SWI-Prolog Python interface

Jan Wielemaker
SWI-Prolog Solutions b.v.
E-mail: jan@swi-prolog.org

November 23, 2024

Abstract

This package implements a bi-directional interface between Prolog and Python using portable
low-level primitives. The aim is to make Python available to Prolog and visa versa with minimal
installation effort while providing a high level bi-directional interface with good performance.

The API is being developed in close cooperation with the XSB and Ciao teams as a pilot for
the PIP (Prolog Improvement Proposal) initiative. Janus should become the de-facto standard
interface between Python and Prolog.

Contents

10

11

12

13

14

15

Introduction
Data conversion

Janus by example - Prolog calling Python
3.1 JanuscallingspaCy e

library(janus): Call Python from Prolog

4.1 Handling PythonerrorsinProlog oo,
4.2 Calling and data translation errorso e
4.3 Janus and virtual environments (Venv)o e

Calling Prolog from Python
5.1 Janusiterator qUETY o i .o e e e e e e e e e e e e e e
5.2 Janusiterator apply e
5.3 Janus access to Python locals and globals
54 Janusand Prologtruth
5.4.1 Janusclassed Undefined and TruthVal
5.5 JanusclassTerm
5.6 Janusclass PrologError

Janus and threads
6.1 Calling Prolog from a Pythonthread
6.2 Python and Prologdeadlocks,

Janus and signals

Janus versions

Janus as a Python package

Prolog and Python

Janus performance evaluation

Python or C/C++ for accessing resources?

Janus platforms notes

13.1 Januson Windows e e e e e e e e
13.2 Januson Linux e e e e e
13.3 Januson MacOS e e e e e

Compatibility to the XSB Janus implementation
14.1 Writing portable Janus modules,

Status of Janus

27
28
28

29

29

29

30

30

31

31
31
32
32

32
33

33

1 Introduction

Python has a huge developer community that maintains a large set of resources, notably interfaces to
just about anything one can imagine. Making such interfaces directly available to Prolog can surely
be done. However, developing an interface typically requires programming in C or C++, a skill that
is not widely available everywhere. Being able to access Python effortlessly from Prolog puts us in
a much better position because Python experience is widely available in our target audience. This
solution was proposed in [,], initially developed for
XSB.

Janus provides a bi-directional interface between Prolog and Python using the low-level C
API of both languages. This makes using Python from Prolog as simple as taking the standard
SWI-Prolog distribution and loading library janus. Using Prolog from Python is as simple as
import Jjanus_swi as Jjanus and start making calls. Both Prolog and Python being dynam-
ically typed languages, we can define an easy to use interface that provides a latency of about one
uS.

The Python interface is modeled after the recent JavaScript interface developed for the WASM
(Web Assembly) version. That is

¢ A di-directional data conversion is defined. See section 2.

* A Prolog predicate py_call/2 to call Python functions and methods, as well as access and set
object attributes.

* A non-deterministic Prolog predicate py_iter/2 to enumerate a Python iferator.

¢ A Python function janus.query_once () to evaluate a Prolog query as once/ 1, providing
input to Prolog variables using a Python dict and return a Python dict with bindings for each
Prolog output variable.

* A python function janus.apply-once () to call a Prolog predicate with N input arguments
followed by exactly one output argument. This provides a faster and easier to use interface to
compliant predicates.

e Python iterators janus.query () and janus.apply () that provide access to non-
deterministic Prolog predicates using the calling conventions of janus.query_once () and
janus.apply-once ().

The API of Janus is the result of discussions between the SWI-Prolog, XSB and Ciao lang teams.
It will be reflected in a PIP (Prolog Improvement Proposal). Considering the large differences in
designs and opinions in Prolog implementation, the PIP does not cover all aspects of the API. Many
of the predicates and functions have a Compatibility note that explains the relation of the SWI-Prolog
API and the PIP. We summarize the differences in section 14.

2 Data conversion

The bi-directional conversion between Prolog and Python terms is summarized in the table be-
low. For compatibility with Prolog implementations without native dicts we support converting
the {k1l:v1l, k2:v2, ...} to dicts. Note that {kl:v1l, k2:v2} is syntactic sugar for
(¢, (:(k1,v1l), :(k2,v2))). Weallow for embedding this in a py(Term) such that, with

py defined as prefix operator, py {k1:v1,

k2:v2} is both valid syntax as SWI-Prolog dict as as

ISO Prolog compliant term and both are translated into the same Python dict. Note that { } translates
to a Python string, while py ({ }) translates into an empty Python dict.

By default we translate Python strings into Prolog atoms. Given we support strings, this is some-
what dubious. There are two reasons for this choice. One is the pragmatic reason that Python uses
strings both for identifiers and arbitrary text. Ideally we’d have the first translated to Prolog atoms and
the latter to Prolog strings, but, because we do not know which strings act as identifier and which as
just text, this is not possible. The second is to improve compatibility with Prolog systems that do not
support strings. Note that py_call/3 and py_iter/3 provide the option py_string_as(Type)
to obtain strings in an alternative format, where Type is one of atom, string, codes or chars.

Prolog Python Notes

Variable — | - (instantiation error)

Integer <= | int Supports big integers

Rational <= | fractions.Fraction ()

Float <= | float

@(none) <= | None

@(true) <= | True

@(false) <> | False

Atom <— | enum.Enum/() Name of Enum instance

Atom <= | String Depending on py_string_as option

String — | String

string(Text) — | String Text is an atom, string, code- or char list

#(Term) — | String stringify using write_canonical/1l if not
atomic

prolog(Term) | — | janus.Term() Represents any Prolog term

Term <— | janus.Term()

List — | List

List <— | Sequence

List <— | Iterator Note that a Python Generator is an Iterator

py-set(List) <= | Set

-() = | 0 Python empty Tuple

-(a,b,...) <~ | (a,b,...) Python Tuples. Note that a Prolog pair A—B maps
to a Python (binary) tuple.

Dict <= | Dict Default for SWI-Prolog

{kv,... } <= | Dict Compatibility when using py_dict_as ({})

py({}) — | {} Empty dict when using py_dict_as ({})

{kev,...} — | Dict Compatibility (see above)

py({k:v,...}) | — | Dict Compatibility (see above)

eval(Term) — | Object Evaluate Term as first argument of py_call/2

py-obJjblob | <= | Object Used for any Python object not above

Compound — | - for any term not above (type error)

The interface supports unbounded integers and rational numbers. Large integers (> 64 bits) are
converted using a hexadecimal string as intermediate. SWI-Prolog rational numbers are mapped to

the Python class fractions:Fraction.'

The conversion #(Term) allows passing anything as a Python string. If Term is an atom or string,
this is the same as passing the atom or string. Any other Prolog term is converted as defined by
write_canonical/1. The conversion prolog(Term) creates an instance of janus.Term().
This class encapsulates a copy of an arbitrary Prolog term. The SWI-Prolog implementation uses the
PL_.record () and PL_recorded () functions to store and retrieve the term. Term may be any
Prolog term, including blobs, attributed variables. Cycles and subterm sharing in Term are preserved.
Internally, janus. Term () is used to represent Prolog exeptions that are raised during the execution
of janus.query_once () or janus.query ().

Python Tuples are array-like objects and thus map best to a Prolog compound term. There are two
problems with this. One is that few systems support compound terms with arity zero, e.g., £ and many
systems have a limit on the arity of compound terms. Using Prolog comma lists, e.g., (a, b, c) does
not implement array semantics, cannot represent empty tuples and cannot disambiguate tuples with
one element from the element itself. We settled with compound terms using the — as functor to make
the common binary tuple map to a Prolog pair.

3 Janus by example - Prolog calling Python
This section introduces Janus calling Python from Prolog with examples.

3.1 Janus calling spaCy

The spaCy package provides natural language processing. This section illustrates the Janus library
using spaCy. Typically, spaCy and the English language models may be installed using

> pip install spacy
> python -m spacy download en

After spaCy is installed, we can define mode 1/ 1 to represent a Python object for the English language
model using the code below. Note that by tabling this code as shared, the model is loaded only once
and is accessible from multiple Prolog threads.

:— table english/1 as shared.

english (NLP) :-
py_call (spacy:load(en_core_web_sm), NLP).

Calling english(X) results in X = <py_English> (0x7£f703c24£430), a blob that refer-
ences a Python object. English is the name of the Python class to which the object belongs and
Ox7f703c24f430 is the address of the object. The returned object implements the Python callable pro-
tocol, i.e., it behaves as a function with additional properties and methods. Calling the model with a
string results in a parsed document. We can use this from Prolog using the built-in __call__ method:

!Currently, mapping rational numbers to fractions uses a string as intermediate representation and may thus be slow.

https://spacy.io/

?— english (NLP),
py_call (NLP:’_ _call__ ' ("This is a sentence."), Doc).
NLP = <py_English> (0x7£703851b8e0),
Doc = [<py_Token> (0x7£70375be9d0), <py_Token> (0x7f70375be930),
<py_Token> (0x7£f70387£8860), <py_Token> (0x7f70376dde40),
<py_Token> (0x7£70376de200)

1.

This is not what we want. Because the spaCy Doc class implements the sequence protocol it is trans-
lated into a Prolog list of spaCy Token instances. The Doc class implements many more methods
that we may wish to use. An example is noun_chunks, which provides a Python generator that
enumerates the noun chunks found in the input. Each chunk is an instance of Span, a sequence
of Token instances that have the property text. The program below extracts the noun chunks of
the input as a non-deterministic Prolog predicate. Note that we use py_object (true) to get the
parsed document as a Python object. Next, we use py_iter/2 to access the members of the Python
iterator returned by Doc . noun_chunks as Python object references and finally we extract the text
of each noun chunk as an atom. The SWI-Prolog (atom) garbage collector will take care of the Doc
and Span Python objects. Immediate release of these objects can be enforced using py_free/1.”

:— use_module (library (janus)) .
:— table english/1.

english (NLP) :-
py_call (spacy:load(en_core_web_sm),NLP) .

noun (Sentence, Noun) :-—
english (NLP),
py_call (NLP:’__ _call_ '’ (Sentence), Doc, [py_object (true)l]),
py_iter (Doc:noun_chunks, Span, [py_object]),
py_call (Span:text, Noun).

After which we can call

?— noun ("This is a sentence.", Noun).
Noun = ’This’ ;
Noun = "a sentence’.

The subsequent section 4 documents the Prolog library janus.

4 library(janus): Call Python from Prolog

This library implements calling Python from Prolog. It is available directly from Prolog if the janus
package is bundled. The library provides access to an embedded Python instance. If SWI-Prolog is

2Janus implementations are not required to implement Python object reference garbage collection.

embedded into Python using the Python package janus-swi, this library is provided either from
Prolog or from the Python package.

Normally, the Prolog user can simply start calling Python using py_call/2 or friends. In special
cases it may be needed to initialize Python with options using py_-initialize/3 and optionally
the Python search path may be extended using py_add_lib_dir/1.

py-_version [det]
Print version info on the embedded Python installation based on Python sys.version. If a
Python virtual environment (venv) is active, indicate this with the location of this environment

found.
py_-_call(+Call) [det]
py-call(+Call, -Return) [det]
py-call(+Call, -Return, +Options) [det]

Call Python and return the result of the called function. Call has the shape ‘[Target][:Action]**,
where Target is either a Python module name or a Python object reference. Each Action is
either an atom to get the denoted attribute from current 7arget or it is a compound term where
the first argument is the function or method name and the arguments provide the parameters
to the Python function. On success, the returned Python object is translated to Prolog. Action
without a Target denotes a buit-in function.

Arguments to Python functions use the Python conventions. Both positional and keyword ar-
guments are supported. Keyword arguments are written as Name = Value and must appear
after the positional arguments.

Below are some examples.

[}

% call a built-in

?— py_call (print ("Hello World!\n")).

true.

% call a built-in (alternative)

?— py_call (builtins:print ("Hello World!\n")).
true.

% call function in a module

?- py_call(sys:getsizeof([1,2,3]), Size).
Size = 80.

% call function on an attribute of a module
?— py_call (sys:path:append ("/home/bob/janus")) .
true

% get attribute from a module

?- py_call (sys:path, Path)

Path = ["dirl", "dir2", ...]

Given a class in a file dog . py such as the following example from the Python documentation

class Dog:
tricks = []

def _ _init__ (self, name):
self.name = name

def add_trick(self, trick):
self.tricks.append(trick)

We can interact with this class as below. Note that $Doc in the SWI-Prolog toplevel refers to
the last toplevel binding for the variable Dog.

?- py_call (dog:’Dog’ ("Fido"), Dog).
Dog = <py_Dog> (0x7f095c9d02e0) .

?— py_call (SDog:add_trick ("roll_over")).
Dog = <py_Dog> (0x7£095c9d02e0) .

?- py_call($Dog:tricks, Tricks).
Dog = <py_Dog> (0x7£095c9d02e0),
Tricks = ["roll_over"]

If the principal term of the first argument is not Target : Func, The argument is evaluated as
the initial target, i.e., it must be an object reference or a module. For example:

?- py_call (dog:’Dog’ ("Fido"), Dog),
py_call (Dog, X).
Dog = X, X = <py_Dog>(0x7fa8cbdl12050) .
?- py_call(sys, S).
S = <py_module> (0x7fa8cd582390) .

Options processed:

py-object(Boolean)
If t rue (default false), translate the return as a Python object reference. Some objects
are always translated to Prolog, regardless of this flag. These are the Python constants
None, True and False as well as instances of the Python base classes int, float,
str or tuple. Instances of sub classes of these base classes are controlled by this
option.

py-string_as(+7Type)
If Type is at om (default), translate a Python String into a Prolog atom. If Type is st ring,
translate into a Prolog string. Strings are more efficient if they are short lived.

py-dict_as(+Type)
One of dict (default) to map a Python dict to a SWI-Prolog dict if all keys can be
represented. If {} or not all keys can be represented, Return is unified to a term
{k:v, ...}orpy({}) if the Python dict is empty.

Compatibility PIP. The options py_string_as and py_dict_as are SWI-Prolog specific,
where SWI-Prolog Janus represents Python strings as atoms as required by the PIP and it rep-
resents Python dicts by default as SWI-Prolog dicts. The predicates values/3, keys/2, etc.
provide portable access to the data in the dict.

py_.iter(+Iterator, -Value) [nondet]

py-iter(+/terator, -Value, +Options) [nondet]
True when Value is returned by the Python Iterator. Python iterators may be used to implement
non-deterministic foreign predicates. The implementation uses these steps:

1. Evaluate [Iterator as py-call/2 evaluates its first argument, except the
Obj:Attr = Value construct is not accepted.

2. Call __iter___ on the result to get the iterator itself.
3. Getthe __next_ _ function of the iterator.

4. Loop over the return values of the next function. If the Python return value unifies with
Value, succeed with a choicepoint. Abort on Python or unification exceptions.

5. Re-satisfaction continues at (4).

The example below uses the built-in iterator range () :

?—- py_iter(range(1,3), X).
X =1;
X = 2.

Note that the implementation performs a look ahead, i.e., after successful unification it calls
‘next()‘ again. On failure the Prolog predicate succeeds deterministically. On success, the next
candidate is stored.

Note that a Python generator is a Python iterator. Therefore, given the Python generator ex-
pression below, we can use py_iter (squares (1, 5), X) to generate the squares on back-
tracking.

def squares(start, stop):
for i in range(start, stop):
yield 1 * i

Arguments

Options is processed as with py_call/3.

Compatibility PIP. The same remarks as for py_call/2 apply.
bug Iterator may not depend on janus.query (), i.e., it is not possible to iterate over a Python iterator
that under the hoods relies on a Prolog non-deterministic predicate.

py_setattr(+Target, + Name, +Value) [det]
Set a Python attribute on an object. If Target is an atom, it is interpreted as a module. Otherwise
it is normally an object reference. py_setattr/3 allows for chaining and behaves as if
defined as

py_setattr (Target, Name, Value) :-—
py_call (Target, Obj, [py_object(true)l]),
py_call (setattr (Obj, Name, Value)).

Compatibility PIP

py-is_object(@Term) [semidet]
True when Term is a Python object reference. Fails silently if 7Term is any other Prolog term.

Errors existence_error (py_object, Term) israised of Term is a Python object, but it has
been freed using py_free/1.

Compatibility PIP. The SWI-Prolog implementation is safe in the sense that an arbitrary term cannot
be confused with a Python object and a reliable error is generated if the references has been freed.
Portable applications can not rely on this.

py-is_dict(@Term) [semidet]
True if Term is a Prolog term that represents a Python dict.

Compatibility PIP. The SWI-Prolog version accepts both a SWI-Prolog dict and the {k:v, ...}
representation. See py_dict_as option of py_call/2.

py-free(+0bj) [det]
Immediately free (decrement the reference count) for the Python object Obj. Further reference
to Obj using e.g., py_call/2 or py_free/1 raises an existence_error. Note that by
decrementing the reference count, we make the reference invalid from Prolog. This may not
actually delete the object because the object may have references inside Python.

Prolog references to Python objects are subject to atom garbage collection and thus normally
do not need to be freed explicitly.

Compatibility PIP. The SWI-Prolog implementation is safe and normally reclaiming Python object
can be left to the garbage collector. Portable applications may not assume garbage collection of
Python objects and must ensure to call py_free/1 exactly once on any Python object reference.
Not calling py_free/1 leaks the Python object. Calling it twice may lead to undefined behavior.

py-_with_gil(:Goal) [semidet]
Run Goal as once (Goal) while holding the Phyton GIL (Global Interpreter Lock). Note
that all predicates that interact with Python lock the GIL. This predicate is only required if we
wish to make multiple calls to Python while keeping the GIL. The GIL is a recursive lock and
thus calling py_call/1,2 while holding the GIL does not deadlock.

py-gil_owner(-Thread) [semidet]
True when the Python GIL is owned by Thread. Note that, unless Thread is the calling thread,
this merely samples the current state and may thus no longer be true when the predicate
succeeds. This predicate is intended to help diagnose deadlock problems.

10

Note that this predicate returns the Prolog threads that locked the GIL. It is however possible
that Python releases the GIL, for example if it performs a blocking call. In this scenario, some
other thread or no thread may hold the gil.

py_func(+Module, + Function, -Return) [det]

py-func(+Module, +Function, -Return, +Options) [det]
Call Python Function in Module. —The SWI-Prolog implementation is equivalent to
py_call (Module:Function, Return). See py_call/2 for details.

Compatibility PIP. See py-call/2 for notes. Note that, as this imple-
mentation is based on py_.call/2, Function can use chaining, e.g.,
py_func(sys, path:append(dir), Return) is accepted by this implementa-
tion, but not portable.

py-dot(+ObjRef, + MethAttr, -Ret) [det]

py-dot(+ObjRef, + MethAttr, -Ret, +Options) [det]
Call a method or access an attribute on the object ObjRef. The SWI-Prolog implementation is
equivalent to py_call (ObJjRef:MethAttr, Return). Seepy_call/2 for details.

Compatibility PIP. See py_func/ 3 for details.

values(+Dict, +Path, ?Val) [semidet]
Get the value associated with Dict at Path. Path is either a single key or a list of keys.

Compatibility PIP. Note that this predicate handle a SWI-Prolog dict, a {k:v, ...} term as well as
py({k:v, ...}.

keys(+Dict, ?Keys) [det]
True when Keys is a list of keys that appear in Dict.

Compatibility PIP. Note that this predicate handle a SWI-Prolog dict, a {k:v, ...} term as well as
py({k:v, ...}.

key(+Dict, ?Key) [nondet]
True when Key is a key in Dict. Backtracking enumerates all known keys.

Compatibility PIP. Note that this predicate handle a SWI-Prolog dict, a {k:v, ...} term as well as
py({k:v, ...}.

items(+Dict, ?Items) [det]
True when Items is a list of Key:Value that appear in Dict.

Compatibility PIP. Note that this predicate handle a SWI-Prolog dict, a {k:v, ...} term as well as
py({k:v, ...}.

py-shell
Start an interactive Python REPL loop using the embedded Python interpreter. The interpreter
first imports janus as below.

from janus import =«

11

So, we can do

?— py_shell.

>>> query_once ("writeln(X)", {"X":"Hello world"})
Hello world
{"truth’ : True}

If possible, we enable command line editing using the GNU readline library.

When used in an environment where Prolog does not use the file handles 0,1,2 for the stan-
dard streams, e.g., in swipl-win, Python’s I/O is rebound to use Prolog’s I/O. This includes
Prolog’s command line editor, resulting in a mixed history of Prolog and Pythin commands.

py-pp(+Term) [det]
pY-_pp(+7erm, +Options) [det]
py_pp(+Stream, +Term, +Options) [det]

Pretty prints the Prolog translation of a Python data structure in Python syntax. This exploits
pformat () from the Python module pprint to do the actual formatting. Options is
translated into keyword arguments passed to pprint.poformat (). In addition, the option
nl (Bool) is processed. When t rue (default), we use pprint.pp (), which makes the output
followed by a newline. For example:

?- py_pp(pyf{a:l, 1:[1,2,3], size:1000000},
[underscore_numbers (true)]) .
{*ra”: 1, "1": [1, 2, 3], ’'size’: 1_000_000}

Compatibility PIP

py-object_dir(+ObjRef, -List) [det]

py-object_dict(+ObjRef, -Dict) [det]
Examine attributes of an object. The predicate py_object_dir/2 fetches the names of all
attributes, while py_object_dir/2 gets a dict with all attributes and their values.

Compatibility PIP
py-obj_dir(+ObjRef, -List) [det]
py-obj_dict(+ObjRef, -Dict) [det]

deprecated Use py_object_dir/2 orpy_object_dict/2.

py-type(+ObjRef, -Type:atom) [det]
True when Type is the name of the type of ObjRef. This is the same as
type (ObjRef) ._ _name__ in Python.

Compatibility PIP

12

py-isinstance(+ObjRef, +Type) [semidet]
True if ObjRef is an instance of Type or an instance of one of the sub types of Type. This is the
same as isinstance (ObjRef) in Python.

Arguments

Type iseither aterm Module: Type or a plain atom to refer to a built-in
type.

Compatibility PIP

py-module_exists(+Module) [semidet]
True if Module is a currently loaded Python module or it can be loaded.

Compatibility PIP

py-hasattr(+ModuleOrObj, ?Name) [nondet]
True when Name is an attribute of Module. The name is derived from the Python built-in
hasattr (). If Name is unbound, this enumerates the members of py_object_dir/2.

Arguments
ModuleOrObj 1If this is an atom it refers to a module, otherwise it must be a Python
object reference.

Compatibility PIP

py-import(+Spec, +Options) [det]

Import a Python module. Janus imports modules automatically when referred in py_call/2
and related predicates. Importing a module implies the module is loaded using Python’s
__import__ () built-in and added to a table that maps Prolog atoms to imported modules.
This predicate explicitly imports a module and allows it to be associated with a different name.
This is useful for loading nested modules, i.e., a specific module from a Python package as well
as for avoiding conflicts. For example, with the Python selenium package installed, we can
do in Python:

>>> from selenium import webdriver
>>> browser = webdriver.Chrome ()

Without this predicate, we can do

?— py_call (’selenium.webdriver’ :’Chrome’ (), Chrome) .

For a single call this is fine, but for making multiple calls it gets cumbersome. With this predi-
cate we can write this.

?—- py_import (' selenium.webdriver’, [1).
?— py_call (webdriver:’Chrome’ (), Chrome) .

By default, the imported module is associated to an atom created from the last segment of the
dotted name. Below we use an explicit name.

13

?— py_import (' selenium.webdriver’, [as(browser)]).
?- py_call (browser:’Chrome’ (), Chrome).

Errors permission_error (import_as, py_module, As) if there is already a module
associated with As.

py_module(+Module:atom, +Source:string) [det]
Load Source into the Python module Module. This is intended to be used together with the
string quasi quotation that supports long strings in SWI-Prolog. For example:

:— use_module (library(strings)) .
:— py_module (hello,
{Istring] |
| def say_hello_to(s):
| print (f"hello {s}")
[}).

Calling this predicate multiple times with the same Module and Source is a no-op. Called with
a different source creates a new Python module that replaces the old in the global namespace.

Errors python_error (Type, Data) israised if Python raises an error.

py_-initialize(+Program, +Argv, +Options) [det]
Initialize and configure the embedded Python system. If this predicate is not called before any
other call to Python such as py_call/2, it is called lazily, passing the Prolog executable as
Program, passing Argv from the Prolog flag py_argv and an empty Options list.

Calling this predicate while the Python is already initialized is a no-op. This predicate is thread-
safe, where the first call initializes Python.

In addition to initializing the Python system, it

* Adds the directory holding janus . py to the Python module search path.
* If Prolog 1/O is not connected to the file handles 0,1,2, it rebinds Python I/O to use the

Prolog 1/0.
Arguments
Options is currently ignored. It will be used to provide additional configu-
ration options.
pylib_dirs(-Dirs) [det]

True when Dirs is a list of directories searched for Python modules. The elements of Dirs are
in Prolog canonical notation.

Compatibility PIP

py-add_lib_dir(+Dir) [det]
py-add_lib_dir(+Dir, + Where) [det]

14

Add a directory to the Python module search path. In the second form, Where is one of first
or last. py-add-1ib_dir/1 adds the directory as 1ast. The property sys:path is not
modified if it already contains Dir.

Dir is in Prolog notation. The added directory is converted to an absolute path using the OS
notation using prolog_to_os_filename/2.

If Dir is a relative path, it is taken relative to Prolog source file when used as a directive and
relative to the process working directory when called as a predicate.

Compatibility PIP. Note that SWI-Prolog uses POSIX file conventions internally, map-
ping to OS conventions inside the predicates that deal with files or explicitly using
prolog_to_os_filename/2. Other systems may use the native file conventions in Prolog.

4.1 Handling Python errors in Prolog

If py_call/2 or one of the other predicates that access Python causes Python to raise an exception,
this exception is translated into a Prolog exception of the shape below. The library defines a rule for
print_message/2 to render these errors in a human readable way.

error(python_error(ErrorType, Value), _)
Here, ErrorType is the name of the error type, as an atom, e.g., ' TypeError’. Value is the ex-

ception object represented by a Python object reference. The janus defines the message formatting,
which makes us end up with a message like below.

?— py_call (nomodule:noattr) .
ERROR: Python ’"ModuleNotFoundError’:

ERROR: No module named ’'nomodule’
ERROR: In:
ERROR: [10] janus:py_call (nomodule:noattr)

The Python stack trace is handed embedded into the second argument of the error(Formal, Im-
plementationDefined). If an exception is printed, printing the Python backtrace, is controlled by the
Prolog flags py backtrace (default true) and py_backtrace_depth (default 4).

Compatibility PIP. The embedding of the Python backtrace is SWI-Prolog specific.

4.2 Calling and data translation errors

Errors may occur when converting Prolog terms to Python objects as defined in sec-
tion 2. These errors are reported as instantiation_error, type_error(Type, Culprit) or
domain_error(Domain, Culprit).

Defined domains are:

py-constant
In a term Q(Constant), Constant is not true, false or none. For example,
py-call (print (@error)).

15

py_keyword_arg
In a call to Python, a non keyword argument follows a keyword argument. For example,
py-call (m:£(1,x=2,3), R)

py-string_as
The wvalue for a py_string.as(As) option is invalid. For example,
py-call(m:f£f(), R, [py-string.as(float)])

py-dict_as
The wvalue for a py.dict_as(As) option is invalid. For example,
py-call (m:f(), R, [py-dict_as(list)])

py-term
A term being translated to Python is unsupported. For example,
py-call (m:f (point (1,2)), R).

Defined types are:

py_object
A Python object reference was expected. For example, py_free (42)

rational
A Python fraction instance is converted to a Prolog rational number, but the textual conver-
sion does not produce a valid rational number. This can happen if the Python fraction is
subclassed and the __str__ () method does not produce a correct string.

py-key_value
Inside a {k:v, ...} representation for a dictionary we find a term that is not a key-value
pair. For example, py_call (m:f ({a:1, x}), R)

py-set
Inside a ©py_set(Elements), Elements 1is not a list. For example,

py-call (m:f (py_set (42)), R).

py_-target
In py_call(Target: FuncOrAttrOrMethod), Target is not a module (atom) or Python object
reference. For example, py_call (7:£(), R).

py-callable
In py_call(Target: FuncOrAttrOrMethod), FuncOrAttrOrMethod is not an atom or com-
pound. For example, py_call (m:7, R).

4.3 Janus and virtual environments (venv)

An embedded Python system does not automatically pick up Python virtual environments. It is sup-
posed to setup its own environment. Janus is sensitive to Python venv environments. Running under
such as environment is assumed if the environment variable VIRTUAL_ENV points at a directory that
holds a file pyvenv.cfqg. If the virtual environment is detected, the actions in the list below are
taken.’

3This is based on observing how Python 3.10 on Linux responds to being used inside a virtual environment. We do not
know whether this covers all platforms and versions.

16

* Initialize Python using the —I flag to indicate isolation.
e Set sys.prefix to the value of the VIRTUAL_ENV environment variable.

* Remove all directories with base name site-packages or dist-packages from
sys.pathA

e Add SVIRTUAL_ENV/lib/pythonX.Y/site—-packages to sys.path, where X and
Y are the major and minor version numbers of the embedded Python library. If this directory
does not exist we print a diagnostic warning.

* Add a message to py_version/O0 that indicates we are using a virtual environment and from
which directory.

5 Calling Prolog from Python

The Janus interface can also call Prolog from Python. Calling Prolog from Python is the basis when
embedding Prolog into Python using the Python package janus_swi. However, calling Prolog from
Python is also used to handle call backs. Mutually recursive calls between Python and Prolog are
supported. They should be handled with some care as it is easy to crash the process due to a stack
overflow.

Loading janus into Python is realized using the Python package janus-swi, which defines the
module janus_swi. We do not call this simply janus to allow coexistence of Janus for multiple
Prolog implementations. Unless you plan to interact with multiple Prolog systems in the same session,
we advise importing janus for SWI-Prolog as below.

import janus_swi as janus

If Python is embedded into SWI-Prolog, the Python module may be imported both as janus and
janus_swi. Using janus allows the same Python code to be used from different Prolog systems,
while using janus_swi allows the same code to be used both for embedding Python into Prolog and
Prolog into Python. In the remainder of this section we assume the Janus functions are available in
the name space janus.

The Python module janus provides utility functions and defines the classes janus.query (),
janus.apply (), jJanus.Term (), janus.Undefined () and janus.PrologError ().

The Python calling Prolog interface consist of four primitives, distinguishing deterministic vs.
non-deterministic Prolog queries and two different calling conventions which we name functional
notation and relational notation. The relational calling convention specifies a Prolog query as a string
with an input dict that provides (input) bindings for part of the variables in the query string. The
results are represented as a dict that holds the bindings of the output variables and the truth value (see
section 5.4). For example:

>>> Jjanus.query_once ("Y is sqrt(X)", {'X’':2})
{"truth’: True, "Y’: 1.4142135623730951}

“Note that —I only removes the personal packages directory, while the Python executable removes all, so we do the
same.

17

The functional notation calling convention specifies the query as a module, predicate name and input
arguments. It calls the predicate with one argument more than the number of input arguments and
translates the binding of the output argument to Python. For example

>>> Jjanus.apply_once ("user", "plus", 1, 2)
3

The table below summarizes the four primitives.

Relational notation Functional notation

det | Janus.query_once () Janus.apply_once ()
nondet Janus.query () janus.apply ()

We start our discussion by introducing the janus.query_once (query,inputs) function for
calling Prolog goals as once/1. A Prolog goal is constructed from a string and a dict with input
bindings and returns output bindings as a dict. For example

>>> import Jjanus_swi as janus
>>> Jjanus.query_once ("Y is X+1", {"X":1})
{"y": 2, "truth’: True}

Note that the input argument may also be passed literally. Below we give two examples. We strongly
advise against using string interpolation for three reasons. Firstly, the query strings are compiled
and cached on the Prolog sided and (thus) we assume a finite number of distinct query strings. Sec-
ondly, string interpolation is sensitive to injection attacks. Notably inserting quoted strings can easily
be misused to create malicious queries. Thirdly and finally, serializing and deserializing the data is
generally slower then using the input dictionary, especially if the data is large. Using a dict for input
and output together with a (short) string to denote the goal is easy to use and fast.

>>> Jjanus.query_once ("Y is 1+1", {1}) # Ok for "static" queries
{"y": 2, "truth’: True}
>>> x = 1

>>> janus.query_once (f"Y is {x}+1", {}) # WRONG, See above
{"y": 2, "truth’: True}

The output dict contains all named Prolog variables that (1) are not in the input dict and (2) do not
start with an underscore. For example, to get the grandparents of a person given parent /2 relations
we can use the code below, where the _GP and _P do not appear in the output dict. This both saves
time and avoids the need to convert Prolog data structures that cannot be represented in Python such
as variables or arbitrary compound terms.

>>> Jjanus.query_once ("findall (_GP, parent (Me, _P), parent(_P, _GP),
{"Me’ :"Jan’ }) ["GPs"]
["Kees’, "Jan’]

18

Gps) ",

In addition to the variable bindings the dict contains a key truth” that represents the truth value
of evaluating the query. In normal Prolog this is a Python Boolean. In systems that implement
Well Founded Semantics, this may also be an instance of the class janus.Undefined (). See
section 5.4 for details. If evaluation of the query failed, all variable bindings are bound to the Python
constant None and the truth key has the value False. The following Python function returns
True if the Prolog system supports unbounded integers and False otherwise.

def hasBigIntegers() :
Jjanus.query_once ("current_prolog_flag(bounded, false)") ['truth’]

While janus.query_once () deals with semi-deterministic goals, the class janus.query ()
implements a Python iterator that iterates over the solutions of a Prolog goal. The iterator may be
aborted using the Python break statement. As with janus.query_once (), the returned dict
contains a t ruth field. This field cannot be False though and thus is either True or an instance of
the class janus.Undefined ()

import janus_swi as janus

def printRange (fr, to):
for d in janus.query ("between (F,T,X)", {("F":fr, "T":to}):
print (d["X"])

The call to janus.query () returns an object that implements both the iterator protocol and the con-
text manager protocol. A context manager ensures that the query is cleaned up as soon as it goes
out of scope - Python typically does this with for loops, but there is no guarantee of when cleanup
happens, especially if there is an error. (You can think of a with statement as similar to Prolog’s
setup-_call_cleanup/3.) Using a context manager, we can write

def printRange (fr, to):
with janus.query ("between(¥,T,X)", {"F":fr, "T":to}) as d_g:
for d in d_g:
print (d["X"])

Iterators may be nested. For example, we can create a list of tuples like below.

def double_iter (w,h):
tuples=[]
for yd in janus.query ("between(l,M,Y)", {"M":h}):
for xd in janus.query ("between (1,M,X)", {"M":w}):
tuples.append ((xd["X"],yd["Y"]))
return tuples

or, using context managers:

>Note that variable bindings always start with an uppercase latter.

19

def doc_double_iter (w,h):
tuples=[]
with janus.query ("between(l,M,Y)", {"M":h}) as yd_g:
for yd in yd_qg:
with janus.query ("between(l,M,X)", {"M":w}) as xd_dg:
for xd in xd_qg:
tuples.append ((xd['X"],yd[’'Y" 1))
return tuples

After this, we may run

>>> demo.double_iter (2, 3)
(x, 1y, 2, 1), (1, 2, (2, 2y, (1, 3), (2, 3)]

In addition to the iterator protocol that class janus.query () implements, it also implements the
methods janus.query.next () and janus.query.close (). This allows for e.g.

g = query ("between(1l,3,X)")
while (s := g.next ()):
print(s[’X'1])

g.close ()
or

try:
g = query ("between(1l,3,X)")
while (s := g.next ()):

print (s[’X"])

finally:

g.close ()

The close () is called by the context manager, so the following is equivalent:

with query ("between(1l,3,X)") as qg:
while (s := g.next ()):
print(s[’X"1)

But, iterators based on Prolog goals are fragile. This is because, while it is possible to open and
run a new query while there is an open query, the inner query must be closed before we can ask for
the next solution of the outer query. We illustrate this using the sequence below.

>>> gl = query ("between(l,3,X)")
>>> g2 = query ("between(1l,3,X)")
>>> g2.next ()

20

{"truth’: True, ’'"X’': 1}
>>> gl.next ()
Traceback (most recent call last):

swipl.Error: swipl.next_solution(): not inner query
>>> g2.close ()

>>> gl.next ()

{"truth’: True, '"X’': 1}

>>> gl.close ()

Failure to close a query typically leaves SWI-Prolog in an inconsistent state and further interac-
tion with Prolog is likely to crash the process. Future versions may improve on that. To avoid this,
it is recommended that you use the query with a context manager, that is using the Python constwith
statement.

dict janus.query_once(query, inputs={}, keep=False, truth_vals=TruthVals.PLAIN_TRUTHVALS)
Call query using bindings as once/ 1, returning a dict with the resulting bindings. If bindings
is omitted, no variables are bound. The keep parameter determines whether or not Prolog
discards all backtrackable changes. By default, such changes are discarded and as a result,
changes to backtrackable global variables are lost. Using True, such changes are preserved.

>>> query_once ("b_setval(a, 1)", keep=True)
{"truth’: "True’}

>>> query_once ("b_getval (a, X)")

{"truth’”: "True’, ’'X’': 1}

If query fails, the variables of the query are bound to the Python constant None. The bindings
object includes a key t ruth® that has the value False (query failed, all bindings are None),
True (query succeeded, variables are bound to the result converting Prolog data to Python) or
an instance of the class janus.Undefined (). The information carried by this instance is
determined by the t rut h parameter. Below is an example. See section 5.4 for details.

>>> import Jjanus_swi as janus
>>> Janus.query_once ("undefined")
{"truth’: Undefined}

See also janus.cmd () and janus.apply-once (), which provide a fast but more lim-
ited alternative for making ground queries (janus.cmd ()) or queries with leading ground
arguments followed by a single output variable.

Compatibility PIP.

dict janus.once(query, inputs={}, keep=False, truth_vals=TruthVals.PLAIN.TRUTHVALS)
Deprecated. Renamed to janus.query_once ().

®As this name is not a valid Prolog variable name, this cannot be ambiguous.

21

Any janus.apply_once(module, predicate, *input, fail=obj)

Functional notation style calling of a deterministic Prolog predicate. This calls
module:predicate(nput ..., Output), where Input are the Python input arguments
converted to Prolog. On success, Output is converted to Python and returned. On failure a
janus.PrologError () exception is raised unless the fail parameter is specified. In
the latter case the function returns obj. This interface provides a comfortable and fast calling
convention for calling a simple predicate with suitable calling conventions. The example below
returns the home directory of the SWI-Prolog installation.

>>> import janus_swi as janus
>>> Jjanus.apply_once ("user", "current_prolog_flag", "home")
" /home/janw/src/swipl—-devel/build.pdf/home’

Compatibility PIP.

Truth janus.cmd(module, predicate, *input)

Similar to janus.apply_once (), but no argument for the return value is added.
This function returns the fruth value using the same conventions as the truth key in
janus.query_once (). For example:

>>> import janus_swi as Jjanus
>>> cmd ("user", "true")
True
>>> cmd ("user", "current_prolog_ flag", "bounded", "true")
False
>>> cmd ("user", "undefined")
Undefined
>>> cmd ("user", "no_such_predicate")
Traceback (most recent call last):
File "/usr/lib/python3.10/code.py", line 90, in runcode
exec (code, self.locals)
File "<console>", line 1, in <module>
janus.PrologError: ’$c_call_prolog’/0: Unknown procedure: no_su

The function janus.query_once () is more flexible and provides all functionality of
janus.cmd (). However, this function is faster and in some scenarios easier to use.

Compatibility PIP.

None janus.consult(file, data=None, module="user’)

Load Prolog text into the Prolog database. By default, data is None and the text is read from
file. If data is a string, it provides the Prolog text that is loaded and file is used as identifier
for source locations and error messages. The module argument denotes the target module.
That is where the clauses are added to if the Prolog text does not define a module or where the
exported predicates of the module are imported into.

22

ch_predicate/(

If data is not provided and file is not accessible this raises a Prolog exception. Errors that
occur during the compilation are printed using print _message/2 and can currently not be
captured easily. The script below prints the train connections as a list of Python tuples.

import janus_swi as janus
janus.consult ("trains™, """
train(’Amsterdam’, ’Haarlem’).
train (' Amsterdam’, ’Schiphol’).

nmn ")

print ([d[’ Tuple’] for d in
janus.query ("train (_From,_To), Tuple=_From—-_To")])

Compatibility PIP. The data and module keyword arguments are SWI-Prolog extensions.

None janus.prolog()
Start the interactive Prolog toplevel. This is the Python equivalent of py_shell/0.

5.1 Janus iterator query

Class janus.query () is similar to the janus.query_once () function, but it returns a Python
iterator that allows for iterating over the answers to a non-deterministic Prolog predicate.

The iterator also implements the Python context manaager protocol (for the Python with state-
ment).

query janus.query(query, inputs={}, keep=False)
As janus.query_once (), returning an iterator that provides an answer dict as
janus.query_once () for each answer to guery. Answers never have truth False. See
discussion above.

Compatibility PIP. The keep is a SWI-Prolog extension.

Query janus.Query(query, inputs={}, keep=False)
Deprecated. This class was renamed to janus.query (.)

dict | None janus.query.next()
Explicitly ask for the next solution of the iterator. Normally, using the query as an iterator is
to be preferred. See discussion above. g.next () is equivalent to next (qg) except it returns
None if there are no more values instead of raising the StopIteration exception.

None janus.query.close()
Close the query. Closing a query is obligatory. When used as an iterator, the Python destructor
(.-del__()) takes care of closing the query. However, Python does not guarantee when the
destructor will be called, so it is recommended that the context manager protocol is used (with
the Python with statement), which closes the query when the query goes out of scope or when
an error happens.

Compatibility PIP.

23

5.2 Janus iterator apply

Class janus.apply () is similar to janus.apply_-once (), calling a Prolog predicate using
functional notation style. It returns a Python iterator that enumerates all answers.

apply janus.apply(module, predicate, *inpur)
As janus.apply_once (), returning an iterator that returns individual answers. The exam-
ple below uses Python list comprehension to create a list of integers from the Prolog built-in
between/3.

>>> list (janus.apply ("user", "between", 1, 6))
(1, 2, 3, 4, 5, 6]

Compatibility PIP.

any | None janus.apply.next()
Explicitly ask for the next solution of the iterator. Normally, using the apply as an iterator
is to be preferred. See discussion above. Note that this calling convention cannot distinguish
between the Prolog predicate returning @none and reaching the end of the iteration.

None janus.apply.close()
Close the query. Closing a query is obligatory. When used as an iterator, the Python destructor
(._.del__()) takes care of closing the query.

Compatibility PIP.

5.3 Janus access to Python locals and globals

Python provides access to dictionaries holding the local variables of a function using locals ()
as well as the global variables stored as attributes to the module to which the func-
tion belongs as globals (). The Python C API provides PyEval GetLocals () and
PyEval_GetGlobals (), but these return the scope of the Janus API function rather than user
code, i.e., the global variables of the janus module and the local variables of the running Janus
interface function.

Python code that wishes Prolog to access its scope must pass the necessary scope elements (local
and global variables) explicitly to the Prolog code. It is possible to pass the entire local and or global
scope by the output of 1ocals () and/or globals (). Note however that a dict passed to Prolog
is translated to its Prolog representation. This representation may be prohibitively large and does not
allow Prolog to modify variables in the scope. Note that Prolog can access the global scope of a
module as attributes of this module, e.g.

increment :-
py_call (demo:counter, VO0O),
VvV is VO0+1,
py_setattr (demo, counter, V).

24

5.4 Janus and Prolog truth

In traditional Prolog, queries succeed or fail. Systems that implement tabling with Well Founded Se-
mantics such as XSB and SWI-Prolog define a third truth value typically called undefined. Undefined
results may have two reasons; (1) the program is logically inconsistent or (2) restraints have been
applied in the derivation.

Because classical Prolog truth is dominant, we represent the success of a query using the Python
booleans True and False. For undefined answers we define a class janus.Undefined () that
may represent different levels of detail on why the result is undefined. The notion of generic undefined
is represented by a unique instance of this class. The three truth values are accessible as properties of
the janus module.

janus.true
This property has the Python boolean True

janus.false
This property has the Python boolean False

janus.undefined
This property holds a unique instance of class janus.Undefined ()

5.4.1 Janus classed Undefined and TruthVal

The class janus.Undefined () represents an undefined result under the Well Founded Semantics.

Undefined janus.Undefined(term=None)
Instances are never created explicitly by the user. They are created by the calls to Prolog
initiated from janus.query_once () and janus.query ().

The class has a single property class term that represents either the delay list or the residual
program. See janus.TruthVal () for details.

Enum janus.TruthVal()
This class is a Python enumeration. Its values are passed as the optional fruth parameter to
janus.query_once () and janus.query (). The defined instances are

NO_TRUTHVALS
Undefined results are reported as True. This is quite pointless in the current design and
this may go.

PLAIN_TRUTHVALS
Return undefined results as janus.undefined, a unique instance of the class
janus.Undefined().

DELAY _LISTS
Return undefined results as an instance of class janus.Undefined (). thats holds the
delay list in Prolog native representation. See call_delays/2.

RESIDUAL_PROGRAM
Return undefined results as an instance of class janus.Undefined (). thats holds the
residual program in Prolog native representation. See call_residual_program/2.

25

The instances of this enumeration are available as attributed of the janus module.

For example, given Russel’s paradox defined in Prolog as below.

:— module (russel, [shaves/2]).
:— table shaves/2.
shaves (barber,P) :- person(P), tnot (shaves (P,P)) .

person (barber) .
person (mayor) .

From Python, we may ask who shaves the barber in four ways as illustrated below. Note that
the Prolog representations for janus .DELAY_LISTS and janus.RESIDUAL_PROGRAM use the
write_canonical/1 notation. They may later be changed to use a more human friendly notation.

Using NO_TRUTHVALS

>>> janus.query_once ("russel:shaves (barber, X)", truth_vals=janus.NO_TRUTHVALS)
{"truth’: True, ’'X’: ’"barber’}

Using default PLAIN_TRUTHVALS (default)
>>> Jjanus.query_once ("russel:shaves (barber, X)")
{"truth’: Undefined, ’'X’: ’"barber’}

Using default DELAY_LISTS

>>> Jjanus.query_once ("russel:shaves (barber, X)", truth_vals=janus.DELAY_LISTS)
{"truth’: :(russel, shaves (barber,barber)), ’"X’': "barber’}

Using default RESIDUAL_PROGRAM
>>> janus.query_once ("russel:shaves (barber, X)", truth_vals=janus.RESIDUAL_PROGR?
{"truth’: [:-(: (russel, shaves (barber,barber)),tnot (: (russel, shaves (barber,barber)

5.5 Janus class Term

Class janus.Term () encapsulates a Prolog term. Similarly to the Python object reference (see
py-is_object/1), the class allows Python to represent arbitrary Prolog data, typically with the
intend to pass it back to Prolog.

Term janus.Term(*args)
Instances are never created explicitly by the user. An instance is created by handling a term
prolog(Term) to the data conversion process. As a result, we can do

?— py_call (janus:echo(prolog(hello(world))), Obj,
[py_object (true)]) .

Obj = <py_Term> (0x7£f7a14512050) .

?— py_call (print (S0bj)) .

26

hello (world)
Obj = <py_Term> (0x7f7a14512050) .

Term janus.Term._str_ ()
Return the output of print/1 on the term. This is what is used by the Python function
print ().

Term janus.Term.__repr_()
Return the output of write_canonical/1 on the term.

5.6 Janus class PrologError

Class janus.PrologError (), derived from the Python class Exception represents a Prolog
exception that typically results from calling janus.query_once (), janus.apply-once (),
janus.query () or janus.apply (). The class either encapsulates a string on a Prolog excep-
tion term using janus.Term. Prolog exceptions are used to represent errors raised by Prolog. Strings
are used to represent errors from invalid use of the interface. The default behavior gives the expected
message:

>>> x = Jjanus.query_once ("X is 3.14/0") ['X"]
Traceback (most recent call last):

janus.PrologError: //2: Arithmetic: evaluation error: ‘zero_divisorn’

At this moment we only define a single Python class for representing Prolog exceptions. This suffices
for error reporting, but does not make it easy to distinguish different Prolog errors. Future versions
may improve on that by either subclassing janus. PrologError or provide a method to classify the error
more easily.

PrologError janus.PrologError(7TermOrString)
The constructor may be used explicitly, but this should be very uncommon.

St ring janus.PrologError.__str__()
Return a human readable message for the error using message_to_string/2

String janus.PrologError._repr_()
Return a formal representation of the error by means of write_canonical/1l.

6 Janus and threads

Where SWI-Prolog support native preemptively scheduled threads that exploit multiple cores, Python
has a single interpreter that can switch between native threads.” Initially the Python interpreter is
associated with the thread that created it which, for janus, is the first thread calling Python. The Prolog

7 Actually, you can create multiple Python interpreters. It is not yet clear to us whether that can help improving on
concurrency.

27

thread that initiated Janus may terminate. This does not affect the embedded Python interpreter and
this interpreter may continue to be used from other Prolog threads.

Janus ensures it holds the Python GIL when interacting with the Python interpreter. If Python
calls Prolog, the GIL is released using Py _BEGIN_ALLOW_THREADS.

» Multiple Prolog threads can make calls to Python. The access to Python is serialized. If a
Prolog thread does not want other threads to use Python it can use py_with_gil/1. When
multiple Prolog threads make many calls to Python performance tends to drop significantly.

e Multiple Python threads can make calls to Prolog. While Prolog is working on the query, the
Python interpreter may switch to other Python threads.

6.1 Calling Prolog from a Python thread

Prolog may be called safely from any Python thread. The Prolog execution is embraced with
Py_BEGIN_ALLOW_THREADS and Py_END_ALLOW_THREADS, which implies that Python is al-
lowed to switch to another thread while Prolog is doing its work.

If the calling Python thread is not the one that initiated Janus, janus.query_once ()
and Janus.query() attach and detach a temporary Prolog engine using
PL_thread_attach_engine() and PL_thread.destroy_engine (). This is relatively
costly. In addition we allow associating a Prolog engine persistently with the calling thread.

int janus.engine()
Return the identifier of the Prolog engine associated to the current thread, -1 if no engine is
attached or -2 if this version of Prolog does not support engines.

int janus.attach_engine()
Attach a Prolog engine to the current thread using PL_thread_attach_engine (). On
success, return the integer thread id of the created Prolog engine.®

If the thread already has an engine the atfach count is incremented and the current
engine id is returned. The engine is detached after a matching number of calls to
janus.detach_engine ()

None janus.detach_engine()
Decrement the attach count of the attached Prolog engine. Destroy the engine if this count
drops to zero. Raises an exception of the calling thread is not attached to a Prolog engine.

6.2 Python and Prolog deadlocks

In a threaded environment, Python calls must be guarded by PyGILState_Ensure () and
PyGILState Release () that ultimately lock/unlock a mutex. Unfortunately there is no
PyGILState_TryEnsure () and therefore we may create deadlocks when Prolog locks are in-
volved. This may either apply to explicit Prolog locks from with mutex/2 and friends or implicit
locks on e.g. I/O streams. The classical scenario is thread A holding the Python GIL and wanting to
call Prolog code that locks a mutex M, while thread B holds M and wishes to make a Python call
and this tries to lock the GIL. The predicate py_gil_owner/1 can be used to help diagnosing such
issues.

8The current implementation passes NULL to PL_thread.attach_engine (). Future versions may provide access
to the creation attributes.

28

7 Janus and signals

If Prolog is embedded into Python, SWI-Prolog is started with the -——no-signals, i.e., SWI-Prolog
does not install any signal handlers. This implies that signals are handled by Python. Python handles
signals synchronously (as SWI-Prolog) when executing byte code. As Prolog execution does not
involve Prolog execution, running a program like below cannot be in interrupted

import janus_swi as janus
janus.query_once ("repeat, fail")

If your program makes possibly slow Prolog queries and you want signal handling, you can enable a
heartbeat.

None janus.heartbeat(count=10000)
Ask Prolog to call a dummy function every count inferences. This allows Python to handle
signals. Lower numbers for count improve responsiveness at the cost of slowing down Prolog.
Note that Prolog calls to foreign code count as one inference. Signal handling is completely
blocked if Prolog is blocked in foreign code.

To complete the picture, some Python exceptions are propagated through Prolog by mapping them
into a Prolog exception and back again. This notably concerns

SystemExit(code)
This Python exception is mapped to the Prolog exception unwind(halt(code)) and back
again when Prolog returns control back to Python.

KeyboardInterrupt
This Python exception is mapped to the Prolog exception unwind(keyboard_interrupt)

8 Janus versions

The current version as an integer can be accessed as janus.version. The integer uses the same
conventions as the SWI-Prolog flag version and is defined as 10,000 x Major + 100 x Minor +
Patch. In addition, the module defines the following functions:

str janus.version_str()
Return the Janus version as a string Major.Minor. Patch.

None janus.version()
Print information about Janus and SWI-Prolog version.

9 Janus as a Python package

The Janus GIT repo provides setup.py. Janus may be installed as a Python package after down-
loading using

pip install

29

https://github.com/SWI-Prolog/packages-swipy

pip allows for installation from the git repository in a one-liner as below.

pip install git+https://github.com/SWI-Prolog/packages-swipy.git#eg

Installing janus as a Python package requires

e The swipl program in the default search path. The setup.py runs
swipl —-—-dump-runtime-variables to obtain the installation locations of the
various Prolog components. On Windows, if swipl is not on $PATHS, setup.py tries the
registry to find the default binary installation.

* A C compiler that can be used by pip. The janus interface has been tested to compile using
GCC, Clang and Microsoft Visual C++.

After successful installation we should be able to use Prolog directly from Python. For example:

python

>>> from janus_swi import =

>>> query_once ("writeln(’Hello world!’)")
Hello world!

{"truth’: True}

>>> [a["D"] for a in query("between(l,6,D)")]
[1, 2, 3, 4, 5, 6]

>>> prolog ()

?— version.

Welcome to SWI-Prolog (threaded, 64 bits, version 9.1.12-8-g70b70a9

10 Prolog and Python
Prolog is a very different language than imperative languages. An interesting similarity is the notion

of backtracking vs. Python iterators.
To be extended.

11 Janus performance evaluation
Below is a table to give some feeling on the overhead of making calls between Prolog and Python.

These figures are roughly the same as the figures for the XSB/Python interface. All benchmarks have
been executed on AMD3950X running Ubuntu 22.04, SWI-Prolog 9.1.11 and Python 3.10.6.

30

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software.

g=janus_swi

68-DIRTY)

Action Time (seconds)
Echo list with 1,000,000 elements 0.12
Call Pyton demo: int () from Prolog 1,000,000 0.44
times

Call Pyton demo:sumlist3(5,[1,2,3]) 1.4
from Prolog 1,000,000 times

Call Prolog Y is X+1 from Python 1,000,000 1.9
times

Iterate from Python over Prolog goal 1.1
between(l, 1 000 000, X)

Iterate over Python iterator 0.17
range (1,1000000) from Prolog

12 Python or C/C++ for accessing resources?

Using Python as an intermediate to access external resources allows writing such interfaces with less
effort by a much wider community. The resulting interface is often also more robust due to well
defined data conversion and sound memory management that you get for free.

Nevertheless, Python often accesses resources with a C or C++ API. We can also create this bridge
directly, bypassing Python. That avoids one layer of data conversion and preserves the excellent multi-
threading capabilities of SWI-Prolog. As is, Python operations are synchronized using the Python
GIL, a global lock that allows for only a single thread to use Python at the same time.’

Writing an interface for SWI-Prolog is typically easier that for Python/C because memory man-
agement is easier. Where we need to manage reference counts to Python objects through all possibly
paths of the C functions, SWI-Prolog term_t merely has to be allocated once in the function. All
failure parts will discard the Prolog data automatically through backtracking and all success paths will
do so through the Prolog garbage collector.'’

Summarizing, Janus is ideal to get started quickly. Applications that need to access C/C++ re-
sources and need either exploit all cores of your hardware or get the best performance on calls or
exchanging data should consider using the C or C++ interfaces of SWI-Prolog.

13 Janus platforms notes

Janus relies on the C APIs of Prolog and Python and functions therefore independent from the plat-
form. While the C, Python and Prolog code the builds Janus is platform independent, dynamically
loading Prolog into Python or Python into Prolog depends on versions as well as several properties of
the dynamic linking performed by the platform. In the sections below we describe some of the issues.

13.1 Janus on Windows

We tested the Windows platform using SWI-Prolog binaries from
https://www.swi-prolog.org/Downloads.html and Python downloaded from
https://www.python.org/downloads/windows/. The SWI-Prolog binary provides janus.dll
which is linked to python3.d11, a “stable API” based wrapper that each Python 3 binary

There are rumors that Python’s multi threading will be able to use multiple cores.
19Using a Python C++ interface such as pybind11 simplifies memory management for a Python interface.

31

https://www.swi-prolog.org/Downloads.html
https://www.python.org/downloads/windows/
https://github.com/pybind/pybind11

distribution provides in addition to python3xx.d11. Calling Python from Prolog is supported out
of the box, provided the folder holding python3.d11 is in the search $PATHS.

The Python package can be installed using pip as described in section 9. Once built, this package
finds SWI-Prolog on $PATHS or using the registry and should be fairly independent from the Prolog
version as long as it is version 9.1.12 or later.

13.2 Janus on Linux

On Linux systems we bind to the currently installed Prolog and Python version. This should work
smoothly from source. Janus is included in the PPA distribution for Ubuntu as well as in the Docker
images. It is currently not part of the SNAP distribution.

See section 9 for for building the janus_swi Python package.

13.3 Janus on MacOS

Unfortunately MacOS versions of Python do not ship with the equivalent of python3.d11 found on
Windows. This implies we can only compile our binaries against a specific version of Python. We will
use the default Python binary for that, which is installed in /Library/Frameworks/Python.
framework/

The Macports version is also linked against an explicit version of Python, in this case provided by
Macports.

The Python package janus_swi may be compiled against any version of Python selected by
pip. See section 9 for details.

14 Compatibility to the XSB Janus implementation

We aim to provide an interface that is close enough to allow developing Prolog code that uses Python
and visa versa. Differences between the two Prolog implementation make this non-trivial. SWI-Prolog
has native support for dicts, strings, unbounded integers, rational numbers and blobs that provide safe
pointers to external objects that are subject to (atom) garbage collection.

We try to find a compromise to make the data conversion as close as possible while supporting
both systems as good as possible. For this reason we support creating a Python dict both from a
SWI-Prolog dict and from the Prolog term py ({k1:v1l, k2:v2, ...}). With py defined as a
prefix operator, this may be written without parenthesis and is thus equivalent to the SWI-Prolog dict
syntax. The janus library provides access predicates that are supported by both systems and where
the SWI-Prolog version supports both SWI-Prolog dicts and the above Prolog representation. See
items/2,values/3,key/2 and items/2.

Calling Python from Prolog provides a low-level and a more high level interface. The high level
interface is realized by py_call/[2,3] and py_iter/[2, 3]. We realize the low level interfaces
py-func/[3,4] and py-dot/[4,5] on top of py_.call/2. The interface for calling Prolog
from Python is settled on the five primitives described in section 5.

We are discussing to minimize the differences. Below we summarize the known differences.

* SWI-Prolog represents Phyton dicts as Prolog dicts. XSB uses a term py({k:v, ...}), where the
py () wrapper is optional. The predicate py_is_dict/1 may be used to test that a Prolog
term represents a Python dict. The predicates values/3, keys/2, key/2 and items/2
can be used to access either representation.

32

https://www.swi-prolog.org/build/PPA.html
https://www.swi-prolog.org/Docker.html
https://www.swi-prolog.org/Docker.html

* SWI-Prolog allows for prolog(Term) to be sent to Python, creating an instance of
Jjanus.Term().

* SWI-Prolog represents Python object references as a blob. XSB uses a term. The predicate
py-is_object/1 may be used to test that a Prolog term refers to a Python object. In XSB, the
user must call py_free/1 when done with some object. In SWI-Prolog, either py_free/1
may be used or the object may be left to the Prolog (atom) garbage collector.

* Prolog exceptions passed to Python are represented differently.

* When calling Prolog from Python and relying on well founded semantics, only plain truth
values (i.e., janus.undefined) are supported in a portable way. Delay lists, providing
details on why the result is undefined, are represented differently.

14.1 Writing portable Janus modules

This section will be written after the dust has settled. Topics
* Dealing with Python dicts
* Dealing with Prolog modules
* Dealing with Prolog references to Python objects

e More?

15 Status of Janus
The current version of this Janus library must be considered beta code.

* The design is stable
* Naming and functionality are almost stable.

* Testing is not exhaustive.

References

[Andersen & Swift, 2023] Carl Andersen and Theresa Swift. The janus system: A bridge to new
prolog applications. In David Scott Warren, Verénica Dahl, Thomas FEiter,
Manuel V. Hermenegildo, Robert A. Kowalski, and Francesca Rossi, edi-
tors, Prolog: The Next 50 Years, volume 13900 of Lecture Notes in Com-
puter Science, pages 93—104. Springer, 2023.

[Swift & Andersen, 2023] Theresa Swift and Carl Andersen. The janus system: Multi-paradigm
programming in prolog and python. CoRR, abs/2308.15893, 2023.

33

Index
between/3, 24

call_delays/2, 25
call_residual_program/2, 25

Exception class, 27
fractions:Fraction class, 5
items/2, 11, 32

janus library, 3, 6, 15, 32
janus.apply(), 24
janus.apply.close(), 24
janus.apply.next(), 24
janus.apply_once(), 22
janus.attach_engine(), 28
janus.cmd(), 22
janus.consult(), 22
janus.detach_engine(), 28
janus.engine(), 28
janus.heartbeat(), 29
janus.once(), 21
janus.prolog(), 23
janus.PrologError class, 27
janus.PrologError(), 27

janus.PrologError.__repr__(), 27
janus.PrologError.__str__(), 27

janus.Query(), 23
janus.query(), 23
janus.query.close(), 23
janus.query.next(), 23
janus.query_once(), 21
janus.Term class, 27
janus.Term(), 26
janus.Term.__repr_(), 27
janus.Term.__str__(), 27
janus.TruthVal(), 25
janus.Undefined(), 25
janus.version(), 29
janus.version_str(), 29

key/2, 11, 32
keys/2, 11, 32

message_to_string/2, 27

once/l, 3, 18, 21

parent/2, 18
print/1, 27
print_message/2, 15, 23
py-add_lib_dir/1, 14
py-add_lib_dir/2, 15
py-call/l,7
py-call/2,3,4,7,15, 32
py-call/3, 4,7
py-call/[2

3],32
py-dot/3, 11
py-dot/4, 11
py-dot/[4

5], 32
py-free/l, 6, 10, 33
py-func/3, 11
py-func/4, 11
py-func/[3

4], 32
py-gil_owner/1, 10, 28
py-hasattr/2, 13
py_import/2, 13
py-initialize/3, 14
py-is_dict/1, 10, 32
py-is_object/1, 10, 26, 33
py-isinstance/2, 13
py-iter/2, 3, 6,9
py-iter/3, 4,9
py-iter/[2

3],32
py_lib_dirs/1, 14
py-module/2, 14
py_module_exists/1, 13
py-obj_dict/2, 12
py-obj_dir/2, 12
py-object_dict/2, 12
py-object_dir/2, 12
py-pp/1, 12
py-pp/2, 12
py-pp/3, 12
py-setattr/3, 10
py-shell/0, 11, 23

34

py-type/2, 12
py-version/0, 7, 17
py-with_gil/1, 10, 28

setup_call_cleanup/3, 19
values/3, 11, 32

with_mutex/2, 28
write_canonical/l, 4, 5, 26, 27

35

	Introduction
	Data conversion
	Janus by example - Prolog calling Python
	Janus calling spaCy

	library(janus): Call Python from Prolog
	Handling Python errors in Prolog
	Calling and data translation errors
	Janus and virtual environments (venv)

	Calling Prolog from Python
	Janus iterator query
	Janus iterator apply
	Janus access to Python locals and globals
	Janus and Prolog truth
	Janus classed Undefined and TruthVal

	Janus class Term
	Janus class PrologError

	Janus and threads
	Calling Prolog from a Python thread
	Python and Prolog deadlocks

	Janus and signals
	Janus versions
	Janus as a Python package
	Prolog and Python
	Janus performance evaluation
	Python or C/C++ for accessing resources?
	Janus platforms notes
	Janus on Windows
	Janus on Linux
	Janus on MacOS

	Compatibility to the XSB Janus implementation
	Writing portable Janus modules

	Status of Janus

