%global __brp_check_rpaths %{nil} %global __requires_exclude ^libmpi %global packname GUniFrac %global packver 1.8 %global rlibdir /usr/local/lib/R/library Name: R-CRAN-%{packname} Version: 1.8 Release: 1%{?dist}%{?buildtag} Summary: Generalized UniFrac Distances, Distance-Based Multivariate Methods and Feature-Based Univariate Methods for Microbiome Data Analysis License: GPL-3 URL: https://cran.r-project.org/package=%{packname} Source0: %{url}&version=%{packver}#/%{packname}_%{packver}.tar.gz BuildRequires: R-devel >= 3.5.0 Requires: R-core >= 3.5.0 BuildRequires: R-CRAN-Rcpp >= 0.12.13 BuildRequires: R-CRAN-vegan BuildRequires: R-CRAN-ggplot2 BuildRequires: R-CRAN-matrixStats BuildRequires: R-CRAN-Matrix BuildRequires: R-CRAN-ape BuildRequires: R-parallel BuildRequires: R-stats BuildRequires: R-utils BuildRequires: R-CRAN-statmod BuildRequires: R-CRAN-rmutil BuildRequires: R-CRAN-dirmult BuildRequires: R-CRAN-MASS BuildRequires: R-CRAN-ggrepel BuildRequires: R-CRAN-foreach BuildRequires: R-CRAN-modeest BuildRequires: R-CRAN-inline BuildRequires: R-methods Requires: R-CRAN-Rcpp >= 0.12.13 Requires: R-CRAN-vegan Requires: R-CRAN-ggplot2 Requires: R-CRAN-matrixStats Requires: R-CRAN-Matrix Requires: R-CRAN-ape Requires: R-parallel Requires: R-stats Requires: R-utils Requires: R-CRAN-statmod Requires: R-CRAN-rmutil Requires: R-CRAN-dirmult Requires: R-CRAN-MASS Requires: R-CRAN-ggrepel Requires: R-CRAN-foreach Requires: R-CRAN-modeest Requires: R-CRAN-inline Requires: R-methods %description A suite of methods for powerful and robust microbiome data analysis including data normalization, data simulation, community-level association testing and differential abundance analysis. It implements generalized UniFrac distances, Geometric Mean of Pairwise Ratios (GMPR) normalization, semiparametric data simulator, distance-based statistical methods, and feature-based statistical methods. The distance-based statistical methods include three extensions of PERMANOVA: (1) PERMANOVA using the Freedman-Lane permutation scheme, (2) PERMANOVA omnibus test using multiple matrices, and (3) analytical approach to approximating PERMANOVA p-value. Feature-based statistical methods include linear model-based methods for differential abundance analysis of zero-inflated high-dimensional compositional data. %prep %setup -q -c -n %{packname} # fix end of executable files find -type f -executable -exec grep -Iq . {} \; -exec sed -i -e '$a\' {} \; # prevent binary stripping [ -d %{packname}/src ] && find %{packname}/src -type f -exec \ sed -i 's@/usr/bin/strip@/usr/bin/true@g' {} \; || true [ -d %{packname}/src ] && find %{packname}/src/Make* -type f -exec \ sed -i 's@-g0@@g' {} \; || true # don't allow local prefix in executable scripts find -type f -executable -exec sed -Ei 's@#!( )*/usr/local/bin@#!/usr/bin@g' {} \; %build %install mkdir -p %{buildroot}%{rlibdir} %{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) rm -f %{buildroot}%{rlibdir}/R.css # remove buildroot from installed files find %{buildroot}%{rlibdir} -type f -exec sed -i "s@%{buildroot}@@g" {} \; %files %{rlibdir}/%{packname}