{-# LANGUAGE CPP #-}
{-# LANGUAGE DefaultSignatures #-}
#ifdef TRUSTWORTHY
{-# LANGUAGE Trustworthy #-}
#endif
#if __GLASGOW_HASKELL__ >= 710
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE ViewPatterns #-}
#endif
module Control.Lens.Empty
(
AsEmpty(..)
#if __GLASGOW_HASKELL__ >= 710
, pattern Empty
#endif
) where
import Prelude ()
import Control.Lens.Iso
#if __GLASGOW_HASKELL__ >= 710
import Control.Lens.Fold
#endif
import Control.Lens.Prism
import Control.Lens.Internal.Prelude as Prelude
import Control.Lens.Review
import Data.ByteString as StrictB
import Data.ByteString.Lazy as LazyB
import Data.HashMap.Lazy as HashMap
import Data.HashSet as HashSet
import Data.IntMap as IntMap
import Data.IntSet as IntSet
import Data.Monoid
import Data.Map as Map
import Data.Maybe
import qualified Data.Sequence as Seq
import Data.Set as Set
import Data.Text as StrictT
import Data.Text.Lazy as LazyT
import Data.Vector as Vector
import Data.Vector.Unboxed as Unboxed
import Data.Vector.Storable as Storable
#if !defined(mingw32_HOST_OS) && !defined(ghcjs_HOST_OS)
import GHC.Event
#endif
class AsEmpty a where
_Empty :: Prism' a ()
default _Empty :: (Monoid a, Eq a) => Prism' a ()
_Empty = a -> Prism' a ()
forall a. Eq a => a -> Prism' a ()
only a
forall a. Monoid a => a
mempty
{-# INLINE _Empty #-}
#if __GLASGOW_HASKELL__ >= 710
pattern $bEmpty :: s
$mEmpty :: forall r s. AsEmpty s => s -> (Void# -> r) -> (Void# -> r) -> r
Empty <- (has _Empty -> True) where
Empty = AReview s () -> () -> s
forall b (m :: * -> *) t. MonadReader b m => AReview t b -> m t
review AReview s ()
forall a. AsEmpty a => Prism' a ()
_Empty ()
#endif
instance AsEmpty Ordering
instance AsEmpty ()
instance AsEmpty Any
instance AsEmpty All
#if !defined(mingw32_HOST_OS) && !defined(ghcjs_HOST_OS)
instance AsEmpty Event
#endif
instance (Eq a, Num a) => AsEmpty (Product a)
instance (Eq a, Num a) => AsEmpty (Sum a)
instance AsEmpty (Maybe a) where
_Empty :: p () (f ()) -> p (Maybe a) (f (Maybe a))
_Empty = p () (f ()) -> p (Maybe a) (f (Maybe a))
forall a. Prism' (Maybe a) ()
_Nothing
{-# INLINE _Empty #-}
instance AsEmpty (Last a) where
_Empty :: p () (f ()) -> p (Last a) (f (Last a))
_Empty = Last a -> (Last a -> Bool) -> Prism' (Last a) ()
forall a. a -> (a -> Bool) -> Prism' a ()
nearly (Maybe a -> Last a
forall a. Maybe a -> Last a
Last Maybe a
forall a. Maybe a
Nothing) (Maybe a -> Bool
forall a. Maybe a -> Bool
isNothing (Maybe a -> Bool) -> (Last a -> Maybe a) -> Last a -> Bool
forall (p :: * -> * -> *) a b c (q :: * -> * -> *).
(Profunctor p, Coercible b a) =>
p b c -> q a b -> p a c
.# Last a -> Maybe a
forall a. Last a -> Maybe a
getLast)
{-# INLINE _Empty #-}
instance AsEmpty (First a) where
_Empty :: p () (f ()) -> p (First a) (f (First a))
_Empty = First a -> (First a -> Bool) -> Prism' (First a) ()
forall a. a -> (a -> Bool) -> Prism' a ()
nearly (Maybe a -> First a
forall a. Maybe a -> First a
First Maybe a
forall a. Maybe a
Nothing) (Maybe a -> Bool
forall a. Maybe a -> Bool
isNothing (Maybe a -> Bool) -> (First a -> Maybe a) -> First a -> Bool
forall (p :: * -> * -> *) a b c (q :: * -> * -> *).
(Profunctor p, Coercible b a) =>
p b c -> q a b -> p a c
.# First a -> Maybe a
forall a. First a -> Maybe a
getFirst)
{-# INLINE _Empty #-}
instance AsEmpty a => AsEmpty (Dual a) where
_Empty :: p () (f ()) -> p (Dual a) (f (Dual a))
_Empty = (Dual a -> a) -> (a -> Dual a) -> Iso (Dual a) (Dual a) a a
forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso Dual a -> a
forall a. Dual a -> a
getDual a -> Dual a
forall a. a -> Dual a
Dual (p a (f a) -> p (Dual a) (f (Dual a)))
-> (p () (f ()) -> p a (f a))
-> p () (f ())
-> p (Dual a) (f (Dual a))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. p () (f ()) -> p a (f a)
forall a. AsEmpty a => Prism' a ()
_Empty
{-# INLINE _Empty #-}
instance (AsEmpty a, AsEmpty b) => AsEmpty (a,b) where
_Empty :: p () (f ()) -> p (a, b) (f (a, b))
_Empty = (() -> (a, b)) -> ((a, b) -> Maybe ()) -> Prism' (a, b) ()
forall b s a. (b -> s) -> (s -> Maybe a) -> Prism s s a b
prism' (\() -> (Tagged () (Identity ()) -> Tagged a (Identity a)
forall a. AsEmpty a => Prism' a ()
_Empty (Tagged () (Identity ()) -> Tagged a (Identity a)) -> () -> a
forall t b. AReview t b -> b -> t
# (), Tagged () (Identity ()) -> Tagged b (Identity b)
forall a. AsEmpty a => Prism' a ()
_Empty (Tagged () (Identity ()) -> Tagged b (Identity b)) -> () -> b
forall t b. AReview t b -> b -> t
# ())) (((a, b) -> Maybe ()) -> Prism' (a, b) ())
-> ((a, b) -> Maybe ()) -> Prism' (a, b) ()
forall a b. (a -> b) -> a -> b
$ \(a
s,b
s') -> case (() -> Either () ()) -> a -> Either () a
forall a. AsEmpty a => Prism' a ()
_Empty () -> Either () ()
forall a b. a -> Either a b
Left a
s of
Left () -> case (() -> Either () ()) -> b -> Either () b
forall a. AsEmpty a => Prism' a ()
_Empty () -> Either () ()
forall a b. a -> Either a b
Left b
s' of
Left () -> () -> Maybe ()
forall a. a -> Maybe a
Just ()
Either () b
_ -> Maybe ()
forall a. Maybe a
Nothing
Either () a
_ -> Maybe ()
forall a. Maybe a
Nothing
{-# INLINE _Empty #-}
instance (AsEmpty a, AsEmpty b, AsEmpty c) => AsEmpty (a,b,c) where
_Empty :: p () (f ()) -> p (a, b, c) (f (a, b, c))
_Empty = (() -> (a, b, c)) -> ((a, b, c) -> Maybe ()) -> Prism' (a, b, c) ()
forall b s a. (b -> s) -> (s -> Maybe a) -> Prism s s a b
prism' (\() -> (Tagged () (Identity ()) -> Tagged a (Identity a)
forall a. AsEmpty a => Prism' a ()
_Empty (Tagged () (Identity ()) -> Tagged a (Identity a)) -> () -> a
forall t b. AReview t b -> b -> t
# (), Tagged () (Identity ()) -> Tagged b (Identity b)
forall a. AsEmpty a => Prism' a ()
_Empty (Tagged () (Identity ()) -> Tagged b (Identity b)) -> () -> b
forall t b. AReview t b -> b -> t
# (), Tagged () (Identity ()) -> Tagged c (Identity c)
forall a. AsEmpty a => Prism' a ()
_Empty (Tagged () (Identity ()) -> Tagged c (Identity c)) -> () -> c
forall t b. AReview t b -> b -> t
# ())) (((a, b, c) -> Maybe ()) -> Prism' (a, b, c) ())
-> ((a, b, c) -> Maybe ()) -> Prism' (a, b, c) ()
forall a b. (a -> b) -> a -> b
$ \(a
s,b
s',c
s'') -> case (() -> Either () ()) -> a -> Either () a
forall a. AsEmpty a => Prism' a ()
_Empty () -> Either () ()
forall a b. a -> Either a b
Left a
s of
Left () -> case (() -> Either () ()) -> b -> Either () b
forall a. AsEmpty a => Prism' a ()
_Empty () -> Either () ()
forall a b. a -> Either a b
Left b
s' of
Left () -> case (() -> Either () ()) -> c -> Either () c
forall a. AsEmpty a => Prism' a ()
_Empty () -> Either () ()
forall a b. a -> Either a b
Left c
s'' of
Left () -> () -> Maybe ()
forall a. a -> Maybe a
Just ()
Right c
_ -> Maybe ()
forall a. Maybe a
Nothing
Right b
_ -> Maybe ()
forall a. Maybe a
Nothing
Right a
_ -> Maybe ()
forall a. Maybe a
Nothing
{-# INLINE _Empty #-}
instance AsEmpty [a] where
_Empty :: p () (f ()) -> p [a] (f [a])
_Empty = [a] -> ([a] -> Bool) -> Prism' [a] ()
forall a. a -> (a -> Bool) -> Prism' a ()
nearly [] [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
Prelude.null
{-# INLINE _Empty #-}
instance AsEmpty (ZipList a) where
_Empty :: p () (f ()) -> p (ZipList a) (f (ZipList a))
_Empty = ZipList a -> (ZipList a -> Bool) -> Prism' (ZipList a) ()
forall a. a -> (a -> Bool) -> Prism' a ()
nearly ([a] -> ZipList a
forall a. [a] -> ZipList a
ZipList []) ([a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
Prelude.null ([a] -> Bool) -> (ZipList a -> [a]) -> ZipList a -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ZipList a -> [a]
forall a. ZipList a -> [a]
getZipList)
{-# INLINE _Empty #-}
instance AsEmpty (Map k a) where
_Empty :: p () (f ()) -> p (Map k a) (f (Map k a))
_Empty = Map k a -> (Map k a -> Bool) -> Prism' (Map k a) ()
forall a. a -> (a -> Bool) -> Prism' a ()
nearly Map k a
forall k a. Map k a
Map.empty Map k a -> Bool
forall k a. Map k a -> Bool
Map.null
{-# INLINE _Empty #-}
instance AsEmpty (HashMap k a) where
_Empty :: p () (f ()) -> p (HashMap k a) (f (HashMap k a))
_Empty = HashMap k a -> (HashMap k a -> Bool) -> Prism' (HashMap k a) ()
forall a. a -> (a -> Bool) -> Prism' a ()
nearly HashMap k a
forall k v. HashMap k v
HashMap.empty HashMap k a -> Bool
forall k v. HashMap k v -> Bool
HashMap.null
{-# INLINE _Empty #-}
instance AsEmpty (IntMap a) where
_Empty :: p () (f ()) -> p (IntMap a) (f (IntMap a))
_Empty = IntMap a -> (IntMap a -> Bool) -> Prism' (IntMap a) ()
forall a. a -> (a -> Bool) -> Prism' a ()
nearly IntMap a
forall a. IntMap a
IntMap.empty IntMap a -> Bool
forall a. IntMap a -> Bool
IntMap.null
{-# INLINE _Empty #-}
instance AsEmpty (Set a) where
_Empty :: p () (f ()) -> p (Set a) (f (Set a))
_Empty = Set a -> (Set a -> Bool) -> Prism' (Set a) ()
forall a. a -> (a -> Bool) -> Prism' a ()
nearly Set a
forall a. Set a
Set.empty Set a -> Bool
forall a. Set a -> Bool
Set.null
{-# INLINE _Empty #-}
instance AsEmpty (HashSet a) where
_Empty :: p () (f ()) -> p (HashSet a) (f (HashSet a))
_Empty = HashSet a -> (HashSet a -> Bool) -> Prism' (HashSet a) ()
forall a. a -> (a -> Bool) -> Prism' a ()
nearly HashSet a
forall a. HashSet a
HashSet.empty HashSet a -> Bool
forall a. HashSet a -> Bool
HashSet.null
{-# INLINE _Empty #-}
instance AsEmpty IntSet where
_Empty :: p () (f ()) -> p IntSet (f IntSet)
_Empty = IntSet -> (IntSet -> Bool) -> Prism' IntSet ()
forall a. a -> (a -> Bool) -> Prism' a ()
nearly IntSet
IntSet.empty IntSet -> Bool
IntSet.null
{-# INLINE _Empty #-}
instance AsEmpty (Vector.Vector a) where
_Empty :: p () (f ()) -> p (Vector a) (f (Vector a))
_Empty = Vector a -> (Vector a -> Bool) -> Prism' (Vector a) ()
forall a. a -> (a -> Bool) -> Prism' a ()
nearly Vector a
forall a. Vector a
Vector.empty Vector a -> Bool
forall a. Vector a -> Bool
Vector.null
{-# INLINE _Empty #-}
instance Unbox a => AsEmpty (Unboxed.Vector a) where
_Empty :: p () (f ()) -> p (Vector a) (f (Vector a))
_Empty = Vector a -> (Vector a -> Bool) -> Prism' (Vector a) ()
forall a. a -> (a -> Bool) -> Prism' a ()
nearly Vector a
forall a. Unbox a => Vector a
Unboxed.empty Vector a -> Bool
forall a. Unbox a => Vector a -> Bool
Unboxed.null
{-# INLINE _Empty #-}
instance Storable a => AsEmpty (Storable.Vector a) where
_Empty :: p () (f ()) -> p (Vector a) (f (Vector a))
_Empty = Vector a -> (Vector a -> Bool) -> Prism' (Vector a) ()
forall a. a -> (a -> Bool) -> Prism' a ()
nearly Vector a
forall a. Storable a => Vector a
Storable.empty Vector a -> Bool
forall a. Storable a => Vector a -> Bool
Storable.null
{-# INLINE _Empty #-}
instance AsEmpty (Seq.Seq a) where
_Empty :: p () (f ()) -> p (Seq a) (f (Seq a))
_Empty = Seq a -> (Seq a -> Bool) -> Prism' (Seq a) ()
forall a. a -> (a -> Bool) -> Prism' a ()
nearly Seq a
forall a. Seq a
Seq.empty Seq a -> Bool
forall a. Seq a -> Bool
Seq.null
{-# INLINE _Empty #-}
instance AsEmpty StrictB.ByteString where
_Empty :: p () (f ()) -> p ByteString (f ByteString)
_Empty = ByteString -> (ByteString -> Bool) -> Prism' ByteString ()
forall a. a -> (a -> Bool) -> Prism' a ()
nearly ByteString
StrictB.empty ByteString -> Bool
StrictB.null
{-# INLINE _Empty #-}
instance AsEmpty LazyB.ByteString where
_Empty :: p () (f ()) -> p ByteString (f ByteString)
_Empty = ByteString -> (ByteString -> Bool) -> Prism' ByteString ()
forall a. a -> (a -> Bool) -> Prism' a ()
nearly ByteString
LazyB.empty ByteString -> Bool
LazyB.null
{-# INLINE _Empty #-}
instance AsEmpty StrictT.Text where
_Empty :: p () (f ()) -> p Text (f Text)
_Empty = Text -> (Text -> Bool) -> Prism' Text ()
forall a. a -> (a -> Bool) -> Prism' a ()
nearly Text
StrictT.empty Text -> Bool
StrictT.null
{-# INLINE _Empty #-}
instance AsEmpty LazyT.Text where
_Empty :: p () (f ()) -> p Text (f Text)
_Empty = Text -> (Text -> Bool) -> Prism' Text ()
forall a. a -> (a -> Bool) -> Prism' a ()
nearly Text
LazyT.empty Text -> Bool
LazyT.null
{-# INLINE _Empty #-}