PBSSMFixed {simStateSpace} | R Documentation |
Parametric Bootstrap for the State Space Model (Fixed Parameters)
Description
This function simulates data from
a state-space model
and fits the model using the dynr
package.
The process is repeated R
times.
It assumes that the parameters remain constant
across individuals and over time.
At the moment, the function only supports
type = 0
.
Usage
PBSSMFixed(
R,
path,
prefix,
n,
time,
delta_t = 0.1,
mu0,
sigma0_l,
alpha,
beta,
psi_l,
nu,
lambda,
theta_l,
type = 0,
x = NULL,
gamma = NULL,
kappa = NULL,
mu0_fixed = FALSE,
sigma0_fixed = FALSE,
alpha_level = 0.05,
optimization_flag = TRUE,
hessian_flag = FALSE,
verbose = FALSE,
weight_flag = FALSE,
debug_flag = FALSE,
perturb_flag = FALSE,
xtol_rel = 1e-07,
stopval = -9999,
ftol_rel = -1,
ftol_abs = -1,
maxeval = as.integer(-1),
maxtime = -1,
ncores = NULL,
seed = NULL
)
Arguments
R |
Positive integer. Number of bootstrap samples. |
path |
Path to a directory to store bootstrap samples and estimates. |
prefix |
Character string. Prefix used for the file names for the bootstrap samples and estimates. |
n |
Positive integer. Number of individuals. |
time |
Positive integer. Number of time points. |
delta_t |
Numeric.
Time interval.
The default value is |
mu0 |
Numeric vector.
Mean of initial latent variable values
( |
sigma0_l |
Numeric matrix.
Cholesky factorization ( |
alpha |
Numeric vector.
Vector of constant values for the dynamic model
( |
beta |
Numeric matrix.
Transition matrix relating the values of the latent variables
at the previous to the current time point
( |
psi_l |
Numeric matrix.
Cholesky factorization ( |
nu |
Numeric vector.
Vector of intercept values for the measurement model
( |
lambda |
Numeric matrix.
Factor loading matrix linking the latent variables
to the observed variables
( |
theta_l |
Numeric matrix.
Cholesky factorization ( |
type |
Integer. State space model type. See Details for more information. |
x |
List.
Each element of the list is a matrix of covariates
for each individual |
gamma |
Numeric matrix.
Matrix linking the covariates to the latent variables
at current time point
( |
kappa |
Numeric matrix.
Matrix linking the covariates to the observed variables
at current time point
( |
mu0_fixed |
Logical.
If |
sigma0_fixed |
Logical.
If |
alpha_level |
Numeric vector.
Significance level |
optimization_flag |
a flag (TRUE/FALSE) indicating whether optimization is to be done. |
hessian_flag |
a flag (TRUE/FALSE) indicating whether the Hessian matrix is to be calculated. |
verbose |
a flag (TRUE/FALSE) indicating whether more detailed intermediate output during the estimation process should be printed |
weight_flag |
a flag (TRUE/FALSE) indicating whether the negative log likelihood function should be weighted by the length of the time series for each individual |
debug_flag |
a flag (TRUE/FALSE) indicating whether users want additional dynr output that can be used for diagnostic purposes |
perturb_flag |
a flag (TRUE/FLASE) indicating whether to perturb the latent states during estimation. Only useful for ensemble forecasting. |
xtol_rel |
Stopping criteria option
for parameter optimization.
See |
stopval |
Stopping criteria option
for parameter optimization.
See |
ftol_rel |
Stopping criteria option
for parameter optimization.
See |
ftol_abs |
Stopping criteria option
for parameter optimization.
See |
maxeval |
Stopping criteria option
for parameter optimization.
See |
maxtime |
Stopping criteria option
for parameter optimization.
See |
ncores |
Positive integer.
Number of cores to use.
If |
seed |
Random seed. |
Details
Type 0
The measurement model is given by
\mathbf{y}_{i, t}
=
\boldsymbol{\nu}
+
\boldsymbol{\Lambda}
\boldsymbol{\eta}_{i, t}
+
\boldsymbol{\varepsilon}_{i, t},
\quad
\mathrm{with}
\quad
\boldsymbol{\varepsilon}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\boldsymbol{\Theta}
\right)
where
\mathbf{y}_{i, t}
,
\boldsymbol{\eta}_{i, t}
,
and
\boldsymbol{\varepsilon}_{i, t}
are random variables
and
\boldsymbol{\nu}
,
\boldsymbol{\Lambda}
,
and
\boldsymbol{\Theta}
are model parameters.
\mathbf{y}_{i, t}
represents a vector of observed random variables,
\boldsymbol{\eta}_{i, t}
a vector of latent random variables,
and
\boldsymbol{\varepsilon}_{i, t}
a vector of random measurement errors,
at time t
and individual i
.
\boldsymbol{\nu}
denotes a vector of intercepts,
\boldsymbol{\Lambda}
a matrix of factor loadings,
and
\boldsymbol{\Theta}
the covariance matrix of
\boldsymbol{\varepsilon}
.
An alternative representation of the measurement error is given by
\boldsymbol{\varepsilon}_{i, t}
=
\boldsymbol{\Theta}^{\frac{1}{2}}
\mathbf{z}_{i, t},
\quad
\mathrm{with}
\quad
\mathbf{z}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\mathbf{I}
\right)
where
\mathbf{z}_{i, t}
is a vector of
independent standard normal random variables and
\left( \boldsymbol{\Theta}^{\frac{1}{2}} \right)
\left( \boldsymbol{\Theta}^{\frac{1}{2}} \right)^{\prime}
=
\boldsymbol{\Theta} .
The dynamic structure is given by
\boldsymbol{\eta}_{i, t}
=
\boldsymbol{\alpha}
+
\boldsymbol{\beta}
\boldsymbol{\eta}_{i, t - 1}
+
\boldsymbol{\zeta}_{i, t},
\quad
\mathrm{with}
\quad
\boldsymbol{\zeta}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\boldsymbol{\Psi}
\right)
where
\boldsymbol{\eta}_{i, t}
,
\boldsymbol{\eta}_{i, t - 1}
,
and
\boldsymbol{\zeta}_{i, t}
are random variables,
and
\boldsymbol{\alpha}
,
\boldsymbol{\beta}
,
and
\boldsymbol{\Psi}
are model parameters.
Here,
\boldsymbol{\eta}_{i, t}
is a vector of latent variables
at time t
and individual i
,
\boldsymbol{\eta}_{i, t - 1}
represents a vector of latent variables
at time t - 1
and individual i
,
and
\boldsymbol{\zeta}_{i, t}
represents a vector of dynamic noise
at time t
and individual i
.
\boldsymbol{\alpha}
denotes a vector of intercepts,
\boldsymbol{\beta}
a matrix of autoregression
and cross regression coefficients,
and
\boldsymbol{\Psi}
the covariance matrix of
\boldsymbol{\zeta}_{i, t}
.
An alternative representation of the dynamic noise is given by
\boldsymbol{\zeta}_{i, t}
=
\boldsymbol{\Psi}^{\frac{1}{2}}
\mathbf{z}_{i, t},
\quad
\mathrm{with}
\quad
\mathbf{z}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\mathbf{I}
\right)
where
\left( \boldsymbol{\Psi}^{\frac{1}{2}} \right)
\left( \boldsymbol{\Psi}^{\frac{1}{2}} \right)^{\prime}
=
\boldsymbol{\Psi} .
Type 1
The measurement model is given by
\mathbf{y}_{i, t}
=
\boldsymbol{\nu}
+
\boldsymbol{\Lambda}
\boldsymbol{\eta}_{i, t}
+
\boldsymbol{\varepsilon}_{i, t},
\quad
\mathrm{with}
\quad
\boldsymbol{\varepsilon}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\boldsymbol{\Theta}
\right) .
The dynamic structure is given by
\boldsymbol{\eta}_{i, t}
=
\boldsymbol{\alpha}
+
\boldsymbol{\beta}
\boldsymbol{\eta}_{i, t - 1}
+
\boldsymbol{\Gamma}
\mathbf{x}_{i, t}
+
\boldsymbol{\zeta}_{i, t},
\quad
\mathrm{with}
\quad
\boldsymbol{\zeta}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\boldsymbol{\Psi}
\right)
where
\mathbf{x}_{i, t}
represents a vector of covariates
at time t
and individual i
,
and \boldsymbol{\Gamma}
the coefficient matrix
linking the covariates to the latent variables.
Type 2
The measurement model is given by
\mathbf{y}_{i, t}
=
\boldsymbol{\nu}
+
\boldsymbol{\Lambda}
\boldsymbol{\eta}_{i, t}
+
\boldsymbol{\kappa}
\mathbf{x}_{i, t}
+
\boldsymbol{\varepsilon}_{i, t},
\quad
\mathrm{with}
\quad
\boldsymbol{\varepsilon}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\boldsymbol{\Theta}
\right)
where
\boldsymbol{\kappa}
represents the coefficient matrix
linking the covariates to the observed variables.
The dynamic structure is given by
\boldsymbol{\eta}_{i, t}
=
\boldsymbol{\alpha}
+
\boldsymbol{\beta}
\boldsymbol{\eta}_{i, t - 1}
+
\boldsymbol{\Gamma}
\mathbf{x}_{i, t}
+
\boldsymbol{\zeta}_{i, t},
\quad
\mathrm{with}
\quad
\boldsymbol{\zeta}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\boldsymbol{\Psi}
\right) .
Value
Returns an object
of class statespacepb
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- thetahatstar
Sampling distribution of
\boldsymbol{\hat{\theta}}
.- vcov
Sampling variance-covariance matrix of
\boldsymbol{\hat{\theta}}
.- est
Vector of estimated
\boldsymbol{\hat{\theta}}
.- fun
Function used ("PBSSMFixed").
Author(s)
Ivan Jacob Agaloos Pesigan
References
Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. Structural Equation Modeling: A Multidisciplinary Journal, 17(2), 303–332. doi:10.1080/10705511003661553
See Also
Other Simulation of State Space Models Data Functions:
LinSDE2SSM()
,
PBSSMLinSDEFixed()
,
PBSSMOUFixed()
,
PBSSMVARFixed()
,
SimBetaN()
,
SimPhiN()
,
SimSSMFixed()
,
SimSSMIVary()
,
SimSSMLinGrowth()
,
SimSSMLinGrowthIVary()
,
SimSSMLinSDEFixed()
,
SimSSMLinSDEIVary()
,
SimSSMOUFixed()
,
SimSSMOUIVary()
,
SimSSMVARFixed()
,
SimSSMVARIVary()
,
TestPhi()
,
TestStability()
,
TestStationarity()
Examples
## Not run:
# prepare parameters
set.seed(42)
## number of individuals
n <- 5
## time points
time <- 50
## dynamic structure
p <- 3
mu0 <- rep(x = 0, times = p)
sigma0 <- 0.001 * diag(p)
sigma0_l <- t(chol(sigma0))
alpha <- rep(x = 0, times = p)
beta <- 0.50 * diag(p)
psi <- 0.001 * diag(p)
psi_l <- t(chol(psi))
## measurement model
k <- 3
nu <- rep(x = 0, times = k)
lambda <- diag(k)
theta <- 0.001 * diag(k)
theta_l <- t(chol(theta))
pb <- PBSSMFixed(
R = 1000L,
path = getwd(),
prefix = "ssm",
n = n,
time = time,
delta_t = delta_t,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,
psi_l = psi_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 0,
ncores = parallel::detectCores() - 1,
seed = 42
)
print(pb)
summary(pb)
confint(pb)
vcov(pb)
coef(pb)
print(pb, type = "bc") # bias-corrected
summary(pb, type = "bc")
confint(pb, type = "bc")
## End(Not run)