Helper Functions for Simulation Studies


[Up] [Top]

Documentation for package ‘simhelpers’ version 0.3.0

Help Pages

alpha_res Cronbach's alpha simulation results
bootstrap_CIs Calculate one or multiple bootstrap confidence intervals
bootstrap_pvals Calculate one or multiple bootstrap p-values
bundle_sim Bundle functions into a simulation driver function
calc_absolute Calculate absolute performance criteria and MCSE
calc_coverage Calculate confidence interval coverage, width and MCSE
calc_rejection Calculate rejection rate and MCSE
calc_relative Calculate relative performance criteria and MCSE
calc_relative_var Calculate jack-knife Monte Carlo SE for variance estimators
create_skeleton Open a simulation skeleton
evaluate_by_row Evaluate a simulation function on each row of a data frame or tibble
extrapolate_coverage Extrapolate coverage and width using sub-sampled bootstrap confidence intervals.
extrapolate_rejection Extrapolate coverage and width using sub-sampled bootstrap confidence intervals.
repeat_and_stack Repeat an expression multiple times and (optionally) stack the results.
Tipton_Pusto Results for Figure 2 of Tipton & Pustejovsky (2015)
t_res t-test simulation results
welch_res Welch t-test simulation results