.1 BuildRequires: R-CRAN-rstan >= 2.26.0 BuildRequires: R-CRAN-StanHeaders >= 2.26.0 BuildRequires: R-CRAN-rstantools >= 2.1.1 BuildRequires: R-CRAN-BH >= 1.66.0 BuildRequires: R-CRAN-RcppEigen >= 0.3.3.3.0 BuildRequires: R-CRAN-Rcpp >= 0.12.0 BuildRequires: R-CRAN-purrr BuildRequires: R-methods BuildRequires: R-CRAN-dplyr BuildRequires: R-CRAN-tidyr BuildRequires: R-stats BuildRequires: R-CRAN-magrittr BuildRequires: R-CRAN-Hmisc BuildRequires: R-CRAN-ggplot2 BuildRequires: R-CRAN-data.table BuildRequires: R-CRAN-rstantools Requires: R-CRAN-RcppParallel >= 5.0.1 Requires: R-CRAN-rstan >= 2.26.0 Requires: R-CRAN-rstantools >= 2.1.1 Requires: R-CRAN-Rcpp >= 0.12.0 Requires: R-CRAN-purrr Requires: R-methods Requires: R-CRAN-dplyr Requires: R-CRAN-tidyr Requires: R-stats Requires: R-CRAN-magrittr Requires: R-CRAN-Hmisc Requires: R-CRAN-ggplot2 Requires: R-CRAN-data.table Requires: R-CRAN-rstantools %description Several implementations of a novel Bayesian hierarchical statistical model of nucleotide recoding RNA-seq experiments (NR-seq; TimeLapse-seq, SLAM-seq, TUC-seq, etc.) for analyzing and comparing NR-seq datasets (see 'Vock and Simon' (2023) ). NR-seq is a powerful extension of RNA-seq that provides information about the kinetics of RNA metabolism (e.g., RNA degradation rate constants), which is notably lacking in standard RNA-seq data. The statistical model makes maximal use of these high-throughput datasets by sharing information across transcripts to significantly improve uncertainty quantification and increase statistical power. 'bakR' includes a maximally efficient implementation of this model for conservative initial investigations of datasets. 'bakR' also provides more highly powered implementations using the probabilistic programming language 'Stan' to sample from the full posterior distribution. 'bakR' performs multiple-test adjusted statistical inference with the output of these model implementations to help biologists separate signal from background. Methods to automatically visualize key results and detect batch effects are also provided. %prep %setup -q -c -n %{packname} # fix end of executable files find -type f -executable -exec grep -Iq . {} \; -exec sed -i -e '$a\' {} \; # prevent binary stripping [ -d %{packname}/src ] && find %{packname}/src -type f -exec \ sed -i 's@/usr/bin/strip@/usr/bin/true@g' {} \; || true [ -d %{packname}/src ] && find %{packname}/src/Make* -type f -exec \ sed -i 's@-g0@@g' {} \; || true # don't allow local prefix in executable scripts find -type f -executable -exec sed -Ei 's@#!( )*/usr/local/bin@#!/usr/bin@g' {} \; %build %install mkdir -p %{buildroot}%{rlibdir} %{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) rm -f %{buildroot}%{rlibdir}/R.css # remove buildroot from installed files find %{buildroot}%{rlibdir} -type f -exec sed -i "s@%{buildroot}@@g" {} \; %files %{rlibdir}/%{packname}