analyze.p2 {gainML} | R Documentation |
Conducts period 2 analysis; uses the optimal set of variables obtained in the period 1 analysis to predict the power output of REF and CTR-b turbines in period 2.
analyze.p2(per1, per2, opt.cov)
per1 |
A dataframe containing the period 1 data. |
per2 |
A dataframe containing the period 2 data. |
opt.cov |
A character vector indicating the optimal set of variables (obtained from the period 1 analysis). |
The function returns a list of the following datasets.
pred.REF
A dataframe including the period 2 prediction for the REF turbine.
pred.CTR
A dataframe including the period 2 prediction for the CTR-b turbine.
H. Hwangbo, Y. Ding, and D. Cabezon, 'Machine Learning Based Analysis and Quantification of Potential Power Gain from Passive Device Installation,' arXiv:1906.05776 [stat.AP], Jun. 2019. https://arxiv.org/abs/1906.05776.
df.ref <- with(wtg, data.frame(time = time, turb.id = 1, wind.dir = D, power = y, air.dens = rho)) df.ctrb <- with(wtg, data.frame(time = time, turb.id = 2, wind.spd = V, power = y)) df.ctrn <- df.ctrb df.ctrn$turb.id <- 3 data <- arrange.data(df.ref, df.ctrb, df.ctrn, p1.beg = '2014-10-24', p1.end = '2014-10-25', p2.beg = '2014-10-25', p2.end = '2014-10-26', k.fold = 2) p1.res <- analyze.p1(data$train, data$test, ratedPW = 1000) p2.res <- analyze.p2(data$per1, data$per2, p1.res$opt.cov)