%global __brp_check_rpaths %{nil} %global __requires_exclude ^libmpi %global packname NumericEnsembles %global packver 0.10.1 %global rlibdir /usr/local/lib/R/library Name: R-CRAN-%{packname} Version: 0.10.1 Release: 1%{?dist}%{?buildtag} Summary: Automatically Runs 18 Individual and 14 Ensembles of Models License: MIT + file LICENSE URL: https://cran.r-project.org/package=%{packname} Source0: %{url}&version=%{packver}#/%{packname}_%{packver}.tar.gz BuildRequires: R-devel >= 4.1.0 Requires: R-core >= 4.1.0 BuildArch: noarch BuildRequires: R-CRAN-Cubist BuildRequires: R-CRAN-Metrics BuildRequires: R-CRAN-arm BuildRequires: R-CRAN-brnn BuildRequires: R-CRAN-broom BuildRequires: R-CRAN-car BuildRequires: R-CRAN-caret BuildRequires: R-CRAN-corrplot BuildRequires: R-CRAN-doParallel BuildRequires: R-CRAN-dplyr BuildRequires: R-CRAN-e1071 BuildRequires: R-CRAN-earth BuildRequires: R-CRAN-gam BuildRequires: R-CRAN-gbm BuildRequires: R-CRAN-ggplot2 BuildRequires: R-CRAN-glmnet BuildRequires: R-graphics BuildRequires: R-grDevices BuildRequires: R-CRAN-gridExtra BuildRequires: R-CRAN-ipred BuildRequires: R-CRAN-leaps BuildRequires: R-CRAN-nnet BuildRequires: R-CRAN-olsrr BuildRequires: R-parallel BuildRequires: R-CRAN-pls BuildRequires: R-CRAN-purrr BuildRequires: R-CRAN-randomForest BuildRequires: R-CRAN-reactable BuildRequires: R-CRAN-reactablefmtr BuildRequires: R-CRAN-readr BuildRequires: R-CRAN-rpart BuildRequires: R-stats BuildRequires: R-CRAN-tidyr BuildRequires: R-CRAN-tree BuildRequires: R-utils BuildRequires: R-CRAN-xgboost Requires: R-CRAN-Cubist Requires: R-CRAN-Metrics Requires: R-CRAN-arm Requires: R-CRAN-brnn Requires: R-CRAN-broom Requires: R-CRAN-car Requires: R-CRAN-caret Requires: R-CRAN-corrplot Requires: R-CRAN-doParallel Requires: R-CRAN-dplyr Requires: R-CRAN-e1071 Requires: R-CRAN-earth Requires: R-CRAN-gam Requires: R-CRAN-gbm Requires: R-CRAN-ggplot2 Requires: R-CRAN-glmnet Requires: R-graphics Requires: R-grDevices Requires: R-CRAN-gridExtra Requires: R-CRAN-ipred Requires: R-CRAN-leaps Requires: R-CRAN-nnet Requires: R-CRAN-olsrr Requires: R-parallel Requires: R-CRAN-pls Requires: R-CRAN-purrr Requires: R-CRAN-randomForest Requires: R-CRAN-reactable Requires: R-CRAN-reactablefmtr Requires: R-CRAN-readr Requires: R-CRAN-rpart Requires: R-stats Requires: R-CRAN-tidyr Requires: R-CRAN-tree Requires: R-utils Requires: R-CRAN-xgboost %description Automatically runs 18 individual models and 14 ensembles on numeric data, for a total of 32 models. The package automatically returns complete results on all 32 models, 25 charts, multiple tables. The user simply provides the tidy data, and answers a few questions (for example, how many times would you like to resample the data). From there the package randomly splits the data into train, test and validation sets, fits each of models on the training data, makes predictions on the test and validation sets, measures root mean squared error (RMSE), removes features above a user-set level of Variance Inflation Factor, and has several optional features including scaling all numeric data, four different ways to handle strings in the data. Perhaps the most significant feature is the package's ability to make predictions using the 32 pre trained models on totally new (untrained) data if the user selects that feature. This feature alone represents a very effective solution to the issue of reproducibility of models in data science. The package can also randomly resample the data as many times as the user sets, thus giving more accurate results than a single run. The graphs provide many results that are not typically found. For example, the package automatically calculates the Kolmogorov-Smirnov test for each of the 32 models and plots a bar chart of the results, a bias bar chart of each of the 32 models, as well as several plots for exploratory data analysis (automatic histograms of the numeric data, automatic histograms of the numeric data). The package also automatically creates a summary report that can be both sorted and searched for each of the 32 models, including RMSE, bias, train RMSE, test RMSE, validation RMSE, overfitting and duration. The best results on the holdout data typically beat the best results in data science competitions and published results for the same data set. %prep %setup -q -c -n %{packname} # fix end of executable files find -type f -executable -exec grep -Iq . {} \; -exec sed -i -e '$a\' {} \; # prevent binary stripping [ -d %{packname}/src ] && find %{packname}/src -type f -exec \ sed -i 's@/usr/bin/strip@/usr/bin/true@g' {} \; || true [ -d %{packname}/src ] && find %{packname}/src/Make* -type f -exec \ sed -i 's@-g0@@g' {} \; || true # don't allow local prefix in executable scripts find -type f -executable -exec sed -Ei 's@#!( )*/usr/local/bin@#!/usr/bin@g' {} \; %build %install mkdir -p %{buildroot}%{rlibdir} %{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) rm -f %{buildroot}%{rlibdir}/R.css # remove buildroot from installed files find %{buildroot}%{rlibdir} -type f -exec sed -i "s@%{buildroot}@@g" {} \; %files %{rlibdir}/%{packname}