asyncpg Documentation
Release 0.27.0

<See AUTHORS file>

Oct 29, 2022

CONTENTS

1 Contents 3
1.1 Installation o L e e e e e e e e e e e e 3
1.2 asynepg Usage o o e e e e e e e e e 4
1.3 APIReference e e e e e 9
1.4 Frequently Asked QUestions e e e e e e e e 37
Python Module Index 39
Index 41

asyncpg Documentation, Release 0.27.0

asyncpg is a database interface library designed specifically for PostgreSQL and Python/asyncio. asyncpg is an effi-
cient, clean implementation of PostgreSQL server binary protocol for use with Python’s asyncio framework.

asyncpg requires Python 3.7 or later and is supported for PostgreSQL versions 9.5 to 15. Older PostgreSQL versions
or other databases implementing the PostgreSQL protocol may work, but are not being actively tested.

CONTENTS 1

https://travis-ci.org/MagicStack/asyncpg
https://pypi.python.org/pypi/asyncpg

asyncpg Documentation, Release 0.27.0

2 CONTENTS

CHAPTER
ONE

CONTENTS

1.1 Installation

asyncpg has no external dependencies and the recommended way to install it is to use pip:

$ pip install asyncpg

Note: It is recommended to use pip version 8.1 or later to take advantage of the precompiled wheel packages. Older
versions of pip will ignore the wheel packages and install asyncpg from the source package. In that case a working C
compiler is required.

1.1.1 Building from source

If you want to build asynepg from a Git checkout you will need:
* To have cloned the repo with —recurse-submodules.
* A working C compiler.

* CPython header files. These can usually be obtained by installing the relevant Python development package:
python3-dev on Debian/Ubuntu, python3-devel on RHEL/Fedora.

Once the above requirements are satisfied, run the following command in the root of the source checkout:

$ pip install -e .

A debug build containing more runtime checks can be created by setting the ASYNCPG_DEBUG environment variable
when building:

$ env ASYNCPG_DEBUG=1 pip install -e .

asyncpg Documentation, Release 0.27.0

1.1.2 Running tests

If you want to run tests you must have PostgreSQL installed.

To execute the testsuite run:

$ python setup.py test

1.2 asyncpg Usage

The interaction with the database normally starts with a call to connect (), which establishes a new database session
and returns a new Connection instance, which provides methods to run queries and manage transactions.

import asyncio
import asyncpg
import datetime

async def main(Q):
Establish a connection to an existing database named "test"
as a '"postgres" user.
conn = await asyncpg.connect('postgresql://postgres@localhost/test')
Execute a statement to create a new table.
await conn.execute('''
CREATE TABLE users(
id serial PRIMARY KEY,
name text,
dob date
)
D

Insert a record into the created table.
await conn.execute('''

INSERT INTO users(name, dob) VALUES($1, $2)
""" 'Bob', datetime.date(1984, 3, 1))

Select a row from the table.
row = await conn.fetchrow(
'SELECT * FROM users WHERE name = $1', 'Bob')
row now contains
asyncpg.Record(id=1, name='Bob', dob=datetime.date(1984, 3, 1))

Close the connection.
await conn.close()

asyncio.get_event_loop() .run_until_complete(main())

Note: asyncpg uses the native PostgreSQL syntax for query arguments: $n.

4 Chapter 1. Contents

asyncpg Documentation, Release 0.27.0

1.2.1 Type Conversion

asyncpg automatically converts PostgreSQL types to the corresponding Python types and vice versa. All standard data
types are supported out of the box, including arrays, composite types, range types, enumerations and any combination of
them. It is possible to supply codecs for non-standard types or override standard codecs. See Custom Type Conversions
for more information.

The table below shows the correspondence between PostgreSQL and Python types.

PostgreSQL Type Python Type

anyarray list

anyenum str

anyrange asyncpg.Range, tuple

anymultirange list[asyncpg.Range], list[tuple]!

record asyncpg.Record, tuple, Mapping

bit, varbit asyncpg.BitString

bool bool

box asyncpg . Box

bytea bytes

char, name, varchar, text, xml str

cidr ipaddress.IPv4Network, ipaddress.
IPv6Network

inet ipaddress.IPv4Interface, ipaddress.
IPv6Interface, ipaddress.IPv4Address,
ipaddress.IPv6Address?

macaddr str

circle asyncpg.Circle

date datetime.date

time offset-naive datetime. time

time with time zone offset-aware datetime.time

timestamp offset-naive datetime.datetime

timestamp with time zone offset-aware datetime.datetime

interval datetime.timedelta

float, double precision float’

smallint, integer, bigint int

numeric Decimal

json, jsonb str

line asyncpg.Line

1seg asyncpg.LineSegment

money str

path asyncpg.Path

point asyncpg.Point

polygon asyncpg.Polygon

uuid uuid.UUID

tid tuple

All other types are encoded and decoded as text by default.

! Since version 0.25.0

2 Prior to version 0.20.0, asyncpg erroneously treated inet values with prefix as IPvXNetwork instead of IPvXInterface.

3 Inexact single-precision float values may have a different representation when decoded into a Python float. This is inherent to the implemen-
tation of limited-precision floating point types. If you need the decimal representation to match, cast the expression to double or numeric in your

query.

1.2. asyncpg Usage 5

asyncpg Documentation, Release 0.27.0

1.2.2 Custom Type Conversions

asyncpg allows defining custom type conversion functions both for standard and user-defined types using the
Connection.set_type_codec() and Connection.set_builtin_type_codec() methods.

Example: automatic JSON conversion

The example below shows how to configure asyncpg to encode and decode JSON values using the json module.

import asyncio
import asyncpg
import json

async def main(Q):
conn = await asyncpg.connect()

try:
await conn.set_type_codec(
'json',
encoder=json.dumps,
decoder=json.loads,
schema="pg_catalog'

)

data = {'foo': 'bar', 'spam': 1}
res = await conn.fetchval ('SELECT $1::json', data)

finally:
await conn.close()

asyncio.get_event_loop() .run_until_complete(main())

Example: automatic conversion of PostGIS types

The example below shows how to configure asyncpg to encode and decode the PostGIS geometry type. It works
for any Python object that conforms to the geo interface specification and relies on Shapely, although any library that
supports reading and writing the WKB format will work.

import asyncio
import asyncpg

import shapely.geometry
import shapely.wkb
from shapely.geometry.base import BaseGeometry

async def main():
conn = await asyncpg.connect()

try:
def encode_geometry(geometry):

(continues on next page)

6 Chapter 1. Contents

https://gist.github.com/sgillies/2217756
https://github.com/Toblerity/Shapely

asyncpg Documentation, Release 0.27.0

(continued from previous page)

__geo_interface__"'):

if not hasattr(geometry,
raise TypeError(' does not conform to
"the geo interface'.format(g=geometry))
shape = shapely.geometry.asShape(geometry)
return shapely.wkb.dumps(shape)

def decode_geometry(wkb):
return shapely.wkb.loads (wkb)

await conn.set_type_codec(
'geometry', # also works for 'geography’
encoder=encode_geometry,
decoder=decode_geometry,
format="binary',

data = shapely.geometry.Point(-73.985661, 40.748447)
res = await conn.fetchrow(
"SELECT 'Empire State Building' AS name,
$1::geometry AS coordinates

"
’

data)
print(res)

finally:
await conn.close()

asyncio.get_event_loop() .run_until_complete(main())

Example: decoding numeric columns as floats

By default asyncpg decodes numeric columns as Python Decimal instances. The example below shows how to instruct
asyncpg to use floats instead.

import asyncio
import asyncpg

async def main():
conn = await asyncpg.connect()

try:
await conn.set_type_codec(
'numeric', encoder=str, decoder=float,
schema="pg_catalog', format='text'

res = await conn.fetchval ("SELECT $1::numeric", 11.123)
print(res, type(res))

(continues on next page)

1.2. asyncpg Usage 7

asyncpg Documentation, Release 0.27.0

(continued from previous page)

finally:
await conn.close()

asyncio.get_event_loop().run_until_complete(main())

Example: decoding hstore values

hstore is an extension data type used for storing key/value pairs. asyncpg includes a codec to decode and encode hstore
values as dict objects. Because hstore is not a builtin type, the codec must be registered on a connection using
Connection.set_builtin_type_codec():

import asyncpg
import asyncio

async def run(Q):
conn = await asyncpg.connect()
Assuming the hstore extension exists in the public schema.
await conn.set_builtin_type_codec(
'hstore', codec_name='pg_contrib.hstore")
result = await conn.fetchval ("SELECT 'a=>1,b=>2,c=>NULL'::hstore")
assert result == {'a': '1"', 'b': "2', 'c': None}

asyncio.get_event_loop() .run_until_complete(run())

1.2.3 Transactions

To create transactions, the Connection. transaction() method should be used.

The most common way to use transactions is through an async with statement:

async with connection.transaction():
await connection.execute("INSERT INTO mytable VALUES(1, 2, 3)")

Note: When not in an explicit transaction block, any changes to the database will be applied immediately. This is also
known as auto-commit.

See the Transactions API documentation for more information.

1.2.4 Connection Pools

For server-type type applications, that handle frequent requests and need the database connection for a short period
time while handling a request, the use of a connection pool is recommended. asyncpg provides an advanced pool
implementation, which eliminates the need to use an external connection pooler such as PgBouncer.

To create a connection pool, use the asyncpg. create_pool () function. The resulting Pool object can then be used
to borrow connections from the pool.

Below is an example of how asyncpg can be used to implement a simple Web service that computes the requested
power of two.

8 Chapter 1. Contents

https://www.postgresql.org/docs/current/static/hstore.html

asyncpg Documentation, Release 0.27.0

import asyncio
import asyncpg
from aiohttp import web

async def handle(request):
"""Handle incoming requests.
pool = request.appl['pool']
power = int(request.match_info.get('power', 10))

o

Take a connection from the pool.
async with pool.acquire() as connection:
Open a transaction.
async with connection.transaction():
Run the query passing the request argument.
result = await connection.fetchval('select 2 * §1', power)
return web.Response(
text="2 A is ".format (power, result))

async def init_app(Q:
"""Initialize the application server.
app = web.Application()
Create a database connection pool
app['pool'] = await asyncpg.create_pool(database='postgres',
user="postgres"')

i

Configure service routes
app.router.add_route('GET', '/{power:\d+}', handle)
app.router.add_route('GET', '/', handle)

return app

loop = asyncio.get_event_loop()
app = loop.run_until_complete(init_app())
web . run_app (app)

See Connection Pools API documentation for more information.

1.3 API Reference

1.3.1 Connection

async connect (dsn=None, *, host=None, port=None, user=None, password=None, passfile=None,
database=None, loop=None, timeout=60, statement_cache_size=100,
max_cached_statement_lifetime=300, max_cacheable_statement_size=15360,
command_timeout=None, ssl=None, direct_tls=False, connection_class=<class
‘asyncpg.connection.Connection'>, record_class=<class 'asyncpg.Record'>,
server_settings=None)

A coroutine to establish a connection to a PostgreSQL server.

The connection parameters may be specified either as a connection URI in dsn, or as specific keyword arguments,
or both. If both dsn and keyword arguments are specified, the latter override the corresponding values parsed

1.3. API Reference 9

asyncpg Documentation, Release 0.27.0

from the connection URI. The default values for the majority of arguments can be specified using environment
variables.

Returns a new Connection object.
Parameters

* dsn - Connection arguments specified using as a single string in the libpq connection URI
format: postgres://user:password@host:port/database?option=value. The fol-
lowing options are recognized by asyncpg: host, port, user, database (or dbname),
password, passfile, sslmode, sslcert, sslkey, sslrootcert, and sslcrl. Unlike
libpq, asyncpg will treat unrecognized options as server settings to be used for the connec-
tion.

Note: The URI must be valid, which means that all components must be properly quoted
with urllib.parse.quote(), and any literal IPv6 addresses must be enclosed in square
brackets. For example:

postgres://dbuser@[fe80::1ff:fe23:4567:890a%25eth0]/dbname

* host — Database host address as one of the following:

an IP address or a domain name;

an absolute path to the directory containing the database server Unix-domain socket (not
supported on Windows);

a sequence of any of the above, in which case the addresses will be tried in order, and the
first successful connection will be returned.

If not specified, asyncpg will try the following, in order:

host address(es) parsed from the dsn argument,
— the value of the PGHOST environment variable,

— on Unix, common directories used for PostgreSQL Unix-domain sockets: "/run/

postgresql", "/var/run/postgresl”, "/var/pgsql_socket", "/private/tmp",
and "/tmp",

— "localhost".

e port — Port number to connect to at the server host (or Unix-domain socket file extension).
If multiple host addresses were specified, this parameter may specify a sequence of port
numbers of the same length as the host sequence, or it may specify a single port number to
be used for all host addresses.

If not specified, the value parsed from the dsn argument is used, or the value of the PGPORT
environment variable, or 5432 if neither is specified.

¢ user — The name of the database role used for authentication.

If not specified, the value parsed from the dsn argument is used, or the value of the PGUSER
environment variable, or the operating system name of the user running the application.

* database — The name of the database to connect to.

If not specified, the value parsed from the dsn argument is used, or the value of the
PGDATABASE environment variable, or the computed value of the user argument.

10 Chapter 1. Contents

https://www.postgresql.org/docs/current/static/libpq-envars.html
https://www.postgresql.org/docs/current/static/libpq-envars.html
https://www.postgresql.org/docs/current/static/libpq-connect.html#LIBPQ-CONNSTRING
https://www.postgresql.org/docs/current/static/libpq-connect.html#LIBPQ-CONNSTRING
https://www.postgresql.org/docs/current/static/runtime-config.html

asyncpg Documentation, Release 0.27.0

password — Password to be used for authentication, if the server requires one. If not spec-
ified, the value parsed from the dsn argument is used, or the value of the PGPASSWORD en-
vironment variable. Note that the use of the environment variable is discouraged as other
users and applications may be able to read it without needing specific privileges. It is rec-
ommended to use passfile instead.

Password may be either a string, or a callable that returns a string. If a callable is provided,
it will be called each time a new connection is established.

» passfile — The name of the file used to store passwords (defaults to ~/.pgpass, or
%APPDATA%\postgresql\pgpass.conf on Windows).

* loop — An asyncio event loop instance. If None, the default event loop will be used.

timeout (float)— Connection timeout in seconds.

» statement_cache_size (int) — The size of prepared statement LRU cache. Pass 0 to
disable the cache.

max_cached_statement_lifetime (int) — The maximum time in seconds a prepared
statement will stay in the cache. Pass 0 to allow statements be cached indefinitely.

e max_cacheable_statement_size (int) — The maximum size of a statement that can be
cached (15KiB by default). Pass @ to allow all statements to be cached regardless of their
size.

e command_timeout (float) — The default timeout for operations on this connection (the
default is None: no timeout).

* ssl — Pass True or an ssl.SSLContext instance to require an SSL connection. If True, a
default SSL context returned by ssl.create_default_context() will be used. The value can
also be one of the following strings:

'disable' - SSL is disabled (equivalent to False)
— 'prefer' - try SSL first, fallback to non-SSL connection if SSL connection fails

— 'allow' - try without SSL first, then retry with SSL if the first attempt fails.

'require’ - only try an SSL connection. Certificate verification errors are ignored

'verify-ca' - only try an SSL connection, and verify that the server certificate is issued
by a trusted certificate authority (CA)

— 'verify-full' - only try an SSL connection, verify that the server certificate is issued
by a trusted CA and that the requested server host name matches that in the certificate.

The default is 'prefer': try an SSL connection and fallback to non-SSL connection if that
fails.

Note: ss/ is ignored for Unix domain socket communication.

Example of programmatic SSL context configuration that is equivalent to
sslmode=verify-full&sslcert=..&sslkey=..&sslrootcert=..:

>>> import asyncpg
>>> import asyncio
>>> import ssl
>>> async def main(Q):
Load CA bundle for server certificate verification,

(continues on next page)

1.3. API Reference 11

https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/ssl.html#ssl.create_default_context

asyncpg Documentation, Release 0.27.0

(continued from previous page)

equivalent to sslrootcert= in DSN.

sslctx = ssl.create_default_context(
ssl.Purpose.SERVER_AUTH,
cafile="path/to/ca_bundle.pem")

If True, equivalent to sslmode=verify-full, if False:

sslmode=verify-ca.

sslctx.check_hostname = True

Load client certificate and private key for client

authentication, equivalent to sslcert= and sslkey= in

DSN.

sslctx.load_cert_chain(
"path/to/client.cert",
keyfile="path/to/client.key",

)

con = await asyncpg.connect(user='postgres', ssl=sslctx)

await con.close()

>>> asyncio.run(run())

Example of programmatic SSL context configuration that is equivalent to
sslmode=require (no server certificate or host verification):

>>> import asyncpg

>>> import asyncio

>>> import ssl

>>> async def main(Q):
sslctx = ssl.create_default_context(

ssl.Purpose.SERVER_AUTH)

sslctx.check_hostname = False
sslctx.verify_mode = ssl.CERT_NONE
con = await asyncpg.connect(user='postgres', ssl=sslctx)

e await con.close()

>>> asyncio.run(run())

» direct_tls (bool)—Pass True to skip PostgreSQL STARTTLS mode and perform a direct
SSL connection. Must be used alongside ss1 param.

* server_settings (dict) — An optional dict of server runtime parameters. Refer to Post-
greSQL documentation for a list of supported options.

» connection_class (type) — Class of the returned connection object. Must be a subclass
of Connection.

» record_class (type) — If specified, the class to use for records returned by queries on this
connection object. Must be a subclass of Record.

Returns
A Connection instance.

Example:

>>> import asyncpg

>>> import asyncio

>>> async def run(Q):
con = await asyncpg.connect(user='postgres')
types = await con.fetch('SELECT * FROM pg_type')

(continues on next page)

12 Chapter 1. Contents

https://www.postgresql.org/docs/current/static/runtime-config.html

asyncpg Documentation, Release 0.27.0

(continued from previous page)

print (types)

>>> asyncio.get_event_loop().run_until_complete(run())
[<Record typname='bool' typnamespace=11 ...

New in version 0.10.0: Added max_cached_statement_use_count parameter.

Changed in version 0.11.0: Removed ability to pass arbitrary keyword arguments to set server settings. Added a
dedicated parameter server_settings for that.

New in version 0.11.0: Added connection_class parameter.

New in version 0.16.0: Added passfile parameter (and support for password files in general).
New in version 0.18.0: Added ability to specify multiple hosts in the dsn and host arguments.
Changed in version 0.21.0: The password argument now accepts a callable or an async function.
Changed in version 0.22.0: Added the record_class parameter.

Changed in version 0.22.0: The ss/ argument now defaults to 'prefer’.

Changed in version 0.24.0: The sslcert, sslkey, sslrootcert, and sslcrl options are supported in the dsn
argument.

Changed in version 0.25.0: The sslpassword, ssl_min_protocol_version, and
ssl_max_protocol_version options are supported in the dsn argument.

Changed in version 0.25.0: Default system root CA certificates won’t be loaded when specifying a particular
sslmode, following the same behavior in libpq.

Changed in version 0.25.0: The sslcert, sslkey, sslrootcert, and sslcrl options in the dsn argument now
have consistent default values of files under ~/.postgresql/ as libpq.

Changed in version 0.26.0: Added the direct_tls parameter.

class Connection(protocol, transport, loop, addr, config: ConnectionConfiguration, params:

ConnectionParameters)

A representation of a database session.
Connections are created by calling connect ().

coroutine add_listener (channel, callback)

Add a listener for Postgres notifications.
Parameters
¢ channel (str) — Channel to listen on.

¢ callback (callable) — A callable or a coroutine function receiving the following argu-
ments: connection: a Connection the callback is registered with; pid: PID of the Postgres
server that sent the notification; channel: name of the channel the notification was sent to;
payload: the payload.

Changed in version 0.24.0: The callback argument may be a coroutine function.

add_log_listener (callback)

Add a listener for Postgres log messages.

It will be called when asyncronous NoticeResponse is received from the connection. Possible message
types are: WARNING, NOTICE, DEBUG, INFO, or LOG.

1.3.

API Reference 13

asyncpg Documentation, Release 0.27.0

Parameters
callback (callable) — A callable or a coroutine function receiving the following argu-
ments: connection: a Connection the callback is registered with; message: the excep-
tions.PostgresLogMessage message.

New in version 0.12.0.
Changed in version 0.24.0: The callback argument may be a coroutine function.

add_termination_listener (callback)
Add a listener that will be called when the connection is closed.

Parameters
callback (callable)— A callable or a coroutine function receiving one argument: connec-
tion: a Connection the callback is registered with.

New in version 0.21.0.
Changed in version 0.24.0: The callback argument may be a coroutine function.

coroutine close(*, timeout=None)
Close the connection gracefully.

Parameters
timeout (float) — Optional timeout value in seconds.

Changed in version 0.14.0: Added the timeout parameter.

coroutine copy_from_query (query, *args, output, timeout=None, format=None, oids=None,
delimiter=None, null=None, header=None, quote=None, escape=None,
force_quote=None, encoding=None)

Copy the results of a query to a file or file-like object.
Parameters
* query (str) — The query to copy the results of.
e args — Query arguments.

* output — A path-like object, or a file-like object, or a coroutine function that takes a bytes
instance as a sole argument.

¢ timeout (float) — Optional timeout value in seconds.

The remaining keyword arguments are COPY statement options, see COPY statement documentation for

details.

Returns
The status string of the COPY command.

Example:

>>> import asyncpg
>>> import asyncio
>>> async def run(Q):
con = await asyncpg.connect(user='postgres')
result = await con.copy_from_query(
'SELECT foo, bar FROM mytable WHERE foo > $1', 10,
output="file.csv', format='csv')
print(result)

(continues on next page)

14 Chapter 1. Contents

https://www.postgresql.org/docs/current/static/sql-copy.html

asyncpg Documentation, Release 0.27.0

(continued from previous page)

>>> asyncio.get_event_loop().run_until_complete(run())
'COPY 10'

New in version 0.11.0.

coroutine copy_from_table (table_name, *, output, columns=None, schema_name=None, timeout=None,
format=None, oids=None, delimiter=None, null=None, header=None,
quote=None, escape=None, force_quote=None, encoding=None)

Copy table contents to a file or file-like object.
Parameters
* table_name (str)— The name of the table to copy data from.

* output — A path-like object, or a file-like object, or a coroutine function that takes a bytes
instance as a sole argument.

e columns (1ist)— An optional list of column names to copy.
* schema_name (str) — An optional schema name to qualify the table.
¢ timeout (float)— Optional timeout value in seconds.

The remaining keyword arguments are COPY statement options, see COPY statement documentation for
details.

Returns
The status string of the COPY command.

Example:

>>> import asyncpg

>>> import asyncio

>>> async def run(Q):
con = await asyncpg.connect(user='postgres')
result = await con.copy_from_table(

'mytable', columns=('foo', 'bar'),
output="file.csv', format='csv')
print(result)

>>> asyncio.get_event_loop().run_until_complete(run())
'COPY 100

New in version 0.11.0.

coroutine copy_records_to_table(table_name, *, records, columns=None, schema_name=None,
timeout=None)

Copy a list of records to the specified table using binary COPY.
Parameters
¢ table_name (str)— The name of the table to copy data to.

¢ records — An iterable returning row tuples to copy into the table. Asynchronous iterables
are also supported.

¢ columns (1ist)— An optional list of column names to copy.
* schema_name (str) — An optional schema name to qualify the table.

¢ timeout (float) — Optional timeout value in seconds.

. API Reference 15

https://www.postgresql.org/docs/current/static/sql-copy.html

asyncpg Documentation, Release 0.27.0

Returns
The status string of the COPY command.

Example:

>>> import asyncpg
>>> import asyncio
>>> async def run():
con = await asyncpg.connect(user='postgres')
result = await con.copy_records_to_table(
'mytable', records=[
(1, '"foo', 'bar'),
(2, 'ham', 'spam')])
print(result)

>>> asyncio.get_event_loop().run_until_complete(run())
'COPY 2'

Asynchronous record iterables are also supported:

>>> import asyncpg
>>> import asyncio
>>> async def run(Q):
con = await asyncpg.connect(user='postgres')
async def record_gen(size):
for i in range(size):
yield (i,)
result = await con.copy_records_to_table(
'mytable', records=record_gen(100))
print(result)

>>> asyncio.get_event_loop().run_until_complete(run())
'COPY 100'

New in version 0.11.0.
Changed in version 0.24.0: The records argument may be an asynchronous iterable.

coroutine copy_to_table(table_name, *, source, columns=None, schema_name=None, timeout=None,
format=None, oids=None, freeze=None, delimiter=None, null=None,
header=None, quote=None, escape=None, force_quote=None,
force_not_null=None, force_null=None, encoding=None)

Copy data to the specified table.
Parameters
* table_name (str)— The name of the table to copy data to.

» source — A path-like object, or a file-like object, or an asynchronous iterable that returns
bytes, or an object supporting the buffer protocol.

¢ columns (1ist)— An optional list of column names to copy.
* schema_name (str) — An optional schema name to qualify the table.
¢ timeout (float)— Optional timeout value in seconds.

The remaining keyword arguments are COPY statement options, see COPY statement documentation for
details.

16 Chapter 1. Contents

https://www.postgresql.org/docs/current/static/sql-copy.html

asyncpg Documentation, Release 0.27.0

Returns
The status string of the COPY command.

Example:

>>> import asyncpg
>>> import asyncio
>>> async def run():
con = await asyncpg.connect(user='postgres')
result = await con.copy_to_table(
'mytable', source='datafile.tbhl")
print(result)

>>> asyncio.get_event_loop().run_until_complete(run())
'COPY 140000

New in version 0.11.0.

cursor (query, *args, prefetch=None, timeout=None, record_class=None)

Return a cursor factory for the specified query.
Parameters
e args — Query arguments.
» prefetch (int) — The number of rows the cursor iterator will prefetch (defaults to 50.)
¢ timeout (float) — Optional timeout in seconds.

e record_class (type) — If specified, the class to use for records returned by this cursor.
Must be a subclass of Record. If not specified, a per-connection record_class is used.

Returns
A CursorFactory object.

Changed in version 0.22.0: Added the record_class parameter.

coroutine execute(query: str, *args, timeout: float = None) — str

Execute an SQL command (or commands).
This method can execute many SQL commands at once, when no arguments are provided.

Example:

>>> await con.execute('''

CREATE TABLE mytab (a int);

INSERT INTO mytab (a) VALUES (100), (200), (300);
D)
INSERT O 3
>>> await con.execute('''

INSERT INTO mytab (a) VALUES ($1), ($2)

v 10, 20)

INSERT O 2

Parameters
e args — Query arguments.

¢ timeout (float)— Optional timeout value in seconds.

1.3.

API Reference 17

asyncpg Documentation, Release 0.27.0

Return str
Status of the last SQL command.
Changed in version 0.5.4: Made it possible to pass query arguments.

coroutine executemany (command: str,args, *, timeout: float = None)

Execute an SQL command for each sequence of arguments in args.

Example:

>>> await con.executemany('"'
INSERT INTO mytab (a) VALUES ($1, $2, $3);
"ty [, 2, 3), 4, 5, 60D

Parameters
¢ command — Command to execute.
e args — An iterable containing sequences of arguments.
e timeout (float) — Optional timeout value in seconds.
Return None
This method discards the results of the operations.
New in version 0.7.0.
Changed in version 0.11.0: timeout became a keyword-only parameter.

Changed in version 0.22.0: executemany () is now an atomic operation, which means that either all exe-
cutions succeed, or none at all. This is in contrast to prior versions, where the effect of already-processed
iterations would remain in place when an error has occurred, unless executemany () was called in a trans-
action.

coroutine fetch(query, *args, timeout=None, record_class=None) — list

Run a query and return the results as a list of Record.
Parameters
* query (str) — Query text.
e args — Query arguments.
¢ timeout (float)— Optional timeout value in seconds.

e record_class (type) — If specified, the class to use for records returned by this method.
Must be a subclass of Record. If not specified, a per-connection record_class is used.

Return list
Alistof Record instances. If specified, the actual type of list elements would be record_class.

Changed in version 0.22.0: Added the record_class parameter.

coroutine fetchrow(query, *args, timeout=None, record_class=None)

Run a query and return the first row.
Parameters
e query (str) — Query text
e args — Query arguments

¢ timeout (float) — Optional timeout value in seconds.

18 Chapter 1. Contents

asyncpg Documentation, Release 0.27.0

» record_class (type) - If specified, the class to use for the value returned by this method.
Must be a subclass of Record. If not specified, a per-connection record_class is used.

Returns
The first row as a Record instance, or None if no records were returned by the query. If
specified, record_class is used as the type for the result value.

Changed in version 0.22.0: Added the record_class parameter.

coroutine fetchval (query, *args, column=0, timeout=None)

Run a query and return a value in the first row.
Parameters
* query (str) — Query text.
* args — Query arguments.
e column (int) — Numeric index within the record of the value to return (defaults to 0).

e timeout (float) — Optional timeout value in seconds. If not specified, defaults to the
value of command_timeout argument to the Connection instance constructor.

Returns

The value of the specified column of the first record, or None if no records were returned by
the query.

get_server_pid()
Return the PID of the Postgres server the connection is bound to.

get_server_version()

Return the version of the connected PostgreSQL server.

The returned value is a named tuple similar to that in sys.version_info:

>>> con.get_server_version()
ServerVersion(major=9, minor=6, micro=1,
releaselevel="final', serial=0)

New in version 0.8.0.
get_settings()
Return connection settings.

Returns
ConnectionSettings.

is_closed()
Return True if the connection is closed, False otherwise.

Return bool
True if the connection is closed, False otherwise.

is_in_transaction()

Return True if Connection is currently inside a transaction.

Return bool
True if inside transaction, False otherwise.

New in version 0.16.0.

1.3. API Reference 19

asyncpg Documentation, Release 0.27.0

coroutine prepare(query, *, name=None, timeout=None, record_class=None)

Create a prepared statement for the specified query.
Parameters
* query (str) — Text of the query to create a prepared statement for.

* name (str)— Optional name of the returned prepared statement. If not specified, the name
is auto-generated.

¢ timeout (float) — Optional timeout value in seconds.

e record_class (type) — If specified, the class to use for records returned by the prepared
statement. Must be a subclass of Record. If not specified, a per-connection record_class
is used.

Returns
A PreparedStatement instance.

Changed in version 0.22.0: Added the record_class parameter.

Changed in version 0.25.0: Added the name parameter.

coroutine reload_schema_state()

Indicate that the database schema information must be reloaded.

For performance reasons, asyncpg caches certain aspects of the database schema, such as the layout of
composite types. Consequently, when the database schema changes, and asyncpg is not able to gracefully
recover from an error caused by outdated schema assumptions, an OutdatedSchemaCacheError is raised.
To prevent the exception, this method may be used to inform asyncpg that the database schema has changed.

Example:

>>> import asyncpg
>>> import asyncio
>>> async def change_type(con):
result = await con.fetch('SELECT id, info FROM thl')
Change composite's attribute type "int"=>"text"
await con.execute('ALTER TYPE custom DROP ATTRIBUTE y')
await con.execute('ALTER TYPE custom ADD ATTRIBUTE y text')
await con.reload_schema_state()
for id_, info in result:
new = (info['x'], str(infol['y']))
await con.execute(
'UPDATE tbl SET info=$2 WHERE id=$1', id_, new)

>>> async def run(Q):

Initial schema:

CREATE TYPE custom AS (x int, y int);

CREATE TABLE tbl(id int, info custom);

con = await asyncpg.connect(user='postgres')

async with con.transaction():
Prevent concurrent changes in the table
await con.execute('LOCK TABLE tbhl")
await change_type(con)

>>> asyncio.get_event_loop().run_until_complete(run())

New in version 0.14.0.

20

Chapter 1. Contents

asyncpg Documentation, Release 0.27.0

coroutine remove_listener (channel, callback)

Remove a listening callback on the specified channel.

remove_log_listener (callback)

Remove a listening callback for log messages.
New in version 0.12.0.

remove_termination_listener (callback)

Remove a listening callback for connection termination.

Parameters
callback (callable)— The callable or coroutine function that was passed to Connection.
add_termination_listener().

New in version 0.21.0.

coroutine reset_type_codec(typename, *, schema='public")
Reset typename codec to the default implementation.

Parameters
* typename — Name of the data type the codec is for.
» schema — Schema name of the data type the codec is for (defaults to 'public')
New in version 0.12.0.

coroutine set_builtin_type_codec (typename, *, schema="public', codec_name, format=None)
Set a builtin codec for the specified scalar data type.

This method has two uses. The first is to register a builtin codec for an extension type without a stable OID,
such as ‘hstore’. The second use is to declare that an extension type or a user-defined type is wire-compatible
with a certain builtin data type and should be exchanged as such.

Parameters
* typename — Name of the data type the codec is for.
» schema — Schema name of the data type the codec is for (defaults to 'public').

» codec_name — The name of the builtin codec to use for the type. This should be either the
name of a known core type (such as "int"), or the name of a supported extension type.
Currently, the only supported extension type is "pg_contrib.hstore".

o format — If format is None (the default), all formats supported by the target codec are
declared to be supported for typename. If format is 'text' or 'binary', then only the
specified format is declared to be supported for typename.

Changed in version 0.18.0: The codec_name argument can be the name of any known core data type. Added
the format keyword argument.

coroutine set_type_codec (typename, *, schema="public’, encoder, decoder, format="text")
Set an encoder/decoder pair for the specified data type.

Parameters
* typename — Name of the data type the codec is for.
¢ schema — Schema name of the data type the codec is for (defaults to 'public')

» format — The type of the argument received by the decoder callback, and the type of the
encoder callback return value.

1.3.

API Reference 21

asyncpg Documentation, Release 0.27.0

If format is 'text' (the default), the exchange datum is a str instance containing valid
text representation of the data type.

If format is 'binary', the exchange datum is a bytes instance containing valid _binary_
representation of the data type.

If format is 'tuple’, the exchange datum is a type-specific tuple of values. The table
below lists supported data types and their format for this mode.

Type Tuple layout

interval (months, days, microseconds)

date (date ordinal relative to Jan 1 2000,) -2431 for nega-
tive infinity timestamp 2431-1 for positive infinity timestamp.

timestamp (microseconds relative to Jan 1 2000,) -2463 for nega-
tive infinity timestamp 2463-1 for positive infinity timestamp.

timestamp (microseconds relative to Jan 1 2000 UTC,) -2463 for

with time negative infinity timestamp 2463-1 for positive infinity timestamp.

zone

time (microseconds,)

time with (microseconds, time zone offset in seconds)

time zone

* encoder - Callable accepting a Python object as a single argument and returning a value
encoded according to format.

* decoder - Callable accepting a single argument encoded according to format and returning
a decoded Python object.

Example:

>>>
>>>
>>>
>>>
>>>

import asyncpg
import asyncio
import datetime
from dateutil.relativedelta import relativedelta
async def run(Q):
con = await asyncpg.connect(user='postgres')
def encoder(delta):
ndelta = delta.normalized()
return (ndelta.years * 12 + ndelta.months,
ndelta.days,
((ndelta.hours * 3600 +
ndelta.minutes * 60 +
ndelta.seconds) * 1000000 +
ndelta.microseconds))
def decoder(tup):
return relativedelta(months=tup[0], days=tup[1],
microseconds=tup[2])
await con.set_type_codec(
"interval', schema='pg_catalog', encoder=encoder,
decoder=decoder, format='tuple')
result = await con.fetchval(
"SELECT '2 years 3 mons 1 day'::interval')
print(result)
print(datetime.datetime(2002, 1, 1) + result)

(continues on next page)

22

Chapter 1. Contents

asyncpg Documentation, Release 0.27.0

(continued from previous page)

>>> asyncio.get_event_loop().run_until_complete(run())
relativedelta(years=+2, months=+3, days=+1)
2004-04-02 00:00:00

New in version 0.12.0: Added the format keyword argument and support for ‘tuple’ format.
Changed in version 0.12.0: The binary keyword argument is deprecated in favor of format.

Changed in version 0.13.0: The binary keyword argument was removed in favor of format.

Note: Itis recommended to use the 'binary' or 'tuple’ format whenever possible and if the underlying
type supports it. Asyncpg currently does not support text I/O for composite and range types, and some other
functionality, such as Connection. copy_to_table(), does not support types with text codecs.

terminate()
Terminate the connection without waiting for pending data.

transaction(*, isolation=None, readonly=False, deferrable=False)
Create a Transaction object.

Refer to PostgreSQL documentation on the meaning of transaction parameters.
Parameters

¢ isolation - Transaction isolation mode, can be one of: ‘serializable’, ‘repeatable_read’,
‘read_committed’. If not specified, the behavior is up to the server and session, which is
usually read_committed.

» readonly — Specifies whether or not this transaction is read-only.

» deferrable - Specifies whether or not this transaction is deferrable.
1.3.2 Prepared Statements
Prepared statements are a PostgreSQL feature that can be used to optimize the performance of queries that are executed

more than once. When a query is prepared by a call to Connection.prepare(), the server parses, analyzes and
compiles the query allowing to reuse that work once there is a need to run the same query again.

>>> import asyncpg, asyncio
>>> loop = asyncio.get_event_loop()
>>> async def run(Q):
conn = await asyncpg.connect()
stmt = await conn.prepare('''SELECT 2 » $1''")
print(await stmt.fetchval(10))
print(await stmt.fetchval(20))

>>> loop.run_until_complete(run())
1024.0
1048576.0

Note: asyncpg automatically maintains a small LRU cache for queries executed during calls to the fetch(),
fetchrow(), or fetchval () methods.

1.3. API Reference 23

https://www.postgresql.org/docs/current/static/sql-set-transaction.html

asyncpg Documentation, Release 0.27.0

Warning: If you are using pgbouncer with pool_mode set to transaction or statement, prepared statements
will not work correctly. See Why am I getting prepared statement errors? for more information.

class PreparedStatement

A representation of a prepared statement.

cursor (*args, prefetch=None, timeout=None) — CursorFactory

Return a cursor factory for the prepared statement.
Parameters
* args — Query arguments.
» prefetch (int) — The number of rows the cursor iterator will prefetch (defaults to 50.)
¢ timeout (float) — Optional timeout in seconds.

Returns
A CursorFactory object.

executemany (args, *, timeout: float = None)

Execute the statement for each sequence of arguments in args.
Parameters
e args — An iterable containing sequences of arguments.
¢ timeout (float) — Optional timeout value in seconds.

Return None
This method discards the results of the operations.

New in version 0.22.0.

explain(*args, analyze=False)

Return the execution plan of the statement.
Parameters
e args — Query arguments.

¢ analyze — If True, the statement will be executed and the run time statitics added to the
return value.

Returns
An object representing the execution plan. This value is actually a deserialized JSON output
of the SQL EXPLAIN command.

fetch(*args, timeout=None)

Execute the statement and return a list of Record objects.
Parameters
e query (str)— Query text
* args — Query arguments
* timeout (float) — Optional timeout value in seconds.

Returns
A list of Record instances.

24 Chapter 1. Contents

asyncpg Documentation, Release 0.27.0

fetchrow(*args, timeout=None)
Execute the statement and return the first row.

Parameters
e query (str) — Query text
* args — Query arguments
e timeout (float) — Optional timeout value in seconds.

Returns
The first row as a Record instance.

fetchval (*args, column=0, timeout=None)

Execute the statement and return a value in the first row.
Parameters

e args — Query arguments.

e column (int) — Numeric index within the record of the value to return (defaults to 0).

e timeout (float) — Optional timeout value in seconds. If not specified, defaults to the

value of command_timeout argument to the Connection instance constructor.

Returns
The value of the specified column of the first record.

get_attributes()
Return a description of relation attributes (columns).

Returns
A tuple of asyncpg. types.Attribute.

Example:

st = await self.con.prepare(''’
SELECT typname, typnamespace FROM pg_type

T)
print(st.get_attributes())

Will print:
(Attribute(
name='"typname’,
type=Type(oid=19, name=name', kind='scalar’,
schema='pg_catalog')),
Attribute(
name='typnamespace’,
type=Type(0oid=26, name='oid', kind='scalar’,
schema='pg_catalog')))

HFHOoR R R W W W R R

get_name() — str
Return the name of this prepared statement.

New in version 0.25.0.

get_parameters()
Return a description of statement parameters types.

Returns
A tuple of asyncpg. types. Type.

1.3.

API Reference

25

asyncpg Documentation, Release 0.27.0

Example:

stmt = await connection.prepare('SELECT ($1::int, $2::text)')
print(stmt.get_parameters())

Will print:
(Type(oid=23, name='int4', kind='scalar', schema='pg_catalog),
Type (oid=25, name='text', kind='scalar', schema='pg_catalog’))

get_query() — str

Return the text of the query for this prepared statement.

Example:

stmt = await connection.prepare('SELECT $1::int'")
assert stmt.get_query() == "SELECT $1::int"

get_statusmsg() — str

Return the status of the executed command.

Example:

stmt = await connection.prepare('CREATE TABLE mytab (a int)')
await stmt.fetch()
assert stmt.get_statusmsg() == "CREATE TABLE"

1.3.3 Transactions

The most common way to use transactions is through an async with statement:

async with connection.transaction():
await connection.execute("INSERT INTO mytable VALUES(1, 2, 3)')

asyncpg supports nested transactions (a nested transaction context will create a savepoint.):

async with connection.transaction():
await connection.execute('CREATE TABLE mytab (a int)')

try:
Create a nested transaction:
async with connection.transaction():
await connection.execute('INSERT INTO mytab (a) VALUES (1), (2)")
This nested transaction will be automatically rolled back:
raise Exception
except:
Ignore exception
pass

Because the nested transaction was rolled back, there
will be nothing in ‘mytab’.
assert await connection.fetch('SELECT a FROM mytab') == []

Alternatively, transactions can be used without an async with block:

26 Chapter 1

. Contents

https://www.postgresql.org/docs/current/static/sql-savepoint.html

asyncpg Documentation, Release 0.27.0

tr = connection.transaction()
await tr.start()
try:

except:
await tr.rollback()
raise

else:
await tr.commit()

See also the Connection. transaction() function.
class Transaction
Represents a transaction or savepoint block.
Transactions are created by calling the Connection.transaction() function.

async with c:

start and commit/rollback the transaction or savepoint block automatically when entering and exiting the
code inside the context manager block.

commit ()
Exit the transaction or savepoint block and commit changes.
rollback()

Exit the transaction or savepoint block and rollback changes.

start()
Enter the transaction or savepoint block.

1.3.4 Cursors

Cursors are useful when there is a need to iterate over the results of a large query without fetching all rows at once. The
cursor interface provided by asyncpg supports asynchronous iteration via the async for statement, and also a way to
read row chunks and skip forward over the result set.

To iterate over a cursor using a connection object use Connection. cursor (). To make the iteration efficient, the
cursor will prefetch records to reduce the number of queries sent to the server:

async def iterate(con: Connection):
async with con.transaction():
Postgres requires non-scrollable cursors to be created
and used in a transaction.
async for record in con.cursor('SELECT generate_series(0®, 100)'):
print(record)

Or, alternatively, you can iterate over the cursor manually (cursor won’t be prefetching any rows):

async def iterate(con: Connection):
async with con.transaction():
Postgres requires non-scrollable cursors to be created
and used in a transaction.

Create a Cursor object

(continues on next page)

1.3. API Reference 27

asyncpg Documentation, Release 0.27.0

(continued from previous page)

cur = await con.cursor('SELECT generate_series(®, 100)')

Move the cursor 10 rows forward
await cur.forward(10)

Fetch one row and print it
print(await cur.fetchrow())

Fetch a list of 5 rows and print it
print(await cur.fetch(5))

It’s also possible to create cursors from prepared statements:

async def iterate(con: Connection):
Create a prepared statement that will accept one argument
stmt = await con.prepare('SELECT generate_series(0, $1)')

async with con.transaction():
Postgres requires non-scrollable cursors to be created
and used in a transaction.

Execute the prepared statement passing 10" as the
argument -- that will generate a series or records
from 0..10. Iterate over all of them and print every
record.
async for record in stmt.cursor(10):
print(record)

Note: Cursors created by a call to Connection. cursor() or PreparedStatement. cursor () are non-scrollable:
they can only be read forwards. To create a scrollable cursor, use the DECLARE ... SCROLL CURSOR SQL statement
directly.

Warning: Cursors created by a call to Connection. cursor() or PreparedStatement.cursor() cannot be
used outside of a transaction. Any such attempt will result in InterfaceError.

To create a cursor usable outside of a transaction, use the DECLARE ... CURSOR WITH HOLD SQL statement
directly.

class CursorFactory
A cursor interface for the results of a query.
A cursor interface can be used to initiate efficient traversal of the results of a large query.
async for row in c
Execute the statement and iterate over the results asynchronously.
await c¢

Execute the statement and return an instance of Cursor which can be used to navigate over and fetch subsets
of the query results.

28 Chapter 1. Contents

asyncpg Documentation, Release 0.27.0

class Cursor
An open portal into the results of a query.
fetch(n, *, timeout=None)

Return the next n rows as a list of Record objects.

Parameters
timeout (float) — Optional timeout value in seconds.

Returns
A list of Record instances.

fetchrow(*, timeout=None)

Return the next row.

Parameters
timeout (float) — Optional timeout value in seconds.

Returns
A Record instance.

forward(n, *, timeout=None) — int
Skip over the next n rows.

Parameters
timeout (float) — Optional timeout value in seconds.

Returns
A number of rows actually skipped over (<= n).

1.3.5 Connection Pools

create_pool (dsn=None, *, min_size=10, max_size=10, max_queries=50000,
max_inactive_connection_lifetime=300.0, setup=None, init=None, loop=None,
connection_class=<class 'asyncpg.connection.Connection'>, record_class=<class
‘asyncpg.Record'>, **connect_kwargs)

Create a connection pool.

Can be used either with an async with block:

async with asyncpg.create_pool(user='postgres',
command_timeout=60) as pool:
await pool.fetch('SELECT 1')

Or to perform multiple operations on a single connection:

async with asyncpg.create_pool(user="postgres',
command_timeout=60) as pool:
async with pool.acquire() as con:
await con.execute('''
CREATE TABLE names (

id serial PRIMARY KEY,
name VARCHAR (255) NOT NULL)

B

await con.fetch('SELECT 1")

Or directly with await (not recommended):

1.3. API Reference 29

asyncpg Documentation, Release 0.27.0

pool = await asyncpg.create_pool(user='postgres', command_timeout=60)
con = await pool.acquire()
try:
await con.fetch('SELECT 1")
finally:
await pool.release(con)

Warning: Prepared statements and cursors returned by Connection.prepare() and Connection.
cursor () become invalid once the connection is released. Likewise, all notification and log listeners are
removed, and asyncpg will issue a warning if there are any listener callbacks registered on a connection that
is being released to the pool.

Parameters

 dsn (str)— Connection arguments specified using as a single string in the following format:
postgres://user:pass@host:port/database?option=value.

» **connect_kwargs — Keyword arguments for the connect () function.

e connection_class (Connection) — The class to use for connections. Must be a subclass
of Connection.

» record_class (type) — If specified, the class to use for records returned by queries on the
connections in this pool. Must be a subclass of Record.

* min_size (int) — Number of connection the pool will be initialized with.
* max_size (int) — Max number of connections in the pool.

* max_queries (int) — Number of queries after a connection is closed and replaced with a
new connection.

e max_inactive_connection_lifetime (float) — Number of seconds after which inac-
tive connections in the pool will be closed. Pass 0 to disable this mechanism.

* setup (coroutine) — A coroutine to prepare a connection right before it is returned from
Pool.acquire(). An example use case would be to automatically set up notifications lis-
teners for all connections of a pool.

» init (coroutine) — A coroutine to initialize a connection when it is created. An example
use case would be to setup type codecs with Connection.set_builtin_type_codec()
or Connection.set_type_codec().

* loop — An asyncio event loop instance. If None, the default event loop will be used.
Returns
An instance of Pool.
Changed in version 0.10.0: An InterfaceError will be raised on any attempted operation on a released con-

nection.

Changed in version 0.13.0: An InterfaceError will be raised on any attempted operation on a prepared state-
ment or a cursor created on a connection that has been released to the pool.

Changed in version 0.13.0: An InterfaceWarning will be produced if there are any active listeners (added
via Connection.add_listener() or Connection.add_log_listener()) present on the connection at the
moment of its release to the pool.

Changed in version 0.22.0: Added the record_class parameter.

30

Chapter 1. Contents

asyncpg Documentation, Release 0.27.0

class Pool
A connection pool.

Connection pool can be used to manage a set of connections to the database. Connections are first acquired from
the pool, then used, and then released back to the pool. Once a connection is released, it’s reset to close all open
cursors and other resources except prepared statements.

Pools are created by calling create_pool ().

acquire (*, timeout=None)
Acquire a database connection from the pool.

Parameters
timeout (float) — A timeout for acquiring a Connection.

Returns
An instance of Connection.

Can be used in an await expression or with an async with block.

async with pool.acquire() as con:
await con.execute(...)

Or:
con = await pool.acquire()
try:

await con.execute(...)
finally:

await pool.release(con)

coroutine close()
Attempt to gracefully close all connections in the pool.

Wait until all pool connections are released, close them and shut down the pool. If any error (including
cancellation) occurs in close() the pool will terminate by calling Pool.terminate().

It is advisable to use python:asyncio.wait_for () to set a timeout.

Changed in version 0.16.0: close () now waits until all pool connections are released before closing them
and the pool. Errors raised in close () will cause immediate pool termination.

coroutine copy_from_query (query, *args, output, timeout=None, format=None, oids=None,
delimiter=None, null=None, header=None, quote=None, escape=None,
force_quote=None, encoding=None)

Copy the results of a query to a file or file-like object.

Pool performs this operation using one of its connections. Other than that, it behaves identically to
Connection. copy_from_query().

New in version 0.24.0.

coroutine copy_from_table (table_name, *, output, columns=None, schema_name=None, timeout=None,
format=None, oids=None, delimiter=None, null=None, header=None,
quote=None, escape=None, force_quote=None, encoding=None)

Copy table contents to a file or file-like object.

Pool performs this operation using one of its connections. Other than that, it behaves identically to
Connection.copy_from_table().

New in version 0.24.0.

1.3. API Reference 31

asyncpg Documentation, Release 0.27.0

coroutine copy_records_to_table(table_name, *, records, columns=None, schema_name=None,
timeout=None)

Copy a list of records to the specified table using binary COPY.

Pool performs this operation using one of its connections. Other than that, it behaves identically to
Connection.copy_records_to_table().

New in version 0.24.0.

coroutine copy_to_table(table_name, *, source, columns=None, schema_name=None, timeout=None,
format=None, oids=None, freeze=None, delimiter=None, null=None,
header=None, quote=None, escape=None, force_quote=None,
force_not_null=None, force_null=None, encoding=None)

Copy data to the specified table.

Pool performs this operation using one of its connections. Other than that, it behaves identically to
Connection.copy_to_table().

New in version 0.24.0.

coroutine execute(query: str, *args, timeout: float = None) — str

Execute an SQL command (or commands).

Pool performs this operation using one of its connections. Other than that, it behaves identically to
Connection.execute().

New in version 0.10.0.

coroutine executemany (command: str,args, *, timeout: float = None)

Execute an SQL command for each sequence of arguments in args.

Pool performs this operation using one of its connections. Other than that, it behaves identically to
Connection. executemany().

New in version 0.10.0.

coroutine expire_connections()

Expire all currently open connections.
Cause all currently open connections to get replaced on the next acquire () call.
New in version 0.16.0.

coroutine fetch(query, *args, timeout=None, record_class=None) — list

Run a query and return the results as a list of Record.

Pool performs this operation using one of its connections. Other than that, it behaves identically to
Connection. fetch().

New in version 0.10.0.

coroutine fetchrow(query, *args, timeout=None, record_class=None)

Run a query and return the first row.

Pool performs this operation using one of its connections. Other than that, it behaves identically to
Connection. fetchrow().

New in version 0.10.0.

32

Chapter 1. Contents

asyncpg Documentation, Release 0.27.0

coroutine fetchval (query, *args, column=0, timeout=None)

Run a query and return a value in the first row.

Pool performs this operation using one of its connections. Other than that, it behaves identically to
Connection. fetchval Q).

New in version 0.10.0.

get_idle_size()

Return the current number of idle connections in this pool.
New in version 0.25.0.

get_max_size()

Return the maximum allowed number of connections in this pool.
New in version 0.25.0.

get_min_size()
Return the minimum number of connections in this pool.

New in version 0.25.0.

get_size()
Return the current number of connections in this pool.

New in version 0.25.0.

coroutine release(connection, *, timeout=None)

Release a database connection back to the pool.
Parameters
¢ connection (Connection) — A Connection object to release.

e timeout (float) — A timeout for releasing the connection. If not specified, defaults to the
timeout provided in the corresponding call to the Pool. acquire () method.

Changed in version 0.14.0: Added the timeout parameter.

set_connect_args (dsn=None, **connect_kwargs)
Set the new connection arguments for this pool.

The new connection arguments will be used for all subsequent new connection attempts. Existing con-
nections will remain until they expire. Use Pool.expire_connections() to expedite the connection
expiry.

Parameters

¢ dsn (str) — Connection arguments specified using as a single string in the following for-
mat: postgres://user:pass@ost:port/database?option=value.

o **connect_kwargs — Keyword arguments for the connect () function.
New in version 0.16.0.

terminate()
Terminate all connections in the pool.

. API Reference 33

asyncpg Documentation, Release 0.27.0

1.3.6 Record Objects

Each row (or composite type value) returned by calls to fetch* methods is represented by an instance of the Record
object. Record objects are a tuple-/dict-like hybrid, and allow addressing of items either by a numeric index or by a
field name:

>>> import asyncpg

>>> import asyncio

>>> loop = asyncio.get_event_loop()

>>> conn = loop.run_until_complete(asyncpg.connect())

>>> r = loop.run_until_complete(conn.fetchrow('""'

.. SELECT oid, rolname, rolsuper FROM pg_roles WHERE rolname = user'''))
>>> r
<Record 0id=16388 rolname='elvis' rolsuper=True>
>>> r['oid"]

16388

>>> r[0]

16388

>>> dict(r)

{'oid': 16388, 'rolname': 'elvis', 'rolsuper': True}
>>> tuple(r)

(16388, 'elvis', True)

Note: Record objects currently cannot be created from Python code.

class Record
A read-only representation of PostgreSQL row.
len(r)
Return the number of fields in record .
r[field]
Return the field of r with field name or index field.
name in r
Return True if record r has a field named name.
iter(r)
Return an iterator over the values of the record r.

get(name[, default])

Return the value for name if the record has a field named name, else return default. If default is not given,
return None.

New in version 0.18.

values()

Return an iterator over the record values.

keys(O
Return an iterator over the record field names.

items()

Return an iterator over (field, value) pairs.

34 Chapter 1. Contents

asyncpg Documentation, Release 0.27.0

class ConnectionSettings

A read-only collection of Connection settings.

settings.setting_name

Return the value of the “setting_name” setting. Raises an AttributeError if the setting is not defined.

Example:

>>> connection.get_settings().client_encoding
'UTF8'

1.3.7 Data Types

class Attribute(name, type)
Database relation attribute.
name
Attribute name.
type
Attribute data type asyncpg. types. Type.
class BitString(bitstring: Optional[bytes] = None)
Immutable representation of PostgreSQL bit and varbit types.
classmethod from_int(x: int, length: int, bitorder: Literal['big’, 'little'] = 'big', *, signed: bool = False)
— _BitString
Represent the Python int x as a BitString. Acts similarly to int.to_bytes.

Parameters

e x (int) — An integer to represent. Negative integers are represented in two’s complement
form, unless the argument signed is False, in which case negative integers raise an Over-
flowError.

* length (int) — The length of the resulting BitString. An OverflowError is raised if the
integer is not representable in this many bits.

* bitorder — Determines the bit order used in the BitString representation. By default, this
function uses Postgres conventions for casting ints to bits. If bitorder is ‘big’, the most
significant bit is at the start of the string (this is the same as the default). If bitorder is
‘little’, the most significant bit is at the end of the string.

 signed (bool) — Determines whether two’s complement is used in the BitString represen-
tation. If signed is False and a negative integer is given, an OverflowError is raised.

Return BitString
A BitString representing the input integer, in the form specified by the other input args.

New in version 0.18.0.

to_int (bitorder: Literal['big', 'little'] = 'big’, *, signed: bool = False) — int
Interpret the BitString as a Python int. Acts similarly to int.from_bytes.

Parameters

1.3. API Reference 35

asyncpg Documentation, Release 0.27.0

* bitorder — Determines the bit order used to interpret the BitString. By default, this func-
tion uses Postgres conventions for casting bits to ints. If bitorder is ‘big’, the most signifi-
cant bit is at the start of the string (this is the same as the default). If bitorder is ‘little’, the
most significant bit is at the end of the string.

» signed (bool) — Determines whether two’s complement is used to interpret the BitString.
If signed is False, the returned value is always non-negative.

Return int
An integer representing the BitString. Information about the BitString’s exact length is lost.

New in version 0.18.0.
class Box(high: Sequence[float], low: Sequence[float])
Immutable representation of PostgreSQL box type.
class Circle(center: Point, radius: float)
Immutable representation of PostgreSQL circle type.
class Line(A: float, B: float, C: float)
Immutable representation of PostgreSQL line type.
class LineSegment(pl: Sequence([float], p2: Sequence(float])
Immutable representation of PostgreSQL Iseg type.
class Path(*points: Sequence[float], is_closed: bool = False)
Immutable representation of PostgreSQL path type.

class Point(x: Union[SupportsFloat, Supportsindex, str, bytes, bytearray], y: Union[SupportsFloat,
Supportsindex, str, bytes, bytearray])

Immutable representation of PostgreSQL point type.
class Polygon(*points: Sequence[float])
Immutable representation of PostgreSQL polygon type.
class Range(lower=None, upper=None, *, lower_inc=True, upper_inc=False, empty=False)
Immutable representation of PostgreSQL range type.
class ServerVersion(major, minor, micro, releaselevel, serial)
PostgreSQL server version tuple.
major
Alias for field number 0
micro
Alias for field number 2
minor
Alias for field number 1
releaselevel
Alias for field number 3
serial

Alias for field number 4

class Type(oid, name, kind, schema)
Database data type.

36 Chapter 1. Contents

asyncpg Documentation, Release 0.27.0

kind

Type kind. Can be “scalar”, “array”, “composite” or “range”.

name

Type name. For example “int2”.
oid
OID of the type.

schema
Name of the database schema that defines the type.

1.4 Frequently Asked Questions

1.4.1 Does asyncpg support DB-API?

No. DB-API is a synchronous API, while asyncpg is based around an asynchronous I/O model. Thus, full drop-in
compatibility with DB-API is not possible and we decided to design asyncpg API in a way that is better aligned with
PostgreSQL architecture and terminology. We will release a synchronous DB-API-compatible version of asyncpg at
some point in the future.

1.4.2 Can | use asyncpg with SQLAlchemy ORM?

Yes. SQLAIchemy version 1.4 and later supports the asyncpg dialect natively. Please refer to its documentation for
details. Older SQLAlchemy versions may be used in tandem with a third-party adapter such as asyncpgsa or databases.

1.4.3 Can | use dot-notation with asyncpg.Record? It looks cleaner.

We decided against making asyncpg.Record a named tuple because we want to keep the Record method namespace
separate from the column namespace. That said, you can provide a custom Record class that implements dot-notation
via the record_class argument to connect () or any of the Record-returning methods.

class MyRecord(asyncpg.Record):
def __getattr__(self, name):
return self[name]

1.4.4 Why can’t | use a cursor outside of a transaction?

Cursors created by a call to Connection. cursor() or PreparedStatement. cursor() cannot be used outside of
a transaction. Any such attempt will result in InterfaceError. To create a cursor usable outside of a transaction, use
the DECLARE ... CURSOR WITH HOLD SQL statement directly.

1.4. Frequently Asked Questions 37

https://github.com/CanopyTax/asyncpgsa
https://github.com/encode/databases

asyncpg Documentation, Release 0.27.0

1.4.5 Why am | getting prepared statement errors?
If you are getting intermittent prepared statement "__asyncpg_stmt_xx__" does not exist or prepared
statement “__asyncpg_stmt_xx__" already exists errors, you are most likely not connecting to the Post-
greSQL server directly, but via pgbouncer. pgbouncer, when in the "transaction" or "statement" pooling mode,
does not support prepared statements. You have several options:

”

* if you are using pgbouncer only to reduce the cost of new connections (as opposed to using pgbouncer for
connection pooling from a large number of clients in the interest of better scalability), switch to the connection
pool functionality provided by asyncpg, it is a much better option for this purpose;

* disable automatic use of prepared statements by passing statement_cache_size=0 to asyncpg. connect ()
and asyncpg.create_pool () (and, obviously, avoid the use of Connection.prepare());

* switch pgbouncer’s pool_mode to session.

1.4.6 Why do | get PostgresSyntaxError when using expression IN $1?

expression IN $1 is not a valid PostgreSQL syntax. To check a value against a sequence use expression =
any ($1: :mytype[]), where mytype is the array element type.

38 Chapter 1. Contents

https://pgbouncer.github.io/

PYTHON MODULE INDEX

a

asyncpg, 9
asyncpg.types, 35

39

asyncpg Documentation, Release 0.27.0

40 Python Module Index

A

acquire() (Pool method), 31
add_listener () (Connection method), 13
add_log_listener () (Connection method), 13
add_termination_listener() (Connection method),
14
asyncpg
module, 9
asyncpg. types
module, 35
Attribute (class in asyncpg.types), 35

B

BitString (class in asyncpg.types), 35
Box (class in asyncpg.types), 36

C

Circle (class in asyncpg.types), 36

close() (Connection method), 14

close() (Pool method), 31

commit () (Transaction method), 27

connect () (in module asyncpg.connection), 9
Connection (class in asyncpg.connection), 13
ConnectionSettings (class in asyncpg), 34
copy_from_query () (Connection method), 14
copy_from_query () (Pool method), 31
copy_from_table () (Connection method), 15
copy_from_table() (Pool method), 31
copy_records_to_table() (Connection method), 15
copy_records_to_table() (Pool method), 31
copy_to_table() (Connection method), 16
copy_to_table() (Pool method), 32
create_pool () (in module asyncpg.pool), 29
Cursor (class in asyncpg.cursor), 28

cursor () (Connection method), 17

cursor () (PreparedStatement method), 24
CursorFactory (class in asyncpg.cursor), 28

E

execute() (Connection method), 17
execute() (Pool method), 32

INDEX

executemany () (Connection method), 18
executemany () (Pool method), 32
executemany () (PreparedStatement method), 24
expire_connections () (Pool method), 32
explain() (PreparedStatement method), 24

F

fetch() (Connection method), 18

fetch() (Cursor method), 29

fetch() (Pool method), 32

fetch() (PreparedStatement method), 24
fetchrow() (Connection method), 18
fetchrow() (Cursor method), 29
fetchrow() (Pool method), 32

fetchrow() (PreparedStatement method), 24
fetchval () (Connection method), 19
fetchval () (Pool method), 32

fetchval () (PreparedStatement method), 25
forward() (Cursor method), 29
from_int () (BitString class method), 35

G

get_attributes() (PreparedStatement method), 25
get_idle_size() (Pool method), 33
get_max_size() (Pool method), 33
get_min_size() (Pool method), 33

get_name() (PreparedStatement method), 25
get_parameters() (PreparedStatement method), 25
get_query() (PreparedStatement method), 26
get_server_pid() (Connection method), 19
get_server_version() (Connection method), 19
get_settings() (Connection method), 19
get_size() (Pool method), 33

get_statusmsg() (PreparedStatement method), 26

is_closed() (Connection method), 19
is_in_transaction() (Connection method), 19
items () (Record method), 34

K

keys () (Record method), 34

41

asyncpg Documentation, Release 0.27.0

kind (Type attribute), 36

L

Line (class in asyncpg.types), 36
LineSegment (class in asyncpg.types), 36

M

major (ServerVersion attribute), 36
micro (ServerVersion attribute), 36
minor (ServerVersion attribute), 36
module

asyncpg, 9

asyncpg.types, 35

N

name (Attribute attribute), 35
name (Type attribute), 37

O

oid (Type attribute), 37

P

Path (class in asyncpg.types), 36

Point (class in asyncpg.types), 36

Polygon (class in asyncpg.types), 36

Pool (class in asyncpg.pool), 30

prepare() (Connection method), 19

PreparedStatement (class in asyncpg.prepared_stmt),
24

R

Range (class in asyncpg.types), 36

Record (class in asyncpg), 34

release() (Pool method), 33

releaselevel (ServerVersion attribute), 36

reload_schema_state() (Connection method), 20

remove_listener() (Connection method), 20

remove_log_listener() (Connection method), 21

remove_termination_listener() (Connection
method), 21

reset_type_codec() (Connection method), 21

rollback () (Transaction method), 27

S

schema (Type attribute), 37

serial (ServerVersion attribute), 36

ServerVersion (class in asyncpg.types), 36
set_builtin_type_codec() (Connection method), 21
set_connect_args() (Pool method), 33
set_type_codec() (Connection method), 21

start() (Transaction method), 27

T

terminate() (Connection method), 23
terminate() (Pool method), 33

to_int) (BitString method), 35

Transaction (class in asyncpg.transaction), 27
transaction() (Connection method), 23

type (Attribute attribute), 35

Type (class in asyncpg.types), 36

Vv

values () (Record method), 34

42

Index

	Contents
	Installation
	Building from source
	Running tests

	asyncpg Usage
	Type Conversion
	Custom Type Conversions
	Example: automatic JSON conversion
	Example: automatic conversion of PostGIS types
	Example: decoding numeric columns as floats
	Example: decoding hstore values

	Transactions
	Connection Pools

	API Reference
	Connection
	Prepared Statements
	Transactions
	Cursors
	Connection Pools
	Record Objects
	Data Types

	Frequently Asked Questions
	Does asyncpg support DB-API?
	Can I use asyncpg with SQLAlchemy ORM?
	Can I use dot-notation with asyncpg.Record? It looks cleaner.
	Why can’t I use a cursor outside of a transaction?
	Why am I getting prepared statement errors?
	Why do I get PostgresSyntaxError when using expression IN $1?

	Python Module Index
	Index

