pPGaGEV {PGaGEV}R Documentation

The cumulative distribution function (CDF) of the power Garima-generalized extreme value distribution(PGaGEV).

Description

This function calculated the CDF of PGaGEV distribution.

Usage

pPGaGEV(x, mu, sigma, xi, a, b, c)

Arguments

x

vector of quantiles.There are three cases as follows: 1) if xi>0, x=[(mu-sigma)/xi,Inf].2) if xi=0, x=[-Inf,Inf].3) if xi<0, x=[-Inf,(mu-sigma)/xi].

mu

location parameter.mu=[-Inf,Inf].

sigma

scale parameter number 1. sigma>0.

xi

shape parameter number 1. xi=[-Inf,Inf].

a

scale parameter number 2. a>0.

b

scale parameter number 3. b>0.

c

shape parameter number 2. c=[-Inf,Inf].

Details

The CDF of PGaGEV distribution based on the research paper in references.

Value

the CDF of PGaGEV distribution.

References

Kittipong Klinjan, Tipat Sottiwan and Sirinapa Aryuyuen (2024). Extreme value analysis with new generalized extreme value distributions: a case study for risk analysis on pm2.5 and pm10 in pathum thani, thailand, Commun. Math. Biol. Neurosci. 2024, 2024:100.DOI:10.28919/cmbn/8833.

Examples

pPGaGEV(1.2,2,1,0.5,0.5,0.5,.5) #xi=0.5
pPGaGEV(1.2,2,1,0.5,0.5,0.5,.5) #xi=0
pPGaGEV(1.2,2,1,0.5,0.5,0.5,.5) #xi=-0.5
x=c(1.2,1.3,1.4)
pPGaGEV(x,2,1,0.5,0.5,0.5,0.5)  #xi=0.5

[Package PGaGEV version 0.1.0 Index]