%global __brp_check_rpaths %{nil} %global __requires_exclude ^libmpi %global packname EMC2 %global packver 2.1.0 %global rlibdir /usr/local/lib/R/library Name: R-CRAN-%{packname} Version: 2.1.0 Release: 1%{?dist}%{?buildtag} Summary: Bayesian Hierarchical Analysis of Cognitive Models of Choice License: GPL (>= 3) URL: https://cran.r-project.org/package=%{packname} Source0: %{url}&version=%{packver}#/%{packname}_%{packver}.tar.gz BuildRequires: R-devel >= 3.5.0 Requires: R-core >= 3.5.0 BuildRequires: R-CRAN-abind BuildRequires: R-CRAN-coda BuildRequires: R-CRAN-corpcor BuildRequires: R-graphics BuildRequires: R-grDevices BuildRequires: R-CRAN-magic BuildRequires: R-CRAN-MASS BuildRequires: R-CRAN-matrixcalc BuildRequires: R-methods BuildRequires: R-CRAN-msm BuildRequires: R-CRAN-mvtnorm BuildRequires: R-parallel BuildRequires: R-stats BuildRequires: R-CRAN-Matrix BuildRequires: R-CRAN-Rcpp BuildRequires: R-CRAN-Brobdingnag BuildRequires: R-CRAN-corrplot BuildRequires: R-CRAN-colorspace BuildRequires: R-CRAN-psych BuildRequires: R-utils BuildRequires: R-CRAN-lpSolve BuildRequires: R-CRAN-WienR Requires: R-CRAN-abind Requires: R-CRAN-coda Requires: R-CRAN-corpcor Requires: R-graphics Requires: R-grDevices Requires: R-CRAN-magic Requires: R-CRAN-MASS Requires: R-CRAN-matrixcalc Requires: R-methods Requires: R-CRAN-msm Requires: R-CRAN-mvtnorm Requires: R-parallel Requires: R-stats Requires: R-CRAN-Matrix Requires: R-CRAN-Rcpp Requires: R-CRAN-Brobdingnag Requires: R-CRAN-corrplot Requires: R-CRAN-colorspace Requires: R-CRAN-psych Requires: R-utils Requires: R-CRAN-lpSolve Requires: R-CRAN-WienR %description Fit Bayesian (hierarchical) cognitive models using a linear modeling language interface using particle metropolis Markov chain Monte Carlo sampling with Gibbs steps. The diffusion decision model (DDM), linear ballistic accumulator model (LBA), racing diffusion model (RDM), and the lognormal race model (LNR) are supported. Additionally, users can specify their own likelihood function and/or choose for non-hierarchical estimation, as well as for a diagonal, blocked or full multivariate normal group-level distribution to test individual differences. Prior specification is facilitated through methods that visualize the (implied) prior. A wide range of plotting functions assist in assessing model convergence and posterior inference. Models can be easily evaluated using functions that plot posterior predictions or using relative model comparison metrics such as information criteria or Bayes factors. References: Stevenson et al. (2024) . %prep %setup -q -c -n %{packname} # fix end of executable files find -type f -executable -exec grep -Iq . {} \; -exec sed -i -e '$a\' {} \; # prevent binary stripping [ -d %{packname}/src ] && find %{packname}/src -type f -exec \ sed -i 's@/usr/bin/strip@/usr/bin/true@g' {} \; || true [ -d %{packname}/src ] && find %{packname}/src/Make* -type f -exec \ sed -i 's@-g0@@g' {} \; || true # don't allow local prefix in executable scripts find -type f -executable -exec sed -Ei 's@#!( )*/usr/local/bin@#!/usr/bin@g' {} \; %build %install mkdir -p %{buildroot}%{rlibdir} %{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) rm -f %{buildroot}%{rlibdir}/R.css # remove buildroot from installed files find %{buildroot}%{rlibdir} -type f -exec sed -i "s@%{buildroot}@@g" {} \; %files %{rlibdir}/%{packname}