RunPoissonEventAssignment_bound {Colossus} | R Documentation |
Predicts how many events are due to baseline vs excess at the confidence bounds of a single parameter
Description
RunPoissonEventAssignment_bound
uses user provided data, the results of a poisson regression, and options to calculate background and excess events
Usage
RunPoissonEventAssignment_bound(
df,
pyr0 = "pyr",
event0 = "event",
alternative_model = list(),
keep_constant = c(0),
modelform = "M",
fir = 0,
der_iden = 0,
check_num = 1,
z = 2,
control = list(),
strat_col = "null",
model_control = list()
)
Arguments
df |
a data.table containing the columns of interest |
pyr0 |
column used for person-years per row |
event0 |
column used for event status |
alternative_model |
the new model of interest in list form, output from a poisson regression |
keep_constant |
binary values to denote which parameters to change |
modelform |
string specifying the model type: M, ME, A, PA, PAE, GMIX, GMIX-R, GMIX-E |
fir |
term number for the initial term, used for models of the form T0*f(Ti) in which the order matters |
der_iden |
number for the subterm to test derivative at, only used for testing runs with a single varying parameter, should be smaller than total number of parameters. indexed starting at 0 |
check_num |
the parameter number to check at the bounds of, indexed from 1 using the order returned by Colossus |
z |
Z score to use for confidence interval |
control |
list of parameters controlling the convergence, see Def_Control() for options or vignette("Control_Options") |
strat_col |
column to stratify by if needed |
model_control |
controls which alternative model options are used, see Def_model_control() for options and vignette("Control_Options") for further details |
Value
returns a list of the final results
See Also
Other Poisson Wrapper Functions:
RunPoissonEventAssignment()
,
RunPoissonRegression()
,
RunPoissonRegression_Guesses_CPP()
,
RunPoissonRegression_Joint_Omnibus()
,
RunPoissonRegression_Omnibus()
,
RunPoissonRegression_Residual()
,
RunPoissonRegression_STRATA()
,
RunPoissonRegression_Single()
,
RunPoissonRegression_Tier_Guesses()
Examples
library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table("UserID"=c(112, 114, 213, 214, 115, 116, 117),
"Starting_Age"=c(18, 20, 18, 19, 21, 20, 18),
"Ending_Age"=c(30, 45, 57, 47, 36, 60, 55),
"Cancer_Status"=c(0, 0, 1, 0, 1, 0, 0),
"a"=c(0, 1, 1, 0, 1, 0, 1),
"b"=c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
"c"=c(10, 11, 10, 11, 12, 9, 11),
"d"=c(0, 0, 0, 1, 1, 1, 1),
"e"=c(0, 0, 1, 0, 0, 0, 1))
# For the interval case
pyr <- "Ending_Age"
event <- "Cancer_Status"
names <- c('a','b','c','d')
a_n <- c(1.1, -0.1, 0.2, 0.5) #used to test at a specific point
term_n <- c(0,1,1,2)
tform <- c("loglin","lin","lin","plin")
modelform <- "M"
fir <- 0
keep_constant <- c(0,0,0,0)
der_iden <- 0
control <- list("ncores"=2,'lr' = 0.75,'maxiter' = 5,'halfmax' = 5,'epsilon' = 1e-3,
'deriv_epsilon' = 1e-3, 'abs_max'=1.0,'change_all'=TRUE,
'dose_abs_max'=100.0,'verbose'=FALSE, 'ties'='breslow','double_step'=1)
guesses_control <- list("maxiter"=10,"guesses"=10,"lin_min"=0.001,"lin_max"=1,
"loglin_min"=-1,"loglin_max"=1, "lin_method"="uniform","loglin_method"="uniform",
strata=FALSE)
strat_col <- 'e'
e0 <- RunPoissonRegression_Omnibus(df, pyr, event, names, term_n, tform, keep_constant,
a_n, modelform, fir, der_iden, control,strat_col)
e <- RunPoissonEventAssignment_bound(df, pyr, event, e0, keep_constant,
modelform, fir, der_iden, 4, 2, control)