
libIDL2

Andrew T. Veliath

Copyright c© 1998, 1999 Andrew T. Veliath

Chapter 1: Overview 1

1 Overview

libIDL is a library licensed under the GNU LGPL for creating trees of CORBA Interface
Definition Language (IDL) files, which is a specification for defining portable interfaces.
libIDL was initially written for ORBit (the ORB from the GNOME project, and the primary
means of libIDL distribution). However, the functionality was designed to be as reusable
and portable as possible.

It is written in C, and the aim is to retain the ability to compile it on a system with
a standard C compiler. Preprocessed parser files are included so you are not forced to
rebuild the parser, however an effort is made to keep the parser and lexer compatible with
standard Unix yacc and lex (although bison and flex are more efficient, and are used for the
preprocessed parsers in the distribution).

With libIDL, you can parse an IDL file which will be automatically run through the C
preprocessor (on systems with one available), and have detailed error and warning messages
displayed. On a compilation without errors, the tree is returned to the custom application.
libIDL performs compilation phases from lexical analysis to nearly full semantic analysis
with some optimizations, and will attempt to generate meaningful errors and warnings for
invalid or deprecated IDL.

libIDL exports functionality used to generate detailed conforming error and warning
messages in gcc-like format, and also comes with a default backend to generate IDL into
a file or string (useful for customized messages or comments in the output). The IDL
backend is complete enough that most generated IDL can be reparsed by libIDL without
errors. libIDL returns separate syntax and namespace trees, and includes functionality to
hide syntactical information from the primary tree, while keeping it accessible through the
namespace for type information and name lookup.

Optional extensions to standard IDL can be enabled using parse flags. These include
node properties, embedded code fragments, and XPIDL. Nodes can also have declarations
tags which assign particular attributions to certain IDL constructs to further facilitate
custom applications.

Chapter 2: Usage 3

2 Usage

The following C program using libIDL will parse an IDL file and print the Repository IDs
of the interfaces in the IDL module.

#include <assert.h>

#include <stdio.h>

#include <stdlib.h>

#include <libIDL/IDL.h>

gboolean

print_repo_id (IDL_tree_func_data *tfd, gpointer user_data)

{

char *repo_id = NULL;

if (IDL_NODE_TYPE (tfd->tree) == IDLN_INTERFACE)

repo_id = IDL_IDENT_REPO_ID (IDL_INTERFACE (tfd->tree).ident);

if (repo_id)

printf ("%s\n", repo_id);

return TRUE;

}

int

main (int argc, char *argv[])

{

IDL_tree tree;

IDL_ns ns;

char *fn;

int rv;

if (argc < 2) {

fprintf (stderr, "usage: %s <file>\n", argv[0]);

exit (1);

}

fn = argv[1];

rv = IDL_parse_filename (fn, NULL, NULL, &tree, &ns, 0, IDL_WARNING1);

if (rv == IDL_ERROR || rv < 0) {

if (rv < 0)

perror (fn);

exit (1);

}

IDL_tree_walk_in_order (tree, print_repo_id, NULL);

IDL_ns_free (ns);

IDL_tree_free (tree);

4 libIDL2

return 0;

}

Chapter 3: Reference 5

3 Reference

Chapter 4: Data Types 7

4 Data Types

• IDL tree

A semi-opaque tree which encapsulates an IDL tree node. Must be freed with
IDL tree free (see Chapter 5 [Functions], page 9).

• IDL ns

A semi-opaque structure which encapsulates the IDL module namespace. Must be
freed with IDL ns free (see Chapter 5 [Functions], page 9).

• IDL msg callback

Defined as typedef int (*IDL msg callback)(int LEVEL, int NUM, int LINE, const
char *NAME, const char *ERR). A function of this type can be optionally passed to
IDL parse filename to be called when a parse warning or error occurs.

• IDL tree func

Defined as typedef gboolean (*IDL tree func) (IDL tree func data
*TREE FUNC DATA, gpointer DATA). A function of this type is passed to
IDL tree walk in order to traverse the tree. TREE FUNC DATA contains an up
traversal hierarchy of the current traversal, as well as some state information. The
current node being processed is given by TREE FUNC DATA->tree.

Chapter 5: Functions 9

5 Functions

• Function: int IDL parse filename (const char *NAME, const char *CPP ARGS,
IDL msg callback CALLBACK, IDL tree *TREE, IDL ns *NS, unsigned long
FLAGS, int MAX MESSAGE LEVEL)

Parse an file containing an IDL definition into a parse tree. Returns IDL SUCCESS if
successful, or IDL ERROR if there was a parse error. If -1 is returned, errno will be
set accordingly. Usually, if IDL ERROR is returned, all one needs to do is exit with a
non-zero status, since libIDL will probably have made the reason for failure explictly
known.

− NAME: required, specifies the filename to be parsed.

− CPP ARGS: optional, if non-NULL, specifies extra arguments to pass to the C
preprocessor. The most common type of string would be in the form of -I<dir>
to include additional directories for file inclusion search, or defines in the form of
-D<define>=<value>.

− CALLBACK: optional, if non-NULL, this function will be called when a warning
or error is generated (see Chapter 4 [Data Types], page 7). If not given, warnings
and errors will be sent to stderr. All errors and warning, including callbacks, are
subject to MAX MESSAGE LEVEL as described below.

− TREE: optional, if non-NULL, points to an IDL tree * to return the generated
tree which must be freed with IDL tree free. If NULL, the tree is freed and not
returned.

− NS: optional, if non-NULL, points to an IDL ns * to return the namespace tree
which must be freed with IDL ns free. If NULL, the tree is freed and not returned.
If TREE is NULL, then NS must also be NULL, since the namespace is created
as the AST is generated.

− FLAGS: optional, specifies extra flags for parsing or 0. The various flags are
described here.

− General Parse Flags

− IDLF NO EVAL CONST: instructs the parser not to evaluate constant ex-
pressions.

− IDLF COMBINE REOPENED MODULES: instructs the parser to combine
modules defined later in the IDL code in the first module node in the tree.

− IDLF PREFIX FILENAME: instructs the parser to prefix the filename to the
namespace.

− IDLF IGNORE FORWARDS: instructs the parser to not try to resolve and
print messages for unresovled forward declarations.

− IDLF PEDANTIC: instructs the parser to display stricter errors and warn-
ings.

− IDLF INHIBIT TAG ONLY: only tag inhibited nodes, do not remove them.
Use IDL tree remove inhibits to remove them at a later time.

− IDLF INHIBIT INCLUDES: causes libIDL to automatically inhibit IDL trees
in included files.

10 libIDL2

− Syntax Extension Flags

− IDLF TYPECODES: understand the ‘TypeCode’ keyword extension.

− IDLF XPIDL: enable XPIDL syntax.

− IDLF PROPERTIES: enable support for node properties.

− IDLF CODEFRAGS: enable support for embedded code fragments.

− MAX MESSAGE LEVEL:

This specifies the maximum message level to display. Possible values are -1 for no
messages, IDL ERROR for errors only, or IDL WARNING1, IDL WARNING2
and IDL WARNING3. A typical value is IDL WARNING1, which will limit ver-
bosity. IDL WARNINGMAX is defined as the value in which all messages will be
displayed.

• Function: void IDL tree walk in order (IDL tree ROOT, IDL tree func FUNC,
gpointer DATA)

Walks an IDL tree, calling FUNC for every node. If the FUNC returns TRUE for a
particular node, that particular node will also be traversed, if FALSE is returned, that
particular node will be skipped, in the assumption that the function has taken care of
it.

− ROOT: required, specifies the IDL tree to traverse.

− FUNC: required, specifies the callback function (see Chapter 4 [Data Types],
page 7).

− DATA: optional, specifies the callback data.

• Function: void IDL tree free (IDL tree TREE)

Frees the memory associated with TREE.

• Function: void IDL ns free (IDL ns NS)

Frees the memory associated with NS.

Chapter 6: Extensions 11

6 Extensions

This page documents extensions to standard IDL which libIDL will understand. To maintain
portability, it is recommended that these extensions are only used with some sort of C
preprocessor define so they can be conditionally omitted.

• declspec (<spec>)

This token assigns special attributions to particular IDL constructs.

− inhibit

If declspec (inhibit) is placed before a definition or export, that module or in-
terface definition will be removed from the tree. The tree is only deleted when the
IDL ns component is freed, so it can be traversed from the namespace component
for extended information, but will be omitted from the primary tree.

Chapter 7: Tree Structure 13

7 Tree Structure

Chapter 8: Function Index 15

8 Function Index

IDL_ns_free . 10
IDL_parse_filename . 9

IDL_tree_free . 10
IDL_tree_walk_in_order . 10

i

Table of Contents

1 Overview . 1

2 Usage . 3

3 Reference . 5

4 Data Types . 7

5 Functions . 9

6 Extensions . 11

7 Tree Structure . 13

8 Function Index . 15

	Overview
	Usage
	Reference
	Data Types
	Functions
	Extensions
	Tree Structure
	Function Index

