%global __brp_check_rpaths %{nil} %global __requires_exclude ^libmpi %global packname vacalibration %global packver 2.0 %global rlibdir /usr/local/lib/R/library Name: R-CRAN-%{packname} Version: 2.0 Release: 1%{?dist}%{?buildtag} Summary: Calibration of Computer-Coded Verbal Autopsy Algorithm License: GPL-2 URL: https://cran.r-project.org/package=%{packname} Source0: %{url}&version=%{packver}#/%{packname}_%{packver}.tar.gz BuildRequires: R-devel >= 3.5 Requires: R-core >= 3.5 BuildArch: noarch BuildRequires: R-CRAN-rstan BuildRequires: R-CRAN-ggplot2 BuildRequires: R-CRAN-loo BuildRequires: R-CRAN-patchwork BuildRequires: R-CRAN-reshape2 BuildRequires: R-CRAN-rstantools Requires: R-CRAN-rstan Requires: R-CRAN-ggplot2 Requires: R-CRAN-loo Requires: R-CRAN-patchwork Requires: R-CRAN-reshape2 Requires: R-CRAN-rstantools %description Calibrates cause-specific mortality fractions (CSMF) estimates generated by computer-coded verbal autopsy (CCVA) algorithms from WHO-standardized verbal autopsy (VA) survey data. It leverages data from the multi-country Child Health and Mortality Prevention Surveillance (CHAMPS) project , which determines gold standard causes of death via Minimally Invasive Tissue Sampling (MITS). By modeling the CHAMPS data using the misclassification matrix modeling framework proposed in Pramanik et al. (2025, ), the package includes an inventory of 48 uncertainty-quantified misclassification matrices for three CCVA algorithms (EAVA, InSilicoVA, InterVA), two age groups (neonates aged 0-27 days and children aged 1-59 months), and eight "countries" (seven countries in CHAMPS -- Bangladesh, Ethiopia, Kenya, Mali, Mozambique, Sierra Leone, South Africa -- and an estimate for countries not in CHAMPS). Given a VA-only data for an age group, CCVA algorithm, and country, the package uses the corresponding uncertainty-quantified misclassification matrix estimates as an informative prior, and utilizes the modular VA-calibration to produce calibrated CSMF estimates. It also supports ensemble calibration when VA-only data are provided for multiple algorithms. More generally, the package can be applied to calibrate predictions from a discrete classifier (or ensemble of classifiers) utilizing user-provided fixed or uncertainty-quantified misclassification matrices. This work is supported by the Bill and Melinda Gates Foundation Grant INV-034842. %prep %setup -q -c -n %{packname} # fix end of executable files find -type f -executable -exec grep -Iq . {} \; -exec sed -i -e '$a\' {} \; # prevent binary stripping [ -d %{packname}/src ] && find %{packname}/src -type f -exec \ sed -i 's@/usr/bin/strip@/usr/bin/true@g' {} \; || true [ -d %{packname}/src ] && find %{packname}/src/Make* -type f -exec \ sed -i 's@-g0@@g' {} \; || true # don't allow local prefix in executable scripts find -type f -executable -exec sed -Ei 's@#!( )*/usr/local/bin@#!/usr/bin@g' {} \; %build %install mkdir -p %{buildroot}%{rlibdir} %{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) rm -f %{buildroot}%{rlibdir}/R.css # remove buildroot from installed files find %{buildroot}%{rlibdir} -type f -exec sed -i "s@%{buildroot}@@g" {} \; %files %{rlibdir}/%{packname}