tEIG {TensorTools} | R Documentation |
Tensor Eigenvalue Decomposition Using any Discrete Transform
Description
The Eigenvalue decomposition of a tensor T (n
x n
x k
) decomposes the tensor into
a tensor of eigenvectors (P) and a diagonal tensor of eigenvalues (D) so that
T = P D inv(P).
Usage
tEIG(tnsr, tform)
Arguments
tnsr |
a 3-mode S3 tensor class object ( |
tform |
Any discrete transform. fft: Fast Fourier Transorm dwt: Discrete Wavelet Transform (Haar Wavelet) dct: Discrete Cosine transform dst: Discrete Sine transform dht: Discrete Hadley transform dwht: Discrete Walsh-Hadamard transform |
Value
P, a tensor of Eigenvectors (n
x n
x k
)
D, a diagonal tensor of Eigenvalues (n
x n
x k
)
Author(s)
Kyle Caudle
Randy Hoover
Jackson Cates
Everett Sandbo
References
K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.
Examples
T <- t_rand(modes=c(2,2,4))
tEIG(T,"dst")
[Package TensorTools version 1.0.0 Index]