Edition 8
Mono-spaced Bold
To see the contents of the filemy_next_bestselling_novelin your current working directory, enter thecat my_next_bestselling_novelcommand at the shell prompt and press Enter to execute the command.
Press Enter to execute the command.Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to return to your X-Windows session.
mono-spaced bold. For example:
File-related classes includefilesystemfor file systems,filefor files, anddirfor directories. Each class has its own associated set of permissions.
Choose → → from the main menu bar to launch Mouse Preferences. In the Buttons tab, click the Left-handed mouse check box and click to switch the primary mouse button from the left to the right (making the mouse suitable for use in the left hand).To insert a special character into a gedit file, choose → → from the main menu bar. Next, choose → from the Character Map menu bar, type the name of the character in the Search field and click . The character you sought will be highlighted in the Character Table. Double-click this highlighted character to place it in the Text to copy field and then click the button. Now switch back to your document and choose → from the gedit menu bar.
Mono-spaced Bold Italic or Proportional Bold Italic
To connect to a remote machine using ssh, typesshat a shell prompt. If the remote machine isusername@domain.nameexample.comand your username on that machine is john, typessh john@example.com.Themount -o remountcommand remounts the named file system. For example, to remount thefile-system/homefile system, the command ismount -o remount /home.To see the version of a currently installed package, use therpm -qcommand. It will return a result as follows:package.package-version-release
Publican is a DocBook publishing system.
mono-spaced roman and presented thus:
books Desktop documentation drafts mss photos stuff svn books_tests Desktop1 downloads images notes scripts svgs
mono-spaced roman but add syntax highlighting as follows:
package org.jboss.book.jca.ex1; import javax.naming.InitialContext; public class ExClient { public static void main(String args[]) throws Exception { InitialContext iniCtx = new InitialContext(); Object ref = iniCtx.lookup("EchoBean"); EchoHome home = (EchoHome) ref; Echo echo = home.create(); System.out.println("Created Echo"); System.out.println("Echo.echo('Hello') = " + echo.echo("Hello")); } }





[1] I hope, however, that the concepts explained here make the functionality of these tools more easily understood.
[2] For example, see the http://www.clusterlabs.org/doc/[Clusters from Scratch
[3] Even though Pacemaker also supports Heartbeat, the filesystems need to use the stack for messaging and membership, and Corosync seems to be what they’re standardizing on. Technically, it would be possible for them to support Heartbeat as well, but there seems little interest in this.
<cib crm_feature_set="3.0.7" validate-with="pacemaker-1.2" admin_epoch="1" epoch="0" num_updates="0"> <configuration> <crm_config/> <nodes/> <resources/> <constraints/> </configuration> <status/> </cib>
cib: The entire CIB is enclosed with a cib tag. Certain fundamental settings are defined as attributes of this tag.
configuration: This section — the primary focus of this document — contains traditional configuration information such as what resources the cluster serves and the relationships among them.
crm_config: cluster-wide configuration options
nodes: the machines that host the cluster
resources: the services run by the cluster
constraints: indications of how resources should be placed
status: This section contains the history of each resource on each node. Based on this data, the cluster can construct the complete current state of the cluster. The authoritative source for this section is the local resource manager (lrmd process) on each cluster node, and the cluster will occasionally repopulate the entire section. For this reason, it is never written to disk, and administrators are advised against modifying it in any way.
nvpair child elements of an XML element.
crm_mon utility, which will display the current state of an active cluster. It can show the cluster status by node or by resource and can be used in either single-shot or dynamically-updating mode. There are also modes for displaying a list of the operations performed (grouped by node and resource) as well as information about failures.
crm_mon --help command.
============
Last updated: Fri Nov 23 15:26:13 2007
Current DC: sles-3 (2298606a-6a8c-499a-9d25-76242f7006ec)
3 Nodes configured.
5 Resources configured.
============
Node: sles-1 (1186dc9a-324d-425a-966e-d757e693dc86): online
192.168.100.181 (heartbeat::ocf:IPaddr): Started sles-1
192.168.100.182 (heartbeat:IPaddr): Started sles-1
192.168.100.183 (heartbeat::ocf:IPaddr): Started sles-1
rsc_sles-1 (heartbeat::ocf:IPaddr): Started sles-1
child_DoFencing:2 (stonith:external/vmware): Started sles-1
Node: sles-2 (02fb99a8-e30e-482f-b3ad-0fb3ce27d088): standby
Node: sles-3 (2298606a-6a8c-499a-9d25-76242f7006ec): online
rsc_sles-2 (heartbeat::ocf:IPaddr): Started sles-3
rsc_sles-3 (heartbeat::ocf:IPaddr): Started sles-3
child_DoFencing:0 (stonith:external/vmware): Started sles-3 ============
Last updated: Fri Nov 23 15:26:13 2007
Current DC: sles-3 (2298606a-6a8c-499a-9d25-76242f7006ec)
3 Nodes configured.
5 Resources configured.
============
Node: sles-1 (1186dc9a-324d-425a-966e-d757e693dc86): online
Node: sles-2 (02fb99a8-e30e-482f-b3ad-0fb3ce27d088): standby
Node: sles-3 (2298606a-6a8c-499a-9d25-76242f7006ec): online
Resource Group: group-1
192.168.100.181 (heartbeat::ocf:IPaddr): Started sles-1
192.168.100.182 (heartbeat:IPaddr): Started sles-1
192.168.100.183 (heartbeat::ocf:IPaddr): Started sles-1
rsc_sles-1 (heartbeat::ocf:IPaddr): Started sles-1
rsc_sles-2 (heartbeat::ocf:IPaddr): Started sles-3
rsc_sles-3 (heartbeat::ocf:IPaddr): Started sles-3
Clone Set: DoFencing
child_DoFencing:0 (stonith:external/vmware): Started sles-3
child_DoFencing:1 (stonith:external/vmware): Stopped
child_DoFencing:2 (stonith:external/vmware): Started sles-1cib.xml file manually. Ever. I’m not making this up.
cibadmin command. With cibadmin, you can query, add, remove, update or replace any part of the configuration. All changes take effect immediately, so there is no need to perform a reload-like operation.
cibadmin is to use it to save the current configuration to a temporary file, edit that file with your favorite text or XML editor, and then upload the revised configuration. [4]
# cibadmin --query > tmp.xml # vi tmp.xml # cibadmin --replace --xml-file tmp.xml
pacemaker.rng, which may be deployed in a location such as /usr/share/pacemaker or /usr/lib/heartbeat depending on your operating system and how you installed the software.
# cibadmin --query --scope resources > tmp.xml # vi tmp.xml # cibadmin --replace --scope resources --xml-file tmp.xml
# cibadmin -Q | grep stonith <nvpair id="cib-bootstrap-options-stonith-action" name="stonith-action" value="reboot"/> <nvpair id="cib-bootstrap-options-stonith-enabled" name="stonith-enabled" value="1"/> <primitive id="child_DoFencing" class="stonith" type="external/vmware"> <lrm_resource id="child_DoFencing:0" type="external/vmware" class="stonith"> <lrm_resource id="child_DoFencing:0" type="external/vmware" class="stonith"> <lrm_resource id="child_DoFencing:1" type="external/vmware" class="stonith"> <lrm_resource id="child_DoFencing:0" type="external/vmware" class="stonith"> <lrm_resource id="child_DoFencing:2" type="external/vmware" class="stonith"> <lrm_resource id="child_DoFencing:0" type="external/vmware" class="stonith"> <lrm_resource id="child_DoFencing:3" type="external/vmware" class="stonith">
primitive tag with id child_DoFencing, you would run:
# cibadmin --delete --xml-text '<primitive id="child_DoFencing"/>'
# crm_attribute --name stonith-enabled --update 1
# crm_standby --get-value --node somenode
# crm_resource --locate --resource my-test-rsc
crm_shadow which creates a "shadow" copy of the configuration and arranges for all the command line tools to use it.
crm_shadow --create with the name of a configuration to create [5], and follow the simple on-screen instructions.
# crm_shadow --create test Setting up shadow instance Type Ctrl-D to exit the crm_shadow shell shadow[test]: shadow[test] # crm_shadow --which test
--commit option, or discard them using the --delete option. Again, be sure to follow the on-screen instructions carefully!
crm_shadow options and commands, invoke it with the --help option.
shadow[test] # crm_failcount -G -r rsc_c001n01
name=fail-count-rsc_c001n01 value=0
shadow[test] # crm_standby -v on -N c001n02
shadow[test] # crm_standby -G -N c001n02
name=c001n02 scope=nodes value=on
shadow[test] # cibadmin --erase --force
shadow[test] # cibadmin --query
<cib cib_feature_revision="1" validate-with="pacemaker-1.0" admin_epoch="0" crm_feature_set="3.0" have-quorum="1" epoch="112"
dc-uuid="c001n01" num_updates="1" cib-last-written="Fri Jun 27 12:17:10 2008">
<configuration>
<crm_config/>
<nodes/>
<resources/>
<constraints/>
</configuration>
<status/>
</cib>
shadow[test] # crm_shadow --delete test --force
Now type Ctrl-D to exit the crm_shadow shell
shadow[test] # exit
# crm_shadow --which
No active shadow configuration defined
# cibadmin -Q
<cib cib_feature_revision="1" validate-with="pacemaker-1.0" admin_epoch="0" crm_feature_set="3.0" have-quorum="1" epoch="110"
dc-uuid="c001n01" num_updates="551">
<configuration>
<crm_config>
<cluster_property_set id="cib-bootstrap-options">
<nvpair id="cib-bootstrap-1" name="stonith-enabled" value="1"/>
<nvpair id="cib-bootstrap-2" name="pe-input-series-max" value="30000"/>crm_shadow --commit mytest --force), it is often advisable to simulate the effect of the changes with crm_simulate. For example:
# crm_simulate --live-check -VVVVV --save-graph tmp.graph --save-dotfile tmp.dot
tmp.graph and tmp.dot. Both files are representations of the same thing: the cluster’s response to your changes.
crm_simulate, use its --help option.
rsc_action_interval node


[4] This process might appear to risk overwriting changes that happen after the initial cibadmin call, but pacemaker will reject any update that is "too old". If the CIB is updated in some other fashion after the initial cibadmin, the second cibadmin will be rejected because the version number will be too low.
[5] Shadow copies are identified with a name, making it possible to have more than one.
[6] Graph visualization software. See http://www.graphviz.org/ for details.
cib tag) rather than with the rest of the cluster configuration in the configuration section.
admin_epoch, one should use:
# cibadmin --modify --xml-text '<cib admin_epoch="42"/>'
<cib crm_feature_set="3.0.7" validate-with="pacemaker-1.2" admin_epoch="42" epoch="116" num_updates="1" cib-last-written="Mon Jan 12 15:46:39 2015" update-origin="rhel7-1" update-client="crm_attribute" have-quorum="1" dc-uuid="1">
crm_config section, and, in advanced configurations, there may be more than one set. (This will be described later in the section on Chapter 8, Rules where we will show how to have the cluster use different sets of options during working hours than during weekends.) For now, we will describe the simple case where each option is present at most once.
man pengine and man crmd commands.
| Option | Default | Description |
|---|---|---|
dc-version
|
| |
cluster-infrastructure
|
| |
expected-quorum-votes
|
| |
no-quorum-policy
|
stop
|
|
batch-limit
|
30
| |
migration-limit
|
-1
| |
symmetric-cluster
|
TRUE
| |
stop-all-resources
|
FALSE
| |
stop-orphan-resources
|
TRUE
| |
stop-orphan-actions
|
TRUE
| |
start-failure-is-fatal
|
TRUE
|
Should a failure to start a resource on a particular node prevent further start attempts on that node? If FALSE, the cluster will decide whether the same node is still eligible based on the resource’s current failure count and
migration-threshold (see Section 9.3.2, “Moving Resources Due to Failure”).
|
enable-startup-probes
|
TRUE
| |
maintenance-mode
|
FALSE
| |
stonith-enabled
|
TRUE
|
Should failed nodes and nodes with resources that can’t be stopped be shot? If you value your data, set up a STONITH device and enable this.
If true, or unset, the cluster will refuse to start resources unless one or more STONITH resources have been configured. If false, unresponsive nodes are immediately assumed to be running no resources, and resource takeover to online nodes starts without any further protection (which means data loss if the unresponsive node still accesses shared storage, for example). See also the
requires meta-attribute in Section 5.4, “Resource Options”.
|
stonith-action
|
reboot
| |
stonith-timeout
|
60s
| |
concurrent-fencing
|
FALSE
| |
cluster-delay
|
60s
|
Estimated maximum round-trip delay over the network (excluding action execution). If the TE requires an action to be executed on another node, it will consider the action failed if it does not get a response from the other node in this time (after considering the action’s own timeout). The "correct" value will depend on the speed and load of your network and cluster nodes.
|
dc-deadtime
|
20s
|
The "correct" value will depend on the speed/load of your network and the type of switches used.
|
cluster-recheck-interval
|
15min
|
The Cluster is primarily event-driven, but your configuration can have elements that take effect based on the time of day. To ensure these changes take effect, we can optionally poll the cluster’s status for changes. A value of 0 disables polling. Positive values are an interval (in seconds unless other SI units are specified, e.g. 5min).
|
pe-error-series-max
|
-1
| |
pe-warn-series-max
|
-1
| |
pe-input-series-max
|
-1
| |
node-health-strategy
|
none
|
How the cluster should react to node health attributes (see Section 9.4, “Tracking Node Health”). Allowed values are
none, migrate-on-red, only-green, progressive, and custom.
|
node-health-base
|
0
| |
node-health-green
|
0
| |
node-health-yellow
|
0
| |
node-health-red
|
0
| |
remove-after-stop
|
FALSE
| |
startup-fencing
|
TRUE
| |
election-timeout
|
2min
| |
shutdown-escalation
|
20min
| |
crmd-integration-timeout
|
3min
| |
crmd-finalization-timeout
|
30min
| |
crmd-transition-delay
|
0s
| |
default-resource-stickiness
|
0
| |
is-managed-default
|
TRUE
| |
default-action-timeout
|
20s
|
crm_attribute tool. To get the current value of cluster-delay, you can run:
# crm_attribute --query --name cluster-delay
# crm_attribute -G -n cluster-delay
# crm_attribute -G -n cluster-delay scope=crm_config name=cluster-delay value=60s
# crm_attribute -G -n clusta-deway scope=crm_config name=clusta-deway value=(null) Error performing operation: No such device or address
# crm_attribute --name cluster-delay --update 30s
# crm_attribute --name cluster-delay --delete Deleted crm_config option: id=cib-bootstrap-options-cluster-delay name=cluster-delay
# crm_attribute --name batch-limit --delete Multiple attributes match name=batch-limit in crm_config: Value: 50 (set=cib-bootstrap-options, id=cib-bootstrap-options-batch-limit) Value: 100 (set=custom, id=custom-batch-limit) Please choose from one of the matches above and supply the 'id' with --id
<node id="1186dc9a-324d-425a-966e-d757e693dc86" uname="pcmk-1" type="normal"/>
<node id="101" uname="pcmk-1" type="normal"/>
crm_uuid tool to read an existing UUID or define a value before the cluster starts.
uname -n. This can be problematic for services that require the uname -n to be a specific value (e.g. for a licence file).
corosync.conf under ring0_addr in the nodelist, if it does not contain an IP address; otherwise
corosync.conf under name in the nodelist; otherwise
uname -n
crm_node -n command which displays the name used by a running cluster.
crm_node --name-for-id number is also available to display the name used by the node with the corosync nodeid of number, for example: crm_node --name-for-id 2.
crm_attribute.
# crm_attribute --type nodes --node pcmk-1 --name kernel --update $(uname -r)
<node uname="pcmk-1" type="normal" id="101"> <instance_attributes id="nodes-101"> <nvpair id="nodes-101-kernel" name="kernel" value="3.10.0-123.13.2.el7.x86_64"/> </instance_attributes> </node>
crm_attribute again:
# crm_attribute --type nodes --node pcmk-1 --name kernel --query scope=nodes name=kernel value=3.10.0-123.13.2.el7.x86_64
--type nodes the admin tells the cluster that this attribute is persistent. There are also transient attributes which are kept in the status section which are "forgotten" whenever the node rejoins the cluster. The cluster uses this area to store a record of how many times a resource has failed on that node, but administrators can also read and write to this section by specifying --type status.
/etc/corosync/corosync.conf and /etc/corosync/authkey (if it exists) from an existing node. You may need to modify the mcastaddr option to match the new node’s IP address.
pcs cluster stop if you are using pcs for cluster management, or service corosync stop on a host using corosync 1.x with the pacemaker plugin.
# crm_node -R pcmk-1
ha.cf and authkeys from an existing node.
ha.cf, run:
hb_addnode $(uname -n)
service heartbeat stop
hb_delnode pcmk-1
crm_node -R pcmk-1
/var/lib/heartbeat/hostcache.
ha.cf and authkeys to the new node.
crm_uuid -w and the UUID obtained earlier.
start, stop or monitor command. For this reason, it is crucial that resource agents are well-tested.
OCF_RESKEY_. So, a parameter which the user thinks of as ip will be passed to the resource agent as OCF_RESKEY_ip. The number and purpose of the parameters is left to the resource agent; however, the resource agent should use the meta-data command to advertise any that it supports.
/etc/init.d.
start/stop/status actions
systemd, upstart, and lsb), Pacemaker supports a special service alias which intelligently figures out which one applies to a given cluster node.
systemd, upstart, and lsb.
| Field | Description |
|---|---|
id
| |
class
| |
type
| |
provider
|
crm_resource tool. For example:
# crm_resource --resource Email --query-xml
<primitive id="Email" class="service" type="exim"/>
<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat"> <instance_attributes id="Public-IP-params"> <nvpair id="Public-IP-ip" name="ip" value="192.0.2.2"/> </instance_attributes> </primitive>
--meta option of the crm_resource command.
| Field | Default | Description |
|---|---|---|
priority
|
0
| |
target-role
|
Started
|
What state should the cluster attempt to keep this resource in? Allowed values:
|
is-managed
|
TRUE
| |
resource-stickiness
|
value of
resource-stickiness in the rsc_defaults section
| |
requires
|
fencing (unless
stonith-enabled is false or class is stonith, in which case it defaults to quorum)
|
Conditions under which the resource can be started (since 1.1.8) Allowed values:
|
migration-threshold
|
INFINITY
|
How many failures may occur for this resource on a node, before this node is marked ineligible to host this resource. A value of 0 indicates that this feature is disabled (the node will never be marked ineligible); by constrast, the cluster treats INFINITY (the default) as a very large but finite number. This option has an effect only if the failed operation has on-fail=restart (the default), and additionally for failed start operations, if the cluster property start-failure-is-fatal is false.
|
failure-timeout
|
0
|
How many seconds to wait before acting as if the failure had not occurred, and potentially allowing the resource back to the node on which it failed. A value of 0 indicates that this feature is disabled. As with any time-based actions, this is not guaranteed to be checked more frequently than the value of
cluster-recheck-interval (see Section 3.2, “Cluster Options”).
|
multiple-active
|
stop_start
|
What should the cluster do if it ever finds the resource active on more than one node? Allowed values:
|
allow-migrate
|
TRUE for ocf:pacemaker:remote resources, FALSE otherwise
|
Whether the cluster should try to "live migrate" this resource when it needs to be moved (see Section 9.3.4, “Migrating Resources”)
|
remote-node
|
|
The name of the remote-node this resource defines. This both enables the resource as a remote-node and defines the unique name used to identify the remote-node. If no other parameters are set, this value will also be assumed as the hostname to connect to at the port specified by
remote-port. WARNING: This value cannot overlap with any resource or node IDs. If not specified, this feature is disabled.
|
remote-port
|
3121
|
Port to use for the guest connection to pacemaker_remote
|
remote-addr
|
value of
remote-node
|
The IP address or hostname to connect to if remote-node’s name is not the hostname of the guest.
|
|
60s
|
How long before a pending guest connection will time out.
|
# crm_resource --meta --resource Email --set-parameter priority --parameter-value 100 # crm_resource -m -r Email -p multiple-active -v block
<primitive id="Email" class="lsb" type="exim"> <meta_attributes id="Email-meta_attributes"> <nvpair id="Email-meta_attributes-priority" name="priority" value="100"/> <nvpair id="Email-meta_attributes-multiple-active" name="multiple-active" value="block"/> </meta_attributes> </primitive>
rsc_defaults section with crm_attribute. For example,
# crm_attribute --type rsc_defaults --name is-managed --update false
is-managed set to true).
crm_resource command. For example,
# crm_resource --resource Public-IP --set-parameter ip --parameter-value 192.0.2.2
<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat"> <instance_attributes id="params-public-ip"> <nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/> </instance_attributes> </primitive>
OCF_RESKEY_ip with a value of 192.0.2.2.
meta-data command. The output contains an XML description of all the supported attributes, their purpose and default values.
# export OCF_ROOT=/usr/lib/ocf # $OCF_ROOT/resource.d/pacemaker/Dummy meta-data
<?xml version="1.0"?> <!DOCTYPE resource-agent SYSTEM "ra-api-1.dtd"> <resource-agent name="Dummy" version="1.0"> <version>1.0</version> <longdesc> This is a Dummy Resource Agent. It does absolutely nothing except keep track of whether its running or not. Its purpose in life is for testing and to serve as a template for RA writers. NB: Please pay attention to the timeouts specified in the actions section below. They should be meaningful for the kind of resource the agent manages. They should be the minimum advised timeouts, but they shouldn't/cannot cover _all_ possible resource instances. So, try to be neither overly generous nor too stingy, but moderate. The minimum timeouts should never be below 10 seconds. </longdesc> <shortdesc>Example stateless resource agent</shortdesc> <parameters> <parameter name="state" unique="1"> <longdesc> Location to store the resource state in. </longdesc> <shortdesc>State file</shortdesc> <content type="string" default="/var/run/Dummy-default.state" /> </parameter> <parameter name="fake" unique="0"> <longdesc> Fake attribute that can be changed to cause a reload </longdesc> <shortdesc>Fake attribute that can be changed to cause a reload</shortdesc> <content type="string" default="dummy" /> </parameter> <parameter name="op_sleep" unique="1"> <longdesc> Number of seconds to sleep during operations. This can be used to test how the cluster reacts to operation timeouts. </longdesc> <shortdesc>Operation sleep duration in seconds.</shortdesc> <content type="string" default="0" /> </parameter> </parameters> <actions> <action name="start" timeout="20" /> <action name="stop" timeout="20" /> <action name="monitor" timeout="20" interval="10" depth="0"/> <action name="reload" timeout="20" /> <action name="migrate_to" timeout="20" /> <action name="migrate_from" timeout="20" /> <action name="validate-all" timeout="20" /> <action name="meta-data" timeout="5" /> </actions> </resource-agent>
monitor operation to the resource’s definition.
<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat"> <operations> <op id="public-ip-check" name="monitor" interval="60s"/> </operations> <instance_attributes id="params-public-ip"> <nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/> </instance_attributes> </primitive>
| Field | Default | Description |
|---|---|---|
id
|
| |
name
|
| |
interval
|
0
|
How frequently (in seconds) to perform the operation. A value of 0 means never. A positive value defines a recurring action, which is typically used with monitor.
|
timeout
|
| |
on-fail
|
restart (except for stop operations, which default to fence when STONITH is enabled and block otherwise)
|
The action to take if this action ever fails. Allowed values:
|
enabled
|
TRUE
|
If
false, ignore this operation definition. This is typically used to pause a particular recurring monitor operation; for instance, it can complement the respective resource being unmanaged (is-managed=false), as this alone will not block any configured monitoring. Disabling the operation does not suppress all actions of the given type. Allowed values: true, false.
|
record-pending
|
FALSE
| |
role
|
|
Run the operation only on node(s) that the cluster thinks should be in the specified role. This only makes sense for recurring monitor operations. Allowed (case-sensitive) values:
Stopped, Started, and in the case of multi-state resources, Slave and Master.
|
resource-discovery location constraint property.)
target-role property can be used for further checking.
interval=10 role=Started and a second monitor operation with interval=11 role=Stopped, the cluster will run the first monitor on any nodes it thinks should be running the resource, and the second monitor on any nodes that it thinks should not be running the resource (for the truly paranoid, who want to know when an administrator manually starts a service by mistake).
is-managed=false): No monitors will be stopped.
target-role to be set to Stopped then Started to be recovered.
role=Stopped. Monitor operations with role=Stopped will be started on the node if appropriate.
role=Stopped. As with single unmanaged resources, starting a resource on a node other than where the cluster expects it to be will cause problems.
op_defaults section of the CIB’s configuration section, and can be set with crm_attribute. For example,
# crm_attribute --type op_defaults --name timeout --update 20s
timeout to 20 seconds. If an operation’s definition also includes a value for timeout, then that value would be used for that operation instead.
start, stop and a non-recurring monitor operation used at startup to check whether the resource is already active. If one of these is taking too long, then you can create an entry for them and specify a longer timeout.
<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat"> <operations> <op id="public-ip-startup" name="monitor" interval="0" timeout="90s"/> <op id="public-ip-start" name="start" interval="0" timeout="180s"/> <op id="public-ip-stop" name="stop" interval="0" timeout="15min"/> </operations> <instance_attributes id="params-public-ip"> <nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/> </instance_attributes> </primitive>
OCF_CHECK_LEVEL for this purpose and dictates that it is "made available to the resource agent without the normal OCF_RESKEY prefix".
instance_attributes block to the op tag. It is up to each resource agent to look for the parameter and decide how to use it.
<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat"> <operations> <op id="public-ip-health-60" name="monitor" interval="60"> <instance_attributes id="params-public-ip-depth-60"> <nvpair id="public-ip-depth-60" name="OCF_CHECK_LEVEL" value="10"/> </instance_attributes> </op> <op id="public-ip-health-300" name="monitor" interval="300"> <instance_attributes id="params-public-ip-depth-300"> <nvpair id="public-ip-depth-300" name="OCF_CHECK_LEVEL" value="20"/> </instance_attributes> </op> </operations> <instance_attributes id="params-public-ip"> <nvpair id="public-ip-level" name="ip" value="192.0.2.2"/> </instance_attributes> </primitive>
OCF_CHECK_LEVEL.enabled="false" to the operation’s definition.
<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat"> <operations> <op id="public-ip-check" name="monitor" interval="60s" enabled="false"/> </operations> <instance_attributes id="params-public-ip"> <nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/> </instance_attributes> </primitive>
# cibadmin --modify --xml-text '<op id="public-ip-check" enabled="false"/>'
# cibadmin --modify --xml-text '<op id="public-ip-check" enabled="true"/>'
[7] See http://www.opencf.org/cgi-bin/viewcvs.cgi/specs/ra/resource-agent-api.txt?rev=HEAD — at least as it relates to resource agents. The Pacemaker implementation has been somewhat extended from the OCF specs, but none of those changes are incompatible with the original OCF specification.
[8]
The resource-agents source code includes the ocf-tester script, which can be useful in this regard.
[9] See http://refspecs.linux-foundation.org/LSB_3.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html for the LSB Spec as it relates to init scripts.
[10] For example, http://0pointer.de/blog/projects/systemd-for-admins-3.html
[11] The project has two independent forks, hosted at https://www.nagios-plugins.org/ and https://www.monitoring-plugins.org/. Output from both projects' plugins is similar, so plugins from either project can be used with pacemaker.
[12] Currently, anyway. Automatic monitoring operations may be added in a future version of Pacemaker.
INFINITY (or equivalently, +INFINITY) internally as a score of 1,000,000. Addition and subtraction with it follow these three basic rules:
INFINITY = INFINITY
INFINITY = -INFINITY
INFINITY - INFINITY = -INFINITY
| Field | Default | Description |
|---|---|---|
id
|
| |
rsc
|
| |
rsc-pattern
|
|
A regular expression matching the names of resources to which this constraint applies, if
rsc is not specified; if the regular expression contains submatches and the constraint is governed by a rule (see Chapter 8, Rules), the submatches can be referenced as %0 through %9 in the rule’s score-attribute or a rule expression’s attribute (since 1.1.16)
|
node
|
| |
score
|
| |
resource-discovery
|
always
|
Whether Pacemaker should perform resource discovery (that is, check whether the resource is already running) for this resource on this node. This should normally be left as the default, so that rogue instances of a service can be stopped when they are running where they are not supposed to be. However, there are two situations where disabling resource discovery is a good idea: when a service is not installed on a node, discovery might return an error (properly written OCF agents will not, so this is usually only seen with other agent types); and when Pacemaker Remote is used to scale a cluster to hundreds of nodes, limiting resource discovery to allowed nodes can significantly boost performance. (since 1.1.13)
|
never or exclusive removes Pacemaker’s ability to detect and stop unwanted instances of a service running where it’s not supposed to be. It is up to the system administrator (you!) to make sure that the service can never be active on nodes without resource-discovery (such as by leaving the relevant software uninstalled).
# crm_attribute --name symmetric-cluster --update false
<constraints> <rsc_location id="loc-1" rsc="Webserver" node="sles-1" score="200"/> <rsc_location id="loc-2" rsc="Webserver" node="sles-3" score="0"/> <rsc_location id="loc-3" rsc="Database" node="sles-2" score="200"/> <rsc_location id="loc-4" rsc="Database" node="sles-3" score="0"/> </constraints>
# crm_attribute --name symmetric-cluster --update true
<constraints> <rsc_location id="loc-1" rsc="Webserver" node="sles-1" score="200"/> <rsc_location id="loc-2-dont-run" rsc="Webserver" node="sles-2" score="-INFINITY"/> <rsc_location id="loc-3-dont-run" rsc="Database" node="sles-1" score="-INFINITY"/> <rsc_location id="loc-4" rsc="Database" node="sles-2" score="200"/> </constraints>
<constraints> <rsc_location id="loc-1" rsc="Webserver" node="sles-1" score="INFINITY"/> <rsc_location id="loc-2" rsc="Webserver" node="sles-2" score="INFINITY"/> <rsc_location id="loc-3" rsc="Database" node="sles-1" score="500"/> <rsc_location id="loc-4" rsc="Database" node="sles-2" score="300"/> <rsc_location id="loc-5" rsc="Database" node="sles-2" score="200"/> </constraints>
Webserver would probably be placed on sles-1 and Database on sles-2. It would likely have placed Webserver based on the node’s uname and Database based on the desire to spread the resource load evenly across the cluster. However other factors can also be involved in more complex configurations.
| Field | Default | Description |
|---|---|---|
id
|
| |
first
|
| |
then
|
| |
first-action
|
start
| |
then-action
|
value of
first-action
| |
kind
|
|
How to enforce the constraint. Allowed values:
|
symmetrical
|
TRUE
|
Database must start before Webserver, and IP should start before Webserver if they both need to be started:
<constraints> <rsc_order id="order-1" first="IP" then="Webserver" kind="Optional"/> <rsc_order id="order-2" first="Database" then="Webserver" kind="Mandatory" /> </constraints>
symmetrical default to TRUE, Webserver must be stopped before Database can be stopped, and Webserver should be stopped before IP if they both need to be stopped.
| Field | Description |
|---|---|
id
| |
rsc
| |
with-rsc
| |
score
|
+INFINITY or -INFINITY. In such cases, if the constraint can’t be satisfied, then the rsc resource is not permitted to run. For score=INFINITY, this includes cases where the with-rsc resource is not active.
A to always run on the same machine as resource B, you would add the following constraint:
<rsc_colocation id="colocate" rsc="A" with-rsc="B" score="INFINITY"/>
INFINITY was used, if B can’t run on any of the cluster nodes (for whatever reason) then A will not be allowed to run. Whether A is running or not has no effect on B.
A cannot run on the same machine as B. In this case, use score="-INFINITY".
<rsc_colocation id="anti-colocate" rsc="A" with-rsc="B" score="-INFINITY"/>
-INFINITY, the constraint is binding. So if the only place left to run is where B already is, then A may not run anywhere.
INFINITY, B can run even if A is stopped. However, in this case A also can run if B is stopped, because it still meets the constraint of A and B not running on the same node.
-INFINITY and less than INFINITY, the cluster will try to accommodate your wishes but may ignore them if the alternative is to stop some of the cluster resources.
<rsc_colocation id="colocate-maybe" rsc="A" with-rsc="B" score="500"/>
<resource_set id="resource-set-example"> <resource_ref id="A"/> <resource_ref id="B"/> <resource_ref id="C"/> </resource_set>
rsc_location, rsc_order (see Section 6.6, “Ordering Sets of Resources”), rsc_colocation (see Section 6.7, “Colocating Sets of Resources”), and rsc_ticket (see Section 15.3, “Configuring Ticket Dependencies”) constraints.
| Field | Default | Description |
|---|---|---|
id
|
| |
sequential
|
true
| |
require-all
|
true
| |
role
|
| |
action
|
| |
score
|
|
<constraints> <rsc_order id="order-1" first="A" then="B" /> <rsc_order id="order-2" first="B" then="C" /> <rsc_order id="order-3" first="C" then="D" /> </constraints>

<constraints> <rsc_order id="order-1"> <resource_set id="ordered-set-example" sequential="true"> <resource_ref id="A"/> <resource_ref id="B"/> <resource_ref id="C"/> <resource_ref id="D"/> </resource_set> </rsc_order> </constraints>
A B may be equivalent to A then B, or B then A.
sequential property). In the example below, A and B can both start in parallel, as can C and D, however C and D can only start once both A and B are active.
<constraints> <rsc_order id="order-1"> <resource_set id="ordered-set-1" sequential="false"> <resource_ref id="A"/> <resource_ref id="B"/> </resource_set> <resource_set id="ordered-set-2" sequential="false"> <resource_ref id="C"/> <resource_ref id="D"/> </resource_set> </rsc_order> </constraints>

sequential="true") and there is no limit to the number of sets that can be specified.
<constraints> <rsc_order id="order-1"> <resource_set id="ordered-set-1" sequential="false"> <resource_ref id="A"/> <resource_ref id="B"/> </resource_set> <resource_set id="ordered-set-2" sequential="true"> <resource_ref id="C"/> <resource_ref id="D"/> </resource_set> <resource_set id="ordered-set-3" sequential="false"> <resource_ref id="E"/> <resource_ref id="F"/> </resource_set> </rsc_order> </constraints>

sequential=false makes sense only if there is another set in the constraint. Otherwise, the constraint has no effect.
(A and B) then (C) then (D) then (E and F).
(A and B), to use "OR" logic so the sets look like this: (A or B) then (C) then (D) then (E and F). This functionality can be achieved through the use of the require-all option. This option defaults to TRUE which is why the "AND" logic is used by default. Setting require-all=false means only one resource in the set needs to be started before continuing on to the next set.
<constraints> <rsc_order id="order-1"> <resource_set id="ordered-set-1" sequential="false" require-all="false"> <resource_ref id="A"/> <resource_ref id="B"/> </resource_set> <resource_set id="ordered-set-2" sequential="true"> <resource_ref id="C"/> <resource_ref id="D"/> </resource_set> <resource_set id="ordered-set-3" sequential="false"> <resource_ref id="E"/> <resource_ref id="F"/> </resource_set> </rsc_order> </constraints>
require-all=false makes sense only in conjunction with sequential=false. Think of it like this: sequential=false modifies the set to be an unordered set using "AND" logic by default, and adding require-all=false flips the unordered set’s "AND" logic to "OR" logic.
<constraints> <rsc_colocation id="coloc-1" rsc="D" with-rsc="C" score="INFINITY"/> <rsc_colocation id="coloc-2" rsc="C" with-rsc="B" score="INFINITY"/> <rsc_colocation id="coloc-3" rsc="B" with-rsc="A" score="INFINITY"/> </constraints>
B is not able to run, then both C and by inference D must also remain stopped. Here is an example resource_set:
<constraints> <rsc_colocation id="coloc-1" score="INFINITY" > <resource_set id="colocated-set-example" sequential="true"> <resource_ref id="A"/> <resource_ref id="B"/> <resource_ref id="C"/> <resource_ref id="D"/> </resource_set> </rsc_colocation> </constraints>
resource_setA B may be equivalent to A with B, or B with A.
sequential property).
A, B, and C will each be colocated with D. D must be active, but any of A, B, or C may be inactive without affecting any other resources.
<constraints> <rsc_colocation id="coloc-1" score="INFINITY" > <resource_set id="colocated-set-1" sequential="false"> <resource_ref id="A"/> <resource_ref id="B"/> <resource_ref id="C"/> </resource_set> <resource_set id="colocated-set-2" sequential="true"> <resource_ref id="D"/> </resource_set> </rsc_colocation> </constraints>
sequential=false makes sense only if there is another set in the constraint. Otherwise, the constraint has no effect.
sequential="true", then in order for one member of that set to be active, all members listed before it must also be active.
role property.
<constraints> <rsc_colocation id="coloc-1" score="INFINITY" > <resource_set id="colocated-set-1" sequential="true"> <resource_ref id="B"/> <resource_ref id="A"/> </resource_set> <resource_set id="colocated-set-2" sequential="false"> <resource_ref id="C"/> <resource_ref id="D"/> <resource_ref id="E"/> </resource_set> <resource_set id="colocated-set-3" sequential="true" role="Master"> <resource_ref id="G"/> <resource_ref id="F"/> </resource_set> </rsc_colocation> </constraints>

B is colocated with A, but colocated-set-1 is colocated with colocated-set-2.
require-all option.
[13] While the human brain is sophisticated enough to read the constraint in any order and choose the correct one depending on the situation, the cluster is not quite so smart. Yet.
<configuration> <alerts> <alert id="my-alert" path="/path/to/my-script.sh" /> </alerts> </configuration>
my-script.sh for each event.
<configuration> <alerts> <alert id="my-alert" path="/path/to/my-script.sh"> <recipient id="my-alert-recipient" value="some-address"/> </alert> </alerts> </configuration>
my-script.sh for each event, passing the recipient some-address as an environment variable.
| Meta-Attribute | Default | Description |
|---|---|---|
timestamp-format
|
%H:%M:%S.%06N
| |
timeout
|
30s
|
<configuration> <alerts> <alert id="my-alert" path="/path/to/my-script.sh"> <meta_attributes id="my-alert-attributes"> <nvpair id="my-alert-attributes-timeout" name="timeout" value="15s"/> </meta_attributes> <recipient id="my-alert-recipient1" value="someuser@example.com"> <meta_attributes id="my-alert-recipient1-attributes"> <nvpair id="my-alert-recipient1-timestamp-format" name="timestamp-format" value="%D %H:%M"/> </meta_attributes> </recipient> <recipient id="my-alert-recipient2" value="otheruser@example.com"> <meta_attributes id="my-alert-recipient2-attributes"> <nvpair id="my-alert-recipient2-timestamp-format" name="timestamp-format" value="%c"/> </meta_attributes> </recipient> </alert> </alerts> </configuration>
my-script.sh will get called twice for each event, with each call using a 15-second timeout. One call will be passed the recipient someuser@example.com and a timestamp in the format %D %H:%M, while the other call will be passed the recipient otheruser@example.com and a timestamp in the format %c.
<configuration> <alerts> <alert id="my-alert" path="/path/to/my-script.sh"> <meta_attributes id="my-alert-attributes"> <nvpair id="my-alert-attributes-timeout" name="timeout" value="15s"/> </meta_attributes> <instance_attributes id="my-alert-options"> <nvpair id="my-alert-options-debug" name="debug" value="false"/> </instance_attributes> <recipient id="my-alert-recipient1" value="someuser@example.com"/> </alert> </alerts> </configuration>
/usr/share/pacemaker/alerts by default.
<configuration> <alerts> <alert id="snmp_alert" path="/path/to/alert_snmp.sh"> <instance_attributes id="config_for_alert_snmp"> <nvpair id="trap_node_states" name="trap_node_states" value="all"/> </instance_attributes> <meta_attributes id="config_for_timestamp"> <nvpair id="ts_fmt" name="timestamp-format" value="%Y-%m-%d,%H:%M:%S.%01N"/> </meta_attributes> <recipient id="snmp_destination" value="192.168.1.2"/> </alert> </alerts> </configuration>
<configuration> <alerts> <alert id="smtp_alert" path="/path/to/alert_smtp.sh"> <instance_attributes id="config_for_alert_smtp"> <nvpair id="email_sender" name="email_sender" value="donotreply@example.com"/> </instance_attributes> <recipient id="smtp_destination" value="admin@example.com"/> </alert> </alerts> </configuration>
hacluster user, which has a minimal set of permissions. If an agent requires additional privileges, it is recommended to configure sudo to allow the agent to run the necessary commands as another user with the appropriate privileges.
ocf:pacemaker:ClusterMon resource, which is now deprecated. To preserve this compatibility, the environment variables passed to alert agents are available prepended with CRM_notify_ as well as CRM_alert_. One break in compatibility is that ClusterMon ran external scripts as the root user, while alert agents are run as the hacluster user.
resource-stickiness during working hours, to prevent resources from being moved back to their most preferred location, and another on weekends when no-one is around to notice an outage.
boolean-op field to determine if the rule ultimately evaluates to true or false. What happens next depends on the context in which the rule is being used.
| Field | Default | Description |
|---|---|---|
role
|
Started
| |
score
|
| |
score-attribute
|
| |
boolean-op
|
and
|
| Field | Default | Description |
|---|---|---|
value
|
| |
attribute
|
| |
type
|
string
| |
operation
|
|
The comparison to perform. Allowed values:
|
| Name | Value |
|---|---|
#uname
|
Node name
|
#kind
|
Node type. Possible values are
cluster, remote, and container. Kind is remote for Pacemaker Remote nodes created with the ocf:pacemaker:remote resource, and container for Pacemaker Remote guest nodes (a legacy name unrelated to the now-common use of "container" for resource isolation). (since 1.1.13)
|
#ra-version
|
The installed version of the resource agent on the node, as defined by the
version attribute of the resource-agent tag in the agent’s metadata. Valid only within rules controlling resource options. This can be useful during rolling upgrades of a backward-incompatible resource agent. (coming in 1.1.17)
|
date_expressions are used to control a resource or cluster option based on the current date/time. They may contain an optional date_spec and/or duration object depending on the context.
| Field | Description |
|---|---|
start
| |
end
|
A date/time conforming to the ISO8601 specification. Can be inferred by supplying a value for
start and a duration.
|
operation
|
Compares the current date/time with the start and/or end date, depending on the context. Allowed values:
|
date_spec) include the time, the eq, neq, gte and lte operators have not been implemented since they would only be valid for a single second.
date_spec objects are used to create cron-like expressions relating to time. Each field can contain a single number or a single range. Instead of defaulting to zero, any field not supplied is ignored.
monthdays="1" matches the first day of every month and hours="09-17" matches the hours between 9am and 5pm (inclusive). At this time, multiple ranges (e.g. weekdays="1,2" or weekdays="1-2,5-6") are not supported; depending on demand, this might be implemented in a future release.
| Field | Description |
|---|---|
id
| |
hours
| |
monthdays
| |
weekdays
| |
yeardays
| |
months
| |
weeks
| |
years
| |
weekyears
| |
moon
|
end when one is not supplied to in_range operations. They contain the same fields as date_spec objects but without the limitations (e.g. you can have a duration of 19 months). As with date_specs, any field not supplied is ignored.
<rule id="rule1"> <date_expression id="date_expr1" start="2005-001" operation="in_range"> <duration years="1"/> </date_expression> </rule>
<rule id="rule2"> <date_expression id="date_expr2" operation="date_spec"> <date_spec years="2005"/> </date_expression> </rule>
<rule id="rule3"> <date_expression id="date_expr3" operation="date_spec"> <date_spec hours="9-16" days="1-5"/> </date_expression> </rule>
16 matches up to 16:59:59, as the numeric value (hour) still matches!
<rule id="rule4" boolean_op="or"> <date_expression id="date_expr4-1" operation="date_spec"> <date_spec hours="9-16" days="1-5"/> </date_expression> <date_expression id="date_expr4-2" operation="date_spec"> <date_spec days="6"/> </date_expression> </rule>
<rule id="rule5" boolean_op="and"> <rule id="rule5-nested1" boolean_op="or"> <date_expression id="date_expr5-1" operation="date_spec"> <date_spec hours="9-16"/> </date_expression> <date_expression id="date_expr5-2" operation="date_spec"> <date_spec hours="21-23"/> </date_expression> </rule> <date_expression id="date_expr5-3" operation="date_spec"> <date_spec days="1-5"/> </date_expression> </rule>
<rule id="rule6" boolean_op="and"> <date_expression id="date_expr6-1" operation="date_spec"> <date_spec weekdays="1"/> </date_expression> <date_expression id="date_expr6-2" operation="in_range" start="2005-03-01" end="2005-04-01"/> </rule>
end="2005-03-31T23:59:59" to avoid confusion.
<rule id="rule7" boolean_op="and"> <date_expression id="date_expr7" operation="date_spec"> <date_spec weekdays="5" monthdays="13" moon="4"/> </date_expression> </rule>
false, the cluster treats the constraint as if it were not there. When the rule evaluates to true, the node’s preference for running the resource is updated with the score associated with the rule.
<rsc_location id="dont-run-apache-on-c001n03" rsc="myApacheRsc" score="-INFINITY" node="c001n03"/>
<rsc_location id="dont-run-apache-on-c001n03" rsc="myApacheRsc"> <rule id="dont-run-apache-rule" score="-INFINITY"> <expression id="dont-run-apache-expr" attribute="#uname" operation="eq" value="c00n03"/> </rule> </rsc_location>
<nodes> <node id="uuid1" uname="c001n01" type="normal"> <instance_attributes id="uuid1-custom_attrs"> <nvpair id="uuid1-cpu_mips" name="cpu_mips" value="1234"/> </instance_attributes> </node> <node id="uuid2" uname="c001n02" type="normal"> <instance_attributes id="uuid2-custom_attrs"> <nvpair id="uuid2-cpu_mips" name="cpu_mips" value="5678"/> </instance_attributes> </node> </nodes>
<rule id="need-more-power-rule" score="-INFINITY"> <expression id="need-more-power-expr" attribute="cpu_mips" operation="lt" value="3000"/> </rule>
score-attribute Instead of scorescore-attribute instead of score, each node matched by the rule has its score adjusted differently, according to its value for the named node attribute. Thus, in the previous example, if a rule used score-attribute="cpu_mips", c001n01 would have its preference to run the resource increased by 1234 whereas c001n02 would have its preference increased by 5678.
instance_attributes objects for the resource and adding a rule to each, we can easily handle these special cases.
mySpecialRsc will use eth1 and port 9999 when run on node1, eth2 and port 8888 on node2 and default to eth0 and port 9999 for all other nodes.
<primitive id="mySpecialRsc" class="ocf" type="Special" provider="me"> <instance_attributes id="special-node1" score="3"> <rule id="node1-special-case" score="INFINITY" > <expression id="node1-special-case-expr" attribute="#uname" operation="eq" value="node1"/> </rule> <nvpair id="node1-interface" name="interface" value="eth1"/> </instance_attributes> <instance_attributes id="special-node2" score="2" > <rule id="node2-special-case" score="INFINITY"> <expression id="node2-special-case-expr" attribute="#uname" operation="eq" value="node2"/> </rule> <nvpair id="node2-interface" name="interface" value="eth2"/> <nvpair id="node2-port" name="port" value="8888"/> </instance_attributes> <instance_attributes id="defaults" score="1" > <nvpair id="default-interface" name="interface" value="eth0"/> <nvpair id="default-port" name="port" value="9999"/> </instance_attributes> </primitive>
instance_attributes objects are evaluated is determined by their score (highest to lowest). If not supplied, score defaults to zero, and objects with an equal score are processed in listed order. If the instance_attributes object has no rule or a rule that evaluates to true, then for any parameter the resource does not yet have a value for, the resource will use the parameter values defined by the instance_attributes.
special-node1 has the highest score (3) and so is evaluated first; its rule evaluates to true, so interface is set to eth1.
special-node2 is evaluated next with score 2, but its rule evaluates to false, so it is ignored.
defaults is evaluated last with score 1, and has no rule, so its values are examined; interface is already defined, so the value here is not used, but port is not yet defined, so port is set to 9999.
resource-stickiness value during and outside work hours. This allows resources to automatically move back to their most preferred hosts, but at a time that (in theory) does not interfere with business activities.
<rsc_defaults> <meta_attributes id="core-hours" score="2"> <rule id="core-hour-rule" score="0"> <date_expression id="nine-to-five-Mon-to-Fri" operation="date_spec"> <date_spec id="nine-to-five-Mon-to-Fri-spec" hours="9-16" weekdays="1-5"/> </date_expression> </rule> <nvpair id="core-stickiness" name="resource-stickiness" value="INFINITY"/> </meta_attributes> <meta_attributes id="after-hours" score="1" > <nvpair id="after-stickiness" name="resource-stickiness" value="0"/> </meta_attributes> </rsc_defaults>
resource-stickiness during working hourscluster-recheck-interval cluster option (which defaults to 15 minutes) is essential. This tells the cluster to periodically recalculate the ideal state of the cluster.
cluster-recheck-interval="5m", then sometime between 09:00 and 09:05 the cluster would notice that it needs to start resource X, and between 17:00 and 17:05 it would realize that X needed to be stopped. The timing of the actual start and stop actions depends on what other actions the cluster may need to perform first.
| Environment Variable | Default | Description |
|---|---|---|
CIB_user
|
$USER
| |
CIB_passwd
|
| |
CIB_server
|
localhost
| |
CIB_port
|
| |
CIB_encrypted
|
TRUE
|
# export CIB_port=1234; export CIB_server=c001n01; export CIB_user=someuser; # cibadmin -Q
remote-tls-port (encrypted) or remote-clear-port (unencrypted) CIB properties (i.e., those kept in the cib tag, like num_updates and epoch).
| Field | Default | Description |
|---|---|---|
remote-tls-port
|
none
| |
remote-clear-port
|
none
|
interval-origin. The cluster uses this point to calculate the correct start-delay such that the operation will occur at origin + (interval * N).
interval and interval-origin can be any date/time conforming to the ISO8601 standard. By way of example, to specify an operation that would run on the first Monday of 2009 and every Monday after that, you would add:
<op id="my-weekly-action" name="custom-action" interval="P7D" interval-origin="2009-W01-1"/>
crm_standby. To check the standby status of the current machine, run:
# crm_standby -G
on indicates that the node is not able to host any resources, while a value of off says that it can.
--node option:
# crm_standby -G --node sles-2
-v instead of -G:
# crm_standby -v on
--node.
crm_resource command, which creates and modifies the extra constraints for you. If Email were running on sles-1 and you wanted it moved to a specific location, the command would look something like:
# crm_resource -M -r Email -H sles-2
<rsc_location rsc="Email" node="sles-2" score="INFINITY"/>
crm_resource -M are not cumulative. So, if you ran these commands
# crm_resource -M -r Email -H sles-2 # crm_resource -M -r Email -H sles-3
# crm_resource -U -r Email
resource-stickiness, it might stay where it is. To be absolutely certain that it moves back to sles-1, move it there before issuing the call to crm_resource -U:
# crm_resource -M -r Email -H sles-1 # crm_resource -U -r Email
# crm_resource -B -r Email
<rsc_location rsc="Email" node="sles-1" score="-INFINITY"/>
-INFINITY constraint will prevent the resource from running on that node until crm_resource -U is used. This includes the situation where every other cluster node is no longer available!
resource-stickiness is set to INFINITY, it is possible that you will end up with the problem described in Section 6.2.4, “What if Two Nodes Have the Same Score”. The tool can detect some of these cases and deals with them by creating both positive and negative constraints. E.g.
Email prefers sles-1 with a score of -INFINITY
Email prefers sles-2 with a score of INFINITY
migration-threshold resource option. [14]
migration-threshold=N for a resource and it will migrate to a new node after N failures. There is no threshold defined by default. To determine the resource’s current failure status and limits, run crm_mon --failcounts.
crm_failcount (after hopefully first fixing the failure’s cause). Alternatively, it is possible to expire them by setting the failure-timeout option for the resource.
migration-threshold=2 and failure-timeout=60s would cause the resource to move to a new node after 2 failures, and allow it to move back (depending on stickiness and constraint scores) after one minute.
start-failure-is-fatal is set to true (which is the default), start failures cause the failcount to be set to INFINITY and thus always cause the resource to move immediately.
failure-timeout.
pingd by default. [15]
ha.cf, but this is no longer required.
| Field | Description |
|---|---|
dampen
| |
multiplier
| |
host_list
|
<clone id="Connected"> <primitive id="ping" provider="pacemaker" class="ocf" type="ping"> <instance_attributes id="ping-attrs"> <nvpair id="pingd-dampen" name="dampen" value="5s"/> <nvpair id="pingd-multiplier" name="multiplier" value="1000"/> <nvpair id="pingd-hosts" name="host_list" value="my.gateway.com www.bigcorp.com"/> </instance_attributes> <operations> <op id="ping-monitor-60s" interval="60s" name="monitor"/> </operations> </primitive> </clone>
ocf:pacemaker:ping is recording.
<rsc_location id="WebServer-no-connectivity" rsc="Webserver"> <rule id="ping-exclude-rule" score="-INFINITY" > <expression id="ping-exclude" attribute="pingd" operation="not_defined"/> </rule> </rsc_location>
<primitive id="ping" provider="pacemaker" class="ocf" type="ping"> ... <!-- omitting some configuration to highlight important parts --> <nvpair id="pingd-multiplier" name="multiplier" value="1000"/> ... </primitive> ... <rsc_location id="WebServer-connectivity" rsc="Webserver"> <rule id="ping-prefer-rule" score="-INFINITY" > <expression id="ping-prefer" attribute="pingd" operation="lt" value="3000"/> </rule> </rsc_location>
multiplier to a value higher than that of resource-stickiness (and don’t set either of them to INFINITY).
<rsc_location id="WebServer-connectivity" rsc="Webserver"> <rule id="ping-prefer-rule" score-attribute="pingd" > <expression id="ping-prefer" attribute="pingd" operation="defined"/> </rule> </rsc_location>
<rsc_location id="ping-1" rsc="Webserver" node="sles-1" score="5000"/> <rsc_location id="ping-2" rsc="Webserver" node="sles-2" score="2000"/>
multiplier is set to 1000).
<rsc_location id="WebServer-connectivity" rsc="Webserver"> <rule id="ping-exclude-rule" score="-INFINITY" > <expression id="ping-exclude" attribute="pingd" operation="lt" value="3000"/> </rule> <rule id="ping-prefer-rule" score-attribute="pingd" > <expression id="ping-prefer" attribute="pingd" operation="defined"/> </rule> </rsc_location>
migrate_to (performed on the current location) and migrate_from (performed on the destination).
migrate_to action and, if anything, the activation would occur during migrate_from.
migrate_to action is practically empty and migrate_from does most of the work, extracting the relevant resource state from the old location and activating it.
migrate_to and migrate_from actions, and advertise them in its metadata.
allow-migrate meta-attribute set to true (which is not the default).
#health as an indicator of node health. Node health attributes may have one of the following values:
| Value | Intended significance |
|---|---|
red
| |
yellow
| |
green
| |
|
integer
|
node-health-strategy cluster option controls how Pacemaker responds to changes in node health attributes, and how it translates red, yellow, and green to scores.
| Value | Effect |
|---|---|
none
| |
migrate-on-red
| |
only-green
| |
progressive
|
Assign the value of the
node-health-red cluster option to red, the value of node-health-yellow to yellow, and the value of node-health-green to green. Each node is additionally assigned a score of node-health-base (this allows resources to start even if some attributes are yellow). This strategy gives the administrator finer control over how important each value is.
|
custom
|
Track node health attributes using the same values as
progressive for red, yellow, and green, but do not take them into account. The administrator is expected to implement a policy by defining rules (see Chapter 8, Rules) referencing node health attributes.
|
ocf:pacemaker:HealthCPU and ocf:pacemaker:HealthSMART resource agents set node health attributes based on CPU and disk parameters. The ipmiservicelogd daemon sets node health attributes based on IPMI values (the ocf:pacemaker:SystemHealth resource agent can be used to manage the daemon as a cluster resource).
id-ref instead of an id.
<rsc_location id="WebServer-connectivity" rsc="Webserver"> <rule id="ping-prefer-rule" score-attribute="pingd" > <expression id="ping-prefer" attribute="pingd" operation="defined"/> </rule> </rsc_location>
<rsc_location id="WebDB-connectivity" rsc="WebDB"> <rule id-ref="ping-prefer-rule"/> </rsc_location>
rule exists somewhere. Attempting to add a reference to a non-existing rule will cause a validation failure, as will attempting to remove a rule that is referenced elsewhere.
meta_attributes and instance_attributes as illustrated in the example below:
<primitive id="mySpecialRsc" class="ocf" type="Special" provider="me"> <instance_attributes id="mySpecialRsc-attrs" score="1" > <nvpair id="default-interface" name="interface" value="eth0"/> <nvpair id="default-port" name="port" value="9999"/> </instance_attributes> <meta_attributes id="mySpecialRsc-options"> <nvpair id="failure-timeout" name="failure-timeout" value="5m"/> <nvpair id="migration-threshold" name="migration-threshold" value="1"/> <nvpair id="stickiness" name="resource-stickiness" value="0"/> </meta_attributes> <operations id="health-checks"> <op id="health-check" name="monitor" interval="60s"/> <op id="health-check" name="monitor" interval="30min"/> </operations> </primitive> <primitive id="myOtherlRsc" class="ocf" type="Other" provider="me"> <instance_attributes id-ref="mySpecialRsc-attrs"/> <meta_attributes id-ref="mySpecialRsc-options"/> <operations id-ref="health-checks"/> </primitive>
reload operation and perform any required actions. The actions here depend completely on your application!
case $1 in start) drbd_start ;; stop) drbd_stop ;; reload) drbd_reload ;; monitor) drbd_monitor ;; *) drbd_usage exit $OCF_ERR_UNIMPLEMENTED ;; esac exit $?
reloadreload operation in the actions section of its metadata
<?xml version="1.0"?> <!DOCTYPE resource-agent SYSTEM "ra-api-1.dtd"> <resource-agent name="drbd"> <version>1.1</version> <longdesc> Master/Slave OCF Resource Agent for DRBD </longdesc> ... <actions> <action name="start" timeout="240" /> <action name="reload" timeout="240" /> <action name="promote" timeout="90" /> <action name="demote" timeout="90" /> <action name="notify" timeout="90" /> <action name="stop" timeout="100" /> <action name="meta-data" timeout="5" /> <action name="validate-all" timeout="30" /> </actions> </resource-agent>
reload Operationreload.
unique set to 0 is eligible to be used in this way.
<parameter name="drbdconf" unique="0"> <longdesc>Full path to the drbd.conf file.</longdesc> <shortdesc>Path to drbd.conf</shortdesc> <content type="string" default="${OCF_RESKEY_drbdconf_default}"/> </parameter>
unique=0.
[14] The naming of this option was perhaps unfortunate as it is easily confused with live migration, the process of moving a resource from one node to another without stopping it. Xen virtual guests are the most common example of resources that can be migrated in this manner.
[15] The attribute name is customizable, in order to allow multiple ping groups to be defined.
<group id="shortcut"> <primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat"> <instance_attributes id="params-public-ip"> <nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/> </instance_attributes> </primitive> <primitive id="Email" class="lsb" type="exim"/> </group>
Public-IP first, then Email)
Email first, then Public-IP)
Public-IP can’t run anywhere, neither can Email;
Email can’t run anywhere, this does not affect Public-IP in any way
<configuration> <resources> <primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat"> <instance_attributes id="params-public-ip"> <nvpair id="public-ip-addr" name="ip" value="192.0.2.2"/> </instance_attributes> </primitive> <primitive id="Email" class="lsb" type="exim"/> </resources> <constraints> <rsc_colocation id="xxx" rsc="Email" with-rsc="Public-IP" score="INFINITY"/> <rsc_order id="yyy" first="Public-IP" then="Email"/> </constraints> </configuration>
priority, target-role, and is-managed properties from primitive resources. See Section 5.4, “Resource Options” for information about those properties.
id instead of the group’s.
<constraints> <rsc_location id="group-prefers-node1" rsc="shortcut" node="node1" score="500"/> <rsc_colocation id="webserver-with-group" rsc="Webserver" with-rsc="shortcut"/> <rsc_order id="start-group-then-webserver" first="Webserver" then="shortcut"/> </constraints>
resource-stickiness is 100, and a group has seven members, five of which are active, then the group as a whole will prefer its current location with a score of 500.
<clone id="apache-clone"> <meta_attributes id="apache-clone-meta"> <nvpair id="apache-unique" name="globally-unique" value="false"/> </meta_attributes> <primitive id="apache" class="lsb" type="apache"/> </clone>
priority, target-role, is-managed
| Field | Default | Description |
|---|---|---|
clone-max
|
number of nodes in cluster
| |
clone-node-max
|
1
| |
clone-min
|
1
| |
notify
|
true
| |
globally-unique
|
false
| |
ordered
|
false
| |
interleave
|
false
|
id is used.
<constraints> <rsc_location id="clone-prefers-node1" rsc="apache-clone" node="node1" score="500"/> <rsc_colocation id="stats-with-clone" rsc="apache-stats" with="apache-clone"/> <rsc_order id="start-clone-then-stats" first="apache-clone" then="apache-stats"/> </constraints>
apache-stats will wait until all copies of apache-clone that need to be started have done so before being started itself. Only if no copies can be started will apache-stats be prevented from being active. Additionally, the clone will wait for apache-stats to be stopped before stopping itself.
A is colocated with another clone B, the set of allowed locations for A is limited to nodes on which B is (or will be) active. Placement is then performed normally.
resource-stickiness is provided, the clone will use a value of 1. Being a small value, it causes minimal disturbance to the score calculations of other resources but is enough to prevent Pacemaker from needlessly moving copies around the cluster.
resource-stickiness of 0 for the clone temporarily and let the cluster adjust, then set it back to 1 if you want the default behavior to apply again.
${OCF_SUCCESS} if the node has that exact instance active. All other probes for instances of the clone should result in ${OCF_NOT_RUNNING} (or one of the other OCF error codes if they are failed).
apache:2.
OCF_RESKEY_CRM_meta_clone_max environment variable and which copy it is by examining OCF_RESKEY_CRM_meta_clone.
OCF_RESKEY_CRM_meta_clone) about which numerical instances are active. In particular, the list of active copies will not always be an unbroken sequence, nor always start at 0.
notify action to be implemented. If supported, the notify action will be passed a number of extra variables which, when combined with additional context, can be used to calculate the current state of the cluster and what is about to happen to it.
| Variable | Description |
|---|---|
|
OCF_RESKEY_CRM_meta_notify_type
| |
|
OCF_RESKEY_CRM_meta_notify_operation
| |
|
OCF_RESKEY_CRM_meta_notify_start_resource
| |
|
OCF_RESKEY_CRM_meta_notify_stop_resource
| |
|
OCF_RESKEY_CRM_meta_notify_active_resource
| |
|
OCF_RESKEY_CRM_meta_notify_inactive_resource
| |
|
OCF_RESKEY_CRM_meta_notify_start_uname
| |
|
OCF_RESKEY_CRM_meta_notify_stop_uname
| |
|
OCF_RESKEY_CRM_meta_notify_active_uname
| |
|
OCF_RESKEY_CRM_meta_notify_inactive_uname
|
OCF_RESKEY_CRM_meta_notify_start_resource and OCF_RESKEY_CRM_meta_notify_start_uname and should be treated as an array of whitespace-separated elements.
clone:0 will be started on sles-1, clone:2 will be started on sles-3, and clone:3 will be started on sles-2, the cluster would set
OCF_RESKEY_CRM_meta_notify_start_resource="clone:0 clone:2 clone:3" OCF_RESKEY_CRM_meta_notify_start_uname="sles-1 sles-3 sles-2"
$OCF_RESKEY_CRM_meta_notify_active_resource
$OCF_RESKEY_CRM_meta_notify_inactive_resource
$OCF_RESKEY_CRM_meta_notify_start_resource
$OCF_RESKEY_CRM_meta_notify_stop_resource
$OCF_RESKEY_CRM_meta_notify_active_resource
$OCF_RESKEY_CRM_meta_notify_stop_resource
$OCF_RESKEY_CRM_meta_notify_inactive_resource
$OCF_RESKEY_CRM_meta_notify_stop_resource
$OCF_RESKEY_CRM_meta_notify_start_resource
$OCF_RESKEY_CRM_meta_notify_stop_resource
$OCF_RESKEY_CRM_meta_notify_active_resource
$OCF_RESKEY_CRM_meta_notify_stop_resource
$OCF_RESKEY_CRM_meta_notify_start_resource
$OCF_RESKEY_CRM_meta_notify_inactive_resource
$OCF_RESKEY_CRM_meta_notify_stop_resource
$OCF_RESKEY_CRM_meta_notify_start_resource
$OCF_RESKEY_CRM_meta_notify_start_resource
$OCF_RESKEY_CRM_meta_notify_stop_resource
clone-max, clone-node-max, notify, globally-unique, ordered, interleave
| Field | Default | Description |
|---|---|---|
master-max
|
1
| |
master-node-max
|
1
|
role="master" will cover the master role.
<master id="myMasterRsc"> <primitive id="myRsc" class="ocf" type="myApp" provider="myCorp"> <operations> <op id="public-ip-slave-check" name="monitor" interval="60"/> <op id="public-ip-master-check" name="monitor" interval="61" role="Master"/> </operations> </primitive> </master>
id is used.
first-action and/or then-action fields for ordering constraints may be set to promote or demote to constrain the master role, and colocation constraints may contain rsc-role and/or with-rsc-role fields.
| Field | Default | Description |
|---|---|---|
rsc-role
|
Started
| |
with-rsc-role
|
Started
|
<constraints> <rsc_location id="db-prefers-node1" rsc="database" node="node1" score="500"/> <rsc_colocation id="backup-with-db-slave" rsc="backup" with-rsc="database" with-rsc-role="Slave"/> <rsc_colocation id="myapp-with-db-master" rsc="myApp" with-rsc="database" with-rsc-role="Master"/> <rsc_order id="start-db-before-backup" first="database" then="backup"/> <rsc_order id="promote-db-then-app" first="database" first-action="promote" then="myApp" then-action="start"/> </constraints>
myApp will wait until one of the database copies has been started and promoted to master before being started itself on the same node. Only if no copies can be promoted will myApp be prevented from being active. Additionally, the cluster will wait for myApp to be stopped before demoting the database.
master or slave). In the example above, the cluster will choose a location based on where database is running as a master, and if there are multiple master instances it will also factor in myApp's own location preferences when deciding which location to choose.
rsc clone is (after role filtering) limited to nodes on which the with-rsc multi-state resource is (or will be) in the specified role. Placement is then performed as normal.
| Field | Default | Description |
|---|---|---|
role
|
Started
|
B's master must be located on the same node as A's master. Additionally resources C and D must be located on the same node as A's and B's masters.
<constraints> <rsc_colocation id="coloc-1" score="INFINITY" > <resource_set id="colocated-set-example-1" sequential="true" role="Master"> <resource_ref id="A"/> <resource_ref id="B"/> </resource_set> <resource_set id="colocated-set-example-2" sequential="true"> <resource_ref id="C"/> <resource_ref id="D"/> </resource_set> </rsc_colocation> </constraints>
| Field | Default | Description |
|---|---|---|
action
|
value of
first-action
|
<constraints> <rsc_order id="order-1" score="INFINITY" > <resource_set id="ordered-set-1" sequential="true" action="promote"> <resource_ref id="A"/> <resource_ref id="B"/> </resource_set> <resource_set id="ordered-set-2" sequential="true" action="start"> <resource_ref id="C"/> <resource_ref id="D"/> </resource_set> </rsc_order> </constraints>
B cannot be promoted to a master role until A has been promoted. Additionally, resources C and D must wait until A and B have been promoted before they can start.
crm_master utility. This tool automatically detects both the resource and host and should be used to set a preference for being promoted. Based on this, master-max, and master-node-max, the instance(s) with the highest preference will be promoted.
<rsc_location id="master-location" rsc="myMasterRsc"> <rule id="master-rule" score="100" role="Master"> <expression id="master-exp" attribute="#uname" operation="eq" value="node1"/> </rule> </rsc_location>
demote and promote, which are responsible for changing the state of the resource. Like start and stop, they should return ${OCF_SUCCESS} if they completed successfully or a relevant error code if they did not.
slave. From there the cluster will decide which instances to promote to master.
| Monitor Return Code | Description |
|---|---|
|
OCF_NOT_RUNNING
| |
|
OCF_SUCCESS
| |
|
OCF_RUNNING_MASTER
| |
|
OCF_FAILED_MASTER
| |
|
Other
|
Failed (Slave)
|
notify action to be implemented. If supported, the notify action will be passed a number of extra variables which, when combined with additional context, can be used to calculate the current state of the cluster and what is about to happen to it.
| Variable | Description |
|---|---|
|
OCF_RESKEY_CRM_meta_notify_type
| |
|
OCF_RESKEY_CRM_meta_notify_operation
| |
|
OCF_RESKEY_CRM_meta_notify_active_resource
| |
|
OCF_RESKEY_CRM_meta_notify_inactive_resource
| |
|
OCF_RESKEY_CRM_meta_notify_master_resource
| |
|
OCF_RESKEY_CRM_meta_notify_slave_resource
| |
|
OCF_RESKEY_CRM_meta_notify_start_resource
| |
|
OCF_RESKEY_CRM_meta_notify_stop_resource
| |
|
OCF_RESKEY_CRM_meta_notify_promote_resource
| |
|
OCF_RESKEY_CRM_meta_notify_demote_resource
| |
|
OCF_RESKEY_CRM_meta_notify_start_uname
| |
|
OCF_RESKEY_CRM_meta_notify_stop_uname
| |
|
OCF_RESKEY_CRM_meta_notify_promote_uname
| |
|
OCF_RESKEY_CRM_meta_notify_demote_uname
| |
|
OCF_RESKEY_CRM_meta_notify_active_uname
| |
|
OCF_RESKEY_CRM_meta_notify_inactive_uname
| |
|
OCF_RESKEY_CRM_meta_notify_master_uname
| |
|
OCF_RESKEY_CRM_meta_notify_slave_uname
|
Active resources: $OCF_RESKEY_CRM_meta_notify_active_resource
Master resources: $OCF_RESKEY_CRM_meta_notify_master_resource
Slave resources: $OCF_RESKEY_CRM_meta_notify_slave_resource
$OCF_RESKEY_CRM_meta_notify_inactive_resource
$OCF_RESKEY_CRM_meta_notify_start_resource
$OCF_RESKEY_CRM_meta_notify_promote_resource
$OCF_RESKEY_CRM_meta_notify_demote_resource
$OCF_RESKEY_CRM_meta_notify_stop_resource
Active resources: $OCF_RESKEY_CRM_meta_notify_active_resource
Master resources:
$OCF_RESKEY_CRM_meta_notify_master_resource
$OCF_RESKEY_CRM_meta_notify_demote_resource
Slave resources: $OCF_RESKEY_CRM_meta_notify_slave_resource
$OCF_RESKEY_CRM_meta_notify_inactive_resource
$OCF_RESKEY_CRM_meta_notify_start_resource
$OCF_RESKEY_CRM_meta_notify_promote_resource
$OCF_RESKEY_CRM_meta_notify_demote_resource
$OCF_RESKEY_CRM_meta_notify_stop_resource
$OCF_RESKEY_CRM_meta_notify_demote_resource
Active resources:
$OCF_RESKEY_CRM_meta_notify_active_resource
$OCF_RESKEY_CRM_meta_notify_stop_resource
Master resources:
$OCF_RESKEY_CRM_meta_notify_master_resource
$OCF_RESKEY_CRM_meta_notify_demote_resource
Slave resources:
$OCF_RESKEY_CRM_meta_notify_slave_resource
$OCF_RESKEY_CRM_meta_notify_stop_resource
$OCF_RESKEY_CRM_meta_notify_inactive_resource
$OCF_RESKEY_CRM_meta_notify_stop_resource
$OCF_RESKEY_CRM_meta_notify_start_resource
$OCF_RESKEY_CRM_meta_notify_promote_resource
$OCF_RESKEY_CRM_meta_notify_demote_resource
$OCF_RESKEY_CRM_meta_notify_stop_resource
$OCF_RESKEY_CRM_meta_notify_demote_resource
$OCF_RESKEY_CRM_meta_notify_stop_resource
Active resources:
$OCF_RESKEY_CRM_meta_notify_active_resource
$OCF_RESKEY_CRM_meta_notify_stop_resource
$OCF_RESKEY_CRM_meta_notify_start_resource
Master resources:
$OCF_RESKEY_CRM_meta_notify_master_resource
$OCF_RESKEY_CRM_meta_notify_demote_resource
Slave resources:
$OCF_RESKEY_CRM_meta_notify_slave_resource
$OCF_RESKEY_CRM_meta_notify_stop_resource
$OCF_RESKEY_CRM_meta_notify_start_resource
$OCF_RESKEY_CRM_meta_notify_inactive_resource
$OCF_RESKEY_CRM_meta_notify_stop_resource
$OCF_RESKEY_CRM_meta_notify_start_resource
$OCF_RESKEY_CRM_meta_notify_start_resource
$OCF_RESKEY_CRM_meta_notify_promote_resource
$OCF_RESKEY_CRM_meta_notify_demote_resource
$OCF_RESKEY_CRM_meta_notify_stop_resource
$OCF_RESKEY_CRM_meta_notify_start_resource
$OCF_RESKEY_CRM_meta_notify_demote_resource
$OCF_RESKEY_CRM_meta_notify_stop_resource
Active resources:
$OCF_RESKEY_CRM_meta_notify_active_resource
$OCF_RESKEY_CRM_meta_notify_stop_resource
$OCF_RESKEY_CRM_meta_notify_start_resource
Master resources:
$OCF_RESKEY_CRM_meta_notify_master_resource
$OCF_RESKEY_CRM_meta_notify_demote_resource
$OCF_RESKEY_CRM_meta_notify_promote_resource
Slave resources:
$OCF_RESKEY_CRM_meta_notify_slave_resource
$OCF_RESKEY_CRM_meta_notify_stop_resource
$OCF_RESKEY_CRM_meta_notify_start_resource
$OCF_RESKEY_CRM_meta_notify_promote_resource
$OCF_RESKEY_CRM_meta_notify_inactive_resource
$OCF_RESKEY_CRM_meta_notify_stop_resource
$OCF_RESKEY_CRM_meta_notify_start_resource
$OCF_RESKEY_CRM_meta_notify_start_resource
$OCF_RESKEY_CRM_meta_notify_promote_resource
$OCF_RESKEY_CRM_meta_notify_demote_resource
$OCF_RESKEY_CRM_meta_notify_stop_resource
$OCF_RESKEY_CRM_meta_notify_start_resource
$OCF_RESKEY_CRM_meta_notify_promote_resource
$OCF_RESKEY_CRM_meta_notify_demote_resource
$OCF_RESKEY_CRM_meta_notify_stop_resource
[16]
Emphasized variables are specific to Master resources, and all behave in the same manner as described for Clone resources.
node and resource objects. You can name utilization attributes according to your preferences and define as many name/value pairs as your configuration needs. However, the attributes' values must be integers.
<node id="node1" type="normal" uname="node1"> <utilization id="node1-utilization"> <nvpair id="node1-utilization-cpu" name="cpu" value="2"/> <nvpair id="node1-utilization-memory" name="memory" value="2048"/> </utilization> </node> <node id="node2" type="normal" uname="node2"> <utilization id="node2-utilization"> <nvpair id="node2-utilization-cpu" name="cpu" value="4"/> <nvpair id="node2-utilization-memory" name="memory" value="4096"/> </utilization> </node>
<primitive id="rsc-small" class="ocf" provider="pacemaker" type="Dummy"> <utilization id="rsc-small-utilization"> <nvpair id="rsc-small-utilization-cpu" name="cpu" value="1"/> <nvpair id="rsc-small-utilization-memory" name="memory" value="1024"/> </utilization> </primitive> <primitive id="rsc-medium" class="ocf" provider="pacemaker" type="Dummy"> <utilization id="rsc-medium-utilization"> <nvpair id="rsc-medium-utilization-cpu" name="cpu" value="2"/> <nvpair id="rsc-medium-utilization-memory" name="memory" value="2048"/> </utilization> </primitive> <primitive id="rsc-large" class="ocf" provider="pacemaker" type="Dummy"> <utilization id="rsc-large-utilization"> <nvpair id="rsc-large-utilization-cpu" name="cpu" value="3"/> <nvpair id="rsc-large-utilization-memory" name="memory" value="3072"/> </utilization> </primitive>
placement-strategy in the global cluster options, otherwise the capacity configurations have no effect.
placement-strategy:
defaultutilizationbalancedminimalplacement-strategy with crm_attribute:
# crm_attribute --name placement-strategy --update balanced
placement-strategy is default or utilization, the node that has the least number of allocated resources gets consumed first.
placement-strategy is balanced, the node that has the most free capacity gets consumed first.
placement-strategy is minimal, the first eligible node listed in the CIB gets consumed first.
nodeA has more free cpus, and nodeB has more free memory, then their free capacities are equal.
nodeA has more free cpus, while nodeB has more free memory and storage, then nodeB has more free capacity.
priority (see Section 5.4, “Resource Options”) gets allocated first.
rsc-small would be allocated to node1
rsc-medium would be allocated to node2
rsc-large would remain inactive
<template id="vm-template" class="ocf" provider="heartbeat" type="Xen"> <meta_attributes id="vm-template-meta_attributes"> <nvpair id="vm-template-meta_attributes-allow-migrate" name="allow-migrate" value="true"/> </meta_attributes> <utilization id="vm-template-utilization"> <nvpair id="vm-template-utilization-memory" name="memory" value="512"/> </utilization> <operations> <op id="vm-template-monitor-15s" interval="15s" name="monitor" timeout="60s"/> <op id="vm-template-start-0" interval="0" name="start" timeout="60s"/> </operations> </template>
template property.
<primitive id="vm1" template="vm-template"> <instance_attributes id="vm1-instance_attributes"> <nvpair id="vm1-instance_attributes-name" name="name" value="vm1"/> <nvpair id="vm1-instance_attributes-xmfile" name="xmfile" value="/etc/xen/shared-vm/vm1"/> </instance_attributes> </primitive>
vm1 will inherit everything from vm-template. For example, the equivalent of the above two examples would be:
<primitive id="vm1" class="ocf" provider="heartbeat" type="Xen"> <meta_attributes id="vm-template-meta_attributes"> <nvpair id="vm-template-meta_attributes-allow-migrate" name="allow-migrate" value="true"/> </meta_attributes> <utilization id="vm-template-utilization"> <nvpair id="vm-template-utilization-memory" name="memory" value="512"/> </utilization> <operations> <op id="vm-template-monitor-15s" interval="15s" name="monitor" timeout="60s"/> <op id="vm-template-start-0" interval="0" name="start" timeout="60s"/> </operations> <instance_attributes id="vm1-instance_attributes"> <nvpair id="vm1-instance_attributes-name" name="name" value="vm1"/> <nvpair id="vm1-instance_attributes-xmfile" name="xmfile" value="/etc/xen/shared-vm/vm1"/> </instance_attributes> </primitive>
<primitive id="vm2" template="vm-template"> <meta_attributes id="vm2-meta_attributes"> <nvpair id="vm2-meta_attributes-allow-migrate" name="allow-migrate" value="false"/> </meta_attributes> <utilization id="vm2-utilization"> <nvpair id="vm2-utilization-memory" name="memory" value="1024"/> </utilization> <instance_attributes id="vm2-instance_attributes"> <nvpair id="vm2-instance_attributes-name" name="name" value="vm2"/> <nvpair id="vm2-instance_attributes-xmfile" name="xmfile" value="/etc/xen/shared-vm/vm2"/> </instance_attributes> <operations> <op id="vm2-monitor-30s" interval="30s" name="monitor" timeout="120s"/> <op id="vm2-stop-0" interval="0" name="stop" timeout="60s"/> </operations> </primitive>
vm2 has special attribute values. Its monitor operation has a longer timeout and interval, and the primitive has an additional stop operation.
# crm_resource --query-xml --resource vm2
# crm_resource --query-xml-raw --resource vm2
order constraints (see Section 6.3, “Specifying the Order in which Resources Should Start/Stop”)
colocation constraints (see Section 6.4, “Placing Resources Relative to other Resources”)
rsc_ticket constraints (for multi-site clusters as described in Section 15.3, “Configuring Ticket Dependencies”)
<rsc_colocation id="vm-template-colo-base-rsc" rsc="vm-template" rsc-role="Started" with-rsc="base-rsc" score="INFINITY"/>
base-rsc and is the equivalent of the following constraint configuration:
<rsc_colocation id="vm-colo-base-rsc" score="INFINITY"> <resource_set id="vm-colo-base-rsc-0" sequential="false" role="Started"> <resource_ref id="vm1"/> <resource_ref id="vm2"/> </resource_set> <resource_set id="vm-colo-base-rsc-1"> <resource_ref id="base-rsc"/> </resource_set> </rsc_colocation>
rsc or with-rsc; the other reference must be a regular resource.
<rsc_order id="order1" score="INFINITY"> <resource_set id="order1-0"> <resource_ref id="base-rsc"/> <resource_ref id="vm-template"/> <resource_ref id="top-rsc"/> </resource_set> </rsc_order>
<rsc_order id="order1" score="INFINITY"> <resource_set id="order1-0"> <resource_ref id="base-rsc"/> <resource_ref id="vm1"/> <resource_ref id="vm2"/> <resource_ref id="top-rsc"/> </resource_set> </rsc_order>
<rsc_order id="order2" score="INFINITY"> <resource_set id="order2-0"> <resource_ref id="base-rsc"/> </resource_set> <resource_set id="order2-1" sequential="false"> <resource_ref id="vm-template"/> </resource_set> <resource_set id="order2-2"> <resource_ref id="top-rsc"/> </resource_set> </rsc_order>
<rsc_order id="order2" score="INFINITY"> <resource_set id="order2-0"> <resource_ref id="base-rsc"/> </resource_set> <resource_set id="order2-1" sequential="false"> <resource_ref id="vm1"/> <resource_ref id="vm2"/> </resource_set> <resource_set id="order2-2"> <resource_ref id="top-rsc"/> </resource_set> </rsc_order>
target-role can be used to enable or disable the resource
man stonithd to see special instance attributes that may be set for any fencing resource, regardless of fence agent.
# stonith_admin --list-installed
# stonith_admin --metadata --agent $AGENT_NAME
stonith.xml containing a primitive resource with a class of stonith, a type equal to the agent name obtained earlier, and a parameter for each of the values returned in the previous step.
pcmk_host_map parameter. See man stonithd for details.
list command, you may also need to set the special pcmk_host_list and/or pcmk_host_check parameters. See man stonithd for details.
port parameter, you may also need to set the special pcmk_host_argument parameter. See man stonithd for details.
# cibadmin -C -o resources --xml-file stonith.xml
stonith-enabled to true:
# crm_attribute -t crm_config -n stonith-enabled -v true
# stonith_admin --reboot nodename
fence_ipmilan driver, and obtain the following list of parameters:
# stonith_admin --metadata -a fence_ipmilan
<resource-agent name="fence_ipmilan" shortdesc="Fence agent for IPMI over LAN"> <symlink name="fence_ilo3" shortdesc="Fence agent for HP iLO3"/> <symlink name="fence_ilo4" shortdesc="Fence agent for HP iLO4"/> <symlink name="fence_idrac" shortdesc="Fence agent for Dell iDRAC"/> <symlink name="fence_imm" shortdesc="Fence agent for IBM Integrated Management Module"/> <longdesc> </longdesc> <vendor-url> </vendor-url> <parameters> <parameter name="auth" unique="0" required="0"> <getopt mixed="-A"/> <content type="string"/> <shortdesc> </shortdesc> </parameter> <parameter name="ipaddr" unique="0" required="1"> <getopt mixed="-a"/> <content type="string"/> <shortdesc> </shortdesc> </parameter> <parameter name="passwd" unique="0" required="0"> <getopt mixed="-p"/> <content type="string"/> <shortdesc> </shortdesc> </parameter> <parameter name="passwd_script" unique="0" required="0"> <getopt mixed="-S"/> <content type="string"/> <shortdesc> </shortdesc> </parameter> <parameter name="lanplus" unique="0" required="0"> <getopt mixed="-P"/> <content type="boolean"/> <shortdesc> </shortdesc> </parameter> <parameter name="login" unique="0" required="0"> <getopt mixed="-l"/> <content type="string"/> <shortdesc> </shortdesc> </parameter> <parameter name="action" unique="0" required="0"> <getopt mixed="-o"/> <content type="string" default="reboot"/> <shortdesc> </shortdesc> </parameter> <parameter name="timeout" unique="0" required="0"> <getopt mixed="-t"/> <content type="string"/> <shortdesc> </shortdesc> </parameter> <parameter name="cipher" unique="0" required="0"> <getopt mixed="-C"/> <content type="string"/> <shortdesc> </shortdesc> </parameter> <parameter name="method" unique="0" required="0"> <getopt mixed="-M"/> <content type="string" default="onoff"/> <shortdesc> </shortdesc> </parameter> <parameter name="power_wait" unique="0" required="0"> <getopt mixed="-T"/> <content type="string" default="2"/> <shortdesc> </shortdesc> </parameter> <parameter name="delay" unique="0" required="0"> <getopt mixed="-f"/> <content type="string"/> <shortdesc> </shortdesc> </parameter> <parameter name="privlvl" unique="0" required="0"> <getopt mixed="-L"/> <content type="string"/> <shortdesc> </shortdesc> </parameter> <parameter name="verbose" unique="0" required="0"> <getopt mixed="-v"/> <content type="boolean"/> <shortdesc> </shortdesc> </parameter> </parameters> <actions> <action name="on"/> <action name="off"/> <action name="reboot"/> <action name="status"/> <action name="diag"/> <action name="list"/> <action name="monitor"/> <action name="metadata"/> <action name="stop" timeout="20s"/> <action name="start" timeout="20s"/> </actions> </resource-agent>
<primitive id="Fencing" class="stonith" type="fence_ipmilan" > <instance_attributes id="Fencing-params" > <nvpair id="Fencing-passwd" name="passwd" value="testuser" /> <nvpair id="Fencing-login" name="login" value="abc123" /> <nvpair id="Fencing-ipaddr" name="ipaddr" value="192.0.2.1" /> <nvpair id="Fencing-pcmk_host_list" name="pcmk_host_list" value="pcmk-1 pcmk-2" /> </instance_attributes> <operations > <op id="Fencing-monitor-10m" interval="10m" name="monitor" timeout="300s" /> </operations> </primitive>
# crm_attribute -t crm_config -n stonith-enabled -v true
fencing-level entries in the fencing-topology section of the configuration.
index. Allowed values are 1 through 9.
crmd.
| Field | Description |
|---|---|
id
| |
target
| |
target-pattern
| |
target-attribute
| |
target-value
| |
index
| |
devices
|
<cib crm_feature_set="3.0.6" validate-with="pacemaker-1.2" admin_epoch="1" epoch="0" num_updates="0"> <configuration> ... <fencing-topology> <!-- For pcmk-1, try poison-pill and fail back to power --> <fencing-level id="f-p1.1" target="pcmk-1" index="1" devices="poison-pill"/> <fencing-level id="f-p1.2" target="pcmk-1" index="2" devices="power"/> <!-- For pcmk-2, try disk and network, and fail back to power --> <fencing-level id="f-p2.1" target="pcmk-2" index="1" devices="disk,network"/> <fencing-level id="f-p2.2" target="pcmk-2" index="2" devices="power"/> </fencing-topology> ... <configuration> <status/> </cib>
fencing-topology in a cluster with the following properties:
fence_ipmi agent
fence_apc_snmp agent targetting 2 fencing devices (one per PSU, either port 10 or 11)
fence_ipmi to try to kill the faulty node. Using a fencing topology, if that first method fails, STONITH will then move on to selecting fence_apc_snmp twice:
fence_ipmi, and so on until the node is fenced or fencing action is cancelled.
<primitive class="stonith" id="fence_prod-mysql1_ipmi" type="fence_ipmilan"> <instance_attributes id="fence_prod-mysql1_ipmi-instance_attributes"> <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-ipaddr" name="ipaddr" value="192.0.2.1"/> <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-action" name="action" value="off"/> <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-login" name="login" value="fencing"/> <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-passwd" name="passwd" value="finishme"/> <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-verbose" name="verbose" value="true"/> <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-pcmk_host_list" name="pcmk_host_list" value="prod-mysql1"/> <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-lanplus" name="lanplus" value="true"/> </instance_attributes> </primitive> <primitive class="stonith" id="fence_prod-mysql2_ipmi" type="fence_ipmilan"> <instance_attributes id="fence_prod-mysql2_ipmi-instance_attributes"> <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-ipaddr" name="ipaddr" value="192.0.2.2"/> <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-action" name="action" value="off"/> <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-login" name="login" value="fencing"/> <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-passwd" name="passwd" value="finishme"/> <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-verbose" name="verbose" value="true"/> <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-pcmk_host_list" name="pcmk_host_list" value="prod-mysql2"/> <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-lanplus" name="lanplus" value="true"/> </instance_attributes> </primitive>
<primitive class="stonith" id="fence_prod-mysql1_apc1" type="fence_apc_snmp"> <instance_attributes id="fence_prod-mysql1_apc1-instance_attributes"> <nvpair id="fence_prod-mysql1_apc1-instance_attributes-ipaddr" name="ipaddr" value="198.51.100.1"/> <nvpair id="fence_prod-mysql1_apc1-instance_attributes-action" name="action" value="off"/> <nvpair id="fence_prod-mysql1_apc1-instance_attributes-port" name="port" value="10"/> <nvpair id="fence_prod-mysql1_apc1-instance_attributes-login" name="login" value="fencing"/> <nvpair id="fence_prod-mysql1_apc1-instance_attributes-passwd" name="passwd" value="fencing"/> <nvpair id="fence_prod-mysql1_apc1-instance_attributes-pcmk_host_list" name="pcmk_host_list" value="prod-mysql1"/> </instance_attributes> </primitive> <primitive class="stonith" id="fence_prod-mysql1_apc2" type="fence_apc_snmp"> <instance_attributes id="fence_prod-mysql1_apc2-instance_attributes"> <nvpair id="fence_prod-mysql1_apc2-instance_attributes-ipaddr" name="ipaddr" value="203.0.113.1"/> <nvpair id="fence_prod-mysql1_apc2-instance_attributes-action" name="action" value="off"/> <nvpair id="fence_prod-mysql1_apc2-instance_attributes-port" name="port" value="10"/> <nvpair id="fence_prod-mysql1_apc2-instance_attributes-login" name="login" value="fencing"/> <nvpair id="fence_prod-mysql1_apc2-instance_attributes-passwd" name="passwd" value="fencing"/> <nvpair id="fence_prod-mysql1_apc2-instance_attributes-pcmk_host_list" name="pcmk_host_list" value="prod-mysql1"/> </instance_attributes> </primitive> <primitive class="stonith" id="fence_prod-mysql2_apc1" type="fence_apc_snmp"> <instance_attributes id="fence_prod-mysql2_apc1-instance_attributes"> <nvpair id="fence_prod-mysql2_apc1-instance_attributes-ipaddr" name="ipaddr" value="198.51.100.1"/> <nvpair id="fence_prod-mysql2_apc1-instance_attributes-action" name="action" value="off"/> <nvpair id="fence_prod-mysql2_apc1-instance_attributes-port" name="port" value="11"/> <nvpair id="fence_prod-mysql2_apc1-instance_attributes-login" name="login" value="fencing"/> <nvpair id="fence_prod-mysql2_apc1-instance_attributes-passwd" name="passwd" value="fencing"/> <nvpair id="fence_prod-mysql2_apc1-instance_attributes-pcmk_host_list" name="pcmk_host_list" value="prod-mysql2"/> </instance_attributes> </primitive> <primitive class="stonith" id="fence_prod-mysql2_apc2" type="fence_apc_snmp"> <instance_attributes id="fence_prod-mysql2_apc2-instance_attributes"> <nvpair id="fence_prod-mysql2_apc2-instance_attributes-ipaddr" name="ipaddr" value="203.0.113.1"/> <nvpair id="fence_prod-mysql2_apc2-instance_attributes-action" name="action" value="off"/> <nvpair id="fence_prod-mysql2_apc2-instance_attributes-port" name="port" value="11"/> <nvpair id="fence_prod-mysql2_apc2-instance_attributes-login" name="login" value="fencing"/> <nvpair id="fence_prod-mysql2_apc2-instance_attributes-passwd" name="passwd" value="fencing"/> <nvpair id="fence_prod-mysql2_apc2-instance_attributes-pcmk_host_list" name="pcmk_host_list" value="prod-mysql2"/> </instance_attributes> </primitive>
<constraints> <rsc_location id="l_fence_prod-mysql1_ipmi" node="prod-mysql1" rsc="fence_prod-mysql1_ipmi" score="-INFINITY"/> <rsc_location id="l_fence_prod-mysql2_ipmi" node="prod-mysql2" rsc="fence_prod-mysql2_ipmi" score="-INFINITY"/> <rsc_location id="l_fence_prod-mysql1_apc2" node="prod-mysql1" rsc="fence_prod-mysql1_apc2" score="-INFINITY"/> <rsc_location id="l_fence_prod-mysql1_apc1" node="prod-mysql1" rsc="fence_prod-mysql1_apc1" score="-INFINITY"/> <rsc_location id="l_fence_prod-mysql2_apc1" node="prod-mysql2" rsc="fence_prod-mysql2_apc1" score="-INFINITY"/> <rsc_location id="l_fence_prod-mysql2_apc2" node="prod-mysql2" rsc="fence_prod-mysql2_apc2" score="-INFINITY"/> </constraints>
<fencing-topology> <fencing-level devices="fence_prod-mysql1_ipmi" id="fencing-2" index="1" target="prod-mysql1"/> <fencing-level devices="fence_prod-mysql1_apc1,fence_prod-mysql1_apc2" id="fencing-3" index="2" target="prod-mysql1"/> <fencing-level devices="fence_prod-mysql2_ipmi" id="fencing-0" index="1" target="prod-mysql2"/> <fencing-level devices="fence_prod-mysql2_apc1,fence_prod-mysql2_apc2" id="fencing-1" index="2" target="prod-mysql2"/> </fencing-topology>
fencing-topology, the lowest index value determines the priority of the first fencing method.
<cib admin_epoch="0" crm_feature_set="3.0.7" epoch="292" have-quorum="1" num_updates="29" validate-with="pacemaker-1.2"> <configuration> <crm_config> <cluster_property_set id="cib-bootstrap-options"> <nvpair id="cib-bootstrap-options-stonith-enabled" name="stonith-enabled" value="true"/> <nvpair id="cib-bootstrap-options-stonith-action" name="stonith-action" value="off"/> <nvpair id="cib-bootstrap-options-expected-quorum-votes" name="expected-quorum-votes" value="3"/> ... </cluster_property_set> </crm_config> <nodes> <node id="prod-mysql1" uname="prod-mysql1"> <node id="prod-mysql2" uname="prod-mysql2"/> <node id="prod-mysql-rep1" uname="prod-mysql-rep1"/> <instance_attributes id="prod-mysql-rep1"> <nvpair id="prod-mysql-rep1-standby" name="standby" value="on"/> </instance_attributes> </node> </nodes> <resources> <primitive class="stonith" id="fence_prod-mysql1_ipmi" type="fence_ipmilan"> <instance_attributes id="fence_prod-mysql1_ipmi-instance_attributes"> <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-ipaddr" name="ipaddr" value="192.0.2.1"/> <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-action" name="action" value="off"/> <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-login" name="login" value="fencing"/> <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-passwd" name="passwd" value="finishme"/> <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-verbose" name="verbose" value="true"/> <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-pcmk_host_list" name="pcmk_host_list" value="prod-mysql1"/> <nvpair id="fence_prod-mysql1_ipmi-instance_attributes-lanplus" name="lanplus" value="true"/> </instance_attributes> </primitive> <primitive class="stonith" id="fence_prod-mysql2_ipmi" type="fence_ipmilan"> <instance_attributes id="fence_prod-mysql2_ipmi-instance_attributes"> <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-ipaddr" name="ipaddr" value="192.0.2.2"/> <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-action" name="action" value="off"/> <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-login" name="login" value="fencing"/> <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-passwd" name="passwd" value="finishme"/> <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-verbose" name="verbose" value="true"/> <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-pcmk_host_list" name="pcmk_host_list" value="prod-mysql2"/> <nvpair id="fence_prod-mysql2_ipmi-instance_attributes-lanplus" name="lanplus" value="true"/> </instance_attributes> </primitive> <primitive class="stonith" id="fence_prod-mysql1_apc1" type="fence_apc_snmp"> <instance_attributes id="fence_prod-mysql1_apc1-instance_attributes"> <nvpair id="fence_prod-mysql1_apc1-instance_attributes-ipaddr" name="ipaddr" value="198.51.100.1"/> <nvpair id="fence_prod-mysql1_apc1-instance_attributes-action" name="action" value="off"/> <nvpair id="fence_prod-mysql1_apc1-instance_attributes-port" name="port" value="10"/> <nvpair id="fence_prod-mysql1_apc1-instance_attributes-login" name="login" value="fencing"/> <nvpair id="fence_prod-mysql1_apc1-instance_attributes-passwd" name="passwd" value="fencing"/> <nvpair id="fence_prod-mysql1_apc1-instance_attributes-pcmk_host_list" name="pcmk_host_list" value="prod-mysql1"/> </instance_attributes> </primitive> <primitive class="stonith" id="fence_prod-mysql1_apc2" type="fence_apc_snmp"> <instance_attributes id="fence_prod-mysql1_apc2-instance_attributes"> <nvpair id="fence_prod-mysql1_apc2-instance_attributes-ipaddr" name="ipaddr" value="203.0.113.1"/> <nvpair id="fence_prod-mysql1_apc2-instance_attributes-action" name="action" value="off"/> <nvpair id="fence_prod-mysql1_apc2-instance_attributes-port" name="port" value="10"/> <nvpair id="fence_prod-mysql1_apc2-instance_attributes-login" name="login" value="fencing"/> <nvpair id="fence_prod-mysql1_apc2-instance_attributes-passwd" name="passwd" value="fencing"/> <nvpair id="fence_prod-mysql1_apc2-instance_attributes-pcmk_host_list" name="pcmk_host_list" value="prod-mysql1"/> </instance_attributes> </primitive> <primitive class="stonith" id="fence_prod-mysql2_apc1" type="fence_apc_snmp"> <instance_attributes id="fence_prod-mysql2_apc1-instance_attributes"> <nvpair id="fence_prod-mysql2_apc1-instance_attributes-ipaddr" name="ipaddr" value="198.51.100.1"/> <nvpair id="fence_prod-mysql2_apc1-instance_attributes-action" name="action" value="off"/> <nvpair id="fence_prod-mysql2_apc1-instance_attributes-port" name="port" value="11"/> <nvpair id="fence_prod-mysql2_apc1-instance_attributes-login" name="login" value="fencing"/> <nvpair id="fence_prod-mysql2_apc1-instance_attributes-passwd" name="passwd" value="fencing"/> <nvpair id="fence_prod-mysql2_apc1-instance_attributes-pcmk_host_list" name="pcmk_host_list" value="prod-mysql2"/> </instance_attributes> </primitive> <primitive class="stonith" id="fence_prod-mysql2_apc2" type="fence_apc_snmp"> <instance_attributes id="fence_prod-mysql2_apc2-instance_attributes"> <nvpair id="fence_prod-mysql2_apc2-instance_attributes-ipaddr" name="ipaddr" value="203.0.113.1"/> <nvpair id="fence_prod-mysql2_apc2-instance_attributes-action" name="action" value="off"/> <nvpair id="fence_prod-mysql2_apc2-instance_attributes-port" name="port" value="11"/> <nvpair id="fence_prod-mysql2_apc2-instance_attributes-login" name="login" value="fencing"/> <nvpair id="fence_prod-mysql2_apc2-instance_attributes-passwd" name="passwd" value="fencing"/> <nvpair id="fence_prod-mysql2_apc2-instance_attributes-pcmk_host_list" name="pcmk_host_list" value="prod-mysql2"/> </instance_attributes> </primitive> </resources> <constraints> <rsc_location id="l_fence_prod-mysql1_ipmi" node="prod-mysql1" rsc="fence_prod-mysql1_ipmi" score="-INFINITY"/> <rsc_location id="l_fence_prod-mysql2_ipmi" node="prod-mysql2" rsc="fence_prod-mysql2_ipmi" score="-INFINITY"/> <rsc_location id="l_fence_prod-mysql1_apc2" node="prod-mysql1" rsc="fence_prod-mysql1_apc2" score="-INFINITY"/> <rsc_location id="l_fence_prod-mysql1_apc1" node="prod-mysql1" rsc="fence_prod-mysql1_apc1" score="-INFINITY"/> <rsc_location id="l_fence_prod-mysql2_apc1" node="prod-mysql2" rsc="fence_prod-mysql2_apc1" score="-INFINITY"/> <rsc_location id="l_fence_prod-mysql2_apc2" node="prod-mysql2" rsc="fence_prod-mysql2_apc2" score="-INFINITY"/> </constraints> <fencing-topology> <fencing-level devices="fence_prod-mysql1_ipmi" id="fencing-2" index="1" target="prod-mysql1"/> <fencing-level devices="fence_prod-mysql1_apc1,fence_prod-mysql1_apc2" id="fencing-3" index="2" target="prod-mysql1"/> <fencing-level devices="fence_prod-mysql2_ipmi" id="fencing-0" index="1" target="prod-mysql2"/> <fencing-level devices="fence_prod-mysql2_apc1,fence_prod-mysql2_apc2" id="fencing-1" index="2" target="prod-mysql2"/> </fencing-topology> ... </configuration> </cib>
stonith-action is reboot or because a reboot was manually requested (such as by stonith_admin --reboot), it will remap that to other commands in two cases:
reboot command, the cluster will ask it to perform off instead.
off, then ask the devices to perform on.
off commands succeed, because then it is safe for the cluster to recover any resources that were on the node. Timeouts and errors in the on phase will be logged but ignored.
pcmk_off_timeout will be used when executing the off command, not pcmk_reboot_timeout).
crm_mon.
status section.
<node_state id="cl-virt-1" uname="cl-virt-2" ha="active" in_ccm="true" crmd="online" join="member" expected="member" crm-debug-origin="do_update_resource"> <transient_attributes id="cl-virt-1"/> <lrm id="cl-virt-1"/> </node_state>
| CIB Object | Authoritative Source |
|---|---|
node_state
|
crmd
|
transient_attributes
|
attrd
|
lrm
|
lrmd
|
node_state objects are named as they are largely for historical reasons and are rooted in Pacemaker’s origins as the Heartbeat resource manager. They have remained unchanged to preserve compatibility with older versions.
| Field | Description |
|---|---|
id
| |
uname
| |
ha
| |
in_ccm
| |
crmd
| |
join
| |
expected
| |
crm-debug-origin
|
transient_attributes section help to describe the node. However they are forgotten by the cluster when the node goes offline. This can be useful, for instance, when you want a node to be in standby mode (not able to run resources) just until the next reboot.
<transient_attributes id="cl-virt-1"> <instance_attributes id="status-cl-virt-1"> <nvpair id="status-cl-virt-1-pingd" name="pingd" value="3"/> <nvpair id="status-cl-virt-1-probe_complete" name="probe_complete" value="true"/> <nvpair id="status-cl-virt-1-fail-count-pingd:0" name="fail-count-pingd:0" value="1"/> <nvpair id="status-cl-virt-1-last-failure-pingd:0" name="last-failure-pingd:0" value="1239009742"/> </instance_attributes> </transient_attributes>
pingd:0 resource has failed once, at 09:22:22 UTC 6 April 2009. [18] We also see that the node is connected to three pingd peers and that all known resources have been checked for on this machine (probe_complete).
lrm_resources tag (a child of the lrm tag). The information stored here includes enough information for the cluster to stop the resource safely if it is removed from the configuration section. Specifically, the resource’s id, class, type and provider are stored.
<lrm_resource id="apcstonith" type="apcmastersnmp" class="stonith"/>
apcstonith resourceresource, action and interval. The concatenation of the values in this tuple are used to create the id of the lrm_rsc_op object.
| Field | Description |
|---|---|
id
|
Identifier for the job constructed from the resource’s
id, operation and interval.
|
call-id
|
The job’s ticket number. Used as a sort key to determine the order in which the jobs were executed.
|
operation
|
The action the resource agent was invoked with.
|
interval
|
The frequency, in milliseconds, at which the operation will be repeated. A one-off job is indicated by 0.
|
op-status
|
The job’s status. Generally this will be either 0 (done) or -1 (pending). Rarely used in favor of
rc-code.
|
rc-code
|
The job’s result. Refer to Section B.4, “OCF Return Codes” for details on what the values here mean and how they are interpreted.
|
last-run
|
Machine-local date/time, in seconds since epoch, at which the job was executed. For diagnostic purposes.
|
last-rc-change
|
Machine-local date/time, in seconds since epoch, at which the job first returned the current value of
rc-code. For diagnostic purposes.
|
exec-time
|
Time, in milliseconds, that the job was running for. For diagnostic purposes.
|
queue-time
|
Time, in seconds, that the job was queued for in the LRMd. For diagnostic purposes.
|
crm_feature_set
|
The version which this job description conforms to. Used when processing
op-digest.
|
transition-key
|
A concatenation of the job’s graph action number, the graph number, the expected result and the UUID of the crmd instance that scheduled it. This is used to construct
transition-magic (below).
|
transition-magic
|
A concatenation of the job’s
op-status, rc-code and transition-key. Guaranteed to be unique for the life of the cluster (which ensures it is part of CIB update notifications) and contains all the information needed for the crmd to correctly analyze and process the completed job. Most importantly, the decomposed elements tell the crmd if the job entry was expected and whether it failed.
|
op-digest
|
An MD5 sum representing the parameters passed to the job. Used to detect changes to the configuration, to restart resources if necessary.
|
crm-debug-origin
|
The origin of the current values. For diagnostic purposes.
|
lrm_rsc_op job<lrm_resource id="apcstonith" type="apcmastersnmp" class="stonith"> <lrm_rsc_op id="apcstonith_monitor_0" operation="monitor" call-id="2" rc-code="7" op-status="0" interval="0" crm-debug-origin="do_update_resource" crm_feature_set="3.0.1" op-digest="2e3da9274d3550dc6526fb24bfcbcba0" transition-key="22:2:7:2668bbeb-06d5-40f9-936d-24cb7f87006a" transition-magic="0:7;22:2:7:2668bbeb-06d5-40f9-936d-24cb7f87006a" last-run="1239008085" last-rc-change="1239008085" exec-time="10" queue-time="0"/> </lrm_resource>
apcstonith resource)apcstonith resource.
transition-key, we can see that this was the 22nd action of the 2nd graph produced by this instance of the crmd (2668bbeb-06d5-40f9-936d-24cb7f87006a).
transition-key contains a 7, which indicates that the job expects to find the resource inactive. By looking at the rc-code property, we see that this was the case.
<lrm_resource id="pingd:0" type="pingd" class="ocf" provider="pacemaker"> <lrm_rsc_op id="pingd:0_monitor_30000" operation="monitor" call-id="34" rc-code="0" op-status="0" interval="30000" crm-debug-origin="do_update_resource" crm_feature_set="3.0.1" transition-key="10:11:0:2668bbeb-06d5-40f9-936d-24cb7f87006a" ... last-run="1239009741" last-rc-change="1239009741" exec-time="10" queue-time="0"/> <lrm_rsc_op id="pingd:0_stop_0" operation="stop" crm-debug-origin="do_update_resource" crm_feature_set="3.0.1" call-id="32" rc-code="0" op-status="0" interval="0" transition-key="11:11:0:2668bbeb-06d5-40f9-936d-24cb7f87006a" ... last-run="1239009741" last-rc-change="1239009741" exec-time="10" queue-time="0"/> <lrm_rsc_op id="pingd:0_start_0" operation="start" call-id="33" rc-code="0" op-status="0" interval="0" crm-debug-origin="do_update_resource" crm_feature_set="3.0.1" transition-key="31:11:0:2668bbeb-06d5-40f9-936d-24cb7f87006a" ... last-run="1239009741" last-rc-change="1239009741" exec-time="10" queue-time="0" /> <lrm_rsc_op id="pingd:0_monitor_0" operation="monitor" call-id="3" rc-code="0" op-status="0" interval="0" crm-debug-origin="do_update_resource" crm_feature_set="3.0.1" transition-key="23:2:7:2668bbeb-06d5-40f9-936d-24cb7f87006a" ... last-run="1239008085" last-rc-change="1239008085" exec-time="20" queue-time="0"/> </lrm_resource>
pingd clone with multiple jobscall-id before interpreting them.
call-id of 3
call-id of 32
call-id of 33
call-id of 34
stop operation with a lower call-id than that of the start operation, we can conclude that the resource has been restarted. Specifically this occurred as part of actions 11 and 31 of transition 11 from the crmd instance with the key 2668bbeb…. This information can be helpful for locating the relevant section of the logs when looking for the source of a failure.
[18]
You can use the standard date command to print a human-readable version of any seconds-since-epoch value, for example date -d @1239009742.
rsc_ticket constraints. Only if the ticket is available at a site can the respective resources be started there. Vice versa, if the ticket is revoked, the resources depending on that ticket must be stopped.
have-quorum flag as a special, cluster-wide ticket that is granted in case of node majority.)
true (the site has the ticket) or false (the site does not have the ticket). The absence of a certain ticket (during the initial state of the multi-site cluster) is the same as the value false.
loss-policy="fence" in rsc_ticket constraints.
rsc_ticket constraint lets you specify the resources depending on a certain ticket. Together with the constraint, you can set a loss-policy that defines what should happen to the respective resources if the ticket is revoked.
loss-policy can have the following values:
fence: Fence the nodes that are running the relevant resources.
stop: Stop the relevant resources.
freeze: Do nothing to the relevant resources.
demote: Demote relevant resources that are running in master mode to slave mode.
<rsc_ticket id="rsc1-req-ticketA" rsc="rsc1" ticket="ticketA" loss-policy="fence"/>
ticketA is revokedrsc1-req-ticketA. It defines that the resource rsc1 depends on ticketA and that the node running the resource should be fenced if ticketA is revoked.
rsc1 were a multi-state resource (i.e. it could run in master or slave mode), you might want to configure that only master mode depends on ticketA. With the following configuration, rsc1 will be demoted to slave mode if ticketA is revoked:
<rsc_ticket id="rsc1-req-ticketA" rsc="rsc1" rsc-role="Master" ticket="ticketA" loss-policy="demote"/>
rsc1 if ticketA is revokedrsc_ticket constraints to let multiple resources depend on the same ticket. However, rsc_ticket also supports resource sets (see Section 6.5, “Resource Sets”), so one can easily list all the resources in one rsc_ticket constraint instead.
<rsc_ticket id="resources-dep-ticketA" ticket="ticketA" loss-policy="fence"> <resource_set id="resources-dep-ticketA-0" role="Started"> <resource_ref id="rsc1"/> <resource_ref id="group1"/> <resource_ref id="clone1"/> </resource_set> <resource_set id="resources-dep-ticketA-1" role="Master"> <resource_ref id="ms1"/> </resource_set> </rsc_ticket>
rsc_ticket constraint. There’s no dependency between the two resource sets, and there’s no dependency among the resources within a resource set. Each of the resources just depends on ticketA.
rsc_ticket constraints, and even referencing them within resource sets, is also supported.
rsc_ticket.
crm_ticket command line tool to grant and revoke tickets.
# crm_ticket --ticket ticketA --grant
# crm_ticket --ticket ticketA --revoke
crm_ticket command with great care, because it cannot check whether the same ticket is already granted elsewhere.
boothd.
Boothd at each site connects to its peers running at the other sites and exchanges connectivity details. Once a ticket is granted to a site, the booth mechanism will manage the ticket automatically: If the site which holds the ticket is out of service, the booth daemons will vote which of the other sites will get the ticket. To protect against brief connection failures, sites that lose the vote (either explicitly or implicitly by being disconnected from the voting body) need to relinquish the ticket after a time-out. Thus, it is made sure that a ticket will only be re-distributed after it has been relinquished by the previous site. The resources that depend on that ticket will fail over to the new site holding the ticket. The nodes that have run the resources before will be treated according to the loss-policy you set within the rsc_ticket constraint.
booth command-line tool. After you have initially granted a ticket to a site, boothd will take over and manage the ticket automatically.
booth command-line tool can be used to grant, list, or revoke tickets and can be run on any machine where boothd is running. If you are managing tickets via Booth, use only booth for manual intervention, not crm_ticket. That ensures the same ticket will only be owned by one cluster site at a time.
# crm_ticket --info
# crm_mon --tickets
rsc_ticket constraints that apply to a ticket:
# crm_ticket --ticket ticketA --constraints
loss-policy="fence", the dependent resources could not be gracefully stopped/demoted, and other unrelated resources could even be affected.
# crm_ticket --ticket ticketA --standby
# crm_ticket --ticket ticketA --activate
/usr/lib/ocf/resource.d/ so that they are not confused with (or overwritten by) the agents shipped by existing providers.
/usr/lib/ocf/resource.d/bigCorp/bigApp and define a resource:
<primitive id="custom-app" class="ocf" provider="bigCorp" type="bigApp"/>
| Action | Description | Instructions |
|---|---|---|
start
|
Start the resource
| |
stop
|
Stop the resource
| |
monitor
|
Check the resource’s state
|
NOTE: The monitor script should test the state of the resource on the local machine only.
|
meta-data
|
Describe the resource
|
NOTE: This is not performed as root.
|
validate-all
|
Verify the supplied parameters
|
| Action | Description | Instructions |
|---|---|---|
promote
|
Promote the local instance of a multi-state resource to the master (primary) state.
| |
demote
|
Demote the local instance of a multi-state resource to the slave (secondary) state.
| |
notify
|
Used by the cluster to send the agent pre- and post-notification events telling the resource what has happened and will happen.
|
recover, is not currently used by the cluster. It is intended to be a variant of the start action that tries to recover a resource locally.
| Type | Description | Action Taken by the Cluster |
|---|---|---|
soft
|
A transient error occurred
| |
hard
|
A non-transient error that may be specific to the current node occurred
| |
fatal
|
A non-transient error that will be common to all cluster nodes (e.g. a bad configuration was specified)
|
OCF_SUCCESS) can be considered to have failed, if 0 was not the expected return value.
| RC | OCF Alias | Description | RT |
|---|---|---|---|
0
|
OCF_SUCCESS
|
soft
| |
1
|
OCF_ERR_GENERIC
|
soft
| |
2
|
OCF_ERR_ARGS
|
hard
| |
3
|
OCF_ERR_UNIMPLEMENTED
|
hard
| |
4
|
OCF_ERR_PERM
|
hard
| |
5
|
OCF_ERR_INSTALLED
|
hard
| |
6
|
OCF_ERR_CONFIGURED
|
fatal
| |
7
|
OCF_NOT_RUNNING
|
N/A
| |
8
|
OCF_RUNNING_MASTER
|
soft
| |
9
|
OCF_FAILED_MASTER
|
soft
| |
other
|
N/A
|
soft
|
multiple-active property (see Section 5.4, “Resource Options”).
OCF_ERR_UNIMPLEMENTED do not cause any type of recovery.
/etc/corosync/corosync.conf.
totem {
version: 2
secauth: off
cluster_name: mycluster
transport: udpu
}
nodelist {
node {
ring0_addr: myhost1
nodeid: 1
}
node {
ring0_addr: myhost2
nodeid: 2
}
}
quorum {
provider: corosync_votequorum
two_node: 1
}
logging {
to_syslog: yes
}totem {
version: 2
secauth: off
cluster_name: mycluster
transport: udpu
}
nodelist {
node {
ring0_addr: myhost1
nodeid: 1
}
node {
ring0_addr: myhost2
nodeid: 2
}
node {
ring0_addr: myhost3
nodeid: 3
}
}
quorum {
provider: corosync_votequorum
}
logging {
to_syslog: yes
}totem section defines what protocol version and options (including encryption) to use, [21] and gives the cluster a unique name (mycluster in these examples).
node section lists the nodes in this cluster. (See Section 4.2, “Where Pacemaker Gets the Node Name” for how this affects pacemaker.)
quorum section defines how the cluster uses quorum. The important thing is that two-node clusters must be handled specially, so two_node: 1 must be defined for two-node clusters (and only for two-node clusters).
logging section should be self-explanatory.
totem {
version: 2
secauth: off
threads: 0
interface {
ringnumber: 0
bindnetaddr: 192.0.2.0
mcastaddr: 239.255.1.1
mcastport: 1234
}
}
logging {
fileline: off
to_syslog: yes
syslog_facility: daemon
}
amf {
mode: disabled
}192.0.2.0/24 networktotem section contains the protocol version and options as with 2.x. However, nodes are also listed here, in the interface section. The bindnetaddr option is usually the network address, thus allowing the same configuration file to be used on all nodes. IPv4 or IPv6 addresses can be used with corosync.
amf section refers to the Availability Management Framework and is not covered in this document.
aisexec {
user: root
group: root
}
service {
name: pacemaker
ver: 0
}lrmd in particular) have sufficient privileges to perform the actions requested of it. After all, a cluster manager that can’t add an IP address or start apache is of little use.
ha.cf configuration file.
ha.cf configuration file and restart Heartbeat:
crm respawn
[21] Please consult the Corosync website (http://www.corosync.org/) and documentation for details on enabling encryption and peer authentication for the cluster.
| Method | Available between all versions | Can be used with Pacemaker Remote nodes | Service outage during upgrade | Service recovery during upgrade | Exercises failover logic | Allows change of messaging layer [a] |
|---|---|---|---|---|---|---|
|
yes
|
yes
|
always
|
N/A
|
no
|
yes
| |
|
no
|
yes
|
always [b]
|
yes
|
yes
|
no
| |
|
yes
|
no
|
only due to failure
|
no
|
no
|
yes
| |
[a] For example, switching from Heartbeat to Corosync. [b] Any active resources will be moved off the node being upgraded, so there will be at least a brief outage unless all resources can be migrated "live". | ||||||
crm_verify tool.
crm_verify tool.
| Version being Installed | Oldest Compatible Version |
|---|---|
|
Pacemaker 1.x.y
|
Pacemaker 1.0.0
|
|
Pacemaker 0.7.x
|
Pacemaker 0.6 or Heartbeat 2.1.3
|
|
Pacemaker 0.6.x
|
Heartbeat 2.0.8
|
|
Heartbeat 2.1.3 (or less)
|
Heartbeat 2.0.4
|
|
Heartbeat 2.0.4 (or less)
|
Heartbeat 2.0.0
|
|
Heartbeat 2.0.0
|
None. Use an alternate upgrade strategy.
|
# crm_attribute --name maintenance-mode --update true
crm_verify tool.
# crm_attribute --name maintenance-mode --delete
is-managed to false for all resources.
cibadmin --upgrade.
# crm_shadow --create shadow
# crm_verify --live-check
# cibadmin --upgrade
# crm_shadow --diff
# crm_shadow --edit
# crm_simulate --live-check --save-dotfile shadow.dot -S # graphviz shadow.dot
crm_simulate and graphviz.
# crm_shadow --commit shadow --force
upgrade*.xsl conversion scripts provided with the source code. These will often be installed in a location such as /usr/share/pacemaker, or may be obtained from the source repository.
# xsltproc /path/to/upgrade06.xsl config06.xml > config10.xml
pacemaker.rng script (from the same location as the xsl files).
# xmllint --relaxng /path/to/pacemaker.rng config10.xml
Rules, instance_attributes, meta_attributes and sets of operations can be defined once and referenced in multiple places. See Section 9.5, “Reusing Rules, Options and Sets of Operations”
cibadmin help text.
master_slave was renamed to master
attributes container tag was removed
pre-req has been renamed requires
interval, start/stop must have it set to zero
stonith-enabled option now defaults to true.
stonith-enabled is true (or unset) and no STONITH resources have been defined
resource-failure-stickiness has been replaced by migration-threshold. See Section 9.3.2, “Moving Resources Due to Failure”
crm_config. See Section 5.4.2, “Setting Global Defaults for Resource Meta-Attributes” and Section 5.5.3, “Setting Global Defaults for Operations” instead.
some_service is configured correctly and currently inactive, the following sequence will help you determine if it is LSB-compatible:
# /etc/init.d/some_service start ; echo "result: $?"
# /etc/init.d/some_service status ; echo "result: $?"
# /etc/init.d/some_service start ; echo "result: $?"
# /etc/init.d/some_service stop ; echo "result: $?"
# /etc/init.d/some_service status ; echo "result: $?"
# /etc/init.d/some_service stop ; echo "result: $?"
<cib crm_feature_set="3.0.7" validate-with="pacemaker-1.2" admin_epoch="1" epoch="0" num_updates="0"> <configuration> <crm_config/> <nodes/> <resources/> <constraints/> </configuration> <status/> </cib>
<cib crm_feature_set="3.0.7" validate-with="pacemaker-1.2" admin_epoch="1" epoch="0" num_updates="0"> <configuration> <crm_config> <cluster_property_set id="cib-bootstrap-options"> <nvpair id="option-1" name="symmetric-cluster" value="true"/> <nvpair id="option-2" name="no-quorum-policy" value="stop"/> <nvpair id="option-3" name="stonith-enabled" value="0"/> </cluster_property_set> </crm_config> <nodes> <node id="xxx" uname="c001n01" type="normal"/> <node id="yyy" uname="c001n02" type="normal"/> </nodes> <resources> <primitive id="myAddr" class="ocf" provider="heartbeat" type="IPaddr"> <operations> <op id="myAddr-monitor" name="monitor" interval="300s"/> </operations> <instance_attributes id="myAddr-params"> <nvpair id="myAddr-ip" name="ip" value="192.0.2.10"/> </instance_attributes> </primitive> </resources> <constraints> <rsc_location id="myAddr-prefer" rsc="myAddr" node="c001n01" score="INFINITY"/> </constraints> <rsc_defaults> <meta_attributes id="rsc_defaults-options"> <nvpair id="rsc-default-1" name="resource-stickiness" value="100"/> <nvpair id="rsc-default-2" name="migration-threshold" value="10"/> </meta_attributes> </rsc_defaults> <op_defaults> <meta_attributes id="op_defaults-options"> <nvpair id="op-default-1" name="timeout" value="30s"/> </meta_attributes> </op_defaults> </configuration> <status/> </cib>
c001n01 until either the resource fails 10 times or the host shuts down.
<cib crm_feature_set="3.0.7" validate-with="pacemaker-1.2" admin_epoch="1" epoch="0" num_updates="0"> <configuration> <crm_config> <cluster_property_set id="cib-bootstrap-options"> <nvpair id="option-1" name="symmetric-cluster" value="true"/> <nvpair id="option-2" name="no-quorum-policy" value="stop"/> <nvpair id="option-3" name="stonith-enabled" value="true"/> </cluster_property_set> </crm_config> <nodes> <node id="xxx" uname="c001n01" type="normal"/> <node id="yyy" uname="c001n02" type="normal"/> <node id="zzz" uname="c001n03" type="normal"/> </nodes> <resources> <primitive id="myAddr" class="ocf" provider="heartbeat" type="IPaddr"> <operations> <op id="myAddr-monitor" name="monitor" interval="300s"/> </operations> <instance_attributes id="myAddr-attrs"> <nvpair id="myAddr-attr-1" name="ip" value="192.0.2.10"/> </instance_attributes> </primitive> <group id="myGroup"> <primitive id="database" class="lsb" type="oracle"> <operations> <op id="database-monitor" name="monitor" interval="300s"/> </operations> </primitive> <primitive id="webserver" class="lsb" type="apache"> <operations> <op id="webserver-monitor" name="monitor" interval="300s"/> </operations> </primitive> </group> <clone id="STONITH"> <meta_attributes id="stonith-options"> <nvpair id="stonith-option-1" name="globally-unique" value="false"/> </meta_attributes> <primitive id="stonithclone" class="stonith" type="external/ssh"> <operations> <op id="stonith-op-mon" name="monitor" interval="5s"/> </operations> <instance_attributes id="stonith-attrs"> <nvpair id="stonith-attr-1" name="hostlist" value="c001n01,c001n02"/> </instance_attributes> </primitive> </clone> </resources> <constraints> <rsc_location id="myAddr-prefer" rsc="myAddr" node="c001n01" score="INFINITY"/> <rsc_colocation id="group-with-ip" rsc="myGroup" with-rsc="myAddr" score="INFINITY"/> </constraints> <op_defaults> <meta_attributes id="op_defaults-options"> <nvpair id="op-default-1" name="timeout" value="30s"/> </meta_attributes> </op_defaults> <rsc_defaults> <meta_attributes id="rsc_defaults-options"> <nvpair id="rsc-default-1" name="resource-stickiness" value="100"/> <nvpair id="rsc-default-2" name="migration-threshold" value="10"/> </meta_attributes> </rsc_defaults> </configuration> <status/> </cib>
| Revision History | ||||
|---|---|---|---|---|
| Revision 1-0 | 19 Oct 2009 | |||
| ||||
| Revision 2-0 | 26 Oct 2009 | |||
| ||||
| Revision 3-0 | Tue Nov 12 2009 | |||
| ||||
| Revision 4-0 | Mon Oct 8 2012 | |||
| ||||
| Revision 5-0 | Mon Feb 23 2015 | |||
| ||||
| Revision 6-0 | Tue Dec 8 2015 | |||
| ||||
| Revision 7-0 | Tue May 3 2016 | |||
| ||||
| Revision 7-1 | Fri Oct 28 2016 | |||
| ||||
| Revision 8-0 | Tue Oct 25 2016 | |||
| ||||