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Bayesian Gower Agreement for Categorical
Data
John Hughes

Abstract. In this work I present two methods for measuring agreement in
nominal and ordinal data. The measures, which employ Gower-type dis-
tances, are simple, intuitive, and easy to compute for any number of units
and any number of coders. Missingness is easily accommodated. Influential
units and/or coders are easily identified. I consider both one-way and two-
way random sampling designs, and develop an approach to Bayesian infer-
ence for each. I apply the methods to simulated data and to two real datasets,
the first from a one-way radiological study of congenital diaphragmatic her-
nia, and the second from a two-way study of psychiatric diagnosis.

Key words and phrases: agreement, Bayesian bootstrap, categorical data,
Gower distance, inter-rater reliability.

1. INTRODUCTION

An inter-coder or intra-coder agreement coefficient,
which takes a value in the unit interval, is a statistical
measure of the extent to which two or more coders agree
regarding the same units of analysis. The agreement prob-
lem has a long history and is important in many fields of
inquiry, and numerous agreement statistics have been pro-
posed.

The first agreement coefficients were S [3], π [25],
and κ [5]. [3] proposed the S score as a measure of the
extent to which two methods of communication provide
identical information. [25] proposed the π coefficient for
measuring agreement between two coders. [5] criticized
π and proposed the κ coefficient as an alternative to π—
although [27] noted that Francis Galton mentioned a κ-
like statistic in his 1892 book, Finger Prints. [10] pro-
posed multi-κ, a generalization of Scott’s π for measur-
ing agreement among three or more coders. [7] and [8]
likewise generalized κ to the multi-coder setting. Other
generalizations of κ, e.g., weighted κ [6], have also been
proposed. The κ coefficient and its generalizations can
fairly be said to dominate the field and are still widely
used despite their well-known shortcomings [9, 4]. Other
frequently used measures of agreement are Gwet’s AC1

and AC2 [13] and Krippendorff’s α [15]. For more com-
prehensive reviews of the literature on agreement, I refer
the interested reader to the article by [2], the article by [1],
and the book by [14].
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In this article I present new means of measuring agree-
ment for nominal and ordinal data, and develop corre-
sponding methods for Bayesian inference for both one-
way random designs (units are random, coders are fixed)
and two-way random designs (both units and coders are
random). In Section 2 I describe the agreement measures.
In Section 3 I propose algorithms for sampling from the
posterior distribution of the parameter of interest. In Sec-
tion 4 I evaluate the two methodologies by applying them
to simulated data. In Section 5 I apply the methods to two
real datasets. In Section 6 I propose a method for obtain-
ing a calibrated agreement scale for a given dataset, dis-
tance function, and sampling model. I make concluding
remarks in Section 7.

2. GOWER-TYPE AGREEMENT MEASURES FOR
NOMINAL AND ORDINAL DATA

Suppose the data Xij are arranged in n×m matrix X,
where n is the number of units and m is the number of
coders. Then Xij is the score assigned by coder j to unit
i. The building blocks of the proposed agreement measure
are the row statistics

Gi = 1− 1(
m
2

)∑
j<k

d(Xij ,Xik),

where d is an appropriate distance function. For nominal
data I recommend the discrete metric d(x, y) = I{x ̸= y},
where I denotes the indicator function. For ordinal data I
recommend the L1 distance function given by

d(x, y) =
|x− y|

r
,

1



2

where r is the range of the scores, e.g., r = C − 1 for
scores in {1,2, . . . ,C}.

When d is the discrete metric the distances are of course
binary, and their sum is not even approximately binomial
unless the intra-row dependence is very weak. This is not
surprising given theoretical work regarding sums of de-
pendent Bernoulli variables [11]. In any case, each row
statistic is a Gower-type [12] measure of agreement for
the row in question, and the row statistics are an identi-
cally distributed sample from a discrete distribution hav-
ing its points of support in the unit interval. This distri-
bution is determined by the marginal distribution of the
scores, the dependence structure, the number of coders,
and the distance function. The mean of this distribution,
µg , say, is the proposed measure of agreement for the
study. (Although Gower distance was discovered long
ago, these measures do not, to my knowledge, appear in
the agreement literature, nor has Bayesian inference been
considered in this context.)

One can estimate µg as the sample mean of the Gi:

µ̂g = Ḡ=
1

n

n∑
i=1

1− 1(
m
2

)∑
j<k

I{Xij ̸=Xik}


for nominal data, and

µ̂g = Ḡ=
1

n

n∑
i=1

1− 1(
m
2

)∑
j<k

|Xij −Xik|
r


for ordinal data. For a one-way design, wherein the units
are random but the coders are fixed, the row-wise agree-
ment statistics are iid, and so the ordinary central limit
theorem applies: µ̂g

·∼ NORMAL(µg, σ
2
g/n), where σ2

g is
the variance of G. But I prefer to do Bayesian inference
for µg . In the next section I develop a Bayesian boot-
strap for both the one-way design and the two-way de-
sign. These algorithms produce a sample from posterior
distribution π(µg | X) so that Eπ(µg | X) is the agree-
ment measure, which can be estimated as the mean of the
posterior sample.

Note that this approach yields a measure of agreement
for each unit (Gi) as well as a measure of agreement for
the study (Eπ(µg | X)). It is easy to accommodate any
number of units and any number of coders, and miss-
ing scores can be handled by simply skipping them when
computing the row statistics. Any row having just a single
score is removed prior to analysis since such a row carries
no information about agreement.

3. BAYESIAN INFERENCE

For a one-way study it is straightforward to adapt the
Bayesian bootstrap to this setting. For two-way studies I
develop a new Bayesian bootstrap based on pigeonhole

resampling. These algorithms allow one to sample di-
rectly from the posterior distribution of µg . Here I specify
the algorithms. In the next section I evaluate their perfor-
mance in a Monte Carlo study.

3.1 Bayesian Bootstrap for a One-Way Random
Design

For a study in which the units are random and the
coders are fixed, one can employ a Bayesian bootstrap
[24] to draw samples from π(µg | X) in the following
way.

1. Compute the row statistics G= (G1, . . . ,Gn)
′.

2. Repeat for b= 1,2, . . . ,B:
a) Draw U = (U1, . . . ,Un−1)

′ iid UNIFORM(0,1).
b) Sort U and form the gap sequence W =

(U(1),U(2) − U(1),U(3) − U(2), . . . ,U(n−1) −
U(n−2),1−U(n−1))

′.
c) Compute µb

g =W ·G as the bth sample from
π(µg |X).

3. Use the posterior sample of size B to do inference
for µg .

This procedure can be carried out efficiently even for
a large number of units, and typically only a small pos-
terior sample is required to do reliable inference. In the
next section I evaluate the frequentist performance of this
approach.

3.2 Bayesian Bootstrap for a Two-Way Random
Design

Doing posterior inference for a two-way design is more
delicate. The ordinary Bayesian bootstrap is deficient for
this purpose because the ordinary method accommodates
only one source of random variation, the variation across
units. To reflect the randomness of coders as well, one can
marry the pigeonhole bootstrap [23] with the Bayesian
bootstrap in the following way. To my knowledge this is
a new form of Bayesian bootstrap.

1. Repeat for b= 1,2, . . . ,B:
a) Resample the rows of X with replacement.
b) Given the resampled rows, resample the columns

of X with replacement. These first two steps
produce X∗.

c) Compute the row statistics G∗ = (G∗
1, . . . ,G

∗
n)

′

from X∗.
d) Draw U = (U1, . . . ,Un−1)

′ iid UNIFORM(0,1).
e) Sort U and form the gap sequence W =

(U(1),U(2) − U(1),U(3) − U(2), . . . ,U(n−1) −
U(n−2),1−U(n−1))

′.
f) Compute µb

g =W ·G∗ as the bth sample from
π(µg |X).

2. Use the posterior sample of size B to do inference
for µg .
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This approach also permits efficient computation and
captures well both sources of randomness. In the next sec-
tion I evaluate the frequentist performance of this method,
and compare to the performance of a frequentist pigeon-
hole bootstrap.

4. APPLICATION TO SIMULATED DATA

For the simulation studies presented in this section
I simulated data from direct Gaussian copula models
with categorical marginal distributions. These are sensible
proxy models since they permit one to specify appropriate
correlation matrices for both the one-way design and the
two-way design, and then apply those latent dependence
structures to categorical outcomes. The generative form
of the direct Gaussian copula model is

Z ∼ NORMAL(0,Ω)

Uij =Φ(Zij) (i= 1, . . . , n)(j = 1, . . . ,m)

Xij = F−1(Uij),

where Ω is the copula correlation matrix, Φ is the stan-
dard Gaussian cdf, and F−1 is the quantile function of
the desired response distribution. The random vector U is
a realization of the copula, and X is obtained by applying
the probability integral transform to the marginally stan-
dard uniform Uij .

For the one-way study Ω is block-diagonal with each
block having the compound symmetry structure. I varied
the intraclass correlation over the grid ρ ∈ (0.01, . . . ,0.99),
and simulated 4,000 datasets for each value of ρ. For each
simulated dataset I computed a credible interval based on
a posterior sample of size 1,000.

For the two-way study the copula correlation matrix is
given by the Kronecker product

Ω=Ωn(ρn)⊗Ωm(ρm),

where Ωn is a compound symmetry structure for the
coders and Ωn is a compound symmetry structure for
the units. I varied the intra-row correlation over the grid
ρm ∈ (0.01, . . . ,0.99), and for each value of ρm I used
ρn = ρm/2. That is, for each scenario the inter-row corre-
lation was half the intra-row correlation. This seems like
a sensible study design since this methodology is most
useful when the coders do not exhibit large biases. When
intra-coder dependence is stronger than intra-unit depen-
dence, agreement is low, in which case doing inference
for µg may be of little interest. If, for a given dataset,
it seems clear that intra-coder dependence is strong, one
might transpose X and repeat the analysis to get a sense
of the strength of intra-coder agreement.

For each of 4,000 simulated datasets I computed a cred-
ible interval and a frequentist bootstrap interval, both
based on a sample of size of 1,000. The frequentist boot-
strap used pigeonhole resampling. It is important to note

that no frequentist bootstrap for the two-way design can
be exact [22], but the pigeonhole bootstrap is useful for
comparison with the Bayesian bootstrap outlined above.

For all scenarios I used p = (0.1,0.15,0.3,0.4,0.05)
for the categorical probabilities, with Xij ∈ {1, . . . ,5}.

4.1 Nominal Data

The coverage profile for the one-way design with 16
units and four coders is shown in Figure 1. We see that the
95% credible interval offers nearly nominal frequentist
coverage across the range of latent correlation ρ. This is a
small sample geometry. The coverage profile improves as
the number of units and/or coders increases.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ρ

C
ov

er
ag

e 
R

at
e

FIG 1. The coverage profile for the 95% credible interval for nominal
data with 16 units and four coders, one-way sampling design.

The coverage profile for the two-way design with 16
units and four coders is shown in Figure 2. We see that
the 95% credible interval offers slightly better than nom-
inal frequentist coverage (solid line) across the range of
latent correlation ρm. The coverage profile for the pigeon-
hole bootstrap is shown as a dotted line. Doing Bayesian
inference clearly offers a substantial advantage here.

4.2 Ordinal Data

The coverage profile for the one-way design with 16
units and four coders is shown in Figure 3. We see that
the 95% credible interval offers nearly nominal frequen-
tist coverage across the range of latent correlation ρ. The
coverage profile improves as the number of units and/or
coders increases.

The coverage profile for the two-way design with 16
units and four coders is shown in Figure 4. We see that
the two-way design presents more of a challenge to the
methodology, with the coverage rate dipping as low as
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FIG 2. The coverage profile for the 95% credible interval for nominal
data with 16 units and four coders, two-way sampling design.
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FIG 3. The coverage profile for the 95% credible interval for ordinal
data with 16 units and four coders, one-way sampling design.

90% for some combinations of ρm and ρn. But the per-
formance of the credible interval is still very much better
than that of the frequentist pigeonhole bootstrap.

5. APPLICATION TO REAL DATA

In this section I apply the proposed methods to two real
datasets. The first is from a one-way magnetic resonance
imaging study of congenital diaphragmatic hernia. The
scores are ordinal. The second dataset is from a two-way
study of psychiatric diagnosis. The scores are nominal.

I will interpret results according to the agreement
scale given in Table 1 [20]. Although this scale is well-
established, agreement scales remain a subject of debate
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FIG 4. The coverage profile for the 95% credible interval for ordinal
data with 16 units and four coders, two-way sampling design.

[28], and so the following scale (or any agreement scale)
should be applied with caution.

TABLE 1
Guidelines for interpreting values of an agreement coefficient.

Range of Agreement Interpretation
µg ≤ 0.2 Slight Agreement

0.2< µg ≤ 0.4 Fair Agreement
0.4< µg ≤ 0.6 Moderate Agreement
0.6< µg ≤ 0.8 Substantial Agreement

µg > 0.8 Near-Perfect Agreement

5.1 Ordinal Data from a One-Way Radiological Study
of Congenital Diaphragmatic Hernia

The data for this example are liver-herniation scores (in
{1, . . . ,5}) assigned by two coders (radiologists) to mag-
netic resonance images of the liver in a study pertaining to
congenital diaphragmatic hernia (CDH) [21], in which a
hole in the diaphragm permits abdominal organs to enter
the chest. The five grades are described in Table 2.

Each radiologist scored each of the 47 images twice,
and so we are interested in assessing both intra-coder and
inter-coder agreement. This is a one-way study, which is
to say we are interested in measuring agreement for these
two radiologists, as opposed to considering the radiolo-
gists as having been drawn from a larger population. The
results are shown in Table 3. We see that both intra-coder
and inter-coder agreement are very nearly perfect. Note
that each of the execution times was shorter than one sec-
ond despite my having drawn 10,000 posterior samples
for each. The posterior sample for the second radiologist
is shown in Figure 5. Superimposed are a kernel density
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TABLE 2
Liver herniation grades for the CDH study.

Grade Description

1 No herniation of liver into the fetal chest
2 Less than half of the ipsilateral thorax is occupied by the fetal liver
3 Greater than half of the thorax is occupied by the fetal liver
4 The liver dome reaches the thoracic apex
5 The liver dome not only reaches the thoracic apex but also extends

across the thoracic midline

estimate and the limits of the 95% credible interval (sam-
ple quantiles). Since the distribution is markedly skewed
to the left, I should report the estimated posterior median:
0.991.
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FIG 5. A histogram of the posterior sample for the second radiologist
in the CDH study.

5.2 Nominal Data from a Two-Way Study of
Psychiatric Diagnosis

The data from this study are psychiatric diagnoses (de-
pression, personality disorder, schizophrenia, neurosis,
and other) assigned to 30 patients by six raters [10]. I
apply the two-way nominal methodology to these data,
wherein both patients and raters are assumed to have
been sampled from larger populations. The estimated pos-
terior mean is 0.556, and the 95% credible interval is
(0.474,0.650). This is perhaps alarmingly poor agree-
ment (only moderate according to the agreement scale
given above) considering the stakes, but, to be fair, these
are old data and so do not reflect recent advances in psy-
chiatric diagnosis.

Note that π(µg | X) is approximately Gaussian for
these data (Figure 6), although we see slight asymmetry—
the Shapiro–Wilk test [26] rejects the null hypothesis of

normality. Also note that Fleiss reported a κ value of
0.430, which is not contained in the credible interval for
µg . This is close to the Krippendorff’s α value of 0.440,
but α is inappropriate for these data because that method-
ology is for one-way designs [19, 18].
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FIG 6. A histogram of the posterior sample for the psychiatric diagno-
sis study. A Gaussian density is shown dashed.

6. AGREEMENT SCALE CALIBRATION

As I carried out the simulation studies for this paper I
was able to see how, exactly, the range of possible values
of µg is constrained by the categorical marginal distribu-
tion and the distance function. Knowledge of said range
can help one choose an appropriate scale for a given study,
if one is willing to posit a direct Gaussian copula model
with categorical margins as the data-generating mecha-
nism.

For example, consider the plot in Figure 7, which shows
µg as a function of latent correlation ρ for the one-way
nominal study with four coders. We see that µg is con-
strained to the range [0.29,0.89]. One might use this re-
lationship to devise a linear agreement scale such that
µg ≤ 0.41 represents slight agreement, 0.41< µg ≤ 0.53
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TABLE 3
Results from applying the proposed methodology to the liver data.

Estimated Posterior Mean 95% Credible Interval

Radiologist 1 0.984 (0.962,0.997)

Radiologist 2 0.989 (0.970,0.999)

Overall 0.972 (0.954,0.987)

represents fair agreement, 0.53 < µg ≤ 0.65 represents
moderate agreement, 0.65 < µg ≤ 0.77 represents sub-
stantial agreement, and µg > 0.77 represents near-perfect
agreement. Or one might consider µg against Gaussian
mutual information, I(ρ) = −0.5 log(1 − ρ2) (see Fig-
ure 8). This provides what is perhaps the most sensible
scale since mutual information is arguably superior to ρ
as a measure of redundancy [29].
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FIG 7. µg as a function of ρ for the one-way nominal simulation study
with 16× 4 data matrix.

In any case, the function µg{f(ρ)} can be revealed by
doing a simulation study wherein the empirical categor-
ical probabilities of the sample are used to generate the
outcomes in the Gaussian copula model described earlier.
Since µg{f(ρ)} is the same for the one-way and two-
way designs, a simple one-way simulation can be used
for scale calibration in either design.

7. DISCUSSION

Although the discrete metric appears to be an obvious
choice of distance function for nominal data, the L1 dis-
tance function is perhaps a less obvious choice for ordi-
nal data. Hence other distance functions might be used
for measuring agreement for ordinal scores. One might
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FIG 8. µg as a function of I(ρ) for the one-way nominal simulation
study with 16× 4 data matrix.

use the discrete metric for ordinal outcomes, or one might
use, for example,

Gi = 1−
maxj<k{|Xij −Xik)|}

r

as the measure of agreement for a given row of X. Apply-
ing this latter distance measure to the full dataset from the
CDH study yields the posterior distribution shown in Fig-
ure 9. This distribution has a smaller center and is more
symmetric and more dispersed than the posterior obtained
by applying the L1 distance function.

Some readers may wonder, considering that I used
the direct Gaussian copula model with discrete mar-
gins as a data-generating mechanism, why I developed
the methodology presented in this article. The problem
with the Gaussian copula model is that the likelihood
is intractable for more than a few coders. This makes
fully Bayesian analysis impractical for the copula model,
whereas fully Bayesian analysis for Gower agreement is
straightforward and computationally efficient. Methods
for approximate Bayesian analysis have been developed
(see, e.g., [17, 16]) for Gaussian copula models with dis-
crete marginals, but the methodology presented here is,
in my opinion, at least as compelling. Also, the methods
in this article clearly do not assume any particular data-
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FIG 9. A histogram of the posterior sample for the overall measure of
agreement in the CDH study and using the max norm.

generating mechanism, only a one-way or two-way study
design.

The methodology developed in this paper is supported
by R package goweragreement, which is freely avail-
able on the Comprehensive R Archive Network. The
package supports user-supplied distance functions and
means (leave-one-out analyses) of identifying influential
units and/or coders.
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