library(move2)
The credentials of the user are stored using the keyring
package. With the following command a user can be added to the keyring. Run this line once, it will store your credentials in keyring. After that every time you load move2
and execute a download function from movebank, these functions will retrieve your credentials from keyring.
movebank_store_credentials("myUserName", "myPassword")
movebank_remove_credentials()
#> There is 1 key removed from the keyring.
The keyring
package can use several mechanisms to store credentials, these are called backends. Some of these backends are operating system dependent, others are more general. Some of the operating systems dependent backends have the advantage that they do not require providing credentials when opening a new R session.
The move2
package uses the default backend as is returned by keyring::default_backend()
, this function thus shows the backend move2
is using. If you want to change the default you can use the keyring_backend
option, for more details see the documentation in the keyring package.
macOS and Windows generally do not require entering an extra password for keyring. The default in Linux is often the file
backend which can be confusing as it creates an encrypted file with credentials that need a password to unlock. In this case a separate password for the keyring file has to be entered for each new R session before the movebank password can be accessed. To avoid having to enter each time a keyring password the Secret Service API can be used by installing the libsecret
library. (Debian/Ubuntu: libsecret-1-dev
; Recent RedHat, Fedora and CentOS systems: libsecret-devel
)
key_name
If you have multiple user accounts on movebank, the easiest way is to give each of them a key name with the argument key_name
. For the most used account also the default option can be used. The movebank_store_credentials()
only has to be executed once for each account. After that the credentials will be retrieved from keyring.
## store credentials for the most used account.
movebank_store_credentials("myUserName", "myPassword")
## store credentials for another movebank account
movebank_store_credentials("myUserName_2", "myPassword_2", key_name = "myOtherAccount")
When you want to download from Movebank using your default movebank account, nothing has to be specified before the download functions. If you want to download from Movebank with another account, than you should execute the line below, specifying the key name of the account to use, before the download functions are executed.
options("move2_movebank_key_name" = "myOtherAccount")
If in one script/Rsession you are using several accounts, to use the credentials of the default account execute the line below:
options("move2_movebank_key_name" = "movebank")
To check which accounts are stored in keyring:
::key_list()
keyring# service username
# 1 movebank myUserName
# 2 myOtherAccount myUserName_2
The service
column corresponds to the names provided in key_name
. The account entered without a key name (the default) will be called movebank
. Note that the key names have to be unique, if there are several usernames with the same key name (service), it will cause an error.
To deleted credentials from keyring:
## for the default account
movebank_remove_credentials()
#> There is 1 key removed from the keyring.
## for an account with a key name
movebank_remove_credentials(key_name = "myOtherAccount")
#> There is 1 key removed from the keyring.
Next we can check if the keys are successfully removed:
::key_list() keyring
Here you can check if the movebank
service is successfully removed.
library(dplyr)
Using the function movebank_download_study_info
it is possible to download information for all studies, for all studies that have certain property or for a single study. Any column of the table can be used to download only the information of the studies that comply with the selected property. This table contains all the information that can be seen on the “Study page” on the Movebank webpage, plus additional information about download rights and ownership.
NOTE: due to incorrect timestamps in some Movebank studies, the function movebank_download_study_info()
sometimes returns a Warning message as the one in the example below. You can ignore this (see issue #17).
movebank_download_study_info()
#> Warning: `vroom()` finds reading problems with the movebank specification.
#> ℹ This might relate to the returned data not fitting the expectation of the
#> movebank data format specified in the package.
#> ℹ For retrieving the specific problem you can enable `global_entrace` using
#> `rlang::global_entrace()` then run the command and use
#> `rlang::last_warnings()[[1]]$problems` to retrieve the problems.
#> ℹ The requested url can then be retrieved with: `rlang::last_warnings()[[1]]$url`
#> ℹ Alternatively in some cases you might be able to retrieve the problems calling
#> `vroom::problems()` on the result of the function call that produced the warning.
#> # A tibble: 7,390 × 31
#> acknowledgements citation go_public_date grants_used has_quota i_am_owner
#> <chr> <chr> <dttm> <chr> <lgl> <lgl>
#> 1 <NA> <NA> NA <NA> TRUE FALSE
#> 2 <NA> <NA> NA <NA> TRUE FALSE
#> 3 "Supported by the … <NA> NA <NA> TRUE FALSE
#> 4 <NA> <NA> NA <NA> TRUE FALSE
#> 5 "Graduate students… MCKINNO… NA "Natural Scienc… TRUE FALSE
#> 6 <NA> <NA> NA <NA> TRUE FALSE
#> 7 "Universidad Estat… <NA> NA "Comisión Feder… TRUE FALSE
#> 8 <NA> <NA> NA <NA> TRUE FALSE
#> 9 <NA> <NA> NA <NA> TRUE FALSE
#> 10 <NA> <NA> NA <NA> TRUE FALSE
#> # ℹ 7,380 more rows
#> # ℹ 25 more variables: id <int64>, is_test <lgl>, license_terms <chr>,
#> # license_type <fct>, name <fct>, …
movebank_download_study_info(i_have_download_access = TRUE)
movebank_download_study_info(i_am_owner = TRUE)
movebank_download_study_info(license_type = "CC_0")
movebank_download_study_info(id = 2911040)
The function movebank_download_deployment
downloads a table with the associated information to individuals, tags and deployments. This table reassembles the “Reference Data” table that can be downloaded from the Movebank webpage.
movebank_download_deployment("Galapagos Albatrosses")
#> # A tibble: 28 × 26
#> deployment_id tag_id individual_id animal_life_stage attachment_type
#> <int64> <int64> <int64> <fct> <fct>
#> 1 2911170 2911124 2911090 adult tape
#> 2 2911150 2911126 2911091 adult tape
#> 3 2911167 2911127 2911092 adult tape
#> 4 2911168 2911129 2911093 adult tape
#> 5 2911178 2911132 2911094 adult tape
#> 6 2911163 2911133 2911095 adult tape
#> 7 9472225 2911114 2911061 adult tape
#> 8 9472224 2911120 2911062 adult tape
#> 9 9472223 2911121 2911086 adult tape
#> 10 9472222 2911134 2911065 adult tape
#> # ℹ 18 more rows
#> # ℹ 21 more variables: deployment_comments <chr>, deploy_on_timestamp <dttm>,
#> # duty_cycle <chr>, deployment_local_identifier <fct>, manipulation_type <fct>, …
With the function movebank_download_study
the complete study from Movebank can be downloaded. There are many options to download a subset of the complete study. The study_id
can either be specified either as an integer
or character
with respectively the id or name of the study.
To get the study ID of a Movebank study use movebank_get_study_id
movebank_get_study_id(study_id = "Galapagos Albatrosses")
#> integer64
#> [1] 2911040
movebank_download_study_info(study_id = 2911040)$sensor_type_ids
#> [1] "GPS,Acceleration"
movebank_download_study(
study_id = 2911040,
sensor_type_id = c("gps", "acceleration")
)#> A <move2> with `track_id_column` "individual_local_identifier" and `time_column`
#> "timestamp"
#> Containing 28 tracks lasting on average 37.1 days in a
#> Simple feature collection with 114929 features and 21 fields (with 98901 geometries empty)
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: -91.3732 ymin: -12.79464 xmax: -77.51874 ymax: 0.1821983
#> Geodetic CRS: WGS 84
#> # A tibble: 114,929 × 22
#> sensor_type_id individual_local_iden…¹ eobs_battery_voltage eobs_fix_battery_vol…²
#> <int64> <fct> [mV] [mV]
#> 1 653 4264-84830852 3686 3437
#> 2 653 4264-84830852 3701 3452
#> 3 653 4264-84830852 3701 3482
#> 4 653 4264-84830852 3691 3476
#> 5 653 4264-84830852 3691 3541
#> # ℹ 114,924 more rows
#> # ℹ abbreviated names: ¹individual_local_identifier, ²eobs_fix_battery_voltage
#> # ℹ 18 more variables: eobs_horizontal_accuracy_estimate [m],
#> # eobs_key_bin_checksum <int64>, eobs_speed_accuracy_estimate [m/s],
#> # eobs_start_timestamp <dttm>, eobs_status <ord>, …
#> First 5 track features:
#> # A tibble: 28 × 52
#> deployment_id tag_id individual_id animal_life_stage attachment_type
#> <int64> <int64> <int64> <fct> <fct>
#> 1 2911170 2911124 2911090 adult tape
#> 2 2911150 2911126 2911091 adult tape
#> 3 2911167 2911127 2911092 adult tape
#> 4 2911168 2911129 2911093 adult tape
#> 5 2911178 2911132 2911094 adult tape
#> # ℹ 23 more rows
#> # ℹ 47 more variables: deployment_comments <chr>, deploy_on_timestamp <dttm>,
#> # duty_cycle <chr>, deployment_local_identifier <fct>, manipulation_type <fct>, …
movebank_download_study(
study_id = "Galapagos Albatrosses",
sensor_type_id = "gps",
individual_local_identifier = "unbanded-160"
)#> A <move2> with `track_id_column` "individual_local_identifier" and `time_column`
#> "timestamp"
#> Containing 1 track lasting 13.3 days in a
#> Simple feature collection with 213 features and 18 fields (with 4 geometries empty)
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: -81.20167 ymin: -1.829105 xmax: -80.93177 ymax: -1.11206
#> Geodetic CRS: WGS 84
#> # A tibble: 213 × 19
#> sensor_type_id individual_local_iden…¹ eobs_battery_voltage eobs_fix_battery_vol…²
#> <int64> <fct> [mV] [mV]
#> 1 653 unbanded-160 3754 3496
#> 2 653 unbanded-160 3701 3530
#> 3 653 unbanded-160 3754 3505
#> 4 653 unbanded-160 3759 3535
#> 5 653 unbanded-160 3732 3515
#> # ℹ 208 more rows
#> # ℹ abbreviated names: ¹individual_local_identifier, ²eobs_fix_battery_voltage
#> # ℹ 15 more variables: eobs_horizontal_accuracy_estimate [m],
#> # eobs_key_bin_checksum <int64>, eobs_speed_accuracy_estimate [m/s],
#> # eobs_start_timestamp <dttm>, eobs_status <ord>, …
#> Track features:
#> # A tibble: 1 × 52
#> deployment_id tag_id individual_id animal_life_stage attachment_type
#> <int64> <int64> <int64> <fct> <fct>
#> 1 2911163 2911133 2911095 adult tape
#> # ℹ 47 more variables: deployment_comments <chr>, deploy_on_timestamp <dttm>,
#> # duty_cycle <chr>, deployment_local_identifier <fct>, manipulation_type <fct>, …
movebank_download_study(
study_id = 2911040,
sensor_type_id = "gps",
individual_local_identifier = c("1094-1094", "1103-1103")
)#> A <move2> with `track_id_column` "individual_local_identifier" and `time_column`
#> "timestamp"
#> Containing 2 tracks lasting on average 10.3 days in a
#> Simple feature collection with 289 features and 18 fields (with 59 geometries empty)
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: -89.96382 ymin: -1.502011 xmax: -89.59216 ymax: -0.7981921
#> Geodetic CRS: WGS 84
#> # A tibble: 289 × 19
#> sensor_type_id individual_local_iden…¹ eobs_battery_voltage eobs_fix_battery_vol…²
#> <int64> <fct> [mV] [mV]
#> 1 653 1103-1103 3671 3444
#> 2 653 1103-1103 3615 3437
#> 3 653 1103-1103 3662 3476
#> 4 653 1103-1103 3662 3471
#> 5 653 1103-1103 3662 3452
#> # ℹ 284 more rows
#> # ℹ abbreviated names: ¹individual_local_identifier, ²eobs_fix_battery_voltage
#> # ℹ 15 more variables: eobs_horizontal_accuracy_estimate [m],
#> # eobs_key_bin_checksum <int64>, eobs_speed_accuracy_estimate [m/s],
#> # eobs_start_timestamp <dttm>, eobs_status <ord>, …
#> Track features:
#> # A tibble: 2 × 52
#> deployment_id tag_id individual_id animal_life_stage attachment_type
#> <int64> <int64> <int64> <fct> <fct>
#> 1 9472225 2911114 2911061 adult tape
#> 2 9472212 2911119 2911080 adult tape
#> # ℹ 47 more variables: deployment_comments <chr>, deploy_on_timestamp <dttm>,
#> # duty_cycle <chr>, deployment_local_identifier <fct>, manipulation_type <fct>, …
## it is also possible to use the numerical identifiers
movebank_download_study(
study_id = 2911040,
sensor_type_id = "gps",
individual_id = c(2911086, 2911065)
)
movebank_download_study(2911040,
sensor_type_id = "acceleration",
individual_local_identifier = "1094-1094"
)#> A <move2> with `track_id_column` "individual_local_identifier" and `time_column`
#> "timestamp"
#> Containing 1 track lasting 3.05 days in a
#> Simple feature collection with 291 features and 10 fields (with 291 geometries empty)
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: NA ymin: NA xmax: NA ymax: NA
#> Geodetic CRS: WGS 84
#> # A tibble: 291 × 11
#> sensor_type_id individual_local_identifier eobs_acceleration_axes
#> <int64> <fct> <fct>
#> 1 2365683 1094-1094 XY
#> 2 2365683 1094-1094 XY
#> 3 2365683 1094-1094 XY
#> 4 2365683 1094-1094 XY
#> 5 2365683 1094-1094 XY
#> # ℹ 286 more rows
#> # ℹ 8 more variables: eobs_acceleration_sampling_frequency_per_axis [Hz],
#> # eobs_accelerations_raw <chr>, eobs_key_bin_checksum <int64>,
#> # eobs_start_timestamp <dttm>, timestamp <dttm>, …
#> Track features:
#> # A tibble: 1 × 52
#> deployment_id tag_id individual_id animal_life_stage attachment_type
#> <int64> <int64> <int64> <fct> <fct>
#> 1 9472212 2911119 2911080 adult tape
#> # ℹ 47 more variables: deployment_comments <chr>, deploy_on_timestamp <dttm>,
#> # duty_cycle <chr>, deployment_local_identifier <fct>, manipulation_type <fct>, …
Note that the sensor_type_id
can either be specified either as an integer
or character
with respectively the ‘id’ or ‘external_id’ of the sensor. Here is how you get the correspondence table of sensor name and id:
movebank_retrieve(entity_type = "tag_type")
#> # A tibble: 23 × 5
#> description external_id id is_location_sensor name
#> <chr> <chr> <int64> <lgl> <fct>
#> 1 <NA> bird-ring 397 TRUE Bird Ring
#> 2 <NA> gps 653 TRUE GPS
#> 3 <NA> radio-transmitter 673 TRUE Radio Transmitter
#> 4 <NA> argos-doppler-shift 82798 TRUE Argos Doppler Shi…
#> 5 <NA> natural-mark 2365682 TRUE Natural Mark
#> 6 <NA> acceleration 2365683 FALSE Acceleration
#> 7 <NA> solar-geolocator 3886361 TRUE Solar Geolocator
#> 8 <NA> accessory-measurements 7842954 FALSE Accessory Measure…
#> 9 <NA> solar-geolocator-raw 9301403 FALSE Solar Geolocator …
#> 10 <NA> barometer 77740391 FALSE Barometer
#> # ℹ 13 more rows
timestamp_*
arguments can either be formatted as a POSIXct
timestamp, Date
or a character string (e.g. "20080604133046000"
(yyyyMMddHHmmssSSS)). The timestamp_*
arguments can also be used separately.movebank_download_study(2911040,
sensor_type_id = "gps",
timestamp_start = as.POSIXct("2008-08-01 00:00:00"),
timestamp_end = as.POSIXct("2008-08-02 00:00:00")
)#> A <move2> with `track_id_column` "individual_local_identifier" and `time_column`
#> "timestamp"
#> Containing 9 tracks lasting on average 22.5 hours in a
#> Simple feature collection with 144 features and 18 fields (with 6 geometries empty)
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: -90.0103 ymin: -5.571548 xmax: -80.94916 ymax: -0.6785461
#> Geodetic CRS: WGS 84
#> # A tibble: 144 × 19
#> sensor_type_id individual_local_iden…¹ eobs_battery_voltage eobs_fix_battery_vol…²
#> <int64> <fct> [mV] [mV]
#> 1 653 4266-84831108 3754 3505
#> 2 653 4266-84831108 3754 3508
#> 3 653 4266-84831108 3754 3576
#> 4 653 4266-84831108 3759 3520
#> 5 653 4266-84831108 3759 3593
#> # ℹ 139 more rows
#> # ℹ abbreviated names: ¹individual_local_identifier, ²eobs_fix_battery_voltage
#> # ℹ 15 more variables: eobs_horizontal_accuracy_estimate [m],
#> # eobs_key_bin_checksum <int64>, eobs_speed_accuracy_estimate [m/s],
#> # eobs_start_timestamp <dttm>, eobs_status <ord>, …
#> First 5 track features:
#> # A tibble: 9 × 52
#> deployment_id tag_id individual_id animal_life_stage attachment_type
#> <int64> <int64> <int64> <fct> <fct>
#> 1 2911150 2911126 2911091 adult tape
#> 2 2911167 2911127 2911092 adult tape
#> 3 2911168 2911129 2911093 adult tape
#> 4 2911178 2911132 2911094 adult tape
#> 5 9472222 2911134 2911065 adult tape
#> # ℹ 4 more rows
#> # ℹ 47 more variables: deployment_comments <chr>, deploy_on_timestamp <dttm>,
#> # duty_cycle <chr>, deployment_local_identifier <fct>, manipulation_type <fct>, …
attributes = NULL
can be used as it reduces the columns to download to the bare minimum. All individual attributes are downloaded as this does not take much time. Note that this option should only be used when downloading location data (by specifying the sensor), as only timestamps, location and track id is downloaded.movebank_download_study(1259686571, sensor_type_id = 653, attributes = NULL)
#> ℹ In total 302834 records were omitted as they were not deployed (the
#> `deployment_id` was `NA`).
#> A <move2> with `track_id_column` "deployment_id" and `time_column` "timestamp"
#> Containing 92 tracks lasting on average 163 days in a
#> Simple feature collection with 912805 features and 3 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: -9.097052 ymin: 34.82506 xmax: 10.34339 ymax: 53.40649
#> Geodetic CRS: WGS 84
#> # A tibble: 912,805 × 4
#> deployment_id timestamp visible geometry
#> <fct> <dttm> <lgl> <POINT [°]>
#> 1 3029108353 2021-08-19 21:16:35 TRUE (2.84631 51.19662)
#> 2 3029108353 2021-08-20 09:16:35 TRUE (2.846492 51.19654)
#> 3 3029108353 2021-08-20 21:16:29 TRUE (2.847637 51.20317)
#> 4 3029108353 2021-08-21 09:16:35 TRUE (2.849055 51.20314)
#> 5 3029108353 2021-08-21 21:16:35 TRUE (2.846533 51.2034)
#> # ℹ 912,800 more rows
#> First 5 track features:
#> # A tibble: 92 × 56
#> deployment_id tag_id individual_id alt_project_id animal_life_stage animal_mass
#> <int64> <int64> <int64> <fct> <fct> [g]
#> 1 3029108356 3e9 3029107890 LBBG_JUVENILE juvenile 693
#> 2 3029108353 3e9 3029107816 LBBG_JUVENILE juvenile NA
#> 3 3029108347 3e9 3029107819 LBBG_JUVENILE juvenile 883
#> 4 3029108346 3e9 3029107822 LBBG_JUVENILE juvenile 726
#> 5 3029108345 3e9 3029107891 LBBG_JUVENILE juvenile 816
#> # ℹ 87 more rows
#> # ℹ 50 more variables: attachment_type <fct>, deployment_comments <chr>,
#> # deploy_off_timestamp <dttm>, deploy_on_timestamp <dttm>,
#> # deployment_end_type <fct>, …
## get all attributes available for a specific study and sensor
movebank_retrieve(
entity_type = "study_attribute",
study_id = 2911040,
sensor_type_id = "gps"
$short_name
)#> [1] "eobs_battery_voltage" "eobs_fix_battery_voltage"
#> [3] "eobs_horizontal_accuracy_estimate" "eobs_key_bin_checksum"
#> [5] "eobs_speed_accuracy_estimate" "eobs_start_timestamp"
#> [7] "eobs_status" "eobs_temperature"
#> [9] "eobs_type_of_fix" "eobs_used_time_to_get_fix"
#> [11] "ground_speed" "heading"
#> [13] "height_above_ellipsoid" "location_lat"
#> [15] "location_long" "timestamp"
#> [17] "update_ts" "visible"
movebank_download_study(
study_id = 2911040,
sensor_type_id = "gps",
attributes = c("height_above_ellipsoid", "eobs_temperature")
)#> A <move2> with `track_id_column` "deployment_id" and `time_column` "timestamp"
#> Containing 28 tracks lasting on average 37.1 days in a
#> Simple feature collection with 16414 features and 5 fields (with 386 geometries empty)
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: -91.3732 ymin: -12.79464 xmax: -77.51874 ymax: 0.1821983
#> Geodetic CRS: WGS 84
#> # A tibble: 16,414 × 6
#> height_above_ellipsoid eobs_temperature deployment_id timestamp visible
#> [m] [°C] <fct> <dttm> <lgl>
#> 1 16.5 12 9472219 2008-05-31 13:30:02 TRUE
#> 2 12.6 19 9472219 2008-05-31 15:00:44 TRUE
#> 3 17.4 24 9472219 2008-05-31 16:30:39 TRUE
#> 4 24.8 18 9472219 2008-05-31 18:00:49 TRUE
#> 5 19 22 9472219 2008-05-31 19:30:18 TRUE
#> # ℹ 16,409 more rows
#> # ℹ 1 more variable: geometry <POINT [°]>
#> First 5 track features:
#> # A tibble: 28 × 52
#> deployment_id tag_id individual_id animal_life_stage attachment_type
#> <int64> <int64> <int64> <fct> <fct>
#> 1 2911170 2911124 2911090 adult tape
#> 2 2911150 2911126 2911091 adult tape
#> 3 2911167 2911127 2911092 adult tape
#> 4 2911168 2911129 2911093 adult tape
#> 5 2911178 2911132 2911094 adult tape
#> # ℹ 23 more rows
#> # ℹ 47 more variables: deployment_comments <chr>, deploy_on_timestamp <dttm>,
#> # duty_cycle <chr>, deployment_local_identifier <fct>, manipulation_type <fct>, …
For specific request it might be useful to directly retrieve information from the Movebank API. The movebank_retrieve
function provides this functionality. The first argument is the entity type you would like to retrieve information for (e.g. tag
or event
). A study id is always required and other arguments make it possible to select. For more details how to use the api see the documentation.
One common reason to use this options is to retrieve undeployed locations. In some cases a set of locations is collected before the tag attached to the animal for quality control or error measurements. The example below shows how all records for a specific tag can be retrieved. Filtering for locations where the deployment_id
is NA
, returns those locations that were collected while the tag was not deployed. The timestamp_start
and timestamp_end
might be good argument to filter down the data even more in the call to movebank_retrieve
. By omitting the argument tag_local_identifier
the entire study can downloaded. With the argument sensor_type_id
the sensors can be specified.
movebank_retrieve("event",
study_id = 1259686571,
tag_local_identifier = "193967",
attributes = "all"
%>%
) filter(is.na(deployment_id))
#> # A tibble: 57 × 33
#> individual_id deployment_id tag_id study_id sensor_type_id individual_local_ide…¹
#> <int64> <fct> <int6> <int64> <int64> <fct>
#> 1 NA <NA> 3e9 1e9 653 <NA>
#> 2 NA <NA> 3e9 1e9 653 <NA>
#> 3 NA <NA> 3e9 1e9 653 <NA>
#> 4 NA <NA> 3e9 1e9 653 <NA>
#> 5 NA <NA> 3e9 1e9 653 <NA>
#> 6 NA <NA> 3e9 1e9 653 <NA>
#> 7 NA <NA> 3e9 1e9 653 <NA>
#> 8 NA <NA> 3e9 1e9 653 <NA>
#> 9 NA <NA> 3e9 1e9 653 <NA>
#> 10 NA <NA> 3e9 1e9 653 <NA>
#> # ℹ 47 more rows
#> # ℹ abbreviated name: ¹individual_local_identifier
#> # ℹ 27 more variables: tag_local_identifier <fct>,
#> # individual_taxon_canonical_name <fct>, acceleration_raw_x <dbl>,
#> # acceleration_raw_y <dbl>, acceleration_raw_z <dbl>, …