%global __brp_check_rpaths %{nil} %global packname binaryGP %global packver 0.2 %global rlibdir /usr/local/lib/R/library Name: R-CRAN-%{packname} Version: 0.2 Release: 3%{?dist}%{?buildtag} Summary: Fit and Predict a Gaussian Process Model with (Time-Series)Binary Response License: GPL-2 | GPL-3 URL: https://cran.r-project.org/package=%{packname} Source0: %{url}&version=%{packver}#/%{packname}_%{packver}.tar.gz BuildRequires: R-devel >= 2.14.1 Requires: R-core >= 2.14.1 BuildRequires: R-CRAN-nloptr >= 1.0.4 BuildRequires: R-CRAN-GPfit >= 1.0.0 BuildRequires: R-CRAN-logitnorm >= 0.8.29 BuildRequires: R-CRAN-Rcpp >= 0.12.0 BuildRequires: R-CRAN-lhs >= 0.10 BuildRequires: R-stats BuildRequires: R-graphics BuildRequires: R-utils BuildRequires: R-methods BuildRequires: R-CRAN-RcppArmadillo Requires: R-CRAN-nloptr >= 1.0.4 Requires: R-CRAN-GPfit >= 1.0.0 Requires: R-CRAN-logitnorm >= 0.8.29 Requires: R-CRAN-Rcpp >= 0.12.0 Requires: R-CRAN-lhs >= 0.10 Requires: R-stats Requires: R-graphics Requires: R-utils Requires: R-methods %description Allows the estimation and prediction for binary Gaussian process model. The mean function can be assumed to have time-series structure. The estimation methods for the unknown parameters are based on penalized quasi-likelihood/penalized quasi-partial likelihood and restricted maximum likelihood. The predicted probability and its confidence interval are computed by Metropolis-Hastings algorithm. More details can be seen in Sung et al (2017) . %prep %setup -q -c -n %{packname} %build %install mkdir -p %{buildroot}%{rlibdir} %{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) rm -f %{buildroot}%{rlibdir}/R.css %files %{rlibdir}/%{packname}