
ZeroMQInterface
ZeroMQ bindings for GAP

0.14

29 July 2022

Markus Pfeiffer

Reimer Behrends

Markus Pfeiffer
Email: markus.pfeiffer@st-andrews.ac.uk
Homepage: http://www.morphism.de/~markusp/
Address: School of Computer Science

University of St Andrews
Jack Cole Building, North Haugh
St Andrews, Fife, KY16 9SX
United Kingdom

Reimer Behrends
Email: behrends@gmail.com
Homepage: http://www.mathematik.uni-kl.de/agag/mitglieder/wissenschaftliche-mitarbeiter/dr-reimer-behrends/
Address: Technische Universität Kaiserslautern

Fachbereich Mathematik
Postfach 3049
67653 Kaiserslautern
Deutschland

mailto://markus.pfeiffer@st-andrews.ac.uk
http://www.morphism.de/~markusp/
mailto://behrends@gmail.com
http://www.mathematik.uni-kl.de/agag/mitglieder/wissenschaftliche-mitarbeiter/dr-reimer-behrends/

ZeroMQInterface 2

Copyright
© 2015-17 by Markus Pfeiffer, Reimer Behrends and others

The ZeroMQInterface package is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.

Acknowledgements

We appreciate very much all past and future comments, suggestions and contributions to this package and its
documentation provided by GAP users and developers.

http://www.fsf.org/licenses/gpl.html

Contents

1 Introduction 4
1.1 Purpose and goals of this package . 4
1.2 Overview over this manual . 4
1.3 Installation . 4
1.4 Feedback . 4

2 ZeroMQ Bindings 5
2.1 Addresses, transports, and URIs . 5
2.2 Creating and closing sockets . 6
2.3 Binding and connecting sockets to addresses . 8
2.4 Sending and receiving messages . 9
2.5 Setting and querying socket properties . 11

3 Using ZeroMQ with the zgap script 14
3.1 Running zgap . 14
3.2 Zgap API . 15

Index 18

3

Chapter 1

Introduction

1.1 Purpose and goals of this package

This package provides low-level bindings to the popular ZeroMQ distributed messaging framework for
GAP and HPC-GAP as well as some higher level functions to ease the use of distributed messaging
in GAP

1.2 Overview over this manual

Chapter 2 gives an overview of the available bindings, and examples of how to use them. Chapter 3
showcases one way of using ZeroMQInterface.

1.3 Installation

To use this package ZeroMQ needs to be installed on your system and the ZeroMQInterface package
itself needs to be compiled. To install ZeroMQ please refer to its installation instructions. To compile
this package, inside its root directory run:

Example
> ./configure
> make

1.4 Feedback

For bug reports, feature requests and suggestions, please use our issue tracker.

4

http://zeromq.org
https://zeromq.org
https://zeromq.org
http://zeromq.org/intro:get-the-software
https://github.com/gap-packages/ZeroMQInterface/issues

Chapter 2

ZeroMQ Bindings

There are experimental bindings to the ZeroMQ library available http://www.zeromq.net/. This
section describes these bindings. Messages in ZeroMQ are sent between endpoints called sockets.
Each socket can be bound to an address specified by a URI and other sockets can connect to the same
address to exchange messages with that socket.

2.1 Addresses, transports, and URIs

Addresses are specified as URIs of one of four different types (TCP, IPC, in-process, PGM/EPGM),
each for a different type of transport.

2.1.1 The TCP transport

TCP URIs map to POSIX TCP stream sockets. The URI is of the form tcp://<address>:<port>
or tcp://*:<port>. Here, address is an internet address, either an IP address or a symbolic address
(note that to resolve symbolic addresses, the library may have to consult DNS servers, which can take
an indefinite amount of time or even fail). Port is a TCP port number. If a “*” is given instead of an
address, this describes the so-called unspecified address; the URI can only be used for binding and
will then accept incoming connections from all interfaces (as in binding to “0.0.0.0” in IPv4 or “::” in
IPv6).

2.1.2 The IPC transport

The URI for IPC communication is of the form ipc://<path>, where path is an actual path on the
file system. Binding to such a URI will create a file in that location.

Example
gap> socket := ZmqDealerSocket();;
gap> ZmqBind(socket, "ipc:///tmp/connector");

2.1.3 The in-process transport

The in-process transport is used to communicate between threads in order to avoid the overhead of
operating system calls. Messages are simply being copied from one thread’s memory to the other’s.
In-process URIs are of the form inproc://<string>, where string is an arbitrary string.

5

http://www.zeromq.net/

ZeroMQInterface 6

2.2 Creating and closing sockets

Sockets are generally being created via calls to ZmqPushSocket (2.2.1), etc. Each such call takes
two optional arguments, a URI and an identity. If a URI is given, a call to ZmqAttach (2.3.3) will
be performed immediately with the socket and URI. In particular, if the URI is prefixed with a “+”
character, then the socket will connect to the address specified by the part after the “+” character;
otherwise, it will be bound to the URI.

Example
gap> z := ZmqPushSocket("inproc://test"); # binds to inproc://test
gap> z := ZmqPushSocket("+inproc://test"); # connects to inproc://test

If an identity is also provided, the library will call ZmqSetIdentity (2.5.1) to set the identity (name)
for that socket. For a precise description of the behavior of each socket type, please consult the original
ZeroMQ documentation for zmq_socket().

2.2.1 ZmqPushSocket

. ZmqPushSocket([uri[, identity]]) (function)

A push socket is one end of a unidirectional pipe. Programs can send messages to it, which will
be delivered to a matched pull socket at the other end.

2.2.2 ZmqPullSocket

. ZmqPullSocket([uri[, identity]]) (function)

A pull socket is the other end of a unidirectional pipe.

2.2.3 ZmqReplySocket

. ZmqReplySocket([uri[, identity]]) (function)

A reply socket provides the server side of a remote-procedure call interaction. It alternates between
receiving a message and sending a message to the socket from which the previous one originated.
Deviating from that protocol (for example, by sending two messages in succession or receiving two
without responding to the first) will result in an error.

2.2.4 ZmqRequestSocket

. ZmqRequestSocket([uri[, identity]]) (function)

A request socket provides the client side of a remote-procedure call interaction. It will alternate
between sending a message to a connected reply socket and receiving the response.

2.2.5 ZmqPublisherSocket

. ZmqPublisherSocket([uri[, identity]]) (function)

ZeroMQInterface 7

A publisher socket is a unidirectional broadcast facility. It will send each outgoing message to all
connected subscriber sockets.

2.2.6 ZmqSubscriberSocket

. ZmqSubscriberSocket([uri[, identity]]) (function)

A subscriber socket receives messages from a publisher socket. It can subscribe to only a specific
subseet of messages (see the ZmqSubscribe (2.5.11) function) or receive all of them.

2.2.7 ZmqDealerSocket

. ZmqDealerSocket([uri[, identity]]) (function)

A dealer socket is a bidirectional socket. One or more peers can connect to it. Outgoing messages
will be sent to those peers in a round-robin fashion (i.e., the first message goes to the first peer, the
second to the second peer, and so forth until all peers have received a message and the process begins
anew with the first peer). Incoming messages will be received from all peers and processed fairly (i.e.,
no message will be held indefinitely). Two dealer sockets can be used to create a bidirectional pipe.

2.2.8 ZmqRouterSocket

. ZmqRouterSocket([uri[, identity]]) (function)

Router sockets, like dealer sockets, can have multiple peers connected to them. Incoming mes-
sages are handled the same way as for dealer sockets. Outgoing messages should be multi-part mes-
sages, where the first part of the message is the identity of one of the peers. The message will then be
sent only to the peer with that identity. Peers can be dealer, request, or reply sockets.

2.2.9 ZmqSocket

. ZmqSocket(type) (function)

ZmqSocket is a low-level function that is used by ZmqPushSocket etc. to create sockets. Its argu-
ment is a string, one of “PUSH”, “PULL”, “REP”, “REQ”, “PUB”, “SUB”, “DEALER”, “ROUTER”,
and it creates and returns a socket of that type.

2.2.10 ZmqClose

. ZmqClose(socket) (function)

ZmqClose closes socket. Afterwards, it cannot anymore be bound or connected to, nor receive
or send messages. Messages already in transit will still be delivered.

2.2.11 ZmqIsOpen

. ZmqIsOpen(socket) (function)

ZeroMQInterface 8

ZmqIsOpen returns true if socket has not been closed yet, false otherwise.

2.2.12 ZmqSocketType

. ZmqSocketType(socket) (function)

ZmqSocketType returns the string with which the socket was created (see ZmqSocket (2.2.9)).

2.3 Binding and connecting sockets to addresses

2.3.1 ZmqBind

. ZmqBind(socket, uri) (function)

ZmqBind will bind socket to uri. After being bound to the address specified by uri, the socket
can be connected to at that address with ZmqConnect (2.3.2).

2.3.2 ZmqConnect

. ZmqConnect(socket, uri) (function)

ZmqConnect is used to connect socket to another socket that has been bound to uri. Note that
you can connect to an address that has not been bound yet; in that case, the connection will be delayed
until the binding has occurred.

2.3.3 ZmqAttach

. ZmqAttach(socket, uri) (function)

ZmqAttach is a unified interface for binding and connecting a socket. If uri begins with a “+”
character, then the ZmqConnect (2.3.2) is called with the socket and the rest of the uri string following
the “+”. Otherwise, ZmqBind (2.3.1) is called with these arguments. The intended use is to construct
a network of connections from a list of strings.

2.3.4 ZmqSocketURI

. ZmqSocketURI(socket) (function)

ZmqSocketURI returns the most recent URI to which socket has been bound or connected. Sock-
ets can be bound to or connected to multiple addresses, but only the most recent one is returned.

2.3.5 ZmqIsBound

. ZmqIsBound(socket) (function)

ZmqIsBound returns true if the socket has been bound to the address returned by
ZmqSocketURI(), false otherwise.

ZeroMQInterface 9

2.3.6 ZmqIsConnected

. ZmqIsConnected(socket) (function)

ZmqIsBound returns true if the socket has been connected to the address returned by
ZmqSocketURI(), false otherwise.

2.4 Sending and receiving messages

ZeroMQ allows the sending and receiving of both string messages and multi-part messages. String
messages are sequences of bytes (which can include zero), provided as a GAP string, while multi-part
messages are lists of strings, provided as a GAP list. Multi-part messages are largely a convenience
feature (e.g., to allow a message to have header parts without the inconvenience of having to encode
those in a single string). When sent, multi-part messages will be delivered in their entirety; they can
be retrieved one part at a time, but if the first part is available, the last part is available also.

2.4.1 ZmqSend

. ZmqSend(socket, data) (function)

ZmqSend will send data to socket, according to the routing behavior of the underlying socket
mechanism.

2.4.2 ZmqReceive

. ZmqReceive(socket) (function)

ZmqReceive will either retrieve a string message or a single part of a multi-part message from
socket and return the result as a GAP string.

Example
gap> z := ZmqSocket("inproc://test");;
gap> z2 := ZmqSocket("+inproc://test");;
gap> ZmqSend(z, "notice");
gap> ZmqReceive(z2);
"notice"
gap> ZmqSend(z, ["alpha", "beta"]);
gap> ZmqReceive(z2);
"alpha"
gap> ZmqReceive(z2);
"beta"

2.4.3 ZmqReceiveList

. ZmqReceiveList(socket) (function)

ZmqReceiveList will retrieve a message in its entirety from socket and return the result as a list
of strings.

ZeroMQInterface 10

Example
gap> z := ZmqPushSocket("inproc://test");;
gap> z2 := ZmqPullSocket("+inproc://test");;
gap> ZmqSend(z, "notice");
gap> ZmqReceiveList(z2);
["notice"]
gap> ZmqSend(z, ["alpha", "beta"]);
gap> ZmqReceiveList(z2);
["alpha", "beta"]

2.4.4 ZmqReceiveListAsString

. ZmqReceiveListAsString(socket, separator) (function)

ZmqReceiveListAsString works like ZmqReceiveList, but will return the result a single string,
with multiple parts separated by separator.

Example
gap> z := ZmqPushSocket("inproc://test");;
gap> z2 := ZmqPullSocket("+inproc://test");;
gap> ZmqSend(z, "notice");
gap> ZmqReceiveListAsString(z2, "::");
"notice"
gap> ZmqSend(z, ["alpha", "beta"]);
gap> ZmqReceiveListAsString(z2, "::");
"alpha::beta"

2.4.5 ZmqHasMore

. ZmqHasMore(socket) (function)

ZmqHasMore will return true if a socket has one or more remaining parts of a multi-part message
outstanding, false otherwise.

Example
gap> z := ZmqPushSocket("inproc://test");;
gap> z2 := ZmqPullSocket("+inproc://test");;
gap> ZmqSend(z, "notice");
gap> ZmqReceive(z2);
"notice"
gap> ZmqHasMore(z2);
false
gap> ZmqSend(z, ["alpha", "beta"]);
gap> ZmqReceive(z2);
"alpha"
gap> ZmqHasMore(z2);
true
gap> ZmqReceive(z2);
"beta"
gap> ZmqHasMore(z2);
false

ZeroMQInterface 11

2.4.6 ZmqPoll

. ZmqPoll(inputs, outputs, timeout) (function)

ZmqPoll is a facility to determine if messages can be received from one of the sockets listed in
inputs or sent to one of the sockets listed in outputs. It returns a list of indices describing the sock-
ets that at least one message can be received from or sent to. The timeout is an integer. If positive, it
describes a duration (in milliseconds) after which it will return. If zero, the function will return imme-
diately. If it is -1, then the function will block indefinitely until at least one message can be retrieved
from one of the sockets in inputs or at least one message can be sent to one of the sockets in outputs.
If the timeout is non-negative, the result can be the empty list. It is guaranteed to have at least one ele-
ment otherwise. The indices in the result are in the range [1..Length(inputs)+Length(outputs).
An index i less than or equal to Length(inputs) refers to the socket inputs[i]. An index
j in the range [Length(inputs)+1..Length(inputs)+Length(outputs) refers to the socket
outputs[j-Length(inputs)]. Multiple indices are listed in ascending order (i.e., they form a GAP
set).

Example
gap> send1 := ZmqPushSocket("inproc://#1");;
gap> recv1 := ZmqPullSocket("+inproc://#1");;
gap> send2 := ZmqPushSocket();;
gap> recv2 := ZmqPullSocket();;
gap> ZmqSetSendCapacity(send2, 1);
gap> ZmqSetReceiveCapacity(recv2, 1);
gap> ZmqBind(send2, "inproc://#2");
gap> ZmqConnect(recv2, "inproc://#2");
gap> ZmqSend(send2, "alpha");
gap> ZmqSend(send2, "beta");
gap> ZmqPoll([recv1, recv2], [send1, send2], 0);
[2, 3]

In the example above, the code constructs sockets send2 and recv2 with a capacity to store at most
one outgoing and incoming message, respectively. Then the code sends two messages to send2, one
of which will be in the incoming buffer of recv2, and the other will remain in the outgoing buffer
of send2. At this point, no more messages can be sent to send2, because its outgoing buffer is at
capacity, and recv2 has a message that can be received. Conversely, send1 can still accept outgoing
messages, and recv1 has no messages. Thus, the result is the list [2, 3]. The 2 refers to recv2
(as the second socket in the list of inputs), while 3 refers to send1 (as the first socket in the list of
outputs).

2.5 Setting and querying socket properties

Sockets have properties that can be set and queried. Most such properties only affect binds and con-
nects that occur after they have been set. Binding or connecting a socket first and then setting a
property will not change the behavior of the socket.

2.5.1 ZmqSetIdentity

. ZmqSetIdentity(socket, string) (function)

ZeroMQInterface 12

ZmqSetIdentity can be used to give the socket an identity. An identity is a string of up to 255
characters that should not start with a null character (the null character is reserved for internal use).
This identity should be globally unique. Uniqueness is not enforced, however, and undefined behavior
may result from different sockets with the same identity interacting.

2.5.2 ZmqGetIdentity

. ZmqGetIdentity(socket) (function)

ZmqGetIdentity returns the current identity of the socket.

2.5.3 ZmqSetSendCapacity

. ZmqSetSendCapacity(socket, value) (function)

ZmqSetSendCapacity sets the maximum number of messages that a socket can store in its out-
going buffer.

2.5.4 ZmqSetReceiveCapacity

. ZmqSetReceiveCapacity(socket, value) (function)

ZmqSetReceiveCapacity sets the maximum number of messages that a socket can store in its
outgoing buffer.

2.5.5 ZmqGetSendCapacity

. ZmqGetSendCapacity(socket) (function)

ZmqGetSendCapacity returns the maximum number of messages that a socket can store in its
outgoing buffer.

2.5.6 ZmqGetReceiveCapacity

. ZmqGetReceiveCapacity(socket) (function)

ZmqGetReceiveCapacity returns the maximum number of messages that a socket can store in
its incoming buffer.

2.5.7 ZmqSetSendBufferSize

. ZmqSetSendBufferSize(socket, size) (function)

ZmqSetSendBufferSize sets the size of the transmission buffer used by the underlying operating
system structure for sending data.

ZeroMQInterface 13

2.5.8 ZmqGetSendBufferSize

. ZmqGetSendBufferSize(socket) (function)

ZmqGetSendBufferSize returns the size of the transmission buffer used by the underlying oper-
ating system structure for sending data.

2.5.9 ZmqSetReceiveBufferSize

. ZmqSetReceiveBufferSize(socket, size) (function)

ZmqSetReceiveBufferSize sets the size of the transmission buffer used by the underlying oper-
ating system structure for receiving data.

2.5.10 ZmqGetReceiveBufferSize

. ZmqGetReceiveBufferSize(socket) (function)

ZmqGetReceiveBufferSize returns the size of the transmission buffer used by the underlying
operating system structure for receiving data.

2.5.11 ZmqSubscribe

. ZmqSubscribe(socket, prefix) (function)

The ZmqSubscribe function can only be used for Subscriber sockets. After calling it, only mes-
sages that begin with the given prefix string will be received by the subscriber. All others will be
silently discarded. The function can be used multiple times, and then all messages that match any of
the prefixes will be received.

2.5.12 ZmqUnsubscribe

. ZmqUnsubscribe(socket, prefix) (function)

The ZmqUnsubscribe function removes the given prefix string from the socket’s subscription list.

Chapter 3

Using ZeroMQ with the zgap script

The zgap script provides facilities to start a number of child processes controlled by a single master
process and to allow for easy coordination between them.

3.1 Running zgap

From the shell, run zgap via:
Example

bin/zgap -N <nodes> <gap_options> <gap_files>

Here, nodes should be a positive integer that describes the number of workers one wishes to start.
The rest of the command line, consisting of gap options and gap files, will be passed to the master and
the worker processes verbatim. This allows, for example, the initialization of functions that need to be
known by all workers. The first line of output will be prefixed with [zgap] and will list the directory
where zgap will store the files and sockets it uses to communicate. In particular, the logXX.txt files
within that directory will contain the output generated by the workers; this is useful for debugging, as
the workers do not have a working break loop. Example:

Example
bin/zgap -N 4 -P 8 -m 1G common.g

On NUMA architectures that support the numactl command, it is possible to further specify which
node each worker should be running on. This can take one of two forms:

Example
bin/zgap -N <count>:<start>-<end>
bin/zgap -N <count>:+<start>-<end>

Each will distribute count worker processes on the physical nodes ranging from start to end in a
round-robin fashion, reusing nodes if there are more workers than nodes. The first mode (without a
+ sign) will use absolute node numbers, the second will be relative to the master process. See the
numactl manual page for further details. Example:

Example
bin/zgap -N 4:+0-3 -P 8 -m 1G common.g

Note: Currently, zgap can only be run from the GAP root directory. This is an implementation
restriction that is to be removed at a later date.

14

ZeroMQInterface 15

3.2 Zgap API

Most of the following API functions take a dest argument, which is used to specify the destination
of the operation. To specify a worker thread, dest would have to be an integer in the range from 1 to
the number of worker processes; 0 specifies the master process. Multiple processes can be specified
by a range or list of integers. The variable ZAll contains a range encompassing the worker processes;
ZSelf contains the index of the current worker or 0 for the master.

3.2.1 ZExec

. ZExec(dest, cmd) (function)

This function sends cmd to the given destination and executes it there. The command must be a
valid GAP statement ending in a semicolon. If dest specifies multiple processes, the command will
be executed on all of them.

3.2.2 ZBind

. ZBind(dest, var, expr) (function)

This function binds the global variable described by the string var to the value expr in all pro-
cesses listed in dest. Note that expr must evaluate to a serializable value.

Example
gap> ZBind(ZAll, "counter", 0);

3.2.3 ZUnbind

. ZUnbind(dest, var) (function)

This function is the counterpart to ZBind. It will unbind var in all specified processes.
Example

gap> ZUnbind(ZAll, "status");

3.2.4 ZCall

. ZCall(dest, func, args) (function)

This function will execute the function specified by the string func in the specified processes.
The string func must be the name of a global variable referring to the function to be executed. This
function should be created at startup by adding a file to the commandline that defines it in all workers
or by ZExec.

Example
gap> ZBind(ZAll, "counter", 0);
gap> ZExec(Zall, "add := function(n) counter := counter + n; end;");
gap> ZCall(1, "add", [1]);

ZeroMQInterface 16

3.2.5 ZQuery

. ZQuery(dest, func, args, callback) (function)

This function works like ZCall, except that any return value will be passed to the callback func-
tion.

Example
gap> res := false;
false
gap> ZQuery(1, "ReturnTrue", [], function(x) res := x; end);
gap> res;
true

3.2.6 ZResponse

. ZResponse() (function)

ZResponse is a convenience function to construct blocking callbacks for ZCall and ZTask. It
returns a record containing a put, a get, and a test function. Here, put is passed as the callback;
get can be used to read the returned value; and test can be used to test for the presence of a value.

Example
gap> resp := ZResponse();;
gap> ZQuery(1, "Z", [4], resp.put);
gap> resp.get();
Z(2^2)
gap> resp.test();
true

3.2.7 ZTask

. ZTask(dest, func, args, callback) (function)

This function works like ZQuery, except that the function will be executed via a task and callback
will be called after the task finishes and returns a result.

3.2.8 ZAsync

. ZAsync(dest, func, args) (function)

This function works like ZCall, except that the function will be executed via a task.

3.2.9 ZRead

. ZRead(dest, file) (function)

This function does a Read(file) for all specified processes.

ZeroMQInterface 17

3.2.10 ZReadGapRoot

. ZReadGapRoot(dest, file) (function)

This function does a ReadGapRoot(file) for all specified processes.

Index

ZAsync, 16
ZBind, 15
ZCall, 15
ZExec, 15
ZmqAttach, 8
ZmqBind, 8
ZmqClose, 7
ZmqConnect, 8
ZmqDealerSocket, 7
ZmqGetIdentity, 12
ZmqGetReceiveBufferSize, 13
ZmqGetReceiveCapacity, 12
ZmqGetSendBufferSize, 13
ZmqGetSendCapacity, 12
ZmqHasMore, 10
ZmqIsBound, 8
ZmqIsConnected, 9
ZmqIsOpen, 7
ZmqPoll, 11
ZmqPublisherSocket, 6
ZmqPullSocket, 6
ZmqPushSocket, 6
ZmqReceive, 9
ZmqReceiveList, 9
ZmqReceiveListAsString, 10
ZmqReplySocket, 6
ZmqRequestSocket, 6
ZmqRouterSocket, 7
ZmqSend, 9
ZmqSetIdentity, 11
ZmqSetReceiveBufferSize, 13
ZmqSetReceiveCapacity, 12
ZmqSetSendBufferSize, 12
ZmqSetSendCapacity, 12
ZmqSocket, 7
ZmqSocketType, 8
ZmqSocketURI, 8
ZmqSubscribe, 13

ZmqSubscriberSocket, 7
ZmqUnsubscribe, 13
ZQuery, 16
ZRead, 16
ZReadGapRoot, 17
ZResponse, 16
ZTask, 16
ZUnbind, 15

18

	Introduction
	Purpose and goals of this package
	Overview over this manual
	Installation
	Feedback

	ZeroMQ Bindings
	Addresses, transports, and URIs
	Creating and closing sockets
	Binding and connecting sockets to addresses
	Sending and receiving messages
	Setting and querying socket properties

	Using ZeroMQ with the zgap script
	Running zgap
	Zgap API

	Index

