%global __brp_check_rpaths %{nil} %global __requires_exclude ^libmpi %global packname GeDS %global packver 0.2.4 %global rlibdir /usr/local/lib/R/library Name: R-CRAN-%{packname} Version: 0.2.4 Release: 1%{?dist}%{?buildtag} Summary: Geometrically Designed Spline Regression License: GPL-3 URL: https://cran.r-project.org/package=%{packname} Source0: %{url}&version=%{packver}#/%{packname}_%{packver}.tar.gz BuildRequires: R-devel >= 3.0.1 Requires: R-core >= 3.0.1 BuildRequires: R-CRAN-Rcpp >= 0.12.1 BuildRequires: R-splines BuildRequires: R-stats BuildRequires: R-utils BuildRequires: R-CRAN-Matrix BuildRequires: R-methods BuildRequires: R-CRAN-mi BuildRequires: R-CRAN-Rmpfr BuildRequires: R-CRAN-doFuture BuildRequires: R-CRAN-doParallel BuildRequires: R-CRAN-doRNG BuildRequires: R-CRAN-foreach BuildRequires: R-CRAN-future BuildRequires: R-CRAN-MASS BuildRequires: R-CRAN-mboost BuildRequires: R-parallel BuildRequires: R-CRAN-plot3D BuildRequires: R-CRAN-TH.data Requires: R-CRAN-Rcpp >= 0.12.1 Requires: R-splines Requires: R-stats Requires: R-utils Requires: R-CRAN-Matrix Requires: R-methods Requires: R-CRAN-mi Requires: R-CRAN-Rmpfr Requires: R-CRAN-doFuture Requires: R-CRAN-doParallel Requires: R-CRAN-doRNG Requires: R-CRAN-foreach Requires: R-CRAN-future Requires: R-CRAN-MASS Requires: R-CRAN-mboost Requires: R-parallel Requires: R-CRAN-plot3D Requires: R-CRAN-TH.data %description Spline Regression, Generalized Additive Models, and Component-wise Gradient Boosting, utilizing Geometrically Designed (GeD) Splines. GeDS regression is a non-parametric method inspired by geometric principles, for fitting spline regression models with variable knots in one or two independent variables. It efficiently estimates the number of knots and their positions, as well as the spline order, assuming the response variable follows a distribution from the exponential family. GeDS models integrate the broader category of Generalized (Non-)Linear Models, offering a flexible approach to modeling complex relationships. A description of the method can be found in Kaishev et al. (2016) and Dimitrova et al. (2023) . Further extending its capabilities, GeDS's implementation includes Generalized Additive Models (GAM) and Functional Gradient Boosting (FGB), enabling versatile multivariate predictor modeling, as discussed in the forthcoming work of Dimitrova et al. (2024). %prep %setup -q -c -n %{packname} # fix end of executable files find -type f -executable -exec grep -Iq . {} \; -exec sed -i -e '$a\' {} \; # prevent binary stripping [ -d %{packname}/src ] && find %{packname}/src -type f -exec \ sed -i 's@/usr/bin/strip@/usr/bin/true@g' {} \; || true [ -d %{packname}/src ] && find %{packname}/src/Make* -type f -exec \ sed -i 's@-g0@@g' {} \; || true # don't allow local prefix in executable scripts find -type f -executable -exec sed -Ei 's@#!( )*/usr/local/bin@#!/usr/bin@g' {} \; %build %install mkdir -p %{buildroot}%{rlibdir} %{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) rm -f %{buildroot}%{rlibdir}/R.css # remove buildroot from installed files find %{buildroot}%{rlibdir} -type f -exec sed -i "s@%{buildroot}@@g" {} \; %files %{rlibdir}/%{packname}