%global __brp_check_rpaths %{nil} %global __requires_exclude ^libmpi %global packname haldensify %global packver 0.2.8 %global rlibdir /usr/local/lib/R/library Name: R-CRAN-%{packname} Version: 0.2.8 Release: 1%{?dist}%{?buildtag} Summary: Highly Adaptive Lasso Conditional Density Estimation License: MIT + file LICENSE URL: https://cran.r-project.org/package=%{packname} Source0: %{url}&version=%{packver}#/%{packname}_%{packver}.tar.gz BuildRequires: R-devel >= 3.2.0 Requires: R-core >= 3.2.0 BuildArch: noarch BuildRequires: R-CRAN-origami >= 1.0.7 BuildRequires: R-CRAN-hal9001 >= 0.4.6 BuildRequires: R-stats BuildRequires: R-utils BuildRequires: R-CRAN-dplyr BuildRequires: R-CRAN-tibble BuildRequires: R-CRAN-ggplot2 BuildRequires: R-CRAN-data.table BuildRequires: R-CRAN-matrixStats BuildRequires: R-CRAN-future.apply BuildRequires: R-CRAN-assertthat BuildRequires: R-CRAN-stringr BuildRequires: R-CRAN-rlang BuildRequires: R-CRAN-scales BuildRequires: R-CRAN-Rdpack Requires: R-CRAN-origami >= 1.0.7 Requires: R-CRAN-hal9001 >= 0.4.6 Requires: R-stats Requires: R-utils Requires: R-CRAN-dplyr Requires: R-CRAN-tibble Requires: R-CRAN-ggplot2 Requires: R-CRAN-data.table Requires: R-CRAN-matrixStats Requires: R-CRAN-future.apply Requires: R-CRAN-assertthat Requires: R-CRAN-stringr Requires: R-CRAN-rlang Requires: R-CRAN-scales Requires: R-CRAN-Rdpack %description An algorithm for flexible conditional density estimation based on application of pooled hazard regression to an artificial repeated measures dataset constructed by discretizing the support of the outcome variable. To facilitate flexible estimation of the conditional density, the highly adaptive lasso, a non-parametric regression function shown to estimate cadlag (RCLL) functions at a suitably fast convergence rate, is used. The use of pooled hazards regression for conditional density estimation as implemented here was first described for by Díaz and van der Laan (2011) . Building on the conditional density estimation utilities, non-parametric inverse probability weighted (IPW) estimators of the causal effects of additive modified treatment policies are implemented, using conditional density estimation to estimate the generalized propensity score. Non-parametric IPW estimators based on this can be coupled with undersmoothing of the generalized propensity score estimator to attain the semi-parametric efficiency bound (per Hejazi, Díaz, and van der Laan ). %prep %setup -q -c -n %{packname} # fix end of executable files find -type f -executable -exec grep -Iq . {} \; -exec sed -i -e '$a\' {} \; # prevent binary stripping [ -d %{packname}/src ] && find %{packname}/src -type f -exec \ sed -i 's@/usr/bin/strip@/usr/bin/true@g' {} \; || true [ -d %{packname}/src ] && find %{packname}/src/Make* -type f -exec \ sed -i 's@-g0@@g' {} \; || true # don't allow local prefix in executable scripts find -type f -executable -exec sed -Ei 's@#!( )*/usr/local/bin@#!/usr/bin@g' {} \; %build %install mkdir -p %{buildroot}%{rlibdir} %{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) rm -f %{buildroot}%{rlibdir}/R.css # remove buildroot from installed files find %{buildroot}%{rlibdir} -type f -exec sed -i "s@%{buildroot}@@g" {} \; %files %{rlibdir}/%{packname}