criteria.mseD {MOODE}R Documentation

Calculates the values of the MSE DPs-criterion and its components

Description

This function evaluates the MSE DPs-criterion for given primary and potential model matrices. Candidate full model matrices do not have to be orthonormalised. Components: DPs-, LoF(DP)- and MSE(D)-optimality.

Usage

criteria.mseD(X1, X2, search.object, eps = 1e-23)

Arguments

X1

The primary model matrix, with the first column containing the labels of treatments, and the second – the intercept term.

X2

The matrix of potential terms, with the first column containing the labels of treatments.

search.object

Object of class mood() specifying experiment parameters.

eps

Computational tolerance, the default value is 10^-23

Value

A list of values: indicator of whether the evaluation was successful ("eval"), DPs-criterion value – intercept excluded ("DP"), Lack-of-fit(DP) criterion value ("LoF"), the MSE(D) component value ("mse"), the number of pure error degrees of freedom ("df") and the value of the compound criterion ("compound").

Examples

# Experiment: one 5-level factor, primary model -- full quadratic, X^3 and X^4 potential terms.
set.seed(20210930)
ex.mood <- mood(K = 1, Levels = 5, Nruns = 8, criterion.choice = "MSE.D", 
               kappa = list(kappa.DP = 1./3, kappa.LoF = 1./3, kappa.mse = 1./3), 
               control = list(Biter = 1000), 
               model_terms = list(primary.model = "second_order", potential.terms = "x14"))
# Generating candidate sets: primary and full orthonormalised ones
K <- ex.mood$K
Levels <- ex.mood$Levels 
cand.not.orth <- candidate_set_full(candidate_trt_set(Levels, K), K)
cand.full.orth <- candidate_set_orth(cand.not.orth, ex.mood$primary.terms, ex.mood$potential.terms)
# Choosing a design
index <- c(rep(1,2),3,rep(4,2),rep(5,3))
X.primary <- cand.full.orth[index, c(1, match(ex.mood$primary.terms, colnames(cand.full.orth)))]
X.potential <- cand.full.orth[index, 
(c(1, match(ex.mood$potential.terms, colnames(cand.full.orth))))]
# Evaluating a compound GDP-criterion
criteria.mseD(X.primary, X.potential, ex.mood)
# Output: eval = 1, DP = 4.538023, LoF = 3.895182, mse = 0.6986903, df = 4, compound = 2.310728

[Package MOODE version 1.0.1 Index]