IT++ Logo
Classes | Functions
Miscellaneous Communications Functions

Classes

class  itpp::EXIT
 EXtrinsic Information Transfer (EXIT) chart. More...
 
class  itpp::Multilateration
 Multilateration class for 3D indoor localization More...
 
class  itpp::STC
 Space Time block Codes (STC) class. More...
 

Functions

bmat itpp::graycode (int m)
 Generate Gray code of blocklength m.
 
int itpp::hamming_distance (const bvec &a, const bvec &b)
 Calculate the Hamming distance between a and b.
 
int itpp::weight (const bvec &a)
 Calculate the Hamming weight of a.
 
vec itpp::waterfilling (const vec &alpha, double P)
 Compute the water-filling solution.
 

Detailed Description

Function Documentation

◆ graycode()

ITPP_EXPORT bmat itpp::graycode ( int  m)

Generate Gray code of blocklength m.

The codes are contained as binary codewords {0,1} in the rows of the returned matrix. See also the gray() function in math/scalfunc.h.

Definition at line 39 of file commfunc.cpp.

References itpp::concat(), itpp::graycode(), itpp::ones_b(), itpp::reverse(), itpp::to_bmat(), and itpp::zeros_b().

Referenced by itpp::graycode(), itpp::QAM::set_M(), itpp::PSK::set_M(), itpp::PAM_c::set_M(), itpp::PAM::set_M(), itpp::ND_UPAM::set_M(), itpp::ND_UQAM::set_M(), and itpp::ND_UPSK::set_M().

◆ hamming_distance()

ITPP_EXPORT int itpp::hamming_distance ( const bvec &  a,
const bvec &  b 
)

Calculate the Hamming distance between a and b.

Definition at line 59 of file commfunc.cpp.

References it_assert_debug.

◆ weight()

ITPP_EXPORT int itpp::weight ( const bvec &  a)

Calculate the Hamming weight of a.

Definition at line 71 of file commfunc.cpp.

Referenced by itpp::Extended_Golay::decode().

◆ waterfilling()

ITPP_EXPORT vec itpp::waterfilling ( const vec &  alpha,
double  P 
)

Compute the water-filling solution.

This function computes the solution of the water-filling problem

\[
\max_{p_0,...,p_{n-1}} \sum_{i=0}^{n-1} \log\left(1+p_i\alpha_i\right)
\]

subject to

\[
\sum_{i=0}^{n-1} p_i \le P
\]

Parameters
alphavector of $\alpha_0,...,\alpha_{n-1}$ gains (must have strictly positive elements)
Ppower constraint
Returns
vector of power allocations $p_0,...,p_{n-1}$

The computational complexity of the method is $O(n^2)$ at most

Definition at line 82 of file commfunc.cpp.

References it_assert, and itpp::length().

SourceForge Logo

Generated on Tue Jan 24 2023 00:00:00 for IT++ by Doxygen 1.9.6