%global __brp_check_rpaths %{nil} %global __requires_exclude ^libmpi %global packname EGAnet %global packver 2.0.8 %global rlibdir /usr/local/lib/R/library Name: R-CRAN-%{packname} Version: 2.0.8 Release: 1%{?dist}%{?buildtag} Summary: Exploratory Graph Analysis – a Framework for Estimating the Number of Dimensions in Multivariate Data using Network Psychometrics License: GPL (>= 3.0) URL: https://cran.r-project.org/package=%{packname} Source0: %{url}&version=%{packver}#/%{packname}_%{packver}.tar.gz BuildRequires: R-devel >= 3.5.0 Requires: R-core >= 3.5.0 BuildRequires: R-CRAN-igraph >= 1.3.0 BuildRequires: R-CRAN-dendextend BuildRequires: R-CRAN-fungible BuildRequires: R-CRAN-future BuildRequires: R-CRAN-future.apply BuildRequires: R-CRAN-glasso BuildRequires: R-CRAN-GGally BuildRequires: R-CRAN-ggplot2 BuildRequires: R-CRAN-ggpubr BuildRequires: R-CRAN-GPArotation BuildRequires: R-CRAN-lavaan BuildRequires: R-CRAN-Matrix BuildRequires: R-methods BuildRequires: R-CRAN-network BuildRequires: R-CRAN-progressr BuildRequires: R-CRAN-qgraph BuildRequires: R-CRAN-semPlot BuildRequires: R-CRAN-sna BuildRequires: R-stats Requires: R-CRAN-igraph >= 1.3.0 Requires: R-CRAN-dendextend Requires: R-CRAN-fungible Requires: R-CRAN-future Requires: R-CRAN-future.apply Requires: R-CRAN-glasso Requires: R-CRAN-GGally Requires: R-CRAN-ggplot2 Requires: R-CRAN-ggpubr Requires: R-CRAN-GPArotation Requires: R-CRAN-lavaan Requires: R-CRAN-Matrix Requires: R-methods Requires: R-CRAN-network Requires: R-CRAN-progressr Requires: R-CRAN-qgraph Requires: R-CRAN-semPlot Requires: R-CRAN-sna Requires: R-stats %description Implements the Exploratory Graph Analysis (EGA) framework for dimensionality and psychometric assessment. EGA estimates the number of dimensions in psychological data using network estimation methods and community detection algorithms. A bootstrap method is provided to assess the stability of dimensions and items. Fit is evaluated using the Entropy Fit family of indices. Unique Variable Analysis evaluates the extent to which items are locally dependent (or redundant). Network loadings provide similar information to factor loadings and can be used to compute network scores. A bootstrap and permutation approach are available to assess configural and metric invariance. Hierarchical structures can be detected using Hierarchical EGA. Time series and intensive longitudinal data can be analyzed using Dynamic EGA, supporting individual, group, and population level assessments. %prep %setup -q -c -n %{packname} # fix end of executable files find -type f -executable -exec grep -Iq . {} \; -exec sed -i -e '$a\' {} \; # prevent binary stripping [ -d %{packname}/src ] && find %{packname}/src -type f -exec \ sed -i 's@/usr/bin/strip@/usr/bin/true@g' {} \; || true [ -d %{packname}/src ] && find %{packname}/src/Make* -type f -exec \ sed -i 's@-g0@@g' {} \; || true # don't allow local prefix in executable scripts find -type f -executable -exec sed -Ei 's@#!( )*/usr/local/bin@#!/usr/bin@g' {} \; %build %install mkdir -p %{buildroot}%{rlibdir} %{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) rm -f %{buildroot}%{rlibdir}/R.css # remove buildroot from installed files find %{buildroot}%{rlibdir} -type f -exec sed -i "s@%{buildroot}@@g" {} \; %files %{rlibdir}/%{packname}