ThreadSpotter™

Manual

Version 2012.1.1
2016-10-04

daratool



ThreadSpotter™: Manual
Copyright © 2006-2016 Rogue Wave Software, Inc

All rights reserved.

ParaTools, Inc.
2836 Kincaid St.
97405 Eugene
OR

i nf o@ar at ool s. com




Table of Contents

O | gL oo (8 1o o R PO PRSPPI 1
L1, OVEIVIBIW .ttt ettt e et e e ettt e e et et e et e et e e et e nb e e e enb e aee 1
B <o 00 To o o VTSP PPPP TP PPPPTI 1
1.3 LIMITBLIONS .. eeeteeeeet ettt ettt ettt e et e e et eeaa s 2

2. RUNNING ThreadSPOtEr™ ...ttt e et e e et eeebe s 3
2.1. Using the Graphical User INterface ........couuiiiiiiiiii e 3

2.1.1. Sampling an APPLICALTION ... .coeeiiiiiii e 3
2.1.2. Generating a Report froma Sample File ..., 5
2.1.3. Sampling and Generating & REPOM .........uiiiiiiiiiiiiii e 6
2.1.4. Viewing an EXisting REPOI .......cc.uuiiiiiieiii e 6
2.1.5. Advanced Sampling SELtINGS .......uuoeeerriiiiiiiie e 6
2.1.6. Advanced REPOIt SEItINGS ... ..ccuvuieieiiieeieii ettt et eenens 7
2.1.7. USINg & Different BrOWSEY ........uuiiiiiiiieiiiiie ettt 8
2.1.8. Using Firefox on Multiple COMPULETS .........uiiiiiiiieiiiiiee e 9
2.2. Using the Command Line TOOIS ........iiiiiiiiiiiiiiee ettt 9
2.2.1. Sampling an APPHICALTON ......oieeiieeiii e 10
2.2.2. Creating @ REPOI ....cooviiieeii e 11
2.2.3. VIieWing @ REPOI .. .cceviiieiii e 13
2.3. ComMMON REPOI SEHIINGS ... eteeeietetii ettt et ettt e e et e e e e s 14
2.3.1. CaChe PerfOormManCe .......ccuuuieiiii e e e 15
2.3.2. Analysis of software prefetCh iNStrUCtioNS ............vvvveiiiieiiiii e 15
2.3.3. Threading Advice - Inter-Cache COmMmUNICatioN ...........cccuuveeiiiiiieeiiiinneeiiinnnn. 15
2.3.4. Threading Advice - Inter-Socket COMMUNICALION .........oevevvieeiiiiineeeeiieeeeiinne. 16
2.4, AGVENCET USE ...oiiiiiiii et 16
2.4.1. BUISE SAMPIING ..eeetiiieiiiii ettt 16
2.4.2. Sampling Start CONAITIONS ........uuueiiiitieieii e e e e 17
2.4.3. Sampling Stop CONAItIONS ........cveeeiieiiiii e 17
244, SAMPIE FlES ...t 18
2.5. Running ThreadSpotter™ in a Virtualized ENVIrONMENt ..........ccovvviieiiiiinieeiiiineeeeiienne. 19

3. INtrodUCioN T0 CBCNES ......uuiieieii ettt 20
3.1 MOtivation TOr CACNES ... .coouuii i 20
3.2. Cache Lines and Cache SIZe .......... i 20
3.3. REPIACEMENT POLICIES ....eevtieeeiit ettt e 21
3. CACNE MISSES ...ttt ettt 21
3.5, DA LOCAITY ..evveieeiiiiie et 21
3.6, PrefetChinNg ...... e 22

3.6.1. Software PrefetChing ..........oeeeeuiieiiiii et 22

3.6.2. Hardware PrefefChing ........cooovuiiiiiii e 23
3.7. Multithreading and Cache COREIeNCe ..........uiiiiiii e 23
3.8 FEICN RELIO ... eeiiti ettt 27
3.9, UPGratde RALIO ......ueiiiiiieeee et 27
3.10. Write-Back RELO ....c.vunieieiiieece e e 27
311 Memory BandWitth ........coouuniiiii e 27

4. THreadSPOEEr ™ CONCEPES ... . eeeetieeeetti ettt e et e et e et et e e et et eeeab e e e eena s 29
A0, ISSUBS ..veeetie ettt et et 29
A W oo < S PP 29
4.3, INSLIUCHION GFOUDS ... eeett ettt e ettt ettt ettt e et e et e e et et e e e e et e e e eena s 29
= ] (< SO SPPPT PPN 29
A5, FELCh ULHIZBIION ....ceeeie ettt e e et e e e e e e eees 30
4.6. Write-Back UtIlIZation ...........coouuuiiiiiiiii e 30
4.7. Communication ULHHIZATION .........ccouuiiiiiiii e 30




ThreadSpotter™

4.8. Utilization Corrected FEtCh RaLIO ......oovviviieeiiii e 30
4.9. Utilization Corrected Write-Back Ratio ...........uuvveiiiiiiiiiiiiiicci e 31
4.10. Hardware Prefetch Probability ..........ccooviiiiiiiiiic e 31
T o0 S = g0 (0010 T= PR 31
A.12. Call SEACK ..t 31
R S 001 o 1= = oo [P 32
5. Memory Performance Problems and SOIULIONS ...........cccouiiiiiiiiiiie e 33
5.1. Data Layout Problems ..........iiiiiii e 33
5.1.1. Partially USed SHTUCIUIES ......couiiiii e e e e e e e e 34
5.1.2. TOO Large Data TYPES . .vueniiiiieie et e e e e e e en 35
5.1.3. Alignment ProblEmMS ........oiiiii e 35
5.1.4. Dynamic Memory AllOCAION ........ccouuiiiiiiii e 37

5.2. Data Access Pattern ProblEMS .........iiiiiiiicci e e 38
5.2.1. Inefficient LOOP NESHNG ....uvviniiiiee e e e e e e e e e aan s 38
5.2.2. Random ACCESS Patern .........iiiiiiiiiiiii e 39
5.2.3. Unexploited Data Reuse OpPOrtUNITIES ........c.ueiiiiiiiiieiii e e e e e e 41

G N o g B = 40T oTo = I - - N 45
5.3.1. Example of Non-Temporal Data Optimization ............ccocevieiiiieeiiieiiiineeieeeinnn, 46
5.3.2. Singlethreaded Uses of Non-Temporal HintS .........ccocoiiiiiiiiiiin e, 46
5.3.3. Multithreaded Uses of Non-Temporal HintS ..........ccooeeviviiiiiiiiieciiccieeeeeeee, 46
5.3.4. Concurrent Uses of Non-Temporal HintS .........cccovoviiiiiiiiiiiiiiccie e 47
5.3.5. Types of Non-Temporal Hint INStrUCtioNS ...........coevvieiiiieiiiieeie e 47
5.3.6. Using Non-Temporal Hint INStrUCtioNS ............ooviiiiieiiiiciii e, 49

5.4. Multithreading Problems ...........ooiiiiii e 50
541 FalSE Sharing ...ccvuiii e 50
5.4.2. Poor CommuniCation Ut Zation .............oveeiiiiiieiiiiiie e 57

5.5. CommON Data SITUCLUIES ........oeeiiieieiee ettt e e e e e e enaas 58
DD L AT Y S ittt 58
I I 1410 o B T £ PP 59

YT T I (=~ S PSP 60
B5.5.4, Hash TahlES ....veeeiieiiii et 60

5.6. FINal REMEMIES .....uiiiiiiiiicce e 61
6. OptiMIZation WOTKFIOW ......ii e e e e e e e e e et 62
6.1. Initial State: Correct, Measurable Program, Good Test Case .......c.cccovvvvvveiiieiiineeinneennn. 62
6.2. Avoid UNNECESSArY MEMOTY ACCESSES ....evuuiiiiiieiiieeetieeaieeeteeet e e st e et eeateeenneeennnns 63
6.3. OPtiMIZE DA LaYOUL .......uuiiiiiiiii e e e e e e e e e e e e e ean s 64
6.4. OPtiMIZE ACCESS PatEINS ....iviiiiiii e e e e e e e e e e e e e e e et e e e eaneees 65
6.5. Utilize ReUSE OPPOMUNITIES ......uiiii i e e e e e e e e e eanes 65
6.6. Use Non-Tempora Hints for Data without Temporal REUSE ..........ccccceveviiiiiiiieiieeenn, 66
6.7. AVOId FalSe SNaIiNG . .couiiiiiiii e 66
6.8. Avoid Communication between Caches (Coherence Traffic) .......ccovvvvvieiiiiiiiineiineeenn, 67
6.9. Hide REMAINING MISSES ....iiiiiiiiii e et e e e e e e e e e e e e aa e e aanas 67
7. Reading the REPOI .....oviii e e e e e e e e e e e aaaas 69
T L, SEBEISHICS . eeetie ettt a e 69
7.1.1. Reading the StaliSHCS t.vuuiernieii e e e e e aaa s 70
7.1.2. Reading the DIagrams .........viiiiieiiiicce e e e e e e e e aanas 76

2 1Y = oo - Yo LU | 78
7.3. The SUMMAY FIaIME .. covniiii i et e e e e e e e e e e e e eaen 78
7.3.1. The SUMMAY Tab ...uuiiiiiiiiieci e e e e e e aens 79
A 1 =T 0 o) o1 I o T 80
7.3.3. The Bandwidth ISSUES Tah ......iiiiiiiiiiii e 81
7.3.4. The Latency ISSUES Tab ...uuciviiiiii i e 82
7.3.5. The Multi-Threading ISSUES Tab .....ccvviiiiieii e 83
7.3.6. The POHULION 1SSUES Tab ..cvvvviiiiiiis e 84




ThreadSpotter™

7.3.7. The FlES Ta ..o e 84

7.3.8. ThE EXECULION T 1.vuuiiiiiiieeiiii ettt e e et e e e e e eeees 85

7.3.9. The ADOUHEID Tab ovvvnieiei e 86

T4, THE ISSUE FTAIMIE ..uui ittt e e e e e e e e e e et e e e e et 86
A S - 1 o= S PPTPP 87

TA.2. INSITUCLIONS ...evvieeecit et e ettt e ettt e et e e et s e e e ettt e e e e et neeeeatn s e eeeatnaaeaees 87

7.4.3. LOOP DEAIIS . .ccvnciiiicee e 88

TA4, 1SSUE DELAIIS ... 90

7.5. The SOUIrCe COUE FraME .....uuiiiiiiii et e et e e et e eeeaae e eaenes 90

8. ISSUE REFEIENCE ... ettt ettt e e e e e 92
8.1, ULIIIZBLION ISSUBS .. .ceeevt ettt e e et e e e et e e e e et e e e eatt e e e eatenaeaees 92
8.1.1. FetCh ULHIZAON ...oevviiiiiii e e eees 93

8.1.2. Write-Back ULHHZatioN ........ccouuiiiiiiiiiieiiiie e e e 94

8.1.3. CommuniCation ULIliZaHION ......ccvvvieieiii e 96

8.2. INEffiCiENt LOOP NESLING ....oiiiiiiieeii et e e e e e e et e e e e eeeen 98

8.3. RANAOM ACCESS Patter .....uuiiiiii it e e et e eeeaa e e eees 100

S oo o U1 Lo PP 101

8.5, BIOCKING ..t e 104

8.6. SOftware PrefetCh ISSUBS ......cccveiiiiiii e 107
8.6.1. PrefetCh UNNECESSANY .. .cvuiiiiiciii e e e e e e e 107

8.6.2. PrefetCh t00 DIStant ......cuvueiiiiii ettt e e e 108

8.6.3. PrefetCh t00 ClOSE ...uuiiiiiii ettt et e e e e e e e e 108

S == (o [0 S oo A PP 110

8.8. Wrte-baCk HOt-SPOL .......iiiiiiii i e e e 111

8.9. Non-Temporal Store POSSIDIE .........oiiiiiiii e 112
8.10. NON-TEMPOIAl D@8 .. .ccvueiiiiiiii e e e e e e e e e e e e e e e e e et e e ranaeees 114
ST = £ SIS 7= 4 o 116

8.12. CommuUNICation HO-SPOL .. ...uuiiiiicii e e e e e e eaens 118

L I = v a0 o ST oo o o AN 120
A. Sampling MPl APPLHICAIIONS .......uuiiiiiii e e e e e e e e e e et e eaane e 121
I 1 011 oo 1 o o [P 121

E S ol o= PO 122

A.3. Sampling of MPlI APPliCALONS .........iiiiiiiie e e 123

A.4. Alternative method: WrapPer SCIPES ..vuvvvniiii e e e e 124

YIS o - (e o [ 1= ot (o 1=~ PP 125

A.6. Cray, Torque PBS, and ALPS ......cooiiii et 126

A.7. Cray, SLURM, and ALPS ... .ot 127

A.8. MPI related [IMItAtioNS ........ooiiiiiiieiiiie e e e e e et e e 128

B. Cross-ArChiteCture ANAIYSIS ...vuu i e e e e e e e et e e et e e e eeees 129
2300 1 g 1 e [F o e o PRI 129

B.2. SUPPOrted NON-X86 PrOCESSOIS ......uuiiuueiiiieeiieeetieeeeiieeete e et e e et e eaaeeat e sanaeeaneeees 129

B.3. Considerations for Accurate Cross-Architecture ANalySIS .......ccoveviiiiiiiieeiiiieiiieeeieens 130

B.4. Sampling the Required Cache Line SiZe .........cocvviiiiiiiiii e 130

B.5. X8B-CENLIC ISTUBS ...iivtiieeiiiii ettt ettt e et e e et e e et e e e e ra s 131
B.5.1. NON-TeMPOral Data .......ocvvuiiiieiiiieii e e e e e e e e e e e eaae e 131

B.5.2. Non-Temporal Store POSSIDIE ........oovviiiiiic e 131

B.6. Considerations for SPeCifiC PrOCESSOIS ......cvvuiiiiieiiie e e e e e e e e e 131

(OIS T o] olo g (=0 I @3 = IR 1Y/ o= 132
D I O = o ] £ TSP 137
[ 20 T« = PP 137

[ 222 1o o Vo PPN 137

D.3. lDGO-2.0.34 ..ottt a e aaaa 137

DA OPENSSL ...iiiiiiee ittt a e a e aaaes 138

D5, KIIDC et 138




ThreadSpotter™

I, COMMEAN REFEIENCE . ..uiieiiiiiiie et e e e e e e et e e e e e ees 139
LU= 0 0101 G P 140
LSS 1010 142
1= 00 o PP 147
A VZL= TP 150
[T 0 TP 151

Vi



List of Figures

2.1 OVEVIEW OF The GUI ...ttt 3
2.2. ProCcessor MOOEl SEIECON .....couuiiiiiii ettt e 5
2.3. Advanced SampPling SEHINGS ... ccoeutuiiiii e ettt 6
2.4, AQvanCed REPOIT SELLINGS .....vuueeeerieeieii ettt ettt e et e ettt e e e et e e e ennanaeeens 7
3L EXAMPIE SYSEEIM ..ottt 24
3.2. Cache Coherence, EXAMPIE L .. .ouuiiieii e e 24
3.3. Cache Coherence, EXAMPIE 2 .. .cuu e 24
3.4. Cache Coherence, EXaMPIE 3 ....cuu e 25
3.5. Cache Coherence, EXAMPIE 4 ......u it 25
3.6. Cache Coherence, EXaMPIE D .. .cuu e e 25
3.7. Cache Coherence, EXAMPIE 6 .......iiuniiiieie et 26
3.8. Cache CoherenCe, EXAMPIE 7 ....cuueieieei et e e e 26
5.1. Data Layout EXBMPIE ....... e 33
5.2, GOOU ULHTIZALION ...ttt ettt e e 33
5.3, POOI ULHIZELION ...ttt ettt e et e e b 33
B4, UNUSEA FHEIAS ...ttt et e ettt e e et e e ena e e 34
5.5, NO UNUSE FIEIUS ....eiiii ettt ettt e e e e ra s 35
5.6. Poor Internal AIIGNMENE ...........iiiiiiiiii et 36
5.7. Good Internal ALIGNMENT ......uu e e e et e e e e e e ene e eees 36
5.8. EXtErNal ALIGNMENT ..ot ettt 37
5.9. Dynamic Memory ATOCEIION .........uuiiiiiiiie e 37
5.10. INEfficient LOOP NESHING -...cevvueieiiieeieet ettt ettt e e et e e e e enaes 38
5.11. Efficient LOOP NESLING ...cevuuiiiiitieeeiiti ettt ettt e et e ettt e e e et e e e erb e e eent e eaeens 39
5.12. False Sharing EXample, SEED L .....uiiiiii e e e 51
5.13. False Sharing EXample, SEED 2 ...... i 51
5.14. False Sharing EXample, SEEP 3 ...oo i 51
5.15. False Sharing EXample, SEED 4 ... 52
5.16. False Sharing EXample, SEEP D ... e 52
5.17. False Sharing EXample, SEED 6 ......cieiiiiieiiii e 52
5.18. False Sharing EXample, FIXEd ........iiiiiiii e 53
5.19. Matrix Accesses With FalSe Sharing ..........veiiuuiiiiiii e 54
5.20. Matrix Accesses Without FalSe Sharing ..........veeeeuiieiiiiiiee e 55
7.1, 1SSUE SEALISHICS SECHON ....uieeii ettt et e e e e e e e 69
7.2, SUMMEANY SEAEISIICS ... eeeriiee ettt ettt e et e et e e e e et e e e e eaa s 70
7.3, ISSUE SEALISHICS .. eeeveeeeett ettt ettt ettt ettt e 71
T4, LOOP SEALISLICS .vveeeeti ettt e ettt ettt ettt e e et et e e et e e et et e e et et e e e eena e eeee 72
7.5. INSLrUCLiON GrOUP SEALISEICS ...evvueeiiiii ettt e et e e e e e ne s 73
7.6. FELCh/MiSS RaiO DIBOIAIM ...cuuuiiiiiii ettt e e et e e 76
7.7. Write-Back RaEiO DIGQraM ... .coeeeiieeiiii ettt et e et e e et e e e ebe e eeees 76
7.8. ULIIZALION DIAGIAIM ... eeeeei ettt ettt e e e e et e e et e e e ena s 77
7.9, REPOI OULIING ...ttt e et ettt e et et e et et e e e e et neeeenaaeeeees 78
7.10. The SUMIMEIY Ta .ouuieiiiiie et e et e et e e e e et e e e eene e eeees 79
711 TR LOOPS TaID ..ttt ettt et eeeaa s 80
7.12. The Banawidth ISSUES Tab ......uuiiiiiiieiiii ettt 81
7.13. The LatenCy ISSUES Tab) ...covuuiiiiiiiee ettt e e e eebe e e e 82
7.14. The MUlti-Threading 1SSUES Tah ......ociiiiiiiiiii et e e e e 83
7.15. The PollULION 1SSUES T ... .coeuiiiiii e 84
716, THE FIIES Ta oottt ettt e e e e 84
7.17. The EXECULION TaD ...oeitiiiiii et 85
7.18. The ADOUL/HEID TalD ..o e e 86
7.19. 1SSUE SEALISHIC SECHIONS ... eiieeiii ettt et e e e e e 87

Vii



ThreadSpotter™

7.20. Instructions with Collapsed Call StaCK ..........oviiiiiiiiiiie e 88
7.21. Instructions with Expanded Call StaCk ..........cocouiiiiiiiiiiiii e 88
4 o o] o H PP PRPTPIN 89
7.23. Source Code With Collapsed LiNES ... covviiiii e 90
7.24. Source Code with EXPanded LiNES .....cc.vuiiiiiiii i e e 91
8.1, FELCh ULIHZAION ISSUE ...evviiiiiiiiie ettt e e et e e e e e et e e e e aen s 93
8.2. Write-BaCk ULl ZaLiON ISSUE ...uuiiiiii ettt e et e e e 94
8.3. Communication UtiliZation ISSUE .........uuiiiiiiiieiii et e et e e e e eeaens 96
8.4. Inefficient LOOP NESHNG ISSUE ....cuvuiiiiieiiiei e e e e e et e e e e e et e e et e et e e aaneeaens 98
8.5. RANAOM ACCESS PAtErN ISSUE ... coiiiiieiiii et e e e e s 100
8.6. LOOP FUSION ISSUE .....iiiicii et e e e e e e e e e e e e e e e an s 102
8.7. BIOCKING ISSUE ....uiiiiciiii et e e e e e e e e e aa s 104
8.8. PrefetCh UNNECESSANY ISSUE .....uiiiiiciii et e e e e e e et e e e e eaes 107
8.9. PrefetCh t00 DIStAnt ISSUE .. .cevvuiiiiiiiee e e et e e e ae s 108
8.10. PrefetCh t00 ClOSE ISTUE ... iiiiiiieeeii e e e e e e e eean s 108
8.11. FELCh HOt-SPOL ISSUE ... evviiiiiieii e e e e e e e e et e et e e st e e et e e eaneee 110
8.12. Write-baCk HOt-SPOt ISSUE .....ivvieiiciii e e e e e e et e e e eaaas 111
8.13. Non-Tempora Store POSSIDIE ISSUE ........ciiie i e 113
8.14. NON-TeMPOTral Data ISSUE .....u.evviieiiiieii et e e e e e e e e e e e e e e e aens 114
8.15. FalSe SNaIiNG ISSUE ...uiiiciii et e e e e e e e e e et e e e aaas 116
8.16. CommuNiCation HO-SPOt ISSUE .....uuiviiciii e e e e e e e e 118
A.L MPI Sampling PrinCIPIES .. .ovuuiiieeii e e e e e e e et e et eeanaeeeen 121
A.2. Message Passing Toolkit, runtime system and shepherd process..........ccoevvveiviiiievineeinen, 122

viii



List of Tables

0.1, ElECIIONIC SBIVICES . otiniitiie ettt et e e e e e e e e e e e e a e e ens 120
A.L. Fingerprint filename SUDSHTULIONS ..........oouuiiiiiiiei e 123
Y Y = U o 1 (0 1o PN 124
Gl A e e 132
G2, AR e e 134
(ORI = 1o < 134
LR T 1 1 P 134
(O3 T 1 0| = 134
9. FIENAME SUDSLITULIONS .....viieiiiiie e e e e e e e e e e e e ane e ans 142
O Y =V o7 1 (0 1o 143




List of Examples

A.1. Sampling Open MPI ranks using aWrapPer SCHPL ........eeiereieeieiie e 125
A.2. Sampling With & WFaPPEN SCHIPL ... ceeeteieeeii et et e e e et e e eei e eees 125
A.3. Selectively sampling ranks ...........iiiiiii e 125
4. Starting an application iN the SAMPIEN ..........iiiiii e 145
5. Attaching t0 @ rUNNING PIOCESS ........cieeuieieii ettt ettt e e e e et e eenans 145
6. Burst sampling along running appliCatioN ............ccouuuieiiiiiieeiie e 145
7. Using a template name for OUEPUL TIle ..........uuiiiiiiii e 145
8. Analyzing sample files using autodetected CPU MOEIS ............uviiiiiiiiiiiiiiieriii e 149
9. SPeCifying @ CPU MO ........uuiiiiiiie e 149
10. Installing alicense file for the CUMTeNt USEr .........ooiiiiiii e 151
11. Installing a reference to three lICENSE SEIVEIS ........ i 151




Chapter 1. Introduction

ThreadSpotter™ is a powerful tool that gives developers unprecedented insight into memory related
performance problemsin an application.

ThreadSpotter™ analyzes an application and provides advice to the programmer on how to go about
correcting memory performance problems, and offers the programmer insight into where and why
performance problems occur. The programmer, using ThreadSpotter ™'s advice and feedback, can modify
the source code to optimize the data layout and code efficiency, and obtain performance improvements.

ThreadSpotter ™ will teach anovice programmer about good design choices and hel p him understand what
constructs are detrimental to performance by pinpointing problem areasin his program. ThreadSpotter ™
will explain the performance problem, point to the source code and offer guidance on how to improve
the code.

For an optimization expert ThreadSpotter ™ will increase productivity, for instance, by quickly identifying
the problem areas in the application and by allowing him to analyze the cache behavior of the application
on multiple architectures based on a single sampling.

1.1. Overview

The process of optimizing an application with ThreadSpotter™ starts with sampling the application. The
application is sampled to capture a fingerprint of its memory access behaviour and collect information
about its structure. The user can sample an application from start to end, or attach to the application while
it is running, sample it for awhile and detach.

Once the sampling is done the captured data is analyzed to discover performance problems. A report is
created, listing the performance problems found in the code and mapping them back to the source code.
Each performance problem is classified and the programmer can find directions on how to fix each class
of problems in the online documentation. The performance problems include issues such as:

* Inefficient data layout

* Inefficient data access patterns

» Unexploited data reuse opportunities
* Prefetching problems

» Thread interaction problems

ThreadSpotter™ also calculates cache metrics, such as cache miss ratios, cache fetch ratios, cache line
utilizations and hardware prefetch probabilities. These metrics further guide the developer in identifying
and understanding the causes of memory related performance problems.

Performance issues are automatically ranked in order of severity in the report. Once the programmer
has fixed the most severe problems, he can sample and analyze the improved application to verify the
improvements and find other performance bottlenecks.

1.2. Technology

ThreadSpotter™'s analysis focuses on the memory access behaviour of the application, and specifically
on how the application's memory access patterns interact with the processor caches. Improving the
application's interaction with the processor caches has two effects:
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* It decreases the cache missratio of the application. Cache misses introduce memory access latencies
that cause stalls in the execution, and decreasing the cache miss ratio directly reduces the execution
time of the application.

* It decreases the memory bandwidth requirement of the application. When an application becomes
memory bandwidth limited it isno longer the memory accesslatenciesthat limit the execution speed,
but the bandwidth at which data can be transferred to and from memory. In a memory bandwidth
limited application many performance optimizations aimed at reducing the impact of memory access
latencies, for example, prefetching, become useless or even detrimental .

Decreasing the memory bandwidth requirement of applications becomes even more important with
the introduction of multicore processors. More cores sharing the same memory bandwidth meansthe
memory bandwidth is quickly exhausted. Memory bandwidth is the most important bottleneck for
scaling application performance on multicore processors.

ThreadSpotter™ uses a proprietary light-weight sampling technology when sampling the application,
not hardware performance counters. The collected fingerprint is richer in information than what can be
obtained from the hardware performance counters and allows metrics such as utilization of fetched cache
lines to be cal culated.

Since it is the behavior of the application and not the hardware that is sampled, the gathered data is
independent of the hardware the sampling was done on. Thisallowsthe user to analyze how the application
would behave on aprocessor with adifferent cache configuration, for example, to predict the performance
on different processor models.

ThreadSpotter™ is programming language independent. It only looks at the binary code of the application.
It can generate a report without any source code, but to generate source code references it needs access to
the source code and the application must be compiled with debug information in a standard format.

1.3. Limitations

ThreadSpotter™ produces cache usage metrics and hintsfor optimizing the application. The responsibility
for interpreting this information and using it to optimize the application lies with the programmer.

The sampling does in general not affect the sampled application in any other way than slowing it down,
but the behavior of some applications, that rely on specific timing, may in some cases be affected by the
sampling.

While any ELF binary can be sampled, mapping the analysis results back to the source code requires the
availability of DWARF or STABS debug information.




Chapter 2. Running ThreadSpotter™
2.1. Using the Graphical User Interface

2.1.1.

The graphical user interface provides an easy way to sample applications and generate reports. It is started
from the menu of your window manager, or using the threadspotter command from the ThreadSpotter ™
package, usually installed as /opt/threadspotter /bin/thr eadspotter:

$ threadspotter

> IhTeadSpotiers = =0

File

Sample source

@®
@ Launch application
Program | |[Browse...|
Arguments | |
Working dlrectory[,fhome;acumem |[Browse...|

() Attach to running application

[ Advanced sampling settings... l

[ Sample application l

() Read sample file

Report generation
(® Generate report

Report file |.report.tsr |[Browse...|
Processor model: Intel(R) Cor...@ 2.13GHz | Select...
Cache level: L2 (2 MB) :

M Launch report viewer

[ Advanced report settings... l

() View existing report

[ Sample application and generate report l

Figure2.1. Overview of the GUI

There are three basic tasks you can perform from the graphical user interface:
» Sample an application and save the collected information in a samplefile.
» Generate areport file from asamplefile.
* View areport file.

You can also perform any combination of these the tasks at once, for example, launch and sample an
application, generate areport and view the generated report in one go.

Sampling an Application
Sampling an application and saving the collected data to a sample file is useful if you want to generate

multiple reports based on the same application run, for example, if you want generate reports for several
different cache configurations for the same application.
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First you need to select a name for the sample file. Click the Advanced sampling settings... button. In the
dialog window that opens, check the Save sample file as box and enter afile name.

In this window you can also make some other choices about how to sample the application, see
Section 2.1.5, “Advanced Sampling Settings” for more information.

There are two ways to sample an application:
 Launching and sampling an application.

The application to be sampled is launched by ThreadSpotter™ and sampled. By default the
application is sampled until it terminates. If you choose to stop the sampling before the application
is finished the application is automatically terminated.

» Sampling arunning application.

ThreadSpotter™ attaches to a running application and samples it. When the sampling is finished
ThreadSpotter™ detaches and the application continues running normally.

Note that when launching an application the sampler does not sample other processes started by the
specified application. This meansthat if you want to sample an application that is usually started through
a script or by a different application, you have to check what command the script or application uses to
start the application and manually specify that command. If you specify the script, only the script itself
will be sampled, not the intended application.

This also applies when you attach to a running application that in turn starts other processes.

2.1.1.1. Launching and Sampling an Application

Select Launch application as sample source. Fill in the application to be sampled in the Programfield and
the arguments to the application in the Argumentsfield. For example, if you want to sample the command
Is-I -a, fill inIsin the Programfield and - -a in the Arguments field.

When you are done click the Sample application button. When the sampling starts an xterm containing
the sampled application will pop up.

The application will be sampled until the it terminates, or until the sampling stop condition is met if you
have specified one, see Section 2.1.5, “ Advanced Sampling Settings’. When the sampling hasfinished the
samplefile will be post-processed for a short while.

The terminal has to be closed manually when the process has terminated and the post-processing of the
sample file has finished. This alows you to review any output from the sampled application and the
sampling process.

2.1.1.2. Sampling a Running Application

ThreadSpotter™ is also capable of sampling arunning application. It will attach to it without the need to
restart the application. When the sampling is done, it can detach from the application, leaving it running
as before.

To sample a running application, select Attach to running application as sample source. Fill in the PID
field with the processid of the process to be sampled if you know it, or click the Select... button to select
the process from alist.

When the sampling starts an xterm will pop up showing the sampler prompt. Enter the g command to stop
sampling. When the sampling has finished the sample file will be post-processed for a short while.
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2.1.2.

The terminal has to be closed manually when the process has terminated and the post-processing of the
samplefile has finished. This allows you to review any output from the sampling process.

Sometimes the sampler will not be able to detach from the process immediately when requested to stop
sampling. This happens if a sampled thread is waiting in a system call. If this happens you can try to
"activate" the application to get the thread to finish the system call, for example, if the application has a
command line interface and is waiting for user input, entering a command may help.

If that does not help, you can force a detach by giving the sampler the g command one more time. Doing
thiswill cause asmall memory leak in the sampled process, but that will usually not cause any problems.

Invery rare cases it may not be possibly to stop the sampling without corrupting the sampled application.
You will get awarning if that is the case.

Generating a Report from a Sample File

To generate areport based on an existing samplefile, change the sampl e source setting to Read samplefile.

Y ou can then select the report file name and a processor model and cache level to do the analysis for in
the Report generation part of the window.

By default the report is created in the current working directory and named r eport . t sr.

The advicein the report depends on the selected processor model and cache level. Some data structures or
code sections may, for example, work well with alarge cache but have problems with another processor
model with a smaller cache, or they may work well in the L2 cache but have problemsin the smaller L1
cache. To get relevant advice for your application and hardware, you have to specify a processor model
that matches the processor you want to optimize for.

By default the processor model of the computer you are running on is selected. To change the processor
model click the Select... button to the right of the model name.

F . SElECiprocessormode] =S hireadsSpotier @
Select processor model to use in the analysis
llntel 5
Processor Name ~ | Analysis model
Intel Xeon E7-4850 westmere ex 1.
Intel Xeon E7-4860 westmere_ex_1..
Intel Xeon E7-4870 westmere_ex_1...
Intel Xeon E7520 nehalem_ex_4_...
Intel Xeon E7520 nehalern_ex 6_... [+
Physical processors: 1 |‘|
)|
I ogancel l & oK l

Figure 2.2. Processor Model Selector

The processor model containsinformation about several aspects of the cache hierarchy, for example cache
sharing and active prefetch instructions. If the intended model is not available, you may use a similar
processor from the same product family. You may need to override parts of the processor model to get
something that suits the target processor.

Model parameters and additional analysis parameters may be changed if you click the Advanced report
settings... button. See Section 2.1.6, “ Advanced Report Settings’.
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2.1.3.

2.1.4.

2.1.5.

To start the report generation click the Generate report from sample file button. When the report has been
generated it is automatically opened in your web browser.

Sampling and Generating a Report

To sample an application and generate a report in one go, first configure the sampling as described in
Section 2.1.1, “ Sampling an Application”. Y ou do not need to specify a sample file name unless you want
to keep the sample file. Then configure the report generation as described in Section 2.1.2, “Generating
a Report from a Sample File”, but without changing the sample source to Read samplefile. Finally, click
the Sample application and generate report button.

Viewing an Existing Report

To view an existing report, select the View existing report option in the Report generation section, select
the report file, and then click the View report button.

Advanced Sampling Settings

F Advanced samplingsertings =8 hreadspotrers @
Startsampling ...
@ Immediately:

) After seconds
) When function has been called times
() When address has been executed times

Stop sampling
@® When the program terminates

) After seconds

) When function has been called times

() When address has been executed times
Line sizes 64
[] Burst sampling, estimated run time minutes quality
Initial sample period | 100000 . accesses

[] Safe stack handling

[] Save samgple file as

)|

Figure 2.3. Advanced Sampling Settings

Clicking the Advanced sampling settings... button in the main window opens a window with some
additional settings for sampling the application.

Start sampling By default the sampler starts sampling the application immediately
after it has launched or attached to it. Here you can choose to instead
start sampling after a fixed delay or when a function or address has
been executed a number of times. See Section 2.4.2, “ Sampling Start
Conditions” for more information.

Stop sampling By default the sampler will sample the application until it terminates
or the user manually stops the sampling. Here you can choose to
instead stop sampling after afixed delay or when afunction or address
has been executed a number of times. See Section 2.4.3, “Sampling
Stop Conditions” for more information.
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Linesizes

Burst sampling

Initial sample period

Safe stack handling

Save samplefile as

Use this option if you want to generate a report for a cache line
size other than the default. The line size selected for analysis is
automatically selected and can not be unselected.

Use this option to enable burst sampling in order to reduce the
sampling overhead for sampling runs that take at least 5 minutes.
When enabled, you also need to enter an estimated execution time
without sampling for the part of the application that you intend to
sample. See Section 2.4.1, “Burst Sampling” for more information
about burst sampling.

Use this setting if you get a message that you need to decrease
the sample period during post-processing of the sample file. See
Section 4.13, “ Sample Period” for more information.

If you experience incorrect execution or crashes in the sampled
program try enabling this option, see Section 2.4.4.2, “Disabling
Application Stack Use by the Sampler”.

Sample files are normally not saved when sampling and generating a
report in one go. Usethisoption if you want to save the samplefile so
that you can generate more reportsfromiit later, or if you are sampling
an application without generating a report.

2.1.6. Advanced Report Settings

F Advanced reportsettings =S hreads, pu:tar—@n

-

[] Line size

Call stack depth

] Report title

Replacement policy

Ignore issue invalving less than |1

bytes
bytes

] Mumber of caches

] Number of CPUSs

lRandom

|:1 |:lframes

] Read debug info from
[] Additional debug directories
] Lookup source in

[] C++ symbal demangler

|:l% of all fetches

[] Verbose report generation output

P ok

Figure 2.4. Advanced Report Settings

Clicking the Advanced report settings... button in the main window opens a window with some additional

settings for the report generation.
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2.1.7.

Cachesize

Linesize

Number of caches

Number of CPUs

Replacement policy

Call stack depth

Read debug information from

Look up sourcein

C++ symbol demangler

Ignore issues

Report title

Verbose
output

report

generation

Overrides the cache size selected by the processor model. You can
use the suffixes k, m and g for kilobytes, megabytes and gigabytes,
respectively, when specifying the cache size. For example, 64k for a
64 kilobyte cache.

Overrides the cache line size selected by the processor model. The
selected line size will automatically be added to the list of line sizes
to sample.

Overridesthe number of caches on the selected cache level. Observed
threads will be assumed to be mapped onto this humber of caches.

Overrides the number of CPU sockets. This sets the number of
assumed caches on the selected cache level in accordance with the
current CPU model. Observed threads will be assumed to be mapped
onto this number of caches.

Thisisan aternativeto the option of specifying the number of caches.

Selects random replacement or LRU replacement as cache
replacement policy for the analysis. Random replacement is the
defaullt.

This tells the analysis how many call stack levels to consider when
separating issues in functions called from multiple places based on
where the function was called from. See Section 4.12, “Call Stack”.

Use this option to specify the location of the sampled binary if it has
been moved from the location it resided in during the sampling.

Look up source code in a user defined directory. Specify the new
location of the source code if it has been moved since the application
was compiled.

C++ symbol namesnormally appear mangled, particularly when using
the stabs debug format. The compiler is usually accompanied with a
program to render symbols in a human readable format. The default
name for this program is c++filt. Specify the name of the program to
use as afilter, or check the box and leave empty for the default name.

Do not report issues involving less than this percentage of the total
fetches, upgrades or write-backs.

Set a custom report title.

If selected, a window showing the output from the report generator
will be opened. Useful when looking for problems with report
generation, for example, if the report generator fails to find source
code.

Using a Different Browser

Thethreadspotter tool will try to start the default browser on the system. If you wish to view thereport in
another browser, or if the tool fails to find a browser, you can set the BROASER environment variable to
the browser that should be used. For example, if you are using the bash shell and want to use the google-
chrome browser, you can use this command before starting the tool:
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2.1.8.

$ export BROW SER=google-chrome

ThreadSpotter™ has been verified to work with Internet Explorer, Firefox and Google Chrome. If you
are using adifferent browser and experience problems viewing the report, try using one of the supported
browsers instead.

Using Firefox on Multiple Computers

The Firefox browser, and possibly other Gecko-based browsers, have a default behaviour when used
on multiple computers in an X environment that is confusing, and that does not work well with the
threadspotter tool.

When you start a Firefox process and specify a URL to open, the process will by default look for other
Firefox processes running in the same X server, and if oneisfound open the URL in that process's window
even if that processis running on a different computer.

This does not work with the threadspotter tool for a couple of reasons. The URL used to connect to the
report web server (see Section 2.2.3, “Viewing aReport” for more information about the web server) uses
the address |ocalhost to refer to the web server, so if the report is opened on a another computer the URL
will refer to the wrong computer. Also, since the report web server only accepts connections from the
computer it is running on, Firefox would not be able to open the report from another computer even if it
managed to resolve the URL to the correct compulter.

The easiest way to avoid this problem is to set the MOZ_NO_REMOTE environment variable to 1 before
you run the threadspotter tool. For example, if you are using the bash shell, you can use this command:

$export MOZ_NO_REMOTE=1

This forces Firefox to start a new process on the computer where the command is run, even if there are
already Firefox processes running on other computers. However, it will also prevent you from launching
multiple browsers viewing the same report on the same computer, so you will have to close the report you
are viewing before you can open another report on the same computer.

2.2. Using the Command Line Tools

The command line tools provide a way to sample applications and generate reports when the graphical
user interface can not be used, for example, when you are not working in agraphical environment, or ina
scripted environment. Or if you simply prefer to work from the command line.

@ Note

The ThreadSpotter™ command line tools use the short and generic names sample, report
and view. These names are known to also be used by operating system tools that are in the
default PATH on some Linux distributions. We therefore recommend that you add the directory
containing the ThreadSpotter™ tools, / opt / t hr eadspot t er/ bi n, first in your PATH, or
refer to the tools using absolute paths.

For example, if you are using the bash shell and want to add the ThreadSpotter™ tools first in
your PATH, you can use this command:

$ export PATH="/opt/threadspotter/bin:${PATH}"

To automatically do this every time you log in, you can add the command at the end of the
. bash_profil e fileinyour home directory.
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2.2.1. Sampling an Application

Applications are sampled using the sample command in the ThreadSpotter™ package, usually installed
as /opt/threadspotter/bin/sample. The only required arguments are the mode of operation and the
information needed to start or identify the application:

» $sample-r application and argunents

Runappl i cati on and ar gunent s and sampleit, for example, $ sample-r ./myapp argl to
sample the command myapp ar gl. The application is sampled from the start until it terminates.

The -r option must be the last option to the sample command on the command line. All options after
the -r option are interpreted as options to the application.

Note that the sampler will only sample the process started by the command you specify, it will not
sample any processes that the process starts in turn. This means that if you, for example, specify a
script that starts an application, only the script will be sampled and not the application.

e $sample-pPI D

Sample the already running process with processid Pl D. The process is sampled until it terminates
or until the user stops the sampling.

This mode of operation is useful to sample a process without having to restart it or to sample only a
part of its execution, for example, if an application has along start up time but you are not interested
in the start up code.

You can delay the start of the sampling by a specified number of seconds using the -d del ay option to
the sample command. The start of the sampling will then be delayed by del ay seconds. This may be
useful, for example, if you want to start the application using sample -r but do not want to sample the
application start up.

You can aso start the sampling when a specified function is executed with the --start-at-function
functi on option, or at a specified address with the --start-at-address addr ess option. Y ou can also

start the sampling after the function or address has been executed a number of times using the --start-at-
ignore count option. See Section 2.4.2, “ Sampling Start Conditions’ for more information.

2.2.1.1. Burst Sampling

If the part of the application run you intend to sample takes at least 5 minutes to execute, you can enable
burst sampling to reduce the sampling overhead. Thisis donewith the-b executi on ti ne option.

Theexecution ti me argument should be the estimated execution time without sampling in minutes
of the part of the application that you intend to sample. For example, to sample an application that takes
30 minutes to run without sampling cases:

$sample-b 30 -r appl i cati on and argunents

See Section 2.4.1, “Burst Sampling” for more information about burst sampling.

2.2.1.2. Stopping the Sampler

When you start the sampler with the -r option to the sample command the application is started in the
same terminal as the sampler, and there is no way to stop sampling without terminating the application.

10
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When you start the sampler with the -p option you get a sampler command prompt. The sampler only
supports one command, g, which stops the sampling but leaves the application running.

Sometimesthe sampler will not be ableto stop the sampling immediately. This happensif asampled thread
is waiting in a system call. If this happens you can try to "activate" the application to get the thread to
finish the system call, for example, if the application has acommand line interface and is waiting for user
input, entering acommand may help.

If that does not help, you can force a detach by giving the sampler the g command one more time. Doing
thiswill cause asmall memory leak in the sampled process, but that will usually not cause any problems.

In very rare casesit may not be possibly to stop the sampling without corrupting the sampled application.
You will get awarning if that isthe case.

You can also tell the sampler to automatically stop the sampling after a preset number of seconds by
specifying the -t dur at i on option to the sample command. The sampling will then automatically be
stopped after dur at i on seconds. If the process was started using the -r option, the process will also be
terminated.

In the same way as when starting the sampling at a function or address, you can stop the sampling at a
function or address with the --stop-at-function f unct i on, --stop-at-addressaddr ess and --stop-at-
ignore count options. See Section 2.4.3, “ Sampling Stop Conditions” for more information.

2.2.1.3. Changing the Sample File Name

By default the sample command will generate asamplefilenamed sanpl e. snp inthe current directory.
If youwould like adifferent file name you can specify the-of i | enane option to the sample command.
The sample command will overwrite any existing sample file with the same name without asking.

2.2.1.4. Selecting Sampled Line Sizes

The sampler will by default collect information for analyzing the application's behavior with 64-byte cache
lines, since thisis the most common line size. If the cache you are optimizing your application for uses a
different line size, you can specify theline sizewiththe-I | i ne si zes option to the sample command.

For example, if you want to produce asamplefilethat allows analysisfor both 64-byte and 128-byte cache
lines:

$sample-l 64,128 -r appl i cati on

Y ou must specify all line sizes for which you will later generate reports based on this sampling.

2.2.1.5. Troubleshooting

2.2.2.

If you experience incorrect execution or crashes in the sampled program, try passing the --safe-stack
option to the sample command, see Section 2.4.4.2, “Disabling Application Stack Use by the Sampler”.

Creating a Report

After sampling your application the sampler will have created a sample file, by default named
sanpl e. snp inthe current working directory.

To generate a report from this sample file you run it through the report command found in the
ThreadSpotter™ package, usually installed as /opt/threadspotter/bin/report. The name of the sample
file hasto be specified with the -i f i | enane option:

$report -i sample.smp

11
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The report command will by default create a report file named r eport . t sr in the current working
directory.

2.2.2.1. Specifying the Processor Model

Theadviceinthereport depends on the cache configuration. Some data structures or code sections may, for
example, work well with a processor model with alarge cache but have problems with another processor
model with a smaller cache, or they may work well in the L2 cache but have problemsin the smaller L1
cache. To get relevant advice for your application and hardware, you have to specify which processor and
cache level you want to optimize for.

The processor model may be specified with the --cpu nodel option. By default the processor model of
computer you run the report tool on is selected. A list of available processor models can be printed by
specifying help as the model name.

The cache level to analyze is selected using the $ report --level | evel option. ThreadSpotter™ will
analyze the highest cache level by default.

It ispossible to override parts of a CPU model using optionsto explicitly set cache size and line size. Refer
to report(1) for adescription of al available options.

@\ Note

Always specify a processor model and cache level that matches the intended target as closely
aspossible. Not all model parameters can be overridden at the command line and some of these
parameters depend on the cache level.

For example, to analyze the application's behavior with respect to the first level datacachein an Intel Core
2 Quad with 12 MB L2 cache you could use the following command line:

$report --cpu intel/yorkfield_4 12288 --level 1 -i sample.smp

@ Note

You can only use line sizes that the sampler was told to sample when it generated the sample
file, by default 64 bytes.

@ Note

Detecting the current cpu and cache hierarchy does not work reliably in virtualized
environments. In this case you need to manuall supply the number of caches that
ThreadSpotter™ shall assume to be present.

2.2.2.2. Renaming the Report

If you want adifferent namethanr eport . t sr for the report file you can specify a different name with
the -0 narre option to the report command.

For example, to generate areport filenamed af t er - opt . t sr:
$report -i sample.smp -0 after-opt.tsr
2.2.2.3. Specifying the Location of the Source Code and Binaries

The report generator will try to look up source codefilesin the location specified in the debug information
of the application. However, if the source code has been moved since the application was compiled, you

12
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will have to specify the new location of the source with the -s sour ce di rect ory option to get a
source code view in the report. If multiple parts of the source code have been moved you can specify the
-s option multiple times.

If the application binaries have been moved from where they were during sampling, the report generator
will need to be told the new location to be able to find source code references as described above. The
-b f i | ename option can be used to name the moved binaries. The -b option can be specified multiple
times if multiple files have been moved, for example, if both the binary and a shared library it uses has
been moved.

2.2.2.4. Selecting the Threshold for Reporting Issues

2.2.3.

If you do not specify anything else the generated report will include all locations in the program that are
responsiblefor at | east one percent of all cachelinefetches, write-backs or upgrades. For alarge application
thismay lead to an excessively large report. To limit the report to issues that contribute to at least a certain
percentage of the total cache line fetches of the application, specify the -p per cent age option to the
report command.

For example, if you are only interested in issues contributing to at least 5% of the total cache line fetches
of the application you could run:

$report -p 5-i sample.smp
Viewing a Report

Once you have created a report you can use the view command found in the ThreadSpotter™ package to
view it. It isusually installed as /opt/thr eadspotter/bin/view.

The view command requires the filename of the report to be specified with the -i option. For example, to
view areport with the namer eport . t sr you would use the following command:

$view -i report.tsr

The report viewer actually starts a web server serving the report as HTML pages on a port on the local
machine, and also starts a web browser displaying the report. The web server detects when the report is
closed in the browser and will then automatically quit, by default 10 seconds after the report has been
closed.

If you do not want the view command to start anew web browser you can giveit the --no-browser option.
It will then only start the web server and print a URL that you can use to view the report. Note that the
port serving the report is only accessible from the computer on which the view command is run, so you
can not view the report from a browser on another computer.

By default the view command will start the web server on an arbitrary free port on the computer it is
running on. If you want the web server to use a specific port you can specify it using the --port option.

For example, to start the web server serving the report r eport . t sr on port 2000 without starting a
browser, you would run this command:

$view -i report.tsr --port 2000 --no-browser

To protect the report from being viewed by other users on the same computer, the URL used to open
the report contains a randomly generated password. Once you have opened the report in a browser the
password becomes invalid, so you can not open the report again in another browser. If you need to do that
simply run the view command again.

13



Running ThreadSpotter™

2.2.3.1. Using a Different Browser

The view command will try to start the default browser on the system. If you wish to view the report
in another browser, or if the command fails to find a browser, you can set the BROASER environment
variable to the browser that should be used. For example, if you are using the bash shell and want to use
the google-chrome browser, you can use this command:

$ export BROW SER=google-chrome

ThreadSpotter™ has been verified to work with Internet Explorer, Firefox and Google Chrome. If you
are using a different browser and experience problems viewing the report, try using one of the supported
browsers instead.

2.2.3.2. Using Firefox on Multiple Computers

The Firefox browser, and possibly other Gecko-based browsers, have a default behaviour when used on
multiple computers in an X environment that is confusing, and that does not work well with the view
command.

When you start a Firefox process and specify a URL to open, the process will by default look for other
Firefox processesrunning in the same X server, and if oneisfound open the URL in that process's window
even if that process is running on a different computer.

This does not work with the view command for a couple of reasons. The URL used to connect to the
report web server uses the address localhost to refer to the web server, so if the report is opened on a
another computer the URL will refer to the wrong computer. Also, sincethe report web server only accepts
connections from the computer it is running on, Firefox would not be able to open the report from another
computer even if it managed to resolve the URL to the correct computer.

The easiest way to avoid this problem is to set the MOZ_NO REMOTE environment variable to 1 before
you run the view command. For example, if you are using the bash shell, you can use this command:

$export MOZ_NO_REMOTE=1

This forces Firefox to start a new process on the computer where the command is run, even if there are
already Firefox processes running on other computers. However, it will also prevent you from launching
multiple browsers viewing the same report on the same computer, so you will have to close the report you
are viewing before you can open another report on the same computer.

2.3. Common Report Settings

Some of the performance problems that ThreadSpotter™ |ooks for are more visible on some cache levels
than others, depending on topology, number of caches, and what processor features exist on different cache
levels.

For reporting purposes, ThreadSpotter™ considers one cache level at atime. A consequenceisthat it will
focus on those problems that are visible on the selected cache level, and disregard such suggestions that
are inapplicable on that level.

@ Tip

To get thefull picture, it may be necessary to prepare multiple reports, one for each cachelevel.

This section outline some common analysis scenarios, and explain the corresponding settings.
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2.3.1.

2.3.2.

2.3.3.

Cache Performance

From a performance optimization perspective, it makes senseto start optimizing with respect to the highest
level cache. There are at |east two reasons.

A cachemissinthelast cachelevel is much more expensive that a cache missin thefirst cachelevel, since
they have to all the way out to the memory to satisfy the memory access. Conversely, if such misses can
be avoided, the benefit is most noticeable when optimizing on the highest level.

The highest cache level is aso the largest cache. It will be less difficult to squeeze in the data set to fit in
the highest cache, than it will be to make it fit in the smaller lower level caches.

Thisisthe default analysis mode of ThreadSpotter™. No extra parameters are required.

Analysis of software prefetch instructions

Depending on the processor, the software prefetch instructions may fetch data to the lowest level cache,
or to some outer level.

AMD processors havetypically fetched datainto the L1 cachelevel, while Intel processors normally target
L2. Generation of prefetch related advice is only active when preparing a report for the corresponding
cachelevel.

Select the target cache level using --level cache- | evel . If that cache level is not affected by prefetch
instructions, the output from ThreadSpotter™ will include awarning to that effect.

Threading Advice - Inter-Cache Communication

ThreadSpotter™ offers advice and statisticsin relation to how well multithreaded programs communicate
among their caches. The analysis requires that there are several caches for the analyzed cache level, since
if there was only one cache, there would be no other cache to exchange data with.

So, ThreadSpotter™ only presents communication related advice if:
 The application has multiple threads.

» The application threads use memory to share data with each other (as opposed to using operating
system communication channels to exchange data). That is, one thread writes and another one reads
data from a particular place in memory.

» ThreadSpotter™ deduces or istold that there are more than one cache at the specified cache-level.

The latter point is afunction of what processor model is being used, what cache-level isthe target cache-
level, and whether the user overrides the number of caches to be considered.

Note

ThreadSpotter™ assumes one processor unless you tell it otherwise. If thisis not the case, use
the setting --number -of-caches nunber to inform ThreadSpotter™ on the total number of
caches to assume.

Example: If you areinterested in finding problems rel ated to the communication traffic between L1 caches
for a dual socket, quad core Intel system (Y orkfield), where each socket has four private L1 caches, use
the following parameters:

$report --cpu intel/yorkfield_4 12288 --number-of-caches 8 --level 1 ...
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2.3.4. Threading Advice - Inter-Socket Communication

Inasimilar way, looking at inter-socket communication requires providing ThreadSpotter ™ with the total
number of top-level cachesin the system.

Example: AMD Opteron 2427, codename Istanbul, has four cores and a shared L3 cache. To analyze
the communication between sockets in a system consisting of two such processors, use the following
command:

$report --cpu amd/istanbul --number -of-caches 2 --level 3 ...

This would cause ThreadSpotter™ to distribute the threads of the application onto two L3 caches. The
resulting traffic would correspond to the communication between the two processors.

2.4. Advanced Use
2.4.1. Burst Sampling

By default ThreadSpotter ™ will samplethe application continuously during therun, collecting information
about itsmemory access pattern. The sampling adds some overhead to the application, making it run slower
than usual .

However, for long application runs ThreadSpotter™ can collect enough information without continuous
sampling. Instead it can engage periodically during the execution. Thisis called burst sampling. Since a
smaller part of the execution run is sampled the overhead of the sampling becomes much lower.

Burst sampling can be used to sample executions that take at least 5 minutes. With runs shorter than that
the sampler needs to engage so frequently that the execution becomes more or less continuously sampled,
and no reduction in overhead is gained.

With burst sampling the overhead for a sampling run becomes independent of the length of the execution.
Sampling a 1-hour application run may, for example, cause a 20 minute overhead, taking 1 hour and
20 minutes. Sampling a 4 hour run of the application would then also cause approximately a 20 minute
overhead, taking 4 hours and 20 minutes.

When you enable burst sampling you also need to specify an estimated (normal) execution time for the
part of the application run that you intend to sample. ThreadSpotter™ needs this information to calculate
how densely the bursts need to be placed to collect enough information for analysis. If ThreadSpotter™
does not capture enough information you will get this warning when the samplefile is post-processed:

Post - processing sanple file, please wait...

War ni ng: Not enough sanmples for reliable results.

Cot 6252 sanples of the largest line size.

Requi red numnber of sanples: 10000.

Consi der decreasing the estinmated execution tine by 87%
Sanple file post-processing finished.

If you get the warning above it does not necessarily mean your estimate of the execution time was
inaccurate. You may also get this warning if the overhead of sampling this particular application is
unusually low. Adjust the estimated execution time as suggested and sampl e the application again.

Itispossibleto tweak the overhead of the burst sampling by adjusting the quality parameter. Switching this
parameter to 'fast' yields alower overhead but may have a negative impact on the data quality. Conversely
using 'detailed' quality increases the sampler overhead and will also increase the data quality.
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2.4.2.

2.4.3.

The effects from changes in burst quality are usually limited to applications with low fetch ratios when
analyzing large caches. Someissues are more sensitive to the quality setting than others, specifically ‘Loop
Fusion', 'Blocking' and 'Inefficient Loop Nesting'. Thelocations affected by theseissueswill still beflagged
asissues, even when the burst quality istoo low, but with less specific issue types.

It is usually not necessary to change the burst quality parameter, the default quality should provide an
acceptable overhead and good data quality for most common cache sizes.

See Section 2.1.5, “ Advanced Sampling Settings’ and Section 2.2.1.1, “Burst Sampling” for instructions
on how to enable burst sampling in the graphical interface and from the command line, respectively.

Sampling Start Conditions

By default ThreadSpotter™ will start to sample the application as soon as you have launched it or attached
toit. However, you may sometimeswant to delay the start of the sampling, for example, to avoid sampling
the application start up. There are afew ways to do that.

The ssimplest way isto specify a delay in seconds before the sampling is started. This can be done in the
Advanced sampling settings dialog if you are using the GUI, or with the -d seconds option if you are
using the sample command.

Y ou can also specify the sampling to start when a specific functioniscalled. This can again be donein the
Advanced sampling settings dialog if you are using the GUI, or with the --start-at-function f unct i on
option if you are using the sample command. The sampling is started thefirst time the specified functionis
called. Note that when specifying afunction to start the sampling at, the function must bein the application
binary. The function may not bein a shared library loaded by the application.

If you want to start the sampling at a function in a shared library you can instead determine the address
where the function will beloaded and specify that address. Y ou find the address of the function by starting
the program and looking up the function in a debugger.

The address where the sampling should be started is specified in the Advanced sampling settings dialog
if you are using the GUI, or with the --start-at-address addr ess option if you are using the sample
command. The sampling is started the first time the instruction at the address is executed.

Itisalso possibletoignorethefirst few timesthe function or addressis executed. The number of executions
to ignore is specified in the Advanced sampling settings dialog if you are using the GUI, or with the --
start-at-ignore count option if you are using the sample command. For example, to start the sampling
the fourth time the function nul t is called you could add the options --star t-at-function mult --start-
at-ignor e 3 to the sample command.

Sampling Stop Conditions

By default the sampling will be ended when the application terminates or when you manually stop the
sampling at the sampler prompt. However, you can aso stop the sampling after a fixed time or when
a specific function or address is executed, just like when controlling when to start the sampling in
Section 2.4.2, “ Sampling Start Conditions”.

If you are using the GUI you can find the controls for stopping the sampling in the Advanced sampling
settings dialog. They work just like the controls for starting the sampling.

To stop the sampling after a fixed time using the sample command, use the -t seconds option.
The options for stopping the sampling when a function or address is executed are --stop-at-function
function, --stop-at-address addr ess and --stop-at-ignore count. They work just like the
corresponding options for controlling the start of the sampling.
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2.4.4.

The same limitation as when specifying a function to start the sampling at still applies, the function must
be in the application binary.

If you specify that the sampling should be stopped after afixed time, that time is counted from when the
sampling isstarted. Similarly, if you specify that the sampling should be stopped after afunction or address
has been executed a number of times, those executions are counted from when the sampling is started.

Sample Files

A sample file contains the fingerprint of the application memory access behavior collected during
sampling. If you have a sample file you can generate a report for that sampling of the application for any
cache configuration.

The amount of information captured in a sample file is measured in the number of samples. Too few
samples will cause unreliable results, capturing too many samples will cause the sampling of the program
to run slower and the report generation to take longer and use more memory. 10000 samplesis enough to
get areliable result, and by default the sampler will try to capture 50000 samples.

Thereport will contain aclearly visiblewarning if the samplefile contained too few samplesfor areliable
result.

2.4.4.1. Tuning the Sample Period

The sampler automatically adapts to the running program and attempts to capture 50000 samples during
the sampling run. Thereis therefore usually no need to adjust the sample rate.

However, if the program runs for avery short time, afew seconds or less, the sampler may fail to capture
enough samples. Y ou will then get awarning like this when the samplefile is being post processed:

War ni ng: Not enough sanmples for reliable results.

CGot 3011 samples of the largest line size.

Requi red number of sanples: 10000.

Consi der decreasing the sanple period to at |east 301.

To collect enough samples you then have to manually tell the sampler to use alower sample period than
the default of 100000, as suggested in the warning. If you are using the graphical user interface you can
specify the sample period in the Advanced sampling options dialog. If you run the sample command from
the command line you use the -s sanpl e peri od option, for example, to sample Is -I with a sample
period of 100:

$sample-s 100 -r Is-l

If you are sampling a program for along time you may get a small sampling speed up if you increase the
sample period from the default. There is no simple rule of thumb for how to set the sample period in this
case. Try increasing sample periods, and when you get the warning above you know you have exceeded
that maximum sample period that can be used.

2.4.4.2. Disabling Application Stack Use by the Sampler

By default the sampler will use the application stack for temporary storage, since that is faster than
aternative storage options. This is safe to do with the vast mgjority of applications, since the sampler
obeys the standard conventions for how the stack should be managed.

However, with a few applications that use the stack in a non-standard way this may lead to incorrect
execution or crashes. If you experience such problems you may want to try disabling the sampler's use of
the application stack. Thiswill result in slower sampling, but avoids the potential problems.
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Todisablethe sampler's use of the application stack add the --safe-stack option to the sample command, or
check the Safe stack handling check box in the Advanced sampling settingsdialog if you are using the GUI.

2.5. Running ThreadSpotter™ in a Virtualized
Environment

When doing its analysis, ThreadSpotter™ will by default try to detect the processor architecture of the
machine the analysis is run on and use that for the analysis. This ensures that the analysis results are
accurate with respect to the number of cores, threads and cache levels, cache sizes, cache sharing between
threads, and so on.

However, when running in avirtualized environment it may not be possible to find a consistent hardware
model for the virtual machine. The virtual machine may, for example, only have three virtual processors
even though the physical machineit isrunning on hastwo quad-core processors. The mapping from virtual
processors that virtualized software sees to actual cores or threads in the physical hardware may also
change from one moment to the next.

In these circumstances ThreadSpotter™ may not be able to accurately identify the processor architecture.
When this happens ThreadSpotter™ will print awarning during the analysis and assume that each virtual
processor is a separate single-core, single-threaded processor:

$ report -i sanple.snp

Info: Failed to auto-detect processors, the nunmber of threads differs
bet ween packages, 1 vs 3. Assuming 4 single-core, single-threaded
processors.

Info: Processor auto-detection failure is often caused by running in
a virtualized environment. It is recomended that you manually
specify the processor nbdel and number of processors you want to do
the anal ysis for.

A warning banner will also be included at the top of the generated report.

If this happens you should manually specify the processor model and number of processors you want to
perform the analysis for. See Section 2.1.2, “ Generating a Report from a Sample File” for how to set the
processor model from the graphical user interface, or use the --cpu and --number -of-cpus options to the
report command if you are using the command line tools, see Section 2.2.2.1, “ Specifying the Processor
Model”.
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Chapter 3. Introduction to Caches

To be ableto optimize aprogram for efficient processor cache usage some knowledge of how cacheswork
isrequired. This chapter will give you a basic introduction to caches.

Processors may use un-cached memory regions for low-level 1/0. Some processors can map fast private
memory banksinto parts of the memory space instead of using a cache. There may also be special memory
accessinstructionsthat do not usethe cachethat can be used in some situations. This chapter only considers
regular memory accesses, and ignores these special cases.

3.1. Motivation for Caches

Modern processors can run at clock speeds of several GHz and are able to execute several instructions
per clock cycle. This means that a processor may have a peak execution speed of several instructions per
nano-second. For example, a 3 GHz processor capable of executing 3 instructions per cycle has a peak
execution speed of 9 instructions per ns.

Modern RAM memories on the other hand are quite slow. An access to RAM memory takes 50 ns or
more, causing the processor to stall waiting for the data to arrive. This makes RAM accesses one of the
slowest operations a processor can perform. For example, a processor capable of executing 9 instructions
per ns could have executed up to 450 instructions in the time it takes to perform a single RAM access
with alatency of 50 ns.

Thetimeit takes to load the data from memory is called the latency of the memory operation. It isusually
measured in processor clock cyclesor ns.

Since memory accesses are very common in programs and can account for more than 25% of the
instructions, memory access latencies would have a devastating impact on processor execution speed if
they could not be avoided in some way.

To solvethisproblem computer designers haveintroduced cache memories, which are small, but extremely
fast, memories between the processor and the slow main memory. Frequently used data is automatically
copied to the cache memories. This allows well written programs to make most of their memory accesses
to the fast cache memory and only rarely make accesses to the slow main memory.

Often a computer does not just use a single cache, but a hierarchy of caches of increasing size and
decreasing speed. For example, it may have a 64 kilobyte cache with a latency of 3 cycles for the most
frequently accessed data, and a 1 megabyte cache with alatency of 15 cyclesfor less frequently accessed
data. The caches in such a configuration are called the first level cache (the 64 kilobyte cache) and the
second level cache (the 1 megabyte cache), or shorter the L1 and L2 caches. Some computers may also
also have an additional third cache level, the L3 cache.

3.2. Cache Lines and Cache Size

It could be left up to the programmer or compiler to determine what data should be placed in the cache
memories, but this would be complicated since different processors have different numbers of caches and
different cache sizes. It would also be hard to determine how much of the cache memory to alocate to
each program when several programs are running on the same processor.

Instead the allocation of space in the cache is managed by the processor. When the processor accesses a
part of memory that isnot already in the cacheit loads a chunk of the memory around the accessed address
into the cache, hoping that it will soon be used again.
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The chunks of memory handled by the cache are called cache lines. The size of these chunksis called the
cache line size. Common cache line sizes are 32, 64 and 128 bytes.

A cache can only hold alimited number of lines, determined by the cache size. For example, a64 kilobyte
cache with 64-byte lines has 1024 cache lines.

3.3. Replacement Policies

If al the cache lines in the cache are in use when the processor accesses a new line, one of the lines
currently in the cache must be evicted to make room for the new line. The policy for selecting which line
to evict is called the replacement policy.

The most common replacement policy in modern processors is LRU, for least recently used. This
replacement policy simply evicts the cache line that was least recently used, assuming that the more
recently used cache lines are more likely to soon be used again.

Another replacement policy is random replacement, meaning that a random cache line is selected for
eviction.

3.4. Cache Misses

When a program accesses a memory location that is not in the cache, it is called a cache miss. Since the
processor then hasto wait for the datato be fetched from the next cache level or from main memory before
it can continue to execute, cache misses directly influence the performance of the application.

It is hard to tell from just the number of misses if cache misses are causing performance problemsin an
application. The same number of misses will cause a much greater relative slowdown in a short-running
application than in along-running one.

A more useful metric is the cache miss ratio, that is, the ratio of memory accesses that cause a cache
miss. From the miss ratio you can usually tell whether cache misses may be a performance problem in
an application.

The cache miss ratio of an application depends on the size of the cache. A larger cache can hold more
cache lines and is therefore expected to get fewer misses.

The performance impact of a cache miss depends on the latency of fetching the data from the next cache
level or main memory. For example, assume that you have a processor with two cache levels. A missin
the L1 cache then causes data to be fetched from the L2 cache which has a relatively low latency, so a
quite high L1 missratio can be acceptable. A missin the L2 cache on the other hand will cause along stall
while fetching data from main memory, so only amuch lower L2 missratio is acceptable.

A specia caseis cache misses caused by prefetch instructions, see Section 3.6.1, “ Software Prefetching”.
Unlike other cache misses these do not cause any stalls, but will instead trigger a fetch of the requested
data so that later accesses will not experience a cache miss. In fact, a prefetch instruction should ideally
have a high missratio, since that means the prefetch instruction is doing useful work.

ThreadSpotter™ therefore does not include misses caused by prefetch instructions when calculating
statistics for instruction groups, loops or the entire application.

3.5. Data Locality

Asdescribed above, cacheswork on the assumption that datathat is accessed once will usually be accessed
soon again. This kind of behaviour is known as data locality. There are two kinds of locality that are
sometimes distinguished:
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» Temporal locality meansthat the program reusesthe samedatathat it recently used, and that therefore
islikely to be in the cache.

» Spatial locality means that the program uses data close to recently accessed locations. Since the
processor 1oads a chunk of memory around an accessed location into the cache, locations close to
recently accessed locations are also likely to be in the cache.

It is of course possible for a program exhibit both types of locality at the sametime.

Good data locality is essential for good application performance. Applications with poor data locality
reduce the effectiveness of the cache, causing long stall times waiting for memory accesses.

3.6. Prefetching

3.6.1.

Even programs with good data locality will now and then have to access a cache line that is not in the
cache, and will then stall until the data has been fetched from main memory. It would of course be better
if there was away to load the data into the cache before it is needed so the stall could be avoided. Thisis
called prefetching and there are two ways to achieve it, software prefetching and hardware prefetching.

Software Prefetching

With software prefetching the programmer or compiler inserts prefetch instructions into the program.
These are instructions that initiate a load of a cache line into the cache, but do not stall waiting for the
datato arrive.

A critical property of prefetch instructionsis the time from when the prefetch is executed to when the data
isused. If the prefetch istoo close to the instruction using the prefetched data, the cache line will not have
had time to arrive from main memory or the next cache level and the instruction will stall. This reduces
the effectiveness of the prefetch.

If the prefetch istoo far ahead of the instruction using the prefetched data, the prefetched cache line will
instead already have been evicted again before the data is actually used. The instruction using the data
will then cause another fetch of the cache line and have to stall. This not only eliminates the benefit of the
prefetch instruction, but introduces additional costs since the cache line is now fetched twice from main
memory or the next cache level. Thisincreases the memory bandwidth requirement of the program.

Processors that have multiple levels of caches often have different prefetch instructions for prefetching
datainto different cache levels. This can be used, for example, to prefetch data from main memory to the
L2 cache far ahead of the use with an L2 prefetch instruction, and then prefetch data from the L2 cache
to the L1 cache just before the use with a L1 prefetch instruction.

There is a cost for executing a prefetch instruction. The instruction has to be decoded and it uses some
execution resources. A prefetch instruction that always prefetches cache lines that are already in the cache
will consume execution resources without providing any benefit. It is therefore important to verify that
prefetch instructions really prefetch datathat is not already in the cache.

The cache miss ratio needed by a prefetch instruction to be useful depends on its purpose. A prefetch
instruction that fetches data from main memory only needs a very low miss ratio to be useful because of
the high main memory access latency. A prefetch instruction that fetches cache lines from a cache further
from the processor to a cache closer to the processor may need amissratio of afew percent to do any good.

It iscommon that software prefetching fetches slightly more datathan is actually used. For example, when
iterating over alarge array it is common to prefetch data some distance ahead of the loop, for example,
1 kilobyte ahead of the loop. When the loop is approaching the end of the array the software prefetching
should ideally stop. However, it is often cheaper to continue to prefetch data beyond the end of the array
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3.6.2.

than to insert additional code to check when the end of the array is reached. This means that 1 kilobyte of
data beyond the end of the array that isn't needed is fetched.

Hardware Prefetching

Many modern processors implement hardware prefetching. This means that the processor monitors the
memory access pattern of the running program and tries to predict what data the program will access next
and prefetches that data. There are few different variants of how this can be done.

A stream prefetcher looks for streams where a sequence of consecutive cache lines are accessed by
the program. When such a stream is found the processor starts prefetching the cache lines ahead of the
program's accesses.

A stride prefetcher looks for instructions that make accesses with regular strides, that do not necessarily
have to be to consecutive cache lines. When such an instruction is detected the processor triesto prefetch
the cache lines it will access ahead of it.

An adjacent cache line prefetcher automatically fetches adjacent cache lines to ones being accessed by the
program. This can be used to mimic behaviour of alarger cache line size in acache level without actually
having to increase the line size.

Hardware prefetchers can generally only handle very regular access patterns. The cost of prefetching data
that isn't used can be high, so processor designers have to be conservative.

An advantage of hardware prefetching compared to software prefetching is that no extrainstructions that
use execution resources are needed in the program. If you know that an application is going to be run on
processors with hardware prefetching, a combination of hardware and software prefetching can be used.
The hardware prefetcher can be trusted to prefetch highly regular accesses, while software prefetching can
be used for irregular accesses that the hardware prefetcher can not handle.

3.7. Multithreading and Cache Coherence

Computers with multiple threads of execution, either with multiple processors, multiple cores per
processor, or both, introduce additional complexity to caches. Different threads accessing the same data
can now have private copies of the datain their local caches, but writes to the data by one thread must still
be seen by all other threads. Some mechanism to keep the caches synchronized is needed.

The mechanism that keeps the caches synchronized is called a cache coherence protocol. There are
different possible coherence protocols, but most modern processors use the MES protocol or some
variation such asthe MOESI protocol. ThreadSpotter™ therefore currently models the MES protocol.

The MESI protocol is named after the four states of a cache line: modified, exclusive, shared and invalid:

Cacheline statesin the MESI protocol

M - Modified The datain the cache lineis modified and is guaranteed to only reside
in this cache. The copy in main memory is not up to date, so when
the cache line leaves the modified state the data must be written back
to main memory.

E - Exclusive The data in the cache line is unmodified, but is guaranteed to only
reside in this cache.

S- Shared Thedatain the cachelineis unmodified, and there may a so be copies
of it in other caches.

| - Invalid The cache line does not contain valid data.
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This section is not intended to be a complete description of cache coherency, but only aquick introduction
allowing you to understand the types of multithreading problems ThreadSpotter™ can identify. Good
sources with more detailed information on cache coherency can be found by searching on the internet.

Wewill now go through some examples of how the MESI protocol works. For smplicity we will assume
that we are running on a two-processor system where each processor has its own private cache on asingle
cache level:

Thread 1 Thread 2

( Cachel j [ Cache 2 )

Main Memory

Figure 3.1. Example System

Intheseexamplesdatatransfersaredrawninred, whiledowngrade and invalidation trafficisdrawnin blue.

If athread reads data not present in any cache, it will fetch the lineinto its cache in exclusive state (E):

threadl thread2 threadl thread2

(o ‘ ) (o ‘ ) (|E| e 0 (m )
| - |

variable variable

Figure 3.2. Cache Coherence, Example 1

If athread reads from a cache line that isin shared state (S) in another thread's cache, it fetches the cache
lineinto its cache in shared state (S):

threadl thread2 threadl thread2

[||| ‘ 0 (|s| variabis 0 (lsl T 0 (lsl wriabis |)
| —p |

variable variable

Figure 3.3. Cache Coherence, Example 2

24




Introduction to Caches

If athread readsfrom acachelinethat isin exclusive state (E) in another thread's cache, it fetchesthe cache
line to its cache in shared state (S) and downgrades the cache line to shared state (S) in the other cache:

threadl thread2 threadl thread2
[ll | |j (|E| variable |j (|S| varlable |j (|S| variable |)
| [ variable ]

Figure 3.4. Cache Coherence, Example 3

If athread reads from a cache line that isin modified state (M) in another thread's cache, the other cache
must first write-back its modified version of the cacheline and downgradeit to shared state (S). The thread
doing the read can then add the cache line to its cache in shared state (S):

threadl thread2 thread1 thread2

Ou ‘ |j Owwmw |j @awmm |j @mwmm |j
| - \"

[varapie ]

Figure 3.5. Cache Coherence, Example 4

When a thread has a cache line in exclusive (E) or modified state (M) it can write to it with very low
overhead, since it knows that no other thread can have a copy of the line that needs to be invalidated. A
write to an exclusive cache line makes it modified (M):

threadl thread2 thread1 thread2

Oawmw |j [m ‘ 0 [wwmm 0 [n| ‘ 0

variable variable

Figure 3.6. Cache Coherence, Example 5
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When a thread writes to a cache line that it has in shared state (S) it must upgrade the line to modified
state (M). In order to do this it must invalidate (I) any copies of the line in other caches, so that they do
not retain an outdated copy:

threadl thread2 threadl thread2
[|S| variable |] (|S| variable |] [|M| variable |) (“ [ |)
I A
| ‘ | [ —T |
I

Figure 3.7. Cache Coherence, Example 6

When athread writes to a cache line that it does not have in its cache, it must fetch the line and invalidate
(I) it in al other caches. If another thread has a modified (M) copy of the cache line it must first write it
back before the thread doing the write can fetch it.

threadl thread2 thread1 thread2
[“ | |] (|M| variable |] (|M| variable |] (“ | |)
A ] A ]
| ‘ | |
. !
[ _variable

Figure 3.8. Cache Coherence, Example 7

The above is not a complete enumeration of coherence interaction, and in reality there are other access
types to consider such as prefetches and cache line flushes, but it should give basic understanding of have
cache coherence affects.

Based on the coherence related events, ThreadSpotter™ presents statics about the following expensive
thread interactions:

Upgrades The upgrade count is the number of memory accesses that cause a
cache line to be upgraded from shared state to either exclusive or
modified state.

There are two scenarios where this can happen. A thread can read a
cache line into its cache in shared state because it is aready in the
cache of another thread, and then writeto it. Or, athread hasthe cache
line in its cache in exclusive or modified state, but it is downgraded
to shared state because of a read from another thread, and the thread
then writes to the line.
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Coherence misses The coherence miss count isthe number of memory accesses that miss
because a cache line that would otherwise be present in the thread's
cache has been invalidated by awrite from another thread.

Coherence write-backs The coherence write-back count isthe number of memory access that
force a cache line that is in modified state in another thread's cache
to be written back.

All of theabove can a so bereported asratios. They arethen reported asthe percentage of memory accesses
that suffer from one of theseinteractions. For example, acoherence missratio of 3% meansthat on average
3 out of every 100 memory accesses suffer from coherence misses.

3.8. Fetch Ratio

In aprocessor without any kind of prefetching the cache missratio will equal the ratio of memory accesses
that cause a fetch from main memory. However, with prefetching the number of cache misses may be
much lower than the number of accesses the processor does to main memory.

Prefetching therefore introduces a new concept, the fetch ratio. This is the ratio of memory access
instructions that cause a fetch from main memory. Note that writes normally cause afetch of acacheline
even though the data in the lineisn't actually used.

Thefetch ratio directly reflects the memory bandwidth requirement of the application's read accesses, see
below.

3.9. Upgrade Ratio

The ratio of memory accesses that cause an upgrade (see general description of upgrades and other
coherence related conceptsin Section 3.7, “Multithreading and Cache Coherence”.)

If two threads, having their own private caches, alternatingly update a piece of shared memory, the
corresponding cache lineswill repeatedly change ownership and their state in the caches will aso change.
Specifically, when athread writes to a cache line that was owned by a different cache, the cost of a cache
line upgrade is imposed on the thread performing the write operation. This is expensive, well in parity
with the cost of a cache miss.

3.10. Write-Back Ratio

Similar to fetch ratio, the write-back ratio informs about the likelihood that a write instruction actually
causes data to be written back to memory. Thisis also directly related to the bandwidth requirements of
the application.

3.11. Memory Bandwidth

Itisnot only thelatency of the memory accessesthat can limit the execution speed of an application. There
isaso alimited ratio at which data can be read from main memory, the memory bandwidth limit.

When the memory bandwidth limit isreached it isno longer the latency of the memory accessesthat limits
the execution speed, but the number of accesses to main memory that the application causes. The only
way to improve performance is then to reduce the fetch ratio of the application, so that the number of main
memory accesses is reduced.
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When a program hits the memory bandwidth limit some optimizations intended to reduce the impact
of memory access latencies become ineffective, or even reduce performance. For example, prefetching
does not reduce the number of main memory accesses, so it loses its effect. Instead, prefetching often
leads to more main memory accesses since some data that isn't used is usually prefetched, decreasing the
performance of the application.

For single-core processorsit is relatively unusual that applications hit the memory bandwidth limit. Very
high fetch ratios arerequired for thisto happen. However, with the current trend towards multithreaded and
multicore processors the computation power of processors is increasing very rapidly, while the memory
bandwidth is increasing much more slowly. This makes the memory bandwidth limitation one of the
biggest problems for scaling application performance on multicore processors.

Applicationsthat manage to stay below the memory bandwidth limit on single-core processors and having
problems that were hidden by hardware or software prefetching, may suddenly hit the memory bandwidth
limit when parallelized on multicore processors. It is not unusual that applications get no speed-up at all.
Some applications even get reduced performance, since threads start throwing each other's data out of the
cache, further increasing the fetch ratio.
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Chapter 4. ThreadSpotter™ Concepts

In addition to the concepts such as cache sizes, cache lines sizes, miss ratios and fetch ratios commonly
associated with caches, ThreadSpotter™ also uses some other concepts.

4.1. Issues

When ThreadSpotter™ finds a problem area in the application it reports it as an issue in the report. The
issue tells you what kind of problem has been found and points you to where in the source code it can
be found.

For each issue ThreadSpotter ™ points you to the instruction group related to the issue, the loop containing
the issue and list some related statistics. Exactly what information is associated with the issue is varies
with the issue type.

See Chapter 8, Issue Reference for more information about issues.

4.2. Loops

A loop in ThreadSpotter™ is just what it sounds like, a loop in the program. A for loop in a C program
will usualy trandate to aloop in a ThreadSpotter™ report. However, since ThreadSpotter™ looks at the
binary code of the application, the loops seen by ThreadSpotter™ may not always exactly correspond to
the loops in the source code.

Since ThreadSpotter ™ focuses on memory and cache performanceit only liststhe memory accesses when
listing the instructions in loops, other types of instructions are ignored. However, some instructions that
you usually would not consider to be memory accesses are included, for example, function call and return
instructions may save and restore the return address on the stack and therefore be included.

L oops may be related to other loops, in the sense that one loop may be contained inside one or more outer
loops, just like afor loop in C may be nested inside another for loop. This way a hierarchy of inner and
outer loopsis created.

Most reported issues are associated with aloop in the application.

4.3. Instruction Groups

Aninstruction group in ThreadSpotter™ isanumber of instructionswithin aloop that touch the same data
structure. Or more accurately, that touch the same cache lines. Instruction groups are a natural and useful
unit when looking the behavior of the program.

Anissueisusually related to acertain instruction group. For example, aloop may copy datafrom one data
structure to another. It would then contain one instruction group reading from the source data structure
and one instruction group writing to the destination data structure. If there is a problem in one of the data
structures the issue would point you to the source code lines of the instructions making up the instruction
group accessing that data structure.

4.4. Last Writer

The report generated by ThreadSpotter™ points the user to the source code lines containing the memory
accesses that cause each issue, as described above. However, a single source code line may contain
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complex expressions that contain many memory references, and it may not be obvious which one of these
itisthat is causing the issue.

To makeit easier for the user to determine which memory accesses or data structure in alarge expression
is causing an issue, the report a so displays the previous location at which that particular memory location
was written. Usually only one variable is written on each line, which directly tells the programmer which
variablein the original expression isinvolved in theissue.

4.5. Fetch Utilization

The fetch utilization indicates how large fraction of the data brought into the cache that is actually read
before the lineis evicted. The valueis proportional to the bandwidth required for loads.

A low fetch utilization means that bandwidth is wasted by loading data that is never used. A large portion
of the cacheis also tied up storing data never being read. When optimizing software you should strive to
maximize the fetch utilization.

Remember that not only explicit dataloads cause a cache line to be fetched, stores normally cause a cache
line fetch as well. It is therefore possible to get a 0% fetch utilization, which would indicate that a cache
lineisfetched but no part of the lineisread before it is evicted from the cache.

4.6. Write-Back Utilization

When an application writes data, the changes are first stored in the cache, and not until the cache lineis
evicted is the entire cache line written back to memory. If only part of the cache line is written to, then
precious bandwidth is consumed to write-back data that has not changed.

Write-back utilization expresses how much of the cache line that has been updated. Y ou should strive to
get a 100% write-back utilization to minimize the amount of wasted bandwidth.

4.7. Communication Utilization

When two threads share data, the ownership of the cachelineis moving between thetwo threads respective
caches asthe two threads access the data. Thetransfer of ownership takes sometime, and one should strive
for arranging data and adjust algorithms so that it doesn't occur too frequently.

Similar to fetch utilization and write-back utilization, the Communication utilization measures efficiency.
In this case, it measures the percentage of the cache line that is being written by the producing thread and
then actually being consumed by the receiving thread. Y ou should arrange data so that al of the cacheline
gets consumed before the producer writes to the cache line again.

A special case of low communication utilization is known as false sharing (see Section 5.4.1, “False
Sharing”), where the two threads don't access any overlapping data.

4.8. Utilization Corrected Fetch Ratio

The utilization corrected fetch ratio is an estimation of what the fetch ratio would be if the application
was changed so that 100% fetch utilization was achieved, for example, by changing a data structure to
a more compact representation. It does not take the effect of other suggested changes into account, for
example, blocking advice.

The utilization corrected fetch ratio can be displayed for the entire application, a loop or an instruction
group. When it is displayed for aloop or an instruction group it is the utilization corrected fetch ratio of
that specific part of the code if that specific part of the code was fixed.
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4.9. Utilization Corrected Write-Back Ratio

4.10

4.11

4.12

The utilization corrected write-back ratio is an estimation of what the write-back ratio would be if the
application was changed so that 100% write-back utilization was achieved.

Theutilization corrected write-back ratio can be displayed for the entire application, aloop or aninstruction
group. When it isdisplayed for aloop or an instruction group it is the utilization corrected write-back ratio
of that specific part of the code if that specific part of the code was fixed.

Hardware Prefetch Probability

Modern processors detect regular access patterns in applications, and use thisinformation to prefetch data
into the cache before it is needed by the application. This can hide the memory accesses latencies and
avoid the stalls that the cache misses would otherwise have caused.

ThreadSpotter™ models a generic hardware prefetcher and estimates the percentage of the cache misses
that can be avoided by the hardware prefetcher. This number assumes an idle memory bus and does not
take the memory bandwidth limitation into account.

The hardware prefetch probability can be used to judgeif addressing anissuewill be worthwhile, and have
noticeable effect, or if the processor is likely able to handle the problem by itself. Fixing an issue with a
high hardware prefetch probability may not result in a performance improvement, since the processor is
likely to able to prefetch the data and therefore avoid cache misses.

However, if the application runs into the memory bandwidth limitation the prefetching will be ineffective
and fixing the issue will improve performance anyway.

Another use for the hardware prefetch probability is to find data structures that are not effectively
prefetched by the hardware prefetcher, and try to reorgani ze them so that they can be effectively prefetched.

Access Randomness

ThreadSpotter™ estimates the randomness of the memory accesses patterns of loops and instruction
groups. It is reported as either low, high or very high.

When you optimize a program you should try to minimize the random access patterns in the program.
Random access patterns are generally harmful to application performance. See Section 5.2.2, “Random
Access Pattern”.

Call Stack

ThreadSpotter™ records information about how functions in the application call each other. The chain of
functions leading up to a point of interest is called a call stack.

The call stack tellsyou which functions have called which to reach the point in the program you arelooking
at. Thisisuseful to know when trying to reduce the number of callsto afunction that causes large numbers
of cache misses.

ThreadSpotter™ augments source code and instruction listings in the report with call stack information,
and visualizes the different call stacksin the source code annotation by color coding them differently.

A function may behave differently when called from different locations. It may for example work well
when called with a small data set from one location, but behave badly when called with a larger data set
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4.13.

from another location. ThreadSpotter™ therefore optionally uses the call stack information to separate
different call sites from each other and give individual advice for the function when called from each call
site.

The number of levels of caling functions used to differentiate between call sites is called the call
stack depth. The call stack depth used in the analysis can be varied to suit your application. By default
ThreadSpotter™ uses a call stack depth of 1, that is, only the innermost calling function is considered in
the analysis.

A lower call stack depth reduces the number of reported issues by merging different call sites. A call stack
depth of 0 will completely disregard where functions are called from. A higher call stack depth generally
increases the number of issues and their accuracy, but may also make the report harder to overview.

When attaching to a running process, the sampler does not have complete knowledge of the call stack
at that point. This may result in several contexts being evaluated; one for each discovered version of the
callstack. The same thing can happen when burst-sampling the application. The recommendation for these
cases isto reduce the depth of the call stack begin part of the analysis.

Sample Period

The sample period is a measure of how dense information about the memory access patterns of the
application is captured by ThreadSpotter™ when sampling an application. A lower sample period means
capturing more information. ThreadSpotter™ automatically adapts the sample period to the application
being run, so thereis usually no need to care about the sample period.

However, for applicationsthat run for avery short time, afew seconds or less, you may need to manually
decrease the sample period. For applications that run for along time there may also be some performance
to be gained from increasing the sample period. See Section 2.4.4.1, “Tuning the Sample Period”.
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Chapter 5. Memory Performance
Problems and Solutions

This chapter presents common causes for cache and memory related performance problems and solutions
to these problems. The problems can be divided into two categories, datalayout problems and data access
pattern problems. We also present some common data structures and problems that they may cause.

This chapter uses some memory layout graphs to clarify what is happening in the cache. Cache lines are
drawn with solid lines. Boundaries between data fields are drawn with thinner dashed lines. Used parts of
acacheline are drawn in green, and unused parts of touched cache linesin red. Completely unused cache
lines are drawn in white. For example, two cache lines where the first half of the first cache line is used
and the second cache line is completely unused would look like this:

I |

Figure5.1. Data Layout Example

5.1. Data Layout Problems

Data layout problems is a large class of related problems that originate in how the programmer or the
compiler organizes the variables and objects that the program uses in memory. Thisis affected by choice
of data structures and data types, as well as the ordering of objects within such structures.

The common property of all datalayout problemsisthat datathat is frequently used is mixed in the same
cache line with data that is rarely or never used. There are many reasons why this may happen.

Figure5.2. Good Utilization

Figure 5.3. Poor Utilization

Bad datalayout is penalized twice:

» Bad data layout increases the number cache lines needed to hold the frequently used data, which
increases the number of cache misses and cache line fetches.
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For example, assume that a part of an application frequently needsto sequentially go through alarge
number of 8-byte values, and that the processor uses 64-byte cache lines. If the data is optimally
packed 8 of these values can be stored in each cache ling, but if it is interleaved with other 8-
byte values only 4 values can be stored in each cache line. See Figure 5.2, “Good Utilization” and
Figure 5.3, “Poor Utilization”. With the poorly packed data twice as many lines need to be accessed
when going through the values, and with the same missratio it causes twice as many cache misses.

Bad data layout also increases the cache miss ratio by reducing the effective cache size, that is, if
datais poorly packed less useful data will fit in a cache of a certain size. This way bad data layout
increases the cache miss ratio.

For example, in the example above twice as many of the frequently accessed valuesin the cachein
the optimally packed case compared to the interleaved case.

Since bad data layout increases the number of cache line fetches it also increases the memory bandwidth
requirement of the application. For applications that are limited by the available memory bandwidth this
can have a serious performance penalty.

Partially Used Structures

A common cause for poor data layout is structures that are only partially used. Modern programming
paradigms call for people to collect related data in structures or objects. However, this is often harmful
to cache performance.

Consider the following example. Here we have a structure we four fieldsa, b, ¢ and d. All the fields may
be used somewhere in the application, but in the most performance critical loop only a and b are used.

struct record {

i nt
i nt
i nt
i nt

b

o0 T W

struct record r[ Sl ZE];

for

(int i =0; i<SIZE i++) {

rii].a =r[i].b;

}

Nevertheless, the unused fields are brought into the cache from memory, doubling the number of cache
line fetches and occupying half of the cache space.

> 1> PP

Figure5.4. Unused Fields
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5.1.2.

5.1.3.

If this code can be rewritten so that the rarely used fields are moved to a separate structure:

struct record_ab {

int a
int b;

b

struct record_cd {
int c;

int d;
b

struct record_ab r_ab[ Sl ZE] ;
struct record_cd r_cd[ Sl ZE] ;

for (int i=0; i<SIZE i++) {

r_abl[i].a =r_ab[i].b;
}

The performance critical loop will now only load the fields that are actually used into the cache.

A
A

A
A

A
A

A
A

A
A

A
A

4
A B

A
A

10 |O
|0 |O
10 |0
10 |0
10 |0
10 |0
10 |0

Figure5.5. No Unused Fields

Thisoptimization should only be used whenitisactually needed. Most programmerswill find the modified
code ugly and harder to read, and the change goes against all that is taught about programming. However,
when used carefully this optimization can result in very large performance improvements.

Too Large Data Types

A problem very similar to having unused fields isto use larger data types than necessary. The effect isthe
same. Fewer fieldsfit into each cache line, causing more cache line fetches and a higher cache missratio.

For example, if a 64-bit data type is used where a 16-bit data type would be sufficient, only a forth as
many elements will fit into a cache line.

Unfortunately ThreadSpotter™ is not able to determine if data types are larger than necessary. The
generated reports will therefore not warn about this type of problem, and you have to manually check the
codefor it.

Alignment Problems

Many modern processors reguire memory accesses to be made to aligned addresses. Some processors
support unaligned accesses, but the performance of aligned memory accesses are usually till better.

Most processors require natural alignment. This means that afield has to be stored at an addressthat isa
multiple of its size, for example, a 4-byte field has to be stored at an address that isa multiple of 4 and an
8-byte field has to be stored at an address that is a multiple of 8.
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Compilers are aware of this and insert padding between variables and fields to ensure that each field starts
at an address with correct alignment for its particular data type. This padding consumes cache space, and
this waste can often be avoided or minimized by careful ordering of structure members. Consider this
example:

struct record {
char a;

int b;

char c;

};

Assume that char is a 1-byte data type and int is a 4-byte data type. The compiler will then lay out data
three bytes of padding between fieldsa and b to ensurethat b is stored at an offset that is a multiple of 4.

Figure5.6. Poor Internal Alignment

If you movethefield a after b the alignment requirements of all fields can be satisfied without an padding.

struct record {
int b;
char a;
char c;

};

0 4 5

b a

c

Figure5.7. Good I nternal Alignment

Y ou can of course count offsetsinto the structureyourself and assureall fields get proper alignment without
any padding, but a simpler way to ensure that there is no unnecessary padding isto simply sort the fields
by their alignment requirements. Start with the fields with the greatest alignment requirements and then
continue with the fields in declining alignment requirement order.

If your structureis so large that it uses more than one cache line you may however want make sure that the
most commonly used fields are close together, so that you avoid mixing frequently used fields and rarely
used fields as described in Section 5.1.1, “Partially Used Structures’.

We have now eliminated the internal alignment padding in the structure. However, there is aso an
alignment reguirement on the structure as a whole. Consider this example where an array of structures
is created:

36




Memory Performance
Problems and Solutions

5.1.4.

struct record {
int b;
char a;
char c;

b

struct record v[1000];

The structure may, for example, require 8-byte alignment. Since the structureis 6 byteslarge, the compiler
hasto insert 2 bytes of padding between each structurein the array to ensure alignment.

. b Jalclll v lalc

Figure5.8. External Alignment

External alignment like thisis harder to avoid than internal alignment. One way may be to break out less
frequently used fields as described in Section 5.1.1, “Partially Used Structures’.

If the processor does not strictly require alignment but simply prefersit for better performance, like, for
example, x86 processors, the compiler may provide pragmas that you can use to tell it to not insert any
padding. The performance increase from reduced cache misses may outweigh the cost of the unaligned
MEMOry aCccesses.

Using unaligned structures like that may however cause other problems, for example, shared libraries
compiled with such pragmas may be incompatible with code compiled with other compilers.

Dynamic Memory Allocation

Many implementations of standard memory allocators reserve extra housekeeping data adjacent to each
piece of alocated memory. This data is typically only used when allocating and deallocating the areas,
and is unused for the larger part of the application execution.

If many small memory allocations are done by the application a significant part of the cache lines can be
occupied by this housekeeping data. Consider an application allocating 32-byte structures with amemory
allocator that allocates 16 bytes of data for housekeeping:

144 160

0 16 48 64 96 112

Figure5.9. Dynamic Memory Allocation

This problem can be avoided by avoiding allocating many individual objects. If you need to allocate 1000
objects, allocate an array with 1000 objects instead of allocating 1000 individual objects.

Y ou may even want to consider implementing your own custom memory management. It could allocate
asizable chunk of memory, and then hand out memory regions within this block. This way the overhead
iskept at aminimum.
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There are also aternative memory allocation packages available that allocate their housekeeping datain a
different memory region than the allocated memory to avoid this kind of problem.

Dynamic memory allocation may also spread allocated memory regions over the heap causing random
access patterns, see Section 5.2.2, “ Random Access Pattern”.

5.2. Data Access Pattern Problems

5.2.1.

Data access patterns also affect cache and memory related performance. Changing the order in which
various data items are accessed can be as rewarding as optimizing the data layout. There are severa
variations of inefficient access patterns, each with a different set of remedies.

Inefficient Loop Nesting

Inefficient loop nesting is a problem specific to algorithms that work on multidimensional arrays. If the
array is traversed along the wrong axis only one element will be used from each cache line before the
program continues to the next cache line.

For example, consider this small snippet of C code iterating over a 2-dimensional matrix:

doubl e array[ SI ZE] [ SI ZE] ;

for (int col = 0; col < SIZE; col ++)
for (int row = 0; row < SIZE; rowt+)
array[row][col] = f(row, col);

In one iteration of the outer loop the inner loop will access one element in each row of a specific column.
For example, for a 8-by-8 matrix:

Figure 5.10. Inefficient L oop Nesting

For each element touched by the loop, a new cache line is accessed. The first level cache of a processor
may not hold more than afew hundred cachelines. If the array has more than a couple of hundred rows, the
rows from thetop of the matrix may already have been evicted from the cache when bottom of the matrix is
reached. The next iteration of the outer loop then hasto reload all of the cache lines again, causing a cache
miss for each element that istouched. Thisis completely devastating to the performance of the loops.

Since only one element from each fetched cache line is used, incorrect loop nesting also wastes a lot of
memory bandwidth on fetching data that isn't used.
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The problem can be fixed by changing the nesting of the loops so that they traverse the matrix along the
rows instead of along the columns.

doubl e array[ SI ZE] [ SI ZE] ;

for (int row = 0; row < SIZE;, rowt+)
for (int col = 0; col < SIZE;, col ++)
array[row][col] = f(row, col);

Each iteration of the outer loop now usesall of the elementsin each cache line and the same cachelineswill
not have to be reused by later iterations, resulting in greatly reduced cache misses and cache line fetches.

Figure5.11. Efficient Loop Nesting

Accessing data sequentially also helps the hardware prefetcher to do its job well. This will maximize the
use of available memory bandwidth.

If it is not possible to change the loop nesting without changing the calculation result an alternative isto
transpose the matrix. By changing the data layout the access patterns become more regular, making better
use of fetched cache lines and helping the hardware prefetcher to do a better job. The cost of the incorrect
loop nesting may far outweigh the cost of transposing the matrix.

Incorrect loop nesting is not exclusive to 2-dimensional matrices. The same effect can occur when
traversing any regular multi-dimensional array, for example, in a 3-dimensional matrix.

Fortran organizes its multi-dimensional arrays in the opposite direction compared to C, so if you are
programming in Fortran you would want to iterate over the matrix along the columns instead of along
the rows.

Random Access Pattern

Random memory access patterns are generally harmful to cache and memory performance. With random
access patterns we do not mean truly random accesses, but generally accesses that are not to sequential
addresses, and that are not to the same data or close to data that has recently been used.

As described in Chapter 3, Introduction to Caches, caches work on the expectation that data that has
recently been touched and data close to data that has recently been touched is more likely to be accessed
again. Random access patterns are bad because they generally contain little such reuse, which meansthere
isalow probability to find the accessed datain the cache.
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Random access patterns often also lead to alow cache line utilization. Individual data el ementsin cache
linesmay be accessed without touching the rest of the cacheline. Thisincreasesthefetch ratio and memory
bandwidth requirement of the application in relation to the amount of data it actually uses.

The hardware prefetcher present in modern processors aso relies on finding regular access patterns to
determine what data to prefetch, and thereby hide memory access latencies. Random access patterns
therefore make the hardware prefetcher ineffective. Certain types of irregular access patterns may even
trick the hardware prefetcher into prefetching datathat is not useful, wasting memory bandwidth.

Even accessing main memory is faster when the access is to an address close to the last address that was
accessed.

Random access patterns can originate from different sources:
» Data structures
* Dynamic memory allocation
» Algorithms
Some data structures inherently cause random access patterns.

For example, hash tables are often designed to spread elements randomly throughout the table to avoid
collisions. Element lookups in the table therefore a cause a random access pattern.

Treestructures are another common source of random access patterns. Lookupsof different keysinthetree
cause traversals of different paths through the tree, causing seemingly random memory access patterns.

Replacing such data structures with more cache friendly data structures may provide performance
improvements. See Section 5.5, “Common Data Structures’ for more information .

Dynamic memory allocation can contribute to placing related data objects far away from each other.
Memory allocators usually attempt to allocate memory regions sequentialy, but as the application runs
and memory on the heap is allocated, deallocated and allocated again the heap may become fragmented.
Allocated memory regions may then be spread out over the heap.

Data structures that are allocated incrementally while the application runs are also likely to be spread out
over the address space because of other allocations made by the application.

An example of arandom access pattern caused by dynamic memory allocation could bealinked list created
from newly allocated memory regions. The memory regions may be spread out more or less randomly
through the address space. When the application traversesthelist it woul d therefore cause memory accesses
in amore or less random pattern. If elements are incrementally added to the list during the execution that
islikely to further worsen the problem because of memory fragmentation.

If random memory access patterns because of dynamic memory allocation isaproblem, it may be possible
to implement a custom memory allocator that puts related data close together. If you, for example, have
adata structure that is allocated incrementally during the execution, you could allocate a pool of memory
for that data structure when the application starts and then use memory from that pool for the incremental
allocations.

Finally some algorithms may inherently cause irregular access patterns.

Many graph algorithms are examples of such algorithms. If you represent a graph as an adjacency matrix
the data structure itself is very regular. However, if you perform a depth first or breadth first search in the
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graph the algorithm will cause irregular accesses to the adjacency matrix as it follows the edges between
the graph nodes.

Fixing random access patterns caused by algorithmsisgenerally hard. There may be aternative algorithms
with better cache behaviour, but they may be inferior in other ways. Sometimes it may be possibly to
adapt a data structure to the algorithm, for example, it may be possible to sort an adjacency matrix so
that nodes that are connected are close to each other, so that following the edges results in a more regular
access pattern.

Unexploited Data Reuse Opportunities

To use acache optimally an application should, once it has |oaded a cache line into the cache, perform as
much work as possible involving that cache line before it moves on to other data. Thisway the number of
times the cache line has to be loaded into the cache is minimized, and thereby the number of cache line
fetches and the probability of cache misses are reduced.

To achieve this there are two basic techniques. If the data set is large, try working on a small part of the
data set at atime so that that part is reused as much as possible. If there are several operations that should
be performed on a data set then perform them all at once on each element, instead of performing them
one at atime on al elements.

ThreadSpotter™ currently detects two types of such data reuse opportunities, blocking and loop fusion.

5.2.3.1. Blocking

Blocking refers to a class of techniques that aim to break down the original problem into small chunks,
so that all data needed to process each chunk fitsin the cache. This way that data can be optimally reused
before the next chunk is processed.

Blocking can be performed to optimize reuse of adjacent data, spatial blocking, or to optimize for reuse
of the same data, temporal blocking, or both.

An example of a problem where spatial blocking can be used is creating a transposed copy of a matrix:

voi d transpose(doubl e dst[SIZE][ Sl ZE], double src[SIZE][SIZE]) {
int i, j;
for (i =0; i < SIZE; i++)
for (j = 0; j < SIZE, j++)
dst[j][i] = src[i][j];

We see that the sr ¢ matrix is read one row at atime and that the dst matrix is written one column at
atime. If the matrix is large enough there won't be enough cache lines for all the rows accessed in the
dst matrix in one iteration of the outer loop, and we get a very inefficient accesses pattern as described
in Section 5.2.1, “Inefficient Loop Nesting”.

We could change the nesting of the loops as suggested there:

voi d transpose(doubl e dst[SIZE][SI ZE], double src[SIZE][SIZE]) {
int i, j;
for (j =0; j < SIZE; j++)
for (i =0; i < SIZE; i++)
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dst[j][i] = src[i][j];

However, while thisfixed the problem with thedst matrix the sr ¢ isinstead read one column at atime,
so we have only moved the problem.

What we can do isto only copy afew columns from the sr ¢ matrix at atime, so that we know there are
enough cache lines to hold the corresponding rowsin the dst matrix. Each such set of columns becomes
ablock.

voi d transpose(doubl e dst[SIZE][ Sl ZE], double src[SIZE][SIZE]) {
int jb, i, j;
for (jb =0; jb < SIZE, jb += BLOCK)
for (i =0; i < SIZE; i++)
for (j =jb; j <jb + BLOCK && j < SIZE; j++)
dst[j][i] = src[i][j];

Thevariablej b now keepstrack of which columns are being copied from the source matrix in each block.
In thefirst iteration of the outermost loop the columns 0 to BLOCK- 1 are copied, in the next iteration the
columns BLOCK to 2* BLOCK- 1 are copied, and so on.

By choosing a small enough value for the block size BLOCK we can make sure that the corresponding
rows written to the dst matrix in each iteration of the middle loop fit in the cache.

Temporal blocking is sometimes possible for iterated algorithms. Data produced during one iteration is
used in the next one. By performing several iterations for asub-problem, the previousiteration values will
remain in the cache when performing the next iteration.

The cookbook way of performing blocking is to focus on reuse of atarget structure, and work outwards
through loop levelsuntil reaching aloop level that causes all elements of the target structure to be accessed
for eachiteration. Inner loopsto thisouter loop level are candidatesto be broken up. Consider thefollowing
trivial example:

for (int iter = 0; iter < ITER, iter++) // "outer™ |oop
for (int j =0; j < SIZE; j++4)
func(alj]);

Each iteration of the i t er loop causes each element of a to be accessed. Hence we declare the i t er

loop to be the outer loop. Loop levels interior to this loop, namely f or | in this case, are candidates
to be blocked. Upon blocking, one new loop level is placed outside the outer |oop and the original loop
is kept in its the original location, with the restriction that it works on only a subset of the data for each
iteration of the new outermost loop:

for (int jj =0; jj < SIZE; jj += BLOCK)
for (int iter = 0; iter < ITER, iter++) // "outer™ |oop
for (int j =jj; J <jj + BLOCK; j++)
func(alj]);
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Blocking will cause calculationsto occur in adifferent order than in the original code, and sometimesthis
is fine. Many numerical algorithms can be reformulated to maintain accumulators to hold partial results
between processing of different blocks. Some algorithms, however, will not lend themselves to blocking
that easily.

One famous example is blocking a matrix multiplication. The unoptimized code looks like:

for (int i =0; i < SIZE; i++4)
for (int j =0; j < SIZE |++)
clilfjl =0;

for (int i =0; i < SIZE;, i++) // "outer" |oop
for (int j =0; j < SIZE; j++4)
for (int k = 0; k < SIZE; k++)
clilljl +=ali][k] * b[Kk][j];

Thearray b istraversed in the wrong way, and we should try to block with respect to it. Note that thef or
i loop level isthe outer loop which causes al b elementsto berevisited. f or j andf or k aretherefore
candidate loopsto block. This can be done in different ways, for instance only splitting the k loop:

for (int i =0; i < SIZE; i++4)
for (int j =0; j < SIZE; j++4)
clilfjl =0;

for (int kk = 0; kk < SIZE; kk += BLOCK)
for (int i =0; i < SIZE;, i++) // "outer" |oop
for (int j =0; j < SIZE; j++4)
for (int k = kk; k < kk + BLOCK && k < S| ZE; k++)
clilljl +=ali][k] * b[Kk][j];

Or you could even split all the loops, possibly with different blocking factors:

for (int i =0; i < SIZE; i++)
for (int j =0; j < SIZE; j++4)
clilfjl =0;

for (int ii =0; ii < SIZE ii += BLOCKI)
for (int kk = 0; kk < SIZE;, kk += BLOCK K)
for (int jj =0; jj < SIZE jj += BLOCK J)

for (int i =ii; i <ii + BLOCK | & i < SIZE i++)
for (int k = kk; k < kk + BLOCK K && k < SIZE; k++)
for (int j =jj; j <jj + BLOCK J & | < SIZE; |++)
c[i][j] +=a[i][k] * b[K][j];

When blocking, special care needs to be taken to ook for data dependencies. If one iteration depends on
values produced in an earlier iteration, it follows that one must give specia treatment to the boundary
zones of the blocks to preserve the application semantics.

The blocking factor should be chosen to make the active problem size fit inside the target cache size.
Different loop levels can be blocked to fit different cache levels.
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5.2.3.2. Loop Fusion

When two loops use the same data it is beneficial to reduce the amount of data accessed between the
loops. Cache lines fetched into the cache by the first loop may then still be in the cache when the second
loop isrun, so that it doesn't have to fetch them. The less data touched between the two loops, the better.
Ultimately, if it is possible to completely merge the loop bodies, then all potential misses from the second
loop will disappear.

Itisnot always possible to move the operations between loops. Special care must be taken not to move any
data accesses past awrite accesses to the same address, since that will change the meaning of the program.

ThreadSpotter™ will identify such accessesthat may precludeloop fusion. However, there are caseswhere
it may fail, for example, when a dependenceis carried in a processor register and never stored to memory,
or when ThreadSpotter ™'s sparse sampling of information missed some dependency.

Y ou therefore must always verify that theloopsreally arefusible, evenif ThreadSpotter™ suggestsfusion.

Depending on the data dependencies at hand, there are severa variations of how loop fusion can be
achieved:

» Moving instructions down from the first loop into the second loop.

» Moving instructions up from the second loop into the first loop.

» Moving instructions down from the second loop into the next iteration and into the first loop
» Moving instructions up from the first loop into the previous iteration of the second loop.

» Perform apartial loop merge and only move the instructions that do not have data dependencies, in
any of the directions listed above.

Note that since there are four different directions to move the instructions, the code motion barriers are
evaluated independently for each potential motion direction.

Consider this example:

doubl e vector[ Sl ZE] ;
doubl e vector2[ Sl ZE] ;
int i;

for (i =0; i < SIZE i++)
vector[i] =1i;
f(vector?2);

for (i =0; i < SIZE i++)
vector[i] *= vector2[i];

These two loops both use all elementsin vect or . Thefirst loop always misses in the cache, assuming
that vect or has not been accessed before.

If vect or is smaller than the available cache, then it might till be in the cache when the second loop
starts, but that depends on how much datais accessed in the function f . One thing to consider is whether
thecall tof can be moved out of the way. We can't tell from looking at this snippet whether it would be
possible, since the function body is not revealed.
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Assumingthat f only readsthe elementsinvect or 2 it would be possibleto movef beforethefirst loop,
and thus increase the likelihood that data remains in the cache between the loops.

doubl e vector[ Sl ZE] ;
doubl e vector 2[ Sl ZE] ;
int i;

f(vector?2);

for (i =0; i < SIZE; i++)
vector[i] =1i;

for (i =0; i < SIZE; i++)
vector[i] *= vector2[i];

If vect or islarger than the available cache the second loop will still suffer from cache misses when
accessing vect or , even though f has been moved away from between the loops. We should therefore
try to merge the two loops.

doubl e vector[ Sl ZE] ;
doubl e vector2[ Sl ZE] ;
int i;

f(vector?2);

for (i =0; i < SIZE i++) {
vector[i] =1i;
vector[i] *= vector2[i];
}

Now ThreadSpotter ™ may indicate another fusion possibility between apotential loopinsidef andtheone
remaining loop. In that case the programmer needs to decide whether it is worth duplicating the contents
of f to merge these loops, sacrificing legibility for performance.

5.3. Non-Temporal Data

Some agorithms have data uses where we know that the accessed data cannot be reused before it gets
evicted from the cache. Such datais said to be non-temporal. It may, for example, be an algorithm that does
transformations on data streams, reading the data once from one location and writing it once to another
location, so that there are no datareuses at all.

It can also be an algorithm that isrun on adata set that does not fit in the cache, and where the reuse of data
cannot be improved using blocking or any of the other methods described in Section 5.2.3, “Unexploited
Data Reuse Opportunities’.

Or, in the case of an algorithm where we have managed to improve the reuse of data using, for example,
blocking, we may know that the dataiin each block will still be evicted between iterations of the algorithm.

In these cases we know that the data will be evicted from the cache before it is reused, and that trying to
cache the datais pointless. The processor, on the other hand, does not know this and will try to cache the
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5.3.1.

5.3.2.

5.3.3.

non-temporal data like any other data. The non-temporal data will occupy space in the cache, and may
thereby cause unrelated data that could otherwise be successfully cached to be evicted.

Example of Non-Temporal Data Optimization

As asimple example, assume that we have a program that uses two arrays. The first array is2 MB large,
and the second array is 8 MB large. The program first iterates through the 2 MB array from beginning to
end, then iterates through the 8 MB array from beginning to end, and then repeats this a number of times.

Now assume that this program isrun on a processor with a3 MB cache. When it starts from the beginning
of the 2 MB array it has just iterated through the 8 MB array, so the 2 MB array will have been evicted
from the cache and it will haveto fetch each cache linein the array from memory. When it then startsfrom
the beginning of the 8 MB array, it will have touched the2 MB array and rest of the 8 MB array sinceit last
touched each cache line, so each cache line will have been evicted and have to be fetched from memory.

We get a cache line fetch for each cache line each time we go through each of the arrays. However, we
know that the larger array is not going to fit in the cache anyway. If we could tell the processor not to try
to cacheit at al, the smaller array would actually fit in the cache. Instead of getting cache line fetchesin
both the small and large arrays, we could at least get cache hitsin the small array.

In this situation like this we would like to be able to tell the processor not to try to cache the larger of
the arrays, and most modern processors actually implement instructions that allow us to do that. These
instructions are said to have non-temporal hints, and allow you to tell the processor what data is non-
temporal and should not be cached.

Singlethreaded Uses of Non-Temporal Hints

Themost common use of non-temporal hintsin singlethreaded programsisto avoid caching adatastructure
that we know will not fit in the cache in order to avoid evicting another data structure that does fit in the
cache, asin the example above.

However, it is also possible to use non-temporal hints to reduce the number of cache line fetches if we
have single data structure that is too big to fit in the cache. For example, assume that we have a program
that repeatedly iterates over a single 8 MB array, and that we know it will run on a processor with a 6
MB cache using LRU replacement.

If we do not use non-temporal hints, this program will get a cache missfor each cache line it accessesin
every iteration. The cache will contain the most recently accessed 6 MB of data, but when we access a
cache line we will always have accessed 8 MB of data since we last accessed it.

It seems unnecessary that we should get a 100% miss ratio when our data set is quite close to fitting in the
cache. To improve on this we can tell the processor not to try to cache the last 2 MB of the array using
non-temporal hints. Thisway the first 6 MB of the array will fit into the cache, and we will now only get
cache misses for the last 2 MB. We get a 25% missratio instead of 100%.

In reality you should probably not try use the entire cache like this, since there it will most likely be other
small data structure and code that need some space. For example, using 5 MB of the cache and leaving
1 MB for other things may better in this case.

Multithreaded Uses of Non-Temporal Hints

The types of non-temporal optimizations possible in singlethreaded programs are of course also possible
in multithreaded programs, but there are also other optimization opportunities if the threads share some
level of the cache hierarchy.
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If one thread with a small data set that fits into the cache and another thread with alarge data set that does
not fit in the cache share a cache, the thread with the large data set may cause the data of the other thread
to be evicted. Both threads then get cache misses and lose performance.

Weknow that the thread with the larger data set will get cache missesanyway, so by adding anon-temporal
hint its accesses we can prevent its data from being cached and the data of the other thread from being
evicted. Instead of both threads missing in the cache, only the thread with the large data set that would
Mi SS anyway NOwW Mmisses.

Concurrent Uses of Non-Temporal Hints

If you know that a program is going to be run concurrently with other programs, or multiple instances
of the program are going to be run concurrently, it is possible to make similar optimizations to those in
multithreaded programs. By adding non-temporal hints to accesses that would miss in the cache anyway,
you can reduce the cache pressure and the number of cache missesin other programs.

The differenceisthat in the case of multithreaded programs, ThreadSpotter™ cal culates how much of the
cache each thread uses in the analysis and reflects this in the report. This is not possible with multiple
programs as each program is analyzed separately. It is therefore useful to specify a smaller cache size
than the actual cache when doing the analysis, to simulate the effect of sharing the cache with the other
programs.

If you will be running multiple instances of the same program, it might make sense to divide the cache
size by the number of instances sharing the cache. For example, with four threads sharing a6 MB cache,
you could specify a1.5 MB cache when doing the analysis.

If you will be running several different programs concurrently, it might make sense to specify an even
smaller cache size than that, to take into account that different programs may claim different amounts of
the cache. For example, with four programs sharing a6 MB cache, you could specify a1 MB cache when
doing the analysis.

Types of Non-Temporal Hint Instructions

Modern x86 processors implement two types of instructions with non-temporal hints; non-temporal
prefetches and non-temporal stores.

Non-temporal prefetches are easy to use. Simply doing a non-temporal prefetch of a cache line indicates
to the processor that the datais non-temporal and should not be allowed to evict other data from the cache.

Non-temporal stores can offer further performance benefits compared to non-temporal prefetchesin some
situations. They are, however, much more complicated to use, and can easily cause severe performance
degradations, or even bugs in multithreaded programs, if misused.

5.3.5.1. Non-Temporal Prefetches

The pr ef et chnt a instruction is a prefetch with non-temporal hint. In addition to fetching the cache
line into the cache like aregular prefetch, it also tells the processor that the data in the cache lineis non-
temporal and should not be allowed to evict other data from the cache.

A useful way to think about non-temporal prefetchesisthat they fetch the cache line straight into the first-
level cache and mark it as non-temporal, and that when the cache line marked as non-temporal is evicted
fromthefirst-level cacheitisnot added to the higher-level caches. Thismeansthat non-temporal prefetches
cannot be used to keep non-temporal data out of the first-level cache, but only higher-level caches.
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Thisisnot theway that all processors actually implement non-temporal prefetches. Some may not prefetch
the cacheline straight into the first-level cache, or they may use asmall part of the higher-level cachesfor
non-temporal data, but model above works well for these processors too.

This means that a program can prefetch a cache line with a pr ef et chnt a instruction and use it for a
short period while it is in the first-level cache. Once it is evicted it is then completely evicted from the
cache hierarchy.

As with regular prefetch instructions, it is enough to do one non-temporal prefetch of each cache line.
Doing multiple prefetches of the same cache line may cause a small performance penalty.

Note that using non-temporal prefetches incorrectly may increase the number of cache line fetches and
decrease performance. Doing non-temporal prefetches of cache lines that would otherwise not have been
evicted from the cache will force fetches of those cache lines. You should therefore only add non-
temporal prefetches where the instructions later reusing the data have a very high fetch ratio. Measure the
performance before and after adding a non-temporal prefetch to verify that it is effective.

5.3.5.2. Non-Temporal Stores

Non-temporal stores have an additional benefit over non-temporal prefetches. A cache line written using
non-temporal stores will not be added to the caches, just as if it had been accessed by a non-temporal
prefetch. But a non-temporal store also hints to the processor that the program intends to write the entire
cacheline, completely replacing the current content, so that the cache line does not need to first be fetched
from memory.

Since the processor now only has to write the finished cache line to memory, and not fetch it first, this
essentially reduces the memory bandwidth used by half.

The following non-temporal store instructions are available on x86 processors:
* For general-purpose registers the novnt i instruction can be used.
» For MMX registers the novnt q, masknovqg and masknovdqu instructions can be used.
e For XMM registers the novnt dqg, novnt pd and novnt ps instructions can be used.

The processor collects the data written to a cache line using non-temporal stores in special non-temporal
store buffers. Once an entire cache line has been written, the processor writes it straight back to memory
without first fetching it into or adding it to the caches.

Processors have a very small number of these non-temporal store buffers, typically 4-6 cache lines. If a
program has more than this number of partialy written cache lines in flight, the processor has to start
writing partially written cache lines back memory. Thisis a very slow operation and may lead to severe
performance degradations. Programs should therefore only keep avery small number of partialy written
cachelinesin flight, ideally only one or two cachelines.

A typical use for non-temporal stores is copying memory regions that are too large to fit in the cache.
Using ordinary stores for that would waste memory bandwidth by unnecessarily fetching al the datain
the destination region into the cache before overwriting it. Any useful datathat isin the cache before the
copy would also be replaced with data from the source and destination regions.

Such aroutine can instead use non-temporal prefetches on the source region and write to the destination
region using non-temporal stores. Using non-temporal stores to write to the destination region saves
memory bandwidth by overwriting the destination area without first fetching it into the cache, and using
non-temporal accessesfor both the source and destination region preserves any useful datathat was already
in the cache before the copy.
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Another typical useis initialization of data structures too large to fit in the cache, for example, setting a
large array to all zeros.

A major drawback of non-tempora stores is that they are fairly complex to work with. If they are
improperly used they can easily cause performance degradations, or even hard-to-debug bugs in the case
of multithreaded programs.

Hereisalist of potential problemsto keep in mind:

» The program should write entire cache lines at a time using non-temporal stores. Writing partial
cache lines may lead to severe performance degradations.

» The program should not mix non-temporal stores and regular stores to the same cache line. Doing
so may lead to severe performance degradations.

» The program should not read from a cache line while it is being written using non-temporal stores.
Doing so may lead to severe performance degradations.

» The program should only write each part of the cache line once. Writing the same part of the cache
line multiple times may lead to severe performance degradations.

» Theprogram should only keep avery small number of partially written cachelinesin flight. Keeping
too many cachelinesin flight may lead to severe performance degradations.

» Some of the non-temporal store instructions require the destination address to be 16-byte aligned.
Using such instructions for unaligned stores may cause the program to crash.

» Non-tempora stores use a weaker memory consistency model than regular stores. This means that
fencing operations must be used in conjunction with non-temporal storesto ensure correct operation
in multithreaded programs. See the processor manual for more information.

Note
AN If you are unsure what this means, avoid using non-temporal stores in multithreaded
programs to avoid hard-to-debug bugs.

5.3.6. Using Non-Temporal Hint Instructions
5.3.6.1. Adding Non-Temporal Hints to the Code

No major programming language currently supports the concept of non-temporal data, so instructionswith
non-temporal hints have to be added to a program manually. There are two ways to do this; compiler
intrinsic functions or inline assembly.

A compiler intrinsic functionisbuilt-in function provided by the compiler, that issubstituted for the desired
instruction in the generated machine code. The name and arguments of these functions vary between
compilers, so you have to consult the documentation of your compiler for specifics.

If your compiler does not provide an intrinsic function for the instruction you want to use, or if you for
some reason want to avoid the intrinsic function, you can insert the instruction using inline assembly
instead. Again, the syntax of inline assembly statements varies between compilers, so you have to consult
the documentation of your compiler for specifics.

5.3.6.2. Processor Compatibility

Another thing to consider when using instructions with non-temporal hintsis processor compatibility. The
instructions with non-temporal hints were added in the SSE and SSE2 instruction set extensions, so not
all processors support them.
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Using instructions with non-temporal hints in 64-bit code is risk free, as all 64-hit processors implement
all theinstructions.

Asfor 32-bit code, AMD processors from the Athlon 64 and Opteron and newer, and Intel processorsfrom
the Pentium 4 and newer, support all non-temporal hint instructionsin that mode.

If you want your code to run on older 32-bit processors, you either have to avoid these instructions, or
check if the processor supports the instructions at run-time and implement separate routinesfor processors
with and without them.

5.4. Multithreading Problems

5.4.1.

Programs with multiple threads can be affected by an entirely new class of performance problems, related
to how the data accesses of the threads interact with each other.

False Sharing

Section 3.7, “Multithreading and Cache Coherence” describes how cache coherence affects caching when
multiple threads accesses the same cache line. When multiple threads access same cache line and at least
one of them writes to it, it causes costly invalidation misses and upgrades. When the threads actually
communicate by accessing the same data, thisis a necessary overhead.

However, it may also be the case that the threads do not actually communicate. They may be accessing
unrelated data that just happen to be allocated in the same cache line. In that case the costly invalidation
misses and upgrades are completely unnecessary. By splitting the data accessed by the different threads
to different cache lines, the invalidation misses and upgrades can be completely avoided.

5.4.1.1. False Sharing Example

Consider this simple examplein C:

int suml;
int sung;

void threadl(int v[], int v_count) {

suml = O;
for (int i =0; i < v_count; i++)
sunl += v[i];
}
void thread2(int v[], int v_count) {
sum? = 0;
for (int i =0; i < v_count; i++)
sun += v[i];

Thefunctionst hr ead1 andt hr ead2 sumthevauesinthearraysthey get asargumentsto the variables
suml and sun®?. Since suni and sun? are defined next to each other, the compiler islikely to allocate
them next to each other in memory, in the same cacheline.

If the functions are run concurrently by two different threads, the execution may then look something like
this:
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1. First,t hr ead1 readssunil intoitscache. Sincethelineisnot present in any other cachet hr ead1

getsit in exclusive state:

threadl thread2

threadl thread2

(r——) (m

suml, sum2

) (= suml,silig (o ‘ )

-

Figure5.12. False Sharing Example, Step 1

2. t hread2 now reads sun®. Since t hr eadl aready had the cache line in exclusive state, this
causesadowngrade of thelineint hr ead1'scacheandthelineisnow in shared statein both caches:

threadl thread2

threadl thread2

(Erme) (@

sum1l, sum2

|) (ISI sumi, sum2 |) (lsl sumi, sum2 |)
‘ A A
—— 1

-

— |
|

suml, sum2

Figure5.13. False Sharing Example, Step 2

3. t hr ead1 now writes its updated sum to sumil. Since it only has the line in shared state, it must
upgrade theline and invalidatethelineint hr ead?2's cache:

threadl thread2

threadl thread2

sum1l, sum2

-

[j [|S| sum1, sum2 |j [lMl suml,sx;mz |j (“ [ - |)
| | ——

suml, sum2

Figure5.14. False Sharing Example, Step 3

4. t hr ead2 now writesitsupdated sumto sun?. Sincet hr eadl hasinvalidate the cachelineinit's
cache it gets a coherence miss, and must invalidate thelineint hr eadl's cacheforcingt hr ead1

to do a coherence write-back:
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threadl thread2 threadl thread2
(ama ) () () (=)
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sum1l, sum?2

suml, sum2

Figure5.15. False Sharing Example, Step 4

5. The next iteration of the loops now starts, and t hr eadl1 again reads sumil. Sincet hr ead?2 just
invalidated the cachelineint hr eadl's cache, it gets a coherence miss. It must also downgrade the
lineint hr ead2's cache, forcingt hr ead2 to do a coherence write-back:

thread1 thread2 threadl thread2
[D:lj [lMl sum1, sum2 |] (lsl suml,sum2 |] (lsl sum1,sum2 |)
A ] A ]
‘ ‘ L L 1

— |
. v
suml, sum2

suml, sum2

Figure 5.16. False Sharing Example, Step 5

6. t hr ead?2 finally reads sun®. Since it has the cache line in shared state, it can read it without and
coherence activity, and we are back in the same situation as after step 2;

threadl thread2

sum1l, sum2

Figure5.17. False Sharing Example, Step 6

For each iteration or the loops, steps 3 to 6 will repeat, each time with costly upgrades, coherence misses
and coherence write-backs.

In reality, the memory accesses would probably not interleave exactly like this, but the same updates,
coherence misses and coherence write-backs would still occur. In asimple example like this the compiler
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may also allocate sunil and sun?® to registers, avoiding the memory accesses causing the false sharing,
but in a more complex program they compiler may not be able to do this.

To fix afalse sharing problem you need to make sure that the data accessed by the different threads is
allocated to different cache lines.

In our simple example we could do this by assuring that both variables are aligned to the start of a cache
line. Unfortunately, the C language does not have a standard mechanism to specify the alignment of data.
However, most C compilers have some extension to do this. For example, assuming that our processors
have 64-byte cache lines and that we are using the GCC compiler, our fixed program would look like this:

int _attribute_((aligned(64))) sunt;
int _attribute_((aligned(64))) sung;

void threadl(int v[], int v_count) {

suml = O;
for (int i =0; i < v_count; i++)
sunl += v[i];
}
void thread2(int v[], int v_count) {
sum = 0;
for (int i =0; i < v_count; i++)
sun += v[i];

Since the variables are now allocated in different cachelines, t hr ead1 and t hr ead2 can keep a copy
of the cache line they need and execute without upgrades, coherence misses or coherence write-backs:

threadl thread2
[|M| sum1l |) (|M| sum2 |)

Figure 5.18. False Sharing Example, Fixed

5.4.1.2. Causes of False Sharing
There are a number of common causes of false sharing:
» Arrays of per-thread data.

A typical programming pattern that causes false sharing is creating an array with one element per
thread, such as an array of per-thread counters. Consider this example:
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i nt sums[ NUM THREADS] ;

void threaded_sum(int thread_num int v[], int v_count) {
suni t hread_num = 0;
for (int i =0; i < v_count; i++)
sunithread_num += v[i];

Thisisafunction that would be called by multiple threads, each summing the elements of some array
into a per-thread sum in an array indexed by thread number. This creates a situation similar to the
example with the suml and sun® variables above. Since the per-thread datais allocated in array it
will allocated together in memory, most likely in the same cache line, causing false sharing.

Avoid creating such per-thread arrays for frequently accessed data. Use function local variables for
frequently accessed data, or assure that the data of each thread is allocated to a separate cache line
in some other way, for example, using cache line alignment or padding.

Access patternsin parallelized matrix operations.

Another common cause of false sharing is parallelizations of algorithms that work on matrices or
multi-dimensiona arrays.

If such parall€elizations make afine grained division of the matrix between the threads, it can cause
threadsto write to el ements adjacent to elements being accessed by other threads. Adjacent elements
are likely alocated in the same cache line, making the writes likely to cause false sharing. For
example, assumethe el ements marked in blue and yellow in this example are written by two different
threads:

Figure5.19. Matrix Accesses with False Sharing

In this case each write by the two threads will invalidate the cache line in the cache of the other
thread, causing lots of coherence misses.

A more coarse grained division of the matrix between the threads will allow the threads to work on
different cache lines to a greater degree, avoiding fal se sharing:
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Figure 5.20. Matrix Accesses without False Sharing

If you get problems with fal se sharing running parallel matrix operations, it istherefore often agood
ideato make division of the matrix between the threads more coarse grained.

Accesses to different fields in a structure from different threads.

Accessesto different fieldsin astructure from different threads can al so cause fal se sharing problems.
Consider thisexamplein C:

struct ab {
int a;
int b;
struct ab *next;

}s
struct ab *abs;

void inc_a(void) {
struct ab *this_ab = abs;
while (this_ab !'= NULL) {
this_ab->a++;
this _ab = this_ab->next;

}

int sumb(void) {
int sum= 0;
struct ab *this_ab = abs;
while (this_ab !'= NULL) {
sum += t his_ab->b;
this _ab = this_ab->next;
}

return sum

Thefunctioni nc_a incrementsthe value of the a field of each element intheabs linked list, while
the function sum b sumsthe values of the b field of each element in thelist.
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If the functions are run concurrently or alternatingly by different threads, the writesto the a field of
each element in the list by thei nc_a function will invalidate the list elements in the cache of the
thread running the sum b function. Similarly, the read of the b field of each element in the list by
the sum b function will downgrade the corresponding cache line in the cache of the thread running
thei nc_a function.

In a case like this it is probably best to split the structure into two structures containing the data
accessed by each thread. If memory consumption isnot aconcern, you could also add enough padding
between the fields to make sure they end up in different cache lines.

Statically allocated variables.

The example at the beginning of this section about false sharing showed how the statically allocated
variablesin this program can cause false sharing:

int sum;

int sung;

void threadl(int v[], int v_count) {

suml = 0;
for (int i =0; i < v_count; i++)
suml += v[i];
}
void thread2(int v[], int v_count) {
sunm? = 0;
for (int i =0; i < v_count; i++)
sum += v[i];
}

In cases like this, if the variables do not need to be statically allocated and are not excessively large
you can make them function local variablesinstead. This causes them to be allocated on the threads
stacks, where they will most likely be safe from false sharing.

If itisnot possible to make the variables thread local, you have to change their allocation in memory.
One way to make sure that two variables are not allocated to the same cache line is to specify that
both should be aligned to the start of a cache line.

Another way is be collect al variables accessed by a thread in a structure, and then add enough
padding to the end of the structure to make sure no other variables can be allocated to the same cache
line. Thisisaway to avoid false sharing if the compiler does not alow you to specify the alignment
of data.

Dynamically memory allocation.

If your program uses dynamic memory allocation and allocates small data objects, data objects used
by different threads may be allocated in the same cache line, causing false sharing.

Trying to allocate larger chunks of memory for use by onethread is probably the best fix in this case.
For example, instead of allocating data objects for use by one thread individually you can allocate
an array of data objects at once. This may reduce the interleaving of data objects used by different
threads and thereby also false sharing.
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Otherwise, aligning the data objects causing false sharing to the beginning of acachelinesisagain a
way to avoid false sharing. Depending on the operating system you are using there may be memory
alocation functions you can use to do this.

5.4.2. Poor Communication Utilization

Threads in a multithreaded programs often communicate by reading and writing shared data in memory.
Section 3.7, “Multithreading and Cache Coherence” describes how this causes costly upgrades, coherence
misses and coherence write-backs. But, if the threads truly communicate unlike fal se sharing described in
Section 5.4.1, “False Sharing”, thisis to some degree an unavoidable cost.

However, there is a performance cost for each cache line transferred from the cache of one thread to
another, so you want to minimize the number.

One way to measure the efficiency of the communication is to calculate communication utilization, the
fraction of each transferred cache line that was actually written by the producer and read by the consumer,
as described in Section 4.7, “Communication Utilization”.

The communication utilization is similar to fetch utilization and write-back utilization, but measures
the efficiency of the communication between caches instead of between the cache and memory. If the
communication utilization is low it means we are moving unused data between the processors. By using
the communicated cache lines more efficiently it may be possible to reduce the communication overhead.

The causes of poor communication utilization are largely the same as the causes of poor fetch utilization
and poor write-back utilization:

* Unused fields in structures.

Unused fields in a structure being written by one thread and read by another may waste space in the
communicated cache lines. See Section 5.1.1, “Partially Used Structures’ for more information.

» Alignment problems.

Data alignment problems may cause unused padding in or between communicated data structures.
See Section 5.1.3, “Alignment Problems’ for more information.

* Dynamic memory allocation.

If the communi cated data objects have been dynamically allocated, they may be spread out in memory
and be interleaved with the dynamic memory allocator's bookkeeping data. See Section 5.1.4,
“Dynamic Memory Allocation” for more information.

* Irregular access patterns.

Arranging the communicated data in a way that causes irregular access patterns may cause poor
communication utilization. See Section 5.2.2, “Random Access Pattern”.

» Too fine grained communication.

One cause of poor communication utilization that does not correspond to a fetch or write-back
utilization problem istoo fine grained communication. If the communication between two threadsis
too fine grained, the communicated datamay not fill entire cache lines and unused dataistransferred
between the caches.

For example, assume that we have a producer thread and a consumer thread communicating 8-byte
data objects through a queue based on a circular buffer, and that they run on a computer with 64-
byte cache lines.
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If the producer writes one data object to the queue at a time and then signals the consumer to read
it, a cache line with only 8 bytes of useful data out of the 64 bytes will be sent from the producer to
the consumer. Thiswill cause one upgrade in the producer thread's cache and one coherence missin
the consumer thread's cache for each communicated object.

However, if the producer thread knows that there are more data objects waiting to be sent, it can
delay signaling the consumer thread until it has written a whole cache line of eight data objects to
the queue. This way the entire communicated cache line is used, and you only get one upgrade and
one coherence miss for every eight data objects.

Making the communication more coarse grained is also likely to reduce the amount of
synchronization between the threads, and thereby reduce the synchronization overhead.

5.5. Common Data Structures

5.5.1.

Certain data structures such as linked lists, trees and hash tables typically have quite bad cache behavior.
There are two reasons for this. Firstly, individual elements are often allocated dynamically, which means
housekeeping data for the memory allocator is placed between the elements. This causes poor cache line
utilization.

Secondly, using these data structures often causes random access patterns, see Section 5.2.2, “Random
Access Pattern”, caused either by dynamic memory allocation or the way the data structures are traversed.

When using data structures from alibrary, for example, fromthe STL library in C++, one thing to consider
is that they have been designed to work reasonably well in all cases, especially with very large numbers
of elements. This means that for structures with a small humbers of elements they often add unnecessary
overhead. Implementing your own data structure adapted specifically to your application may provide
significant performance gains.

Generally, a structure that is never, or very rarely, changed can be more efficiently implemented than
a structure that needs to support efficient updating. Supporting efficient changes often requires pointer
indirections between elements and dynamic memory allocation of individual elements. This can often be
avoided in a static representation.

Sometimes a structure is used in two phases, first being filled in with data and then only being used for
lookups. It may then pay off to first use a representation that supports efficient updating, and then convert
it to amore efficient read-only data structure once it has been filled in.

Arrays

From a cache performance point of view alinear search in an array is a quite ideal workload. The linear
search has a good spatial locality, and the regular access pattern means that the hardware prefetcher can
effectively prefetch the accessed data.

Elements in an array are also efficiently packed. Only a single memory allocation is done for all the
elements and the elements are stored contiguously in memory. In comparison alinked list, for example,
often uses more memory for different kinds of overhead than for actually storing the data.

The drawback of a linear search is of course that the number of accesses that need to be made grows
linearly with the number of elements, so it does not work well for large numbers of elements. However,
the low overhead usually makes the performance superior to more complex structures when there are only
afew elements, and depending on cache pressure and other factorsit can still be competitive up to afew
tens of elements.
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5.5.2.

If al, or the vast majority, of the accessesto astructure with alarge number of elements are lookups, using
abinary search in a sorted array may be more efficient than using a search tree structure. For lookups the
binary search offers the same logarithmic time complexity as a search tree. However, the elementsin an
array are much more efficiently packed than atree with dynamically allocated nodes, and it will therefore
achieve much better cache performance.

Linked Lists

Linked lists are commonly plagued by two problems, they cause a high degree of memory overhead and
they cause random access patterns.

A linked list typically allocates its elements dynamically, which causes some memory management
overhead for each element. Each element also has to contain a pointer to the next element and possibly to
the previous element. On a64-bit processor this can easily add up to 16 - 32 bytes of overhead per element.
This means that, for example, in alinked list of pointers typically only a third or less of the memory is
actually used for the stored data, the rest is overhead.

Dynamic memory allocation also means that the list elements may be spread out in memory. Even if the
list elements can only be accessed sequentially, the access pattern when the list is traversed may therefore
still beirregular.

The memory layout depends on the memory allocator, as well as the algorithms that assemble and
manipulate the list. If alinked list is causing performance problems, look over the node allocation.

If thelistisnever updated it should be replaced with an array. Thismay also betrueif thelistisonly rarely
updated or only contains a few elements. If the list is changed now and then, but a part of the application
reads the linked list repeatedly between the changes, it may even pay off to copy the list to atemporary
array to usein that part of the application.

Another way to hide latenciesin linked listsisto add a pointer to a node several steps further ahead to the
elements, and when traversing the linked list use this pointer to prefetch elements further ahead:

struct node {
struct node *next;
struct node *prefetch;
i nt dat a;

}

/* Traverse a list and popul ate prefetch hints to point
* di stance steps ahead.
*/
voi d prepare_prefetch_hint(struct node *head, int distance)
{
struct node *q, *p;
i nt di stance = PREFETCH DI STANCE;
for (p = head; p; p = p->next)
if (0 == distance--) break;
for (q = head; p & q; p = p->next, g = g->next)
g->prefetch = p;
}

void traverse(struct node *head) {
struct node *p = head;
for (p = head; p !'= NULL; p = p->next) {
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5.5.3.

5.5.4.

prefetch(p->prefetch);
access(p->data);

}
}

/* Call function once after updating list */
prepare_prefetch_hint(head, 8);

/* Assuming many traversals between each update */
traverse(head);

Since prefetch instructions have no side effects the prefetch pointers do not need to be kept completely
accurate at al times, It may be enough to only update them now and then if the list is frequently changed.

The tricky thing is to determine how many elements ahead to prefetch. This is a function of memory
latencies, cache size and how much processing is done for each node. ThreadSpotter™ will help you
determine the right distance.

Trees

Trees, like linked lists, cause a lot of memory overhead from dynamic memory alocation and pointers
between nodes, and the nodes may be spread out in memory because of dynamic memory allocation.

Tree operations aso have an inherently random access pattern, since element lookups and changes will
follow different pathsthrough thetreein anirregular fashion. Rebal ancing operations al so keep rearranging
the tree layout as the tree is being modified.

Iterating through the elementsin the sorting order of the keysisvery inefficient compared to iterating over
a sorted array, so if that is done repeatedly between changes in the tree it may pay off to copy the tree
contents to atemporary array and iterate over it instead.

If thetree contentsare static, it may be worth whileto spend sometimeto arrange the nodes so that adjacent
nodes also reside close to each other in memory. Replacing the tree lookups with a binary searches in
a sorted array will provide the same logarithmic time complexity, but with less memory overhead and
therefore better cache line utilization and performance.

It may also be possible to collapse several layers of atree, or acluster of graph nodes into a more densely
allocated sub-structure.

Hash Tables

Hash tables often suffer from random access patterns and poor cache line utilization. One reason for the
random access patterns can be the hash function itself. Hash functions are often to designed to map keys
to more or less random indexes in the hash table to avoid collisions. However, this means that lookups
will also access randomly distributed indexes. If you know that some keys are likely to be looked up in
seguence, try to map those keys to adjacent indexes.

For example, if the hash key is an integer and you know that lookups are likely to be done on sequential
keys, just using the key modulo the hash table size will work well. The sequential keys will then map to
sequential locations in the hash table.

A random access pattern is often enough to cause poor cache line utilization by itself, but another factor
in hash tables is the fill ratio. Hash tables are often sized to be larger than the number of elements to
reducethe number of collisions. Thisleavesunused indexesinthetable, lowering the cacheline utilization.
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Decreasing the size of the table will increase the number of collisions, but may pay off in increased cache
line utilization and reduced cache misses.

In hash tables using collision lists, these lists may cause problems as described in Section 5.5.2, “Linked
Lists’. Replacing them with arrays may improve performance.

5.6. Final Remedies

Very complex code may not lend itself to transforming, or the code may actually be optimal but still suffer
from cache misses. Remaining misses can then be reduced by adding software prefetch operations.

Once software prefetch instructions are added to the program, ThreadSpotter™ will evaluate their
efficiency.

To be efficient, the prefetch instruction needs to fulfill three conditions:

* It has to do real work. Data which is addressed by the prefetch instruction must not already be in
the cache.

* It must appear at a sufficiently large distance from the subsequent instruction using the prefetched
data. This is memory and architecture specific. A rough approximation is about 40 memory
operations prior to the subsequent instruction if fetching the datafrom main memory, which translates
to about 100-150 instructions.

e Thedatamust not be evicted before it is subsequently used. The prefetch instruction must therefore
not be too far away from the instruction that makes use of the data.

The GNU compiler suite has built-in support for software prefetch instructions (__builtin_prefetch). You
then also need to tell the compiler to generate codefor aprocessor model that supportsprefetch instructions.

Other compilers may have their own intrinsic functions, or the programmer may need to resort to writing
inline assembly code.

Cache misses occurring close in time can often be overlapped on x86 architectures (so-called memory-
level parallelism, MLP). An aternative to prefetching is therefore to try to move cache-miss accesses
closer together (and hoping that the compiler will keep it that way...).
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Chapter 6. Optimization Workflow

The processto optimize an application for good cache performanceinvolves distinct phases, each targeting
aspecific category of problems. The order of the phasesis somewhat important, as some problems obscure
others, and certain transformations will enable other approaches.

This chapter outlines one way to approach this rather complex situation from a memory hierarchy
standpoint. There are numerous other aspects of improving application performance than is listed here,
ranging from the macro scale of properly establishing an efficient architecture and amatching devel opment
process, selecting the optimal agorithms, managing time and space complexity of different storage
methods, database schema optimization, minimizing database and communication overheads, arranging
for paralélization, judicious inlining and denormalization, and al the way down to CPU pipeline
granularity tuning.

Y ou may need to perform optimization in any one of these areas.

6.1. Initial State: Correct, Measurable Program,
Good Test Case

Thefirst step isto make surethe programisrunning correctly, and that it produces some measurabl e output
that can be used to verify the correctness of |ater versions of the program.

Asfar as possible, try to devise atest case with predictable, repeatable behavior, which isindependent of
execution speed (since the sampler will impose a slowdown).

It will be difficult for a programmer to ensure unmodified behavior, and to determine whether he has
achieved any performanceimprovementsif these conditions are not met. Real time programs, in particular,
may start experiencing altered behavior if the processor load is increased. There is no universal solution
for this, but some real time applications can be changed to reduce their time-base corresponding to the
apparent slowdown.

Some applications run from start to completion and their execution is easily repeatable. These are the
simplest applications to analyze. Others run more or less continuously, and are rated on number of
transactions per second, average throughput or something similar. Establish a criteria for starting and
stopping acquisition of fingerprint data, which can be timed, measured, and above all, repeated.

Some source code transforms change the number of memory operations. To be able to compare cache
miss behavior of a run before the change with a run of the changed code, there are a few options. It
is possible to compare miss and fetch ratios, but if an agorithm change alters the number of accesses
as well as the number of misses, the calculated miss ratio will change in an unpredictable way. Under
repeatable circumstances, it makes more sense to compare the absol ute number of misses before and after
the algorithm change.

If thetest caseisnot absolutely repeatable, it will be difficult to correlate two measurements of the absolute
number of misses or fetches. In such cases it makes more sense to look at ratio numbers, as they are less
affected by exact execution times.

< > Tip
Ensure correct execution.

<> Tip
Devise arepeatable test case.
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Tip

Take areference measurement of the the execution time.

6.2. Avoid Unnecessary Memory Accesses

Generally speaking, huge performance improvements come from algorithm changes.

Use an ordinary execution profiler (such as gprof or callgrind) to find hot-spots in the code. That will
estimate the amount of time spent in each part and direct your attention to highly used code sections.
Evaluate issues like:

» Aretheright compiler flags used? I's the best compiler used? Some compilers are better than others
on optimizing the code.

* Isthisthe best algorithm to perform the job?
* |sthe program doing unnecessary work, such as unnecessarily repeating an expensive operation?

» Can datathat is expensive to calculate be cached? For instance, use "dirty" flags to avoid scanning
large structures for changes.

 Canloops be unrolled?
 Can vector instructions be used?
» Do loops contain conditional branching? Sometimes these parts can be moved out of the loop.

* |s the compiler forced to be conservative about register allocation (due to potential aliasing)?
Consider helping the compiler to optimize by introducing temporary variables.

» Does the program contain unnecessary copying of structures? This often occurs with programming
paradigms that advocate layering, encapsulation and data hiding. Consider relaxing encapsulation
ruleswhere it offers performance improvements.

Tip

Use optimizing compilers and turn on suitable optimization flags.
Tip

Avoid unnecessary work by caching data

Tip

Use the correct algorithms

Tip

Consider favoring algorithms that touch data sequentially

Tip

Help the compiler by rearranging loops and introducing temporary variables
Tip

Judiciously break encapsulation to avoid copying data

2K K2R K
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6.3. Optimize Data Layout

After making sure the program is algorithmically optimal, we turn to memory related optimization areas.
Thefirst such areaisto ensure that dataislaid out in memory in an optimal way.

Generally speaking, data needs to be packed to utilize memory well. It also needs to be sorted in such a
way asto utilize spatial reuse. With spatial reuse, we mean that data being used in the same code context
should be placed next to each other.

The following situations are but some that can cause wasted space in cache lines:

e

Internal alignment gaps. The compiler needsto obey rulesthat tell which addresses certain datatypes
can reside on. This can cause subsequent variables or fields in arecord to be allocated with unused
datain between. Sorting fields by their alignment requirements will minimize this waste.

External alignment gaps. Alignment problems can also occur between records in an array, due to
alignment requirements of the first field in a record. Make sure the record has a size which is a
multiple of the largest sub-field size.

Using too wide datatypes. Applicable both to bit fields, numeric types and over-sized partially used
fixed size arrays.

Dynamical memory allocation adds housekeeping structures, which are used much less often than
datain the allocated region.

Fields sorted in an suboptimal way. Not al fields being used in every situation.
Incorrect padding causes records to be split between cache linesin an adverse way.
Dynamic memory allocation allocates subsequent blocks non-contiguously.

Certain data structures tend to destroy locality when placing data. (Hash tables, trees).
Indirections instead of directly storing data

Linked lists trade-offs: dynamic memory allocation spreads memory accesses, extra space required
for pointers.

Tip

Use correct data types

Tip

Sort record fields according to size and usage pattern.

Tip

Organize data to avoid mixing read-only and write fields in the same cache line. If many fields
needs to be updated at the same time, place them in the same cache line.

Tip

Avoid dynamic allocation of small objects, and consider using custom allocators
Tip

Use data structures that pack data efficiently
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Tip

Avoid "pointer chasing” and indirections

6.4. Optimize Access Patterns

A program with poor access patterns exhibit some of the sametraits as a program with inefficient memory
layout, and it is not always obvious what the fundamental problemis. For instance, isusing only onefield
from arecord a memory layout problem or is the problem related to the access pattern?

By relating inefficient access patterns specifically to late spatial reuse, we can narrow the definition
somewhat.

By addressing memory layout problems before access patterns, the analysis will produce more accurate
estimates on the performance potential for fixing access pattern.

Generally, inefficient access patterns arise from:
» Traversing adata set along an incorrect dimension, also known as inefficient loop nesting.

» Random, or "pseudo-random" accesses to a data set. This will happen if the data set is not sorted in
memory asthe same order asthe general order of accesses occur in. Certain high level data structures
will also cause accesses to spread wildly. Indirections by an index or by following pointer chains
will also spread memory accessesin a seemingly random way.

Tip

Organize data or change data access order to utilize all datain acacheline

Tip

Avoid patternsor datastructuresthat are random or non-deterministic in nature, or cause random
access patterns.

Tip
Consider building up local copies of data, where the local copy is transformed, filtered and
sorted in an optimal way for the current algorithm.

® @

Tip

@ For datastructuresinvolving following pointers, such aslinked lists, trees or hash table collision
lists, consider collapsing several treelevelsor ranges of nodesinto densely packed vectors. This
lowers the space overhead, while improving locality. The draw-back is more complex traversal
logic.

6.5. Utilize Reuse Opportunities

Basically there are two variants of unused reuse opportunities that the ThreadSpotter™ tools detect: reuse
within aloop, and reuse between different loops. The former is addressed by applying a technique called
blocking or tiling, and the latter is handled by bringing the two loops closer together or actually merging
the loop bodies compl etely.

Reuse come in two distinct flavors: spatia reuse, where the benefit comes from that subsequent data is
already fetched into the cache, and temporal reuse, where the very same data is revisited multiple times.
Minimizing the time before the revisit will lower miss ratios.
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Addressing these issues will usually cause loop hierarchies to be partially turned around and broken up.
Loop fusion will also necessarily change the features of the program. This changed scene should be re-
analyzed for unnecessary memory accesses, poor layout and poor access patterns.

Tip
@ Bring related loops closer together, and optimally merge related parts of their loop bodies.

Tip
@ Look for spatial reuse, and change loop nesting or block with respect to the data structure that
displays long reuse distance.

Tip
@ Look for tempora reuse, and change agorithms to perform as many iterations as possible for
a given data chunk before moving along.

Tip
@ After merging loop bodies or transforming loop structures, rerun analysisto find advice for the
new program structure.

6.6. Use Non-Temporal Hints for Data without
Temporal Reuse

Sometimesit issimply not possibleto increase the temporal reuse of an algorithm. Most modern processors
have instructions for handling non-temporal data that can be used to optimize cache usage in such cases,
see Section 5.3, “Non-Temporal Data’.

Use non-temporal prefetches to hint to the processor what cache lines you know will be evicted from the
cache before they are reused. This frees up cache space, which may allow other data that was previously
evicted to be successfully cached.

When writing continuous regions of non-temporal data, use non-temporal storeinstructionsinstead of non-
temporal prefetches to avoid fetching the overwritten data from memory.

Tip
@ Having too many active non-temporal store streams will result in partidly filled store buffers
being written back to memory. This severely impacts the performance of the application.

Tip
@ Consider blocking agorithms that would otherwise have too many parallel non-tempora store
streamsin flight.

Tip

@ Iteratively apply non-temporal prefetches to data structures with large reuse distances. Start
adding prefetches to accesses to those data structures that contribute a lot to the total number
of fetches.

6.7. Avoid False Sharing

In the presence of multiple threads that share data, there are a number of sharing effects that may affect
performance. One such sharing pattern is false sharing. It arises if at least two threads are both using
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unrelated data placed close enough to end up in the same cache line. False sharing occurs when they
repeatedly update their respective datain such away that the cache line migrates back and forth between
the two threads' caches.

Often this can be avoided by giving explicit alignment pragmas to the compiler.

In OpenM P programs Fal se sharing arises when several threads maintain their respective partial result in
avector indexed by the thread rank. Replacing this with thread local variables often helps.

Tip
@ Avoid writing to global datathat is accessed from multiple threads.
<> Tip
Align shared global datato cache line boundaries.
<> Tip
Don't store temporary, thread specific datain an array indexed by the thread id or rank.

Tip
@ When parallelizing an algorithm, partition data sets along cache lines, not across cache lines.

6.8. Avoid Communication between Caches
(Coherence Traffic)

Analogous to optimizing data layout for efficient cache usage and bandwidth usage, for multithreaded
applicationsit isimportant to arrange data for efficient inter-cache communication.

Whenever one thread uses data that a different thread has written, there is some communication occurring
between the caches. This involves synchronizing the caches' contents, and maintaining a notion of the
current owner. Just like the memory communication, synchronization and ownershipismanaged for cache-
line chunks.

If the consuming thread is not using every byte in the communicated cache line, then thisis wasteful. It
would be better to reorganize data to fill cache lines fully before letting the consumer start reading data.

Tip
@ Add complete cache lines worth of data to shared memory buffers before letting the consumer
thread start reading data

Tip
@ When performing matrix calculations, align the calculation frontier along cache lines instead
of across cache lines.

6.9. Hide Remaining Misses

After al agorithms and data structures are optimal, we can sometimes further improve program behavior
by carefully adding prefetch instructions.

Many timesit is difficult to determine the correct place to insert the prefetch instruction and what address
to prefetch. Sometimes it hel ps to augment the data structure that is being traversed with afield containing
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a hint of the proper address to prefetch, for instance the address of a node several steps away along the
linked list.

Tip
@ L ook for remaining hot-spots and look for good places to insert prefetch instructions. Evaluate
the effectiveness of added prefetch instructions.

Tip
@ Consider augmenting "tricky" data structures with a prefetch hint field.
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Chapter 7. Reading the Report

The output from ThreadSpotter™ is an report file, typically having file extension . t sr. The report file
is presented in aweb browser through a special tool called view. Invoking this command on areport file
will bring up the default web browser and present the report.

The default filename for the report isr eport . t sr, athough that can be overridden when the report is

generated. Thereport file contains everything that is needed to present the report, so it can be conveniently
moved, renamed or shared, for instance through e-mail.

7.1. Statistics

In the report you will find statistics sections in lots of places. Thereis a summary statistics section for the
entire application, and there are smaller statistics sections for issues, loops and instruction groups.

Accesses 3.43e+07
% of misses 3.9%
% of bandwidth 12.0%
% of fetches 9.9%
% of write-backs 15.1%
% of upgrades

Miss ratio 0.2%
Fetch ratio 3.6%
Write-back ratio 3.6%
Upgrade ratio 0.0%
Communication ratio 0.0%
Fetch utilization 75.3%
Write-back utilization 90.9%

Communication utilization

False sharing ratio

HW prefetch probability 94.7%
Access randomness Low
Worst instruction main() [R]. all.c:51

Figure7.1. I ssue Statistics Section

A statistics section consists of two parts, some statisticsin numerical form and two diagrams. The diagrams
plot some statistics for different cache sizes while the numerical statistics provide the exact values for the
cache size the report focuses on.

The number of available fields in most statistics sections depends on how the input data was sampled.
Absolute values, for example accesses and misses, are unavailable when analyzing burst sampled data.
Also, note that the absolute values only apply to the sampled region when attach/detach is used.
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7.1.1.

ThreadSpotter™ is compatible with SlowSpotter™, however some statistics can not be generated when
analyzing samplefiles created with SlowSpotter ™. The most obvious differenceisthat all statisticsrelated
to communication will be disabled for such files. Other differences include, but are not limited to, fetch
and write-back utilization and prefetch handling.

Reading the Statistics

The summary section, issues and loops all contain numerical statistics. The fields shown in statistics
sectionsin different parts of the report differ somewhat, but there is alarge overlap.

Global statistics

Accesses 2.84e+08
Misses 1.66e+06
Fetches 1.24e+07
Write-backs 8.11e+06
Upgrades 0.00e+00
Miss ratio 0.6%
Fetch ratio 4.3%
Writeback ratio 2 9up
Upgrade ratio 0.0%
Communication

ratio 0.0%
Fetch utilization 63.2%
Write-back

utilization 86.2%

Communication
utilization

Figure7.2. Summary Statistics
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Accesses

% of misses

% of bandwidth

% of fetches

% of write-backs

% of upgrades

Miss ratio

Fetch ratio

Write-back ratio
Upgrade ratio
Communication ratio
Fetch utilization
Write-back utilization
Communication utilization
False sharing ratio

HW prefetch probability
Access randomness

Worst instruction

3.43e+07

3.9%

12.0%

9.9%

15.1%

0.2%

3.6%

3.6%

0.0%

0.0%

Low

main() [R]. all.c:61

Figure 7.3. Issue Statistics
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Accesses

% of misses

% of bandwidth

% of fetches

% of write-backs

% of upgrades

Miss ratio

Fetch ratio

Write-back ratio
Upgrade ratio
Communication ratio
Fetch utilization
Write-back utilization
Communication utilization
False sharing ratio

HW prefetch probability

Access randomness

1.35e+06

3.5%

6.6%

10.9%

0.0%

4.3%

100.0%

0.0%

0.0%

Figure 7.4. Loop Statistics
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Accesses 4.09e+08
% of misses 78.3%

% of bandwidth 63.5%

% of fetches 63.5%

% of write-backs 63.5%

% of upgrades 47.6%
Miss ratio 1.5%
Fetch ratio 1.5%
Write-back ratio 1.5%
Upgrade ratio 0.6%
Communication ratio 2.0%
Fetch utilization 9.2%
Write-back utilization 12.6%
Communication utilization 0.0%
False sharing ratio 1.9%
HW prefetch probability 0.0%
Access randomness Low
Worst instruction false_sharin . all_mt.c:56

Figure 7.5. Instruction Group Statistics

Thevaluein some of the statistics fields may become gray anditalic to indicate that it hasaweak statistical
base. This usually happens because the instruction group only has an insignificant amount of fetches.

Accesses

Misses

Fetches

Write-backs

The total number of memory accesses performed by the entire
application, or a specific part of the application when not shown
in the summary view. This value is calculated for the duration of
the sampling and only corresponds to the total number of accesses
performed by the application if the application was sampled from start
to end.

Thisvalueis not available for burst sampled applications.

The total number of cache misses caused by the application during the
sampling, see Section 3.4, “Cache Misses’.

Thisvalueis not available for burst sampled applications.

The total number of cache fetches caused by the application during
the sampling, including those originating from hardware or software
prefetches. See Section 3.8, “Fetch Ratio”.

Thisvalueis not available for burst sampled applications.

The total number of write-backs caused by the application during
sampling.
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Upgrades

Missratio

Fetchratio

Write-back ratio

Upgrade ratio

Communication Ratio

Utilization

Fetch utilization

Write-back utilization

Communication utilization

Processor model

Number of CPUs

Number of caches

The total number of cache line upgrades caused by the application
during the sampling. See Section 3.9, “Upgrade Ratio”.

Thisvalueis not available for burst sampled applications.

The cache missratio of the entire application, see Section 3.4, “ Cache
Misses’.

The cache line fetch ratio of the entire application when displayed
in the summary view, or for the specific part of the program when
displayed in an issue, loop or instruction group statistics section.
Includes fetches originating from hardware or software prefetches.
See Section 3.8, “Fetch Ratio”.

Thelikelihood that awriteinstruction causes acachelineto bewritten
back to memory. See Section 3.10, “Write-Back Ratio”

The upgrade ratio of the entire application when displayed in the
summary view, or for the specific part of the program when displayed
inanissue, loop or instruction group statistics section. See Section 3.9,
“Upgrade Ratio”.

The fraction of memory accesses that cause communication between
caches. See Section 3.7, “Multithreading and Cache Coherence”

Fraction of a cache line that is touched (read or written) before the
cachelineis evicted.

This value is shown instead of the separate fetch and write-back
utilization values when analyzing sample files produced by old
versions of SlowSpotter™,

The average fraction of each cache line fetched from memory or the
next cache level that is actually read before the cache line is evicted
from the cache. See Section 4.5, “Fetch Utilization”.

The average fraction of each cache line written back to memory or
the next cache level that has actually been written by the time it gets
written back. See Section 4.6, “Write-Back Utilization”

The average fraction of each cache line communicated from one
cache to another cache at the same level that is actualy read in the
receiving cache beforeit is evicted. See Section 4.7, “ Communication
Utilization”

The cpu model that the report focuses on. The cpu model tells how
many and how large caches there are, how many cores there are and
how they share caches on various levels, how prefetch instructions
work and how the non-temporal write instructions work.

The number of CPUs assumed for this analys.

The number of caches in the system on the selected cache level.
Application threads are considered to populate this many caches.

Note, thisis not the total number of cachesin the system.
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Cachelevel

Cachesize

Cachelinesize

Replacement policy

Software prefetches active

% of misses

% of bandwidth

% of fetches

% of write-backs

% of upgrades

False sharing ratio

HW prefetch probability

Access randomness

Worst instruction

The cache level this report focuses on. This setting interacts with the
cpu selection with respect to prefetch analysis, as depending on the
cpu model, not all cache levels are affected by prefetch instructions.

The cache size the report focuses on in bytes. This can be the actual
size (default), or it can be overridden. See Section 3.2, “Cache Lines
and Cache Size” [21].

The cache line size the report focuses on in bytes. This can be the
actual size (default), or it can be overridden. See Section 3.2, “ Cache
Lines and Cache Size” [20].

The cache replacement policy the report focuses on. See Section 3.3,
“Replacement Policies’.

Indicates whether the effects of software prefetchesarevisible on this
cache level.

Thefraction of thetotal number of cache misses of the application that
are caused by the selected issue, loop or instruction group.

Thefraction of thetotal bandwidth requirement of the application, that
is caused by the selected issue, loop or instruction group.

The fraction of the total number of cache line fetches of the
application, including those originating from hardware or software
prefetches, that are caused by the selected issue, loop or instruction

group.

Thefraction of the total number of write-backs of the application that
are caused by the selected issue, loop or instruction group.

The fraction of the total number of cache line upgrades of the
application that are caused by the selected issue, loop or instruction

group.

Thelikelihood that an access causes a cache line to be communicated
between two cacheswithout actually sharing any data between thetwo
threads. Thisis related to the communication ratio, but only includes
usel ess communication. See Section 5.4.1, “False Sharing”

This value is not available when analyzing sample files produced by
SlowSpotter ™.,

An estimate of the fraction of the cache misses that are avoided by
the hardware prefetcher, assuming that the memory bandwidth limit
is not hit. See Section 3.6.2, “Hardware Prefetching”.

An estimate of randomness of the memory access pattern of this part
of the application. Random access patterns are generally harmful to
performance, see Section 4.11, “ Access Randomness’.

Points out the instruction that causes causes the largest number of
cache linefetchesin this part of the program, and the source code line
that generated it.
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7.1.2. Reading the Diagrams

The report contains diagrams describing several cache size dependent application characteristics. The
summary tab in the summary frame shows application global values, while the individual issues and loops
show values related to their respective instruction groups.

The diagrams plot their values for different cache sizes, from an 8 kilobyte cache to a 16 megabyte cache
in the following example. The cache size that the report focuses on is marked with a vertical black line,
in this case at 64 kilobytes.

7.1.2.1. Fetch/Miss Ratio Diagram

MissiFetch ratio

[T o "4

o = T e =
= oo o= N 4 E OEZE OE OE D
= I = s A B VA~ S = R |

Fetch ratio
"""" Utilization corrected fetch ratio
— Miss ratio

Figure 7.6. Fetch/Miss Ratio Diagram

* Brightredline

Fetch ratio, the ratio of memory operations in the program, loop, issue or instruction group that,
directly or indirectly through hardware prefetching, cause adatatransfer between memory and cache.
See Section 3.8, “Fetch Ratio”.

* Red dotted line

Utilization corrected fetch ratio. Fetch ratio if the fetch utilization was raised to 100%. See
Section 4.8, “ Utilization Corrected Fetch Ratio”.

e Darkredline

Miss ratio, the ratio of memory operations in the program that stall due to cache misses. The
difference between the fetch ratio and the missratio is caused be software and hardware prefetching.
See Section 3.4, “ Cache Misses”.

7.1.2.2. Write-Back Ratio Diagram

Writeback ratio

= 2l

="y
P =
e N |
[ L A

256k,
12k

=
=E E E E O
— & =% o -

Write-hack ratio
"""" Utilization corrected write-back ratio

Figure 7.7. Write-Back Ratio Diagram
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» Blackline

Write-back ratio, the ratio of memory accesses that cause a cache line to be written back to memory.
See Section 3.10, “Write-Back Ratio”.

 Black dotted line
Utilization corrected write-back ratio, the ratio of memory accesses that would cause a write-back
if the write-back utilization was raised to 100%. See Section 4.9, “ Utilization Corrected Write-Back
Ratio”.

7.1.2.3. Utilization Diagram

Utilization

100 T

508 Tr——
o

k.

k.

k.
128k
256k,
12k

Fetch utilization
— Write-back utilization

Figure7.8. Utilization Diagram

* Blueline

Cache line utilization for the program, loop, issue or instruction group. Shows how large fraction of
the data that isloaded into the cache is actually used by read or write operations.

Thislineisshowninstead of aseparatefetch and write-back utilization when analyzing files produced
by old versions of SlowSpotter™.

e Orangeline
Fetch utilization of the program, loop, issue or instruction group. Shows how large fraction of the
data that is loaded into the cache is actually read. The utilization curve is dashed beyond the point
where the estimates have aweak statistical base. See Section 4.5, “Fetch Utilization”.

» Greenline
Write-back utilization of the program, loop, issue or instruction group. Shows how largefraction of a

cache linethat iswritten prior to writing the line to memory. The utilization curve is dashed beyond
the point where the estimates have aweak statistical base. See Section 4.6, “Write-Back Utilization”.
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7.2. The Report

Layout

Issues || Loops || Ssummary || Files || Execution

Global statistics

Accesses 2.84e+08
Misses 1.66e+06
Fetches 1.24e+07
Write-backs 8.11e+06
Upgrades 0.00e+00

Mi: 0.6%

Fet! o 400
Writeback Ylkio 2
up o

Communication

ratio 0.0%
Fetch utilization I
63.2%
Write-back .
utilization 86.2%

Communication
utilization

Analysis parameters

About/Help

MissiFetch ratio

Fetch ratio
e Utilization corrected fetch ratio
v

Urite-back ratio
-+ Utilization corrected urite-back ratio

Utilization

e ||

Selectanissue or aloopin the issue or loop tables.

Issue

Value

Selectan issue or aloop in theffsue or loopgables

q

etalls

Select afilein the file table, or follow a source code link from an issue or a loop description

Source

Figure 7.9. Report Outline

The report consists of three frames:

» The summary frame to the upper left shows summary results for the whole application. This frame
can show lists of issues that were found by the analysis, the loops identified in the application that
suffer from one or more issues and genera information about the application and sampling. The
summary frame also a provides navigation for the other two frames, which elaborate on a selected

issue or loop.

» Theissue frame to the lower left shows detailed information about a specific issue or loop.

» The source frame to the right shows the source code related to the currently viewed issue or loop.

7.3. The Summary Frame

The summary frame contains different views which can be chosen by clicking on their respective tab.
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7.3.1. The Summary Tab

The summary tab presents statistics for the entire application and information about the parameters used
in the analysis.

Issues (| Loops || Summary || Files || Execution || AboutiHelp

Global statistics MissiFetch ratio
Accesses 2.84e+08
[
Misses 1.66e+06 i e ——
Fetches 1.24e+07 3 \\
Write-backs B.11e+06 o = = =
x & 5 ¥ 8 & Y3z z =z = &
Upgrmes 'D.DDEH"DD (=) - [1r) W - (3] uw — () =+ (=) -
- - — Fetch ratio
Miss ratio 06%m | e Utilization corrected fetch ratio
Fetch ratio 4.3% fliss ratio
- - Writeback ratio
Writeback ratio 2.9%
Upgrade ratio 0.0% gz
—— i
Communication 3
ratio 0.0% E \h"\_
Fetch utilization o w ox ox B OB & =
63.2% # 5 8 3 4 BB 5 R FE S
. — Write-back ratio
W_rl_te-b_m:k 86.2% | e Utilization corrected write-hack ratio
utilization :
— Utilization
Communication .
utilization R
100 —— T
Analysis parameters 1 |
o — pnctt I s S ol et il
Intel(R) Core(TM)2 50
Processor model
CPU T7200 @ oF
2.00GHz (auito) L% % 8288
o - " o - ol ('] — (2] -+ o -

R L — Fetch utilization

— Write-hack utilization
Number of caches

Cache level 2
Cache size Bak
Line size 64
Replacement

policy random
Software

prefetches active Yes

Figure 7.10. The Summary Tab

The diagrams show various cache size dependent metrics for the whole application. See Section 7.1.2,
“Reading the Diagrams”.

The table below the diagram shows the values of some statistics for the entire application at the specific
cachesizethe analysisfocuseson and the values of some parametersused intheanalysis, see Section 7.1.1,
“Reading the Statistics’
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7.3.2. The Loops Tab

| Issues || Loops || Summary || Files || Execution || About/Help |

L % of
P misses
1 78.3%

4 0.8%

3 0.8%

5] 0.8%

2 0.0%%

5 0.0%

% of - Fetch Writeback I

fetches “ utilization utilization Ssues
63.5% 9.2% 12.6% D ED| 8 Fase

’ ’ ’ E@E W e
12.6% 12.5% 100.0% a

8 s 8 ¢ |

6.3% 100.0% 100.0% S =2
0.6% 6.2%4 6.2%4 [C:
0.0% 100.0%4 100.0%4 WIS
0.0% 9.5% 12.5% (W]

Figure7.11. TheLoops Tab

The loops tab enumerates the loops associated with issues that have been found in the application and
some statistics about them. Sometimes the same loop may be the cause of several issues and it may then
be a good take an over all look at the loop instead of looking at each of the issues separately.

Loop

% of misses

% of fetches

Fetch utilization

Write-back utilization

Issues

Numerical identifier for the current loop. Clicking on this number
will bring up information about the loop in the issue frame, see
Section 7.4.4, “Issue Details’. It will also highlight the instructions
related to the loop in the source frame.

The proportion of the total cache misses that are caused by the loop.
The proportion of the total cache fetchesthat are caused by the loop.
L oops are sorted by this value by default.

Averagefetch utilization for theinstructionsinvolved in thisloop. See
Section 4.5, “Fetch Utilization”.

Average write-back utilization for the instructions in this loop. See
Section 4.6, “Write-Back Utilization”

Icons symbolizing the issues associated with this loop.
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7.3.3. The Bandwidth Issues Tab

J Bandwidth Issues || Latency Issues || Multi-Threading Issues || Pollution Issues

5 : Issue type . Wof % of % of Fetch  Write-back
| Filter: All < | bandwidth fetches |write-backs utilization | utilization

5 (WY Writeback hot-spot 2.2% 0.0% 4.4% 100.0% 100.0%

2 W B | | write back utilization 63.5% 63.5% 63.5% 9.2% 12.6%

12 W B |write back utilization 5.0% 0.0% 10.1% 9. 2% 12.5%

T ST) = Spat/temp blocking 3.1% 6.3% 0.0% 100.0%

10 S = Spat/temp blocking 6.3% 12.6% 0.0% 12.5%

1 [F] EJ Fetch utilization 63.5% 63.5% 63.5% 9.2%

9 [ F ] EJ Fetch utilization 6.3% 12.6% 0.0% 12.5% 100.0%

6 [F ] LJ Fetch hot-spot 3.1% 6.3% 0.0% 100.0% 100.0%

Figure 7.12. The Bandwidth Issues Tab

The bandwidth issues tab lists the issues that primarily affect the memory bandwidth requirement of the
application. These are issues that may be hidden by hardware prefetching as long as there is enough
memory bandwidth available, but will start to cause cache missesif the memory bandwidth is exhausted.

The following columns are available in the bandwidth issue list:

| ssue number Numerical identifier for the current issue. Clicking on this number
will bring up information about the issue in the issue frame, see
Section 7.4.4, “Issue Details’. It will also bring up the related source
code in the source frame, and highlight the worst line.

Issue type Issue type and icon. Theissueicon is also shown in the source frame.

% of bandwidth The proportion of the total fetches and write-backs that are caused
by the issue. This gives you an idea of which issues cause the
most memory-bandwidth usage and therefore are most important to
address.

Bandwidth issues are sorted by this value by defaullt.

% of fetches The percentage of the total cache line fetches that are related to the
issue.

% of write-backs The percentage of the total cache line write-backs that are related to
theissue.

Fetch utilization Average fetch utilization for the instructions involved in this issue.

See Section 4.5, “Fetch Utilization”.

Write-back utilization Average write-back utilization for the instructions involved in this
issue. See Section 4.6, “Write-Back Utilization”
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7.3.4. The Latency Issues Tab

| Bandwidth Issues || Latency Issues || Multi-Threading Issues || Pollution Issues
# | Filter: A'”"""“e — = mqfs::;s 4 HW-Prefetch |Randomness uti'I:i?!Lct?on
43 M ¥ | Random access 38.1%  |0.0% Very high 10.6%
44 (S = Spat/temp blocking 38.1% 0.0% Very high 10.6%
51 | F | EJ Fetch utilization 7.6% 0.0% Low 0.0%
52 | OO | |Loop fusion 7.6% 0.0% Low 0.0%
25 | & Hit | |prefetch: unnecessary 0.0% 0.0% Low 100.0%
45 @ B Eetch utilization 0.0% 0.0% Low 0.0%
46 | &l Close| |Prefetch: too close 0.0% 0.0% Low 0.0%
50 | &l Far Prefetch: too distant 0.0% 0.0% Low 100.0%
Figure 7.13. The Latency Issues Tab

The latency issues tab lists the issues that primarily cause cache misses. Cache misses cause stalls in the
execution and have an immediate negative effect on the execution speed.

The following columns are available in the latency issue list:

| ssue number Numerical identifier for the current issue. Clicking on this number
will bring up information about the issue in the issue frame, see
Section 7.4.4, “Issue Details” . It will also bring up the related source
code in the source frame, and highlight the worst line.

Issue type Issue type and icon. The issueicon isaso shown in the source frame.

% of misses The proportion of the total cache misses that are caused by the issue.
This gives you an idea of which issues cause the most misses and
therefore are most important to address.
Latency issues are sorted by this value by default.

HW-Prefetch An estimate of thefraction of the cache missesrelated to thisissue that

are avoided by the hardware prefetcher, assuming that the memory
bandwidth limit is not hit. See Section 3.6.2, “Hardware Prefetching”.

Randomness An estimate of randomness of the memory access pattern for
the ingtructions related to this issue. See Section 4.11, “Access
Randomness”.

Fetch utilization Average fetch utilization for the instructions involved in this issue.

See Section 4.5, “Fetch Utilization”.
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7.3.5. The Multi-Threading Issues Tab

| Bandwidth Issues || Latency Issues || Multi-Threading Issues || Pollution Issues

" : Issue type % of Communication  False
[ Filter: Al 2| communication utilization sharing

3 C ] EJ Communication utilization 62.6% 0.0% 1.9%

4 B False | False sharing 62.6% 0.0% 1.9%

11 C ] EJ Communication utilization 10.3% 12.5% 0.0%

8 [C ] ﬁ_J Communication hot-spot 4.5% 100.0% 0.0%

13 C ] EJ Communication utilization 0. 5% 12.5% 0.0%

Figure 7.14. The Multi-Threading I ssues Tab

The multi-threading issues tab lists issues related to multithreading and data sharing between threads.

The following columns are available in the multi-threading issue list:

I ssue number

Issue type

% of communication

Communication utilization

False sharing

Numerical identifier for the current issue. Clicking on this number
will bring up information about the issue in the issue frame, see
Section 7.4.4, “1ssue Details’. It will aso bring up the source code for
the related to the issue in the source frame.

Issue type and icon. The issueicon isalso shown in the source frame.

The percentage of all cacheline communication of the application that
is associated with thisissue.

The average communication utilization for the instructions involved
an issue. See Section 4.7, “Communication Utilization”.

The probability that an accessrelated to an issue will suffer from false
sharing. See Section 5.4.1, “False Sharing”.
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7.3.6. The Pollution Issues Tab

| Bandwidth Issues || Latency Issues || Multi-Threading Issues || Pollution Issues

Issue type

# Filter: Al 2] % of fetchesa Required cache size
42 |l NT Mon-temporal data 10.0% 141k
4 |&l NT Mon-temporal data 9.9% 246k
8 |l&d NT Mon-temporal data 9.3% 292k
21 | &l NT Mon-temporal data 8.2%4 250k
36 | lad NT Mon-temporal data 7.954 31k
49 | & NT Mon-temporal data 7.184 12k
19 | & NT Mon-temporal data 6.7% 246k
12 | &l NT Mon-temporal data 6.5% 712k
24 | & NT Mon-temporal data 5.500 141k
29 | & NT Mon-temporal data 4.1% 430k
32 | &l NT Mon-temporal data 4.1% 430k
33 | &l NT Mon-temporal data 1.08 141k

Figure 7.15. The Pollution I ssues Tab

The pollution issues tab lists issues related to cache pollution and non-temporal data.

The following columns are available in the pollution issue list:

I ssue number

Issue type

% of fetches

Required cache size

Numerical identifier for the current issue. Clicking on this number
will bring up information about the issue in the issue frame, see
Section 7.4.4, “1ssue Details’. It will aso bring up the source code for
the related to the issue in the source frame.

Issue type and icon. Theissueicon is aso shown in the source frame.

The percentage of al fetches of the application that are caused by these
non-temporal reuses.

An estimate of the cache size that would be required for the fetch ratio
the non-temporal reusesto fall below 80%.

7.3.7. The Files Tab

| Issues || Loops || Summary || Files || Execution || AboutiHelp

File
[home/mve/src/frejatrunk-O/analysis/advice/test/all_mt.c

Figure7.16. TheFilesTab
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The files tab lists the source code files of the application. Clicking on afile opens it in the source code
frame.

Thistab also lists all loaded modules, binaries and shared libraries (.so, .dll), along with their respective

load addresses. Thistable is useful to understanding code paths and call stack chainsin third-party code,
for which no debug information is available.

7.3.8. The Execution Tab

| Issues || Loops || Summary || Files || Execution || About/Help

Command line analysis/advice/test/all_mt

Sampling start
Tue Nov 10 16:58:28 2009

time
Sampling end .
time Tue MNov 10 16:58:49 2009
User mve
Sample file Ihome/mve/srcifreja-trunk-0/analysis/advice/test/all_mt.smp
Number of
samples 10500
Analysis report -c 64k —level=1 - analysis/advice/test/all_mt.smp -0
parameters doc/docbook/manual/report/all_mt
Analysis time Wed Mov 11 13:24:40 2009

Figure 7.17. The Execution Tab

The execution tab shows some information about the sampling and analysis the report is based on.

Command line The command line of the sampled application. Reported to make it
easier to reproduce arun.

Sampling start time The time when the sampling of the application started.

Sampling end time The time when the sampling of the application ended.

User The user account that was used when sampling the application.
Samplefile The name of the sample file the report is based non.

Number of samples The number of samplesin the sasmplefile.

Analysis parameters The command line of the report command when generating the report.

Provided to make it easier to repeat the same analysis.
Anaysistime The time when the report was generated.

Effective thread binding A list of how the threads in the application populate the caches
according to the thread binding currently in effect.

Cache number denotes the sibling number of the cache at the selected
cache level.
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Thread id is the operating thread id number. Depending on the active
thread bindning, one or more threads can operate in each cache.

For each thread, ThreadSpotter™ sequentially assignsavirtual thread
id, starting with 0.

Use this table to see the effect of different thread bindings.

7.3.9. The About/Help Tab

| Issues || Loops || Summary || Files || Execution || AboutiHelp

ThreadSpotter™

.3
Yersion: 2011.2, Build: unknown F

Yiew the manual.

SOFTWARE
Legend

Slowspot issues Opportunity issues
u_m Fetch utilization E’_@ Spatial blocking
L’ﬂ_w Write back utilization “_il Temporal bloecking
lﬂ_m Communication utilization m_il Spat/temp blecking
-_Ll Inefficient loop nesting &l Loop fusion

EQ_I Random access MLI Mon-temporal data
& Close] peretch: too close LJL' Mon-temporal store possible

LﬁL‘ Prefetch: too distant ﬂ_‘i"_l Fetch hot-spot
Pr ] "“_I Prefetch: unnecessary M_Llwmeback hot-spot
-ﬂl False sharing _‘i"_lﬂ Communication hot-spot

Contact information:

Rogue Wave Software, Inc.
5500 Flatiron Parkway Suite 200

Address
Boulder, CO 80301 USA
Phone +1 B00-487-3217
Phone +1 303-473-9118
Fax +1 303-473-9137
Support Email suppont@roguewave. com
Web http:/fwww. roguewave. com

Figure 7.18. The About/Help Tab

The about/help tab shows version information for the ThreadSpotter ™ package that generated the report,

contact information for Rogue Wave Software and information about the license used to generate the
report.

7.4. The Issue Frame

Theissue frame shows detailed information about a specific loop or issue. The exact contents of the frame
depend on whether it is displaying aloop or an issue, and if it is an issue on the type of issue.
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7.4.1.

7.4.2.

The issue frame consists of a number of sections. By default most of them will be collapsed and only

display the title of the section and an expand button, +/, to the left of the title. Clicking the expand button
shows the contents of the section.

To collapse an expanded section click the collapse button, =, to the left of the section title.

Statistics

When displaying details for loops, issues or instruction groups, the issue frame will begin with a statistics
section.

Accesses 3.43e+07
% of misses 3.9%
% of bandwidth 12.0%
% of fetches 9.9%
% of write-backs 15.1%
% of upgrades

Miss ratio 0.2%
Fetch ratio 3.6%
Write-back ratio 3.6%
Upgrade ratio 0.0%
Communication ratio 0.0%
Fetch utilization 75.3%
Write-back utilization 90.9%
Communication utilization 100.0%

False sharing ratio

HW prefetch probability 94.7%
Access randomness Low
Worst instruction main() [R]. all.c:51

Figure 7.19. Issue Statistic Sections

The diagrams and all numbers presented here are for the currently selected part of the application. See
Section 7.1.2, “Reading the Diagrams” and Section 7.1.1, “ Reading the Statistics’.

In addition, for cacheline utilization related advice, the statistics also report the fraction of thetotal fetches
that would be avoided if the program was modified so that it achieves perfect utilization. See Section 4.8,
“Utilization Corrected Fetch Ratio”. This helps you estimate the potential gain in addressing the issue.
Other types of actions, such as loop fusion or blocking, can reduce the fetches even further.

Instructions

The issue frame also contains lists of instructions regardless of if it is showing details for a loop or for
anissue.

87




Reading the Report

7.4.3.

% of % of Fetch Fetch w-B

e D misses | fetches ratio utilization Utilization

false_sharing()
ﬂ {Ox4009c0) [R]. 30.2% 24.5% 1.2% 9.2% 12.6%
all_mt.c:56

false_sharing()
{Ox4009d4) [W]. 48.1% 39.0% 1.8% 9.2% 12.6%
all_mt.c:56

Figure 7.20. Instructions with Collapsed Call Stack

Figure 7.20, “Instructions with Collapsed Call Stack” shows an instruction group containing two
instructions.

The address of each instruction is presented in the instruction column. If debug information is available,
the function the instruction is part of, and the source file and line number that generated the instruction
are al so presented.

In this case the instructions at address 0x400516 and 0x400526 belong to the function mai n and is part
of line5linthefiledeno. c.

The expand button, #/, in front of the lineindicates that there is call stack information available telling us
where the instruction was called from. Clicking the button expands the call stack information.

% of % of Fetch Fetch Ww-B

e D misses | fetches ratio utilization Utilization

= (ox3306eddf3d)
(0x3307a06a3a)
dispatcher() (0x400f22). all_mt.c:247

false_sharing()
{Ox4009c0) [R]. 30.2% 24.5% 1.2% 9.2% 12.6%
all_mt.c:56

false_sharing()
{Ox4009d4) [W]. 48.1% 39.0% 1.8% 9.2% 12.6%
all_mt.c:56

Figure 7.21. Instructions with Expanded Call Stack

This tells us that the function the instructions are part of was called from the instruction at address
0x386fele074, and that function was in turn called from the instruction at address 0x4003b9. Debug
information was not available for these functions, otherwise the functions names, file names and line
numbers would have been displayed.

When there are several instructions with the same call stack, like in this case, the call stack isonly shown
for the first instruction with a particular call stack. When there are many different locations invoking a
particular function, there would be many aternative call stacks. ThreadSpotter™ displays the dominant
one, along with a percentage that describes the fraction of calls coming from that particular call site.

Depending on the call stack analysis depth, it can happen that the same instruction is reported more than
once in an instruction group or aloop. In this case, the analysis engine has differentiated the statistics for
thisinstruction depending on which functions it was called from.

Loop Details

Theloop isthe primary interesting structural element of a program from a cache performance standpoint,
see Section 4.2, “Loops”’.
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Loop 14
=l Loop statistics

Accesses 1.35e+06 Fetch/Miss ratio
% of misses 3.5%
_ 1007 :
% of bandwidth 6.6%
% of fetches 10.9% S0 \_
% of write-backs 0.0% o v v o= BB & =
w89 w3 N A B 5&EEFEE S
s —— Fetch ratio
Miss ratio 430 | T Utilization corrected fetch ratio
: — Misz ratio
Fetch ratio 100.0% Writeback ratio
Write-back ratio 0.0%
Upgrade ratio 0.0% 1o0d
Communication JaleF3
ratio 0.0%
o4
o = s
Fetch utilization 1.5% s 88 g 38 ds5s53s55 8
Write-back o — Write-back ratio
utilization 100.0% || wxeeeee- tilization corrected write-hack ratio
Communication A A Utilization
utilization B
False sharing ratio . Wk === T T T T T T 1T T
o S0
HW prefetch ¥
S 95.7% M
probability . B &5 858 E Y ==z == 5
oo — [arl w - [3¥] uw — ] = oo -
Access randomness Low — Fetch utilization

— Write-hack utilization

+ Loop instructions

+ Bandwidth issues related to this this loop
=+ Prefetch issues related to this this loop
+! Instruction groups in this loop

+! Instruction group 1

Figure7.22. Loop

When the issue frame is displaying aloop it contains these sections:
» Loop statistics
Statistics for the instructions of the loop, see Section 7.1, “ Statistics’.
 Loop instructions
List of all theinstructions of the loop, see Section 7.4.2, “Instructions’.
* Issuesrelated to thisloop
List of all issuesrelated to this thisloop.

* Instruction groupsin thisloop
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List of all instruction groupsin the loop, with some statistics.

* Instruction group

Thereisasection for each instruction group in theloop. It contains statisticsfor the instruction group,
alist of issuestheinstruction groupisinvolved in and alist of theinstructionsin theinstruction group.

7.4.4. Issue Details

There are afew common sections that occur in many of the issue types:

* Instructions previously writing to related data

Pointsto the previous | ocations in the source code where the data structure involved in the issue was
written, making it easier to determine which part of a complex expression is involved in the issue.
See Section 4.4, “Last Writer” for more information. Some types of issues also point to the next
instruction writing to related data.

» Loop statistics

All numbers presented here are in reference to the entire loop containing the memory instructions
involved in this performance issue, see Section 7.1, “ Statistics’.

» Loop instructions

Listsall theinstructionsin aloop. See Section 7.4.2, “Instructions’.

The exact contents of the issue frame varies with the type of issue, see Chapter 8, Issue Reference for more
information about specific issue types.

7.5. The Source Code Frame

The frame to the right in the report displays the source code of the application.

35
36
ar
38
39

a0 H

41

static vodid
hotspot(void)
{
for (int 1 = 8; 1 < Ox100; it++)
for (int j = @, j < Ox10000,; j++)

9.7% v_hotspot[]j] += v_hotspot[(j + 1) % Ox100007;
2

Figure 7.23. Sour ce Code with Collapsed Lines

Clicking on a source code line reference or on afile namein the Files tab opens a new page in the source
code frame. As can be seen in Figure 7.23, “Source Code with Collapsed Lines’, the source code is
annotated. There are three columns showing the line number, the percentage of all the cache line fetches
of the application directly or indirectly caused by the line, and the source code itself.

Linesthat significantly affect the memory behavior are highlighted in yellow and the line number column
of each line in the currently selected loop is highlighted in purple. Each significant line also has a set of
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icons representing the issues it is causing, and there is and expand button you can click to show more
information about the line.

35 static void
36 hotspot(void)
37 {
38 for {(int 1 = 0; 1 < Ox100; i++)
39 for (int j = 0; j < Ox10B00; j++)
a0 =l [9.7% v_hotspot[j] += v_hotspot[(j + 1) % Ox1000O];
% of fetches Miss ratio Fetch ratioc WE ratio Fetch Util WE Util PC Type Issues

0.2% 0.1% 0.2% 0.0%  04.0%  92.6% Ox4004eb R @ ¢ |0 & |ud =2 |&Nr
9.3% 2.2% B.4% 0.0%  94.0%  92.6%% Ox4004f7 R @ ¢ |0 & |u =2 |&inNT
0.2% 0.1% 0.2% 6.7%  094.0% 926% oOx400501 w @ & |0 & |ad =2 |& NT

41 [}

Figure 7.24. Sour ce Code with Expanded Lines

Clicking on the expand button shows more information about each significant machine code instructions
belonging to the line, as seen in Figure 7.24, “Source Code with Expanded Lines’. If the function is
called from different places and ThreadSpotter™ separates the different call stacks, the statistics for each
instruction is display separate for each call stack, and the different call stacks are shown in alternating
green shades.

The statistics shown for each instruction are:
 Percentage of all cache line fetches of the application caused by the instruction.
» The cache miss ratio of the instruction.

Note that the miss ratios of prefetch instructions are displayed here. Misses caused by prefetch
instructions are not included in the statistics of instruction groups, loops or the entire application,
because unlike other cache misses prefetches that miss in the cache do not cause stalls. See
Section 3.4, “Cache Misses’” for more information.

» Thefetch and write-back utilization of the instruction.
» The address of the instruction.
» The accesstype of the instruction; read and/or write, or prefetch.

 |consfor the issues that the instruction isinvolved in.
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Chapter 8. Issue Reference

This chapter serves as a reference for the issue types that ThreadSpotter™ reports about.

8.1. Utilization Issues

ThreadSpotter™ can identify three different utilization issues. Fetch and write-back utilization, which
apply to the communication with memory or higher level caches that are local to the current thread. The
communication utilization issue applies to communication between threads that are mapped to different
caches.
Utilization issues can have a number of causes:

» There may be structures with unused fields, see Section 5.1.1, “Partially Used Structures’.

» There may be padding inserted into structures or between elements in an array to ensure data
alignment, see Section 5.1.3, “ Alignment Problems’.

» There may be housekeeping data from the dynamic memory allocation between data objects, see
Section 5.1.4, “Dynamic Memory Allocation”.

* It may be caused by irregular access patterns, see Section 5.2.2, “Random Access Pattern”.

* It may be caused by iterating over a multidimensional array in an inefficient direction, see
Section 5.2.1, “Inefficient Loop Nesting”.

* It may be caused by several threads accessing a common data set, partitioning the data set in an
inappropriate way.
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8.1.1. Fetch Utilization

Issue #34: Fetch utilization @ BT |

This instruction group also show symptoms of: ﬂ_i'_J Fetch hot-spot.

—=| Statistics for instructions of this issue

Accesses 1.02e+06 Fetch/Miss ratio
% of misses 6.0%
9% of bandwidth 1008 ————
4.8%
JaleA
% of fetches T.9% oz
w ox ox B OB & =
% of write-backs 0.0% # 5 8 3 4 BB 5 R FE S
— Fetch ratio
"""" Utilization corrected fetch ratio
% of upgrades — —— HMizs ratio
Miss ratio 9.8% Writeback ratio
Fetch ratio 95.7%
Write-back ratio 1008
0.0%
JaleA
Upgrade ratio 0.0% o
o w ox ox B OB & =
Communication 0.0% # 5 8 3 4 BB 5 R FE S
ratio —— lWrite-back ratio
Fetch utilization | 7 Utilization corrected write-hack ratio
6.2%%
Utilization
Write-back A A
utilization e Dy U U Y R I O
Cqmml_mication 100.0% S0
utilization o
[iH4
False sharing ratio | _ _ v v o= BB & =
el ) o ) ) - (8] Iy — = = = = w
i o - " o - ol ('] — (2] -+ o -
— Fetch utilization
HW prefetch 09.8% —— Write-hack utilization
probability ’
Access L
randomness oW

Worst instruction main() [R1.

+|Instructions involved in this issue
+ Loop statistics

+ Loop instructions

Figure8.1. Fetch Utilization Issue

A fetch utilization issue indicates that a part of the application exhibits poor spatial locality, that is, cache
lines are only partialy read. The unused parts are still loaded into the cache, which means that memory
bandwidth and cache space that could be used for useful datais wasted.

The fetch utilization issues has these sections:
o Statistics for instructions of thisissue

 |nstructionsinvolved in thisissue
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* Instructions previously writing to related data
* Loop statistics

* Loop instructions

8.1.2. Write-Back Utilization

Issue #48: Write back utilization L B |

This instruction group also show symptoms of: E_LI Fetch hot-spot, M_LIWriteback
hot-spot.

—| Statistics for instructions of this issue

Accesses 1.05e+06 FetchiMiss ratio
% of misses 2.7%
% of bandwidth 1008 —————
8.8%
B0
% of fetches 7.2% of
% of write-backs 11.0% = 4 8 3 A 885 &EFE S

— Fetch ratio
"""" Utilization corrected fetch ratio
— Misz ratio

Writeback ratio

% of upgrades

Miss ratio 4.3%

Fetch ratio 85.3%
Write-back ratio

1008 F———|
B5.3% 50%

Upgrade ratio 0.0% 2w
& 9 & 3

128k
256k
12k

= = = = %
- ~ — o = m o
Communication

- 0.0% — Write-back ratio
rate T e Utilization corrected write-back ratio
Fetch utilization 0.0% Utilization
Write-back
10
utilization 6.3%
o 5
Communication e
utilization TEe 0 - = =
a0 s a0 o0 o [ =
0 004
ratio e Fetch utilization
— Write-back utilization
HW prefetch
probability 94.9%
Access L
randomness ow

Worst instruction 18I0
allc:114

#+l Instructions involved in this issue
#+| Instructions previously writing to related data
+ Loop statistics

+| Loop instructions

Figure 8.2. Write-Back Utilization I ssue
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A write-back utilization issue indicates that a part of the application has poor write-back utilization, that
is, cache lines are only partially updated (written) by the application. The parts that were not updated will
still be written back to memory, which results in wasted bandwidth.
The write-back utilization issues has these sections:

o Statistics for instructions of thisissue

* Instructionsinvolved in thisissue

* Instructions previously writing to related data

» Loop statistics

 Loop instructions
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8.1.3. Communication Utilization

Issue #3: Communication utilization & 82 |

This instruction group also show symptoms of: B_Ll Communication hot-spot.

—| Statistics for instructions of this issue

Accesses 4.0%e+08 FetchiMiss ratio
% of misses 78.3%
1.5%
% of bandwidth
63.5% 1.0%
058
9% of fetches 63 5% PR T VIR S LY D AP LS P ST
= i =

write-backs — Fetch ratio

"""" Utilization corrected fetch ratio
A7 6% — Misz ratio

Writeback ratio

% of upgrades

16HM

Miss ratio 1.5%
Fetch ratio 1.5% 1.5%
. - 1.0%
Write-back ratio
1.5% 0.5%
P
Upgrade ratio v w o mOE
0.6% w Wf fo® M A E OE E OB
o - [ar] o - (3] L - ol -+ o

o — lrite-hack rati
Communication _ = | .. oosEThask rain

16HM

N 2 0% Utilization carrected write-hack ratio
ratio ’
Utilization
Fetch utilization
9.2%
15%
Write-back 108
utilization 12.6% -
Communication . o I
B ' # 8 S8 P85 5
False sharing Fetch utilization
ratio 1.996 — Write-back utilization
HW prefetch
probability 0.0%
Access L
randomness ow
Worst false_sharing()
instruction :
all_mt.c:56

#+| Instructions involved in this issue

+| Instructions acting as producers

+| Instructions previously writing to related data
4| Next instructions to write to related data

+ Loop statistics

+| Loop instructions

Figure 8.3. Communication Utilization Issue

16M
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A communication utilization issue is reported when ThreadSpotter™ finds two locations in different
threads, or rather in two threads mapped to different caches, that communicate by reading and writing the
same cache lines, but only use asmall part of the cache linesin each communication cycle. By utilization
alarger part of the cache linesfor communication the amount of coherence missesin these locations could
be reduced. See Section 5.4.2, “ Poor Communication Utilization” for moreinformation about the problem.
The communication utilization issue has these sections:

o Statistics for instructions of thisissue

* Instructionsinvolved in thisissue

« Instructions acting as producers. These are the instructions in other threads that write the data that
are being consumed by the instructions identified by this issue.

» Loop statistics

 Loop instructions
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8.2. Inefficient Loop Nesting

Issue #37: Inefficient loop nesting 8_9 |

This instruction group also show symptoms of: HLEIJ Fetch utilization, LJLE'J Write back
utilization, ﬂ_.‘i'!_J Fetch hot-spot, ‘H_i_JWriteback hot-spot.

—=| Statistics for instructions of this issue

Accesses 1.83e+06 FetchiMiss ratio
% of misses 1.5% a0
- Al f——
% of bandwidth 4.9% 30 . _
30 =
20 A
% of fetches 3.5% 13% ' S
% of write-backs 5 4% ® 3 8 3 388 5 HEFE S

Fetch ratio
"""" Utilization corrected fetch ratio

LT — — Misz ratio
. . Writeback ratio
Miss ratio 1.4%
Fetch ratio 23.9% &9
- - iy,
Write-back ratio ‘_\
23.9% &
i)
Upgrade ratio 0.0% o o BB A =
e =) i = ] o - = = = = =)
Communication Fomom R om R sy E
. 0.0%4 Write-hack ratio
ratie 7 e Utilization corrected write-back ratio
Fetch utilization 18.1% Utilization
Write-back
100% 7
utilization 12.7%
S jalers /
Communication A 4
utilization e 0 - 2 =
i = i o \n ol =
False sharing # 9 HI YR ESEEE S
ratio .o —— Feteh utilization
Write-back utilization
HW prefetch
probability 34.2%
Access L
randomness o
Worst instruction | T&i0
[RL.

#+! Instructions involved in this issue
+| Instructions previously writing to related data
+| Loop statistics

+|Loop instructions

Figure 8.4. Inefficient L oop Nesting I ssue

Aninefficient loop nesting issueindicatesthat there areloopsiterating through amultidimensional array in
an inefficient order. See Section 5.2.1, “Inefficient Loop Nesting” for a general description of inefficient
loop nesting.
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Theinefficient loop nesting issue only contains standard sections:
o Statistics for instructions of thisissue
* Instructionsinvolved in thisissue
* Instructions previously writing to related data
» Loop statistics

 Loop instructions
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8.3. Random Access Pattern

Issue #43: Random access 8 ¥ |

This instruction group also show symptoms of: uLEJ Fetch utilization, E_LJ Fetch
hot-spot.

—=| Statistics for instructions of this issue

Accesses 1.13e+06 FetchiMiss ratio
% of misses 38.1%
% of bandwidth Lo
3.1% T
a0
% of fetches 5.1% Py T
% of write-backs 0.0% ® 3 8 3 388 5 HEFE S
’ Fetch ratio
% of upgrades | _ Upilizat@nn corrected fetch ratio
— MHMis=z ratio
. . Writeback ratio
Miss ratio 56.0%0
Fetch ratio 56.0%0 1008
Write-back ratio 0.0% 0%
. 0
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raio T e Utilization corrected write-hack ratio
Fetch utilization iz ati
10.6% Utilization
Write-back A A 100 fmmamm -
utilization e [
o 50 —
Communication T
utilization B 0 e
i = i o \n ol =
. = o ] -+ [a¥] [My) — = = = = )
False sharing e T = e S B B B S Y B w B
ratio R —— Fetch utilization
Write-back utilization
HW prefetch
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Access )
randomness Very high

Worst instruction  maing [R]L
all.c:214

+| Instructions involved in this issue
+ Loop statistics

+| Loop instructions

Figure 8.5. Random Access Pattern I ssue

A random access pattern issue is reported when a random or irregular memory access pattern that
negatively affects the cache behavior of the application is found. Random access patterns are generally
harmful to performance by reducing the cache line utilization and reducing the effectiveness of the
hardware prefetcher. See Section 5.2.2, “Random Access Pattern” for more information.

The random access pattern issue has these sections:
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o Statistics for instructions of thisissue
* Instructionsinvolved in thisissue
* Instructions previously writing to related data
» Loop statistics
 Loop instructions
Random access patterns can arise in various circumstances due to different underlying reasons, such as

use of inappropriate data structures, use of algorithms that traverse datain complex patterns, and general
use of dynamic memory alocation.

8.4. Loop Fusion

A loop fusion issue indicates that there are two loops iterating over the same data, but the accessed data
is evicted from the cache between the loops. By moving the loops closer together or fusing them it may
be possible to avoid the cache misses that the second loop now suffers from. See Section 5.2.3.2, “Loop
Fusion” for a general description of loop fusion.
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Issue #3: Loop fusion 8 00 |

It may be possible to merge the bodies of loop #5 and loop #1 by moving the first loop down or the
second loop up.

—=| statistics for fusible instruction group, second loop #1

Accesses 3.60e+07 FetchiMiss ratio
% of misses 2.5%
% of bandwidth e { e ——
: 1.5% \\
1.0 :
% of fetches 6.7% S-58 —
- a0 s a0 o0 o [ =
% of write-backs # S H? YR ES835 &5 3
Fetch ratio
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— — MHMis=z ratio
. . Writeback ratio
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Fetch ratio 2.3% 2 5%
: : Z0
Write-back ratio
2.3% 1:a8
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Upgrade ratio 0.0% ) 2w o B OB & =
o ® 3 8 3 388 5 HEFE S
Co_mmunlcatlon 0.0%4 Write-hack ratio
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100.0% Utilization
Write-back
100%
utilization 100.0%
— S0%
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utilization s 0 Fr R
v & @ % A B8 H = = = = @&
False sharing P o - [ar] o - (3] L - ol -+ o -
ratio L — Fetch utilization
Write-back utilization
HW prefetch
probability 95.1%
Access L
randomness o

Worst instruction ”%a‘”
all.c:63

+| Fusible instruction group, first loop #5

+| Fusible instruction group, second loop #1
+| Loop statistics, first loop #5

+| Loop instructions, first loop #5

+| Loop statistics, second loop #1

+|Loop instructions, second loop #1

Figure 8.6. Loop Fusion Issue

A loop fusion issue involves two loops. Since it is the second of the loops that will benefit from merging
theloops, it is the statistics for the instruction group in that loop that are displayed.
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The loop fusion issue contains some standard sections, instructions, loop statistics and loop instructions.
However, since there are two loops involved you get one one of each for both of the two loops.

Theloop fusion issue al so contains acoupl e of sections pointing out potential barriersfor fusing the loops.
See Section 5.2.3.2, “Loop Fusion”.

 Statistics for fusible instruction group, second loop
 Fusibleinstruction group, first loop

« Fusible instruction group, second loop

 Potential barriers for moving the body of the first loop

* Potential barriers for moving the body of the second loop
 Loop statistics, first loop

 Loop instructions, first loop

 Loop statistics, second loop

 Loop instructions, second loop

103



Issue Reference

8.5. Blocking

Issue #23: Spatitemp blocking & &2 |

—=| Statistics for instructions of this issue
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+! Instructions benefiting from blocking
+ Loops and barriers related to this issue
+ Loop statistics

+ Loop instructions

Figure 8.7. Blocking I ssue

A blocking issue means that there is an opportunity to reduce the number of cache misses or fetches by
processing a smaller piece of the data set at a time, thereby reusing cache lines before they are evicted
from the cache. For ageneral description of blocking, see Section 5.2.3.1, “Blocking”.

ThreadSpotter™ can suggest three types of blocking:

e Temporal blocking.
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It may be possible to increase the reuse of the same data that has already been used. Typically occurs
when an algorithm performs multiple iterations over a data set that is too large to fit in the cache.
By performing multiple iterations at a time on a smaller part of the data that fits in the cache, the
cache line reuse can be improved.

e Spatial blocking.
It may be possible to increase the reuse of other datain the cache lines that have already been used.
Typically occurswithin an iteration of an algorithm that touches too many other locationsin the data
set before reusing alocation in the original cache line. By running the algorithm on smaller parts of
the data set at atime the cache line reuse can be improved.

e Spatial and temporal blocking.

It may be possibleimprove both kinds of reuse, typically both between iterationsand withiniterations
of an algorithm.

Theblocking issues contain several sectionsdescribing different loop levelsintheloop hierarchy related to
the issue, descriptions of these and other issue specific sections follows. The issues contain the following
sections:
» Statisticsfor instructions of thisissue
« Instructions benefiting from blocking
« Instructions previously writing to related data (and also: Next instructions to write to related data).
 Loopsand barriers related to thisissue
» Qutermost |oop without barriers
» Next outer loop, introducing barriers
e Optimal loop level to block at
e Loop statistics
 Loop instructions
Different loops play different roles for blocking with respect to data reuse of a particular instruction. The

following example contains four loop levels, some of which possess important traits to consider when
blocking this piece of code. From the inside out:

for (i = 0; I <ITER i++)
for (j =0; ] <J_SIZE, j++) {
a[j][0] = 0;
for (k = 0; k < K_SIZE; k++)
for (m=0; m< MSIZE, mt+)
b[m += a[j][k];

* Instructions benefiting from blocking
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The instructions whose cache line reuse may be possible to improve.

for misthe loop containing the target instructiona ] [ ] . The goa isto have thisinstruction revisit
data more aggressively, even before all its slots have been visited.

Outermost |oop without barriers.

The outermost loop without barriers (data dependencies). This may represent a suitable loop level
to block at.

for kisthe outermost loop not having any blocking write instructions. (In this example, we find such
ablocking write instruction in the next outer loop level:a[ j][0] = ...).

Next outer loop, introducing barriers.

The innermost |oop with data dependencies on some variable (which does not have to be the target
instruction of the blocking issue). Blocking cannot normally be performed on this or on outer loop
levels. The code may first need to be transformed to remove data dependency barriers. All barriers
that have been detected are reported in this section.

for j is the next outer loop level with barriers in this example. (In this case, however, the barriers
are inconsequential to the semantics of the program, at least for the example transform below, and
would not need to be removed.)

Target loop
The optimal, outer loop level to block around.

for i isthe optimal loop level to use asthe outer loop. All valuesina[ ] [ ] areused in eachiteration
of thisloop level.

To block thisloop hierarchy in an optimal way, thisis the loop level which should be moved closer
to the instruction under consideration, by making each iteration of the inner loops work on asmaller
chunk of data. Another way to say this is to split one or several loop nestings outwards past this
loop level.

The following would be one proper blocking of thisloop. Thef or j loop has been split up by thef or
i loop:

for

for (i = 0;

(jj =0; jj <J_SIZE, jj += BLOCK)
i < ITER, i++)
for (j =jj; j <mn(jj + BLOCK, J _SIZE); j++) {
a[j][0] = O;
for (k = 0; k < K SIZE; k++)
for (m=0; m< MSIZE, mt+)
blm += a[j][k];

The ideas underlying the blocking issue, and the sections presented here represents an ideal situation. In
reality, due to effects of the sampling process, ThreadSpotter™ may not have complete information about
all loop levels. In such cases the closest identified loop level tends to be selected.

To help the programmer to judge how close the identified loop is from the optima blocking level,
ThreadSpotter™ displays the number of iterations of that loop that corresponds to one data reuse by the
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instruction under consideration. The programmer can take this number and, while moving outwards from
the target instruction, scan loops until the reported iteration count has been accounted for.

8.6. Software Prefetch Issues

ThreadSpotter™ can identify three types of issues concerning software prefetch instructions; prefetch
unnecessary, prefetch too distant and prefetch too close.

Theinformation presented about prefetch issues differs alot from that of other issues, and it uses none of
the standard sections. The different types of prefetch advice only have one section in common:

» Prefetch instruction

Points to the prefetch instruction itself.

8.6.1. Prefetch Unnecessary

Issue #25: Prefetch: unnecessary = wit |
=| Statistics

Fetch ratio of the prefetch instruction 0%
+| Prefetch instruction

+! Instructions using the prefetched data before the prefetch

Figure 8.8. Prefetch Unnecessary Issue

A prefetch unnecessary issue is reported when a prefetch instruction that nearly always hits in the cache
isfound. The percentage of timesthisisthe caseis given by the fetch ratio of the instruction presented by
ThreadSpotter™. Prefetch instructions that almost always hit in the cache consume execution resources
without providing any benefit.

The prefetch unnecessary issue has the following sections:
 Fetchratio of the prefetch instruction
The fetch ratio of the prefetch instruction.
* Instructions using the prefetched data before the prefetch

Liststheinstructionsthat last touched the datathe before the prefetch instruction. Thisisuseful when
trying to understand why the data already isin the cache, for example, to check if the datais brought
into the cache by some part of the application that you did not expect.

A reasonable rule of thumb is that the fetch ratio of prefetch instructions should be above 10% for
prefetches from the L2 cache or above 1% for prefetches from RAM. If the fetch ratio istoo low the data
that the prefetch instruction is prefetching isalmost always aready in the cache, so the prefetch instruction
is not doing useful work and may instead decrease performance by consuming execution resources.

Check that the data is not brought into the cache by some part of the application that you did not expect.
Make sure that you do not prefetch the same cache line multiple times. If that is not the case, consider
removing the prefetch.
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8.6.2. Prefetch too Distant

Issue #50: Prefetch: too distant & Far_|
=| Statistics

Average fetch ratio of the instructions using the prefetched data 96.9453%
+| Prefetch instruction

+| Instructions using the prefetched data after the prefetch

Figure 8.9. Prefetch too Distant | ssue

A prefetch too distant issue is reported when a prefetch instruction that fetches data that is not used before
it is evicted from the cache again is found. The prefetch instruction may be placed too far ahead of the
instructions that use the prefetched data, or the data may not be used as expected. Such a prefetch will
consume execution resources and memory bandwidth without providing any benefit.
The prefetch too distant issue has the following sections:

 Average fetch ratio of the instructions using the prefetched data

Thefetch ratio of the instructions using the prefetched data. Tells you to what degree the prefetched
datais evicted again beforeit is used.

* Instructions using the prefetched data after the prefetch
Lists the instructions that use the prefetched data.
Consider reducing the distance between the prefetch and the instructions using the prefetched data, for
example, if you are prefetching data a number of iterations ahead in aloop consider reducing that number

of iterations.

This issue can also indicate that the data fetched by the prefetch instruction is actually never used as
intended. Check that it is the intended instructions that use the data.

8.6.3. Prefetch too Close

Issue #46: Prefetch: too close & Clese
=| Statistics

Median number of memory accesses to the instructions using the prefetched data 0
+| Prefetch instruction

+| Instructions using the prefetched data after the prefetch

Figure 8.10. Prefetch too Close | ssue

A prefetch too closeissue is reported when a prefetch instruction that istoo close to the instruction using
the data is found. When prefetch instruction is too close the prefetched data does not have time to arrive
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from the next cache level or main memory beforeit is needed. The instruction using the data still stallsfor
some time and you do not get the full benefit of the prefetch.

The prefetch too close issue has the following sections:
» Median number of memory accesses to the instructions using the prefetched data

The number of memory accesses between the prefetch instruction and the instructions using the
prefetched data.

« Instructions using the prefetched data after the prefetch
Lists the instructions that use the prefetched data.

ThreadSpotter™ presents the distance as the median number of memory accesses before the next use of
the prefetched data. It also presents which instructions are the next to touch the data. The required distance
depends on the latency of the cache level or main memory the data is fetched from. A reasonable rule of
thumb is that the distance should be at least 3 accesses for prefetches from the L2 cache or at least 30
accesses for prefetches from RAM.

Consider increasing the distance between the prefetch and the instructions using the prefetched data, for
example, if you are prefetching dataanumber of iterations ahead in aloop consider increasing that number
of iterations.
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8.7. Fetch Hot-Spot

Issue #5: Fetch hot-spot @_& |
=! Statistics for instructions of this issue
Accesses 5.31e+07 Fetch/Miss ratio
% of misses 24.5%
% of bandwidth 3%
11.6% e
1.0%
% of fetches 9.7% 9-58
% of write-backs 14.4% # fé ﬁ 55 5 F §
! — Fetch ratio
"""" Utilization corrected fetch ratio
% of upgrades — HMissz ratio
Miss ratio 0.8% Writeback ratio
Fetch ratio 2.3%
Write-back ratio 2.3
2.2% 2.0
1.5
1.0
Upgrade ratio 0.0% 8'3
) v w = B OB O =
Cﬂ_"'"“"“"ic‘*““" 0.0% # 5 8B 3 98 E S HEEE S
ratio — Write-back ratio
Fetch utilization = | 77 Utilization corrected write-hack ratio
94.0% o
Utilization
Write-back
Utilization 92 S% 1002 TS o o o W
Communication S
utilization T .
o
False sharing ratio = o w35 B & =
0.0% # 5 8 3 Y B E EREREE S
— Fetch utilization
HW prefetch 65.9% —— Write-hack utilization
probability '
Access
randomness Low
Worst instruction mainf} [R1.
all.c:40
4 Instructions involved in this issue
+! Instructions previously writing to related data
+ Loop statistics
+ Loop instructions
Figure 8.11. Fetch Hot-Spot Issue

A fetch hot-spot issue is reported when ThreadSpotter™ finds a location in the application that causes
large numbers cache line fetches, but where thereisno obviousway to improvethe behavior. It may still be
possible to reduce the performance impact, for example, by adding software prefetches. See Section 5.6,
“Final Remedies’ for more information.

The fetch hot-spot issue has these sections:

o Statistics for instructions of thisissue
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Instructions involved in this issue

Instructions previously writing to related data

Loop statistics

Loop instructions

8.8. Write-back Hot-Spot

Issue #2: Write-back hot-spot & |

=|Statistics for instructions of this issue

Accesses
% of misses
% of bandwidth

% of fetches

% of write-backs

% of upgrades

Miss ratio
Fetch ratio

Write-back ratio

Upgrade ratio

Communication
ratio

Fetch utilization

Write-back
utilization

Communication
utilization

False sharing
ratio

HW prefetch
probability
Access
rancdomness

Worst
instruction

531e+07 FetchiMiss ratio
30.0%
0.30%
g
10.6% 8:%3% \\_ﬂ__
0205% s —
10.2% 0.00_{ = = =
[ = = = o Lo [
=— = = = = o - = [} uw =— o
— Fetch ratio
"""" Utilization corrected fetch ratio
- — HMissz ratio
Write-back ratio
0.0%
Q.
0.1% 0
g.
0.1% o,
0.
. - = = E B B
0.0% FE 5555598 3 YRE G
— Write-hack ratio
0o | Tt Utilization corrected write-back ratio
Utilization
1o0%
5.6 goy [— - "f"CACCTPETTRARLTR A
' AR A 0?’]1 = E=E =
(s [ = = (=) =) [
- = = = = =) [ = [ o - )
uw — () =+ (=) - [1r) W - (3] uw -
i — Fetch utilization
LUk — Write-back utilization
64.9%
Low
main() [R
all.c:40

+|Instructions involved in this issue

+lInstructions previously writing to related data

+Loop statistics

+|Loop instructions

Figure 8.12. Write-back Hot-Spot Issue
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A write-back hot-spot issueisreported when ThreadSpotter ™ findsalocation in the application that causes
large numbers of cache-line write-backs, but where there is no obvious way of improving the behavior.

The write-back hot-spot issue has these sections:
o Statistics for instructions of thisissue
* Instructionsinvolved in thisissue
* Instructions previously writing to related data
» Loop statistics

 Loop instructions

8.9. Non-Temporal Store Possible

A non-temporal store possible issue is reported when ThreadSpotter™ sees an opportunity to decrease
bandwidth usage using non-temporal stores instead of regular stores. Such opportunities arise when data
written in aloop lackstemporal reuse. See Section 5.3, “Non-Tempora Data’ for moreinformation about
non-temporal memory accesses.

This issue type is normally only included when analyzing the highest cache level, that is the cache level
closest to memory. Thisisduetothe non-temporal storeinstructionsusing hardware buffersthat arelocated
between the last level cache and main memory.
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Issue #31: Non-temporal store possible LW NT_|

—| Statistics for instructions of this issue

Accesses 8.06e+06 FetchiMiss ratio
% of misses 0.0%%
9 of bandwidth 10%
5.0%% d
53 T
9% of fetches 4.1% o =
= i =
% of write-backs x 8288 8=5z55 8§
’ Fetch ratiao
"""" Utilization corrected fetch ratio
% of upgrades - — HMiss ratio
Miss ratio 0.0%% Writeback ratio
Fetch ratio 6.4%
Write-back ratio 10
6.4%
Upgrade ratio 0.0% oF
= i =
Communication x 8288 8=5z55 8§
ratio ' — Write-hack ratio
Fetch utilization T M tilization corrected write-hack ratio
’ Utilization
Write-back
utilization 93.1% 1003
Communication e sod
utilization b
0
False sharing ratio w2 B OB @ =
® 3 8 3 388 5 HEFE S
HW fetch Fetch utilization
prefetc — Write-hack utilization
probability 100.0%
Access
randomness Low
Worst instruction main .

+| Instructions involved in this issue
+| Instructions using data produced by this instruction group
+ Loop statistics

+| Loop instructions

Figure 8.13. Non-Temporal Store Possible | ssue

Using non-temporal stores prevents non-temporal data from polluting the caches and leaves more space
for temporal data. Another effect of the non-temporal hint isthat it allows the processorsto avoid fetching
cache lines that will only be written, which effectively doubles the available bandwidth for a given write
loop.

Non-temporal stores should only be used for truly non-temporal data and is no replacement for techniques
that improve the tempora locality of the code. Using non-temporal stores for tempora data will hurt
performance by removing the data from the cache hierarchy.

The non-temporal store possible issue has the following sections:
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o Statistics for instructions of thisissue

* Instructionsinvolved in thisissue

* Instructions using data produced by the instructions identified in this issue.
* Loop statistics

* Loop instructions

8.10. Non-Temporal Data

A non-temporal data issueis reported when ThreadSpotter™ finds places where accessed cache lines are
nearly always evicted from the cache before being reused. However, the cache lines still occupy space
in the cache, that could otherwise be put to better use. See Section 5.3, “Non-Temporal Data’ for more
information about non-temporal data.

Using non-temporal prefetches on the the non-temporal data can prevent the data from being cached in
this cache level. This does not hurt performance since the data would have been evicted from the cache
before being reused anyway, but may improve performance by leaving more cache space for other data
that can be successfully cached, and for data of other threads and processes that are sharing the cache. See
Section 5.3.5.1, “Non-Temporal Prefetches’ for more information.

Thisissue type is normally only included when analyzing the highest cache level, that is, the cache level
closest to memory, since non-temporal prefetches affect this cache level in most processors.

Issue #12: Non-temporal data & NT_|
—=| Statistics for the reuses of the non-temporal data

0 fo fetches 6.5%
Fetch ratio 100.0%
Fetches 8.08e+05

=|Last instructions to touch the data before it is evicted

% of non-temporal Required cache

Stack Instruction reuses size
+ 2:|321 24[5:-(400913’} M 400004 712k

=|First instructions to touch the data after it is evicted

Stack Instruction % of non-temporal reuses

ﬂ main() (0x40090b) [R]. all.c:241 | 100.0%
#+! Instruction group statistics
+| Instructions in instruction group
+ Loop statistics

+| Loop instructions

Figure 8.14. Non-Temporal Data I ssue
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The most important statistics reported in the non-temporal dataissue are for the non-temporal reuses, that
is, data reuses when the cache line has been evicted from the first level cache.

The non-temporal data issue has the following sections:
 Statistics for the reuses of the non-temporal data

Thissection showsthe fetch ratio and number of fetches of the reuses of the non-temporal data. When
using non-temporal prefetches you want the fetch ratio to be as high as possible, so that you do not
cause additional fetches by preventing caching of the data.

The section also shows the percentage of all fetches of the application that are caused by these non-
temporal reuses. The larger the percentage of all fetches, the greater the potential for performance
improvement.

» Last instructions to touch the data beforeit is evicted

This section liststhe instructions that were last to touch the cache lines before they were evicted, and
the percentage of the time each instruction was last.

For each instruction you also get an estimate of the cache size that would be required for the fetch
ratio the reuses where the instruction was last touch the data to fall below 80%.

For example, if you have done the analysis for a2 MB cache, and the non-temporal data requires
a 200 MB cache not to be evicted you can safely insert non-temporal prefetches since no current
processor has a cache that large. On the other hand, if the non-tempora data only requires 6 MB
of cacheto fit, inserting non-temporal prefetches may cause unnecessary fetches on processors that
have 6 MB or larger caches.

* First instructions to touch the data after it is evicted

This section lists the instructions that were first to touch the cache lines after they were evicted, and
the percentage of the time each instruction wasfirst.

* Instruction group statistics
Statisticsfor theinstruction group containing thelast instructionsto touch the databeforeit isevicted.
* Instructionsin instruction group

Instructions in the instruction group containing the last instructions to touch the data before it is
evicted.

e Loop statistics
Statistics for the loop containing the last instructions to touch the data before it is evicted.
 Loop instructions

Instructions in the loop containing the last instructions to touch the data before it is evicted.
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8.11. False Sharing

Issue #4: False sharing 8 Faise
=| statistics for instructions of this issue
Accesses 4.09e+08 Fetch/Miss ratio
% of misses 78.3%
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Fetch
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utilization ' # 538 88555388
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HW prefetch
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Access
randomness Low
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instruction all_mt.c:56
#+l Instructions involved in this issue
#+l Instructions causing false sharing of the cache line
+ Loop statistics
+| Loop instructions
Figure 8.15. False Sharing I ssue

A false sharingissueisreported when ThreadSpotter ™ finds two locationsin different threads, or rather in
threads bound to different caches, that access unrelated datain the same cache line. This causes coherence
misses, coherence write-backs or upgrades, which could be avoided with different placement of the data.
See Section 5.4.1, “False Sharing” for amore thorough description of false sharing.
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The false sharing issue has these sections:
 Statistics for instructions of thisissue
* Instructionsinvolved in thisissue
* Instructions causing false sharing of the cache line. There are always pairs of instructions involved
in a false sharing situation. This section lists the other instructions. Focus on separating the data
accessed by thedifferent threads, or arrangeto divide data between the two threads along acacheline.

» Loop statistics

 Loop instructions
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8.12. Communication Hot-Spot

Issue #8: Communication hot-spot a s

—| Statistics for instructions of this issue

Accesses 6.27e+07 FetchiMiss ratio
% of misses 0.8%
9 of bandwidth 1.0%
3.1%
0.5%
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% of write-backs 0.0% = 4 8 3 A 885 &EFE S
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100.0%
. 1008
Write-back B
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Communication e v =
utilization 100.0% s 28§38 8=z535:z§
False sharing o Fetch utilization
ratio 0.0% — lrite-back utilization
HW prefetch
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Access
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Ox400af5
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instruction [RL.
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If the proegram was changed as to reach 100% fetch utilization, fetches in this instruction
group would be reduced with 0.0%, and total number of fetches would be reduced with 0.0%6.

4| Instructions involved in this issue
+| Instructions acting as producers
+ Loop statistics

+| Loop instructions

Figure 8.16. Communication Hot-Spot | ssue

A communication hot-spot issueisreported when ThreadSpotter ™ finds two locationsin different threads,
or rather in threads bound to different caches, that communicate a lot. But, unlike the communication

118



Issue Reference

utilization issue described in Section 8.1.3, “Communication Utilization”, this issue indicates that these
locations use the communicated cache lines efficiently.

Thereis, however, aways a cost to communication between caches, so you should alwaystry to minimize
the communication. It might be possible to address this by using techniques similar to blocking, to avoid
communicating data ever so often. Sometimes, it might make sense to critically evaluate if the producer
and consumer needs to be in different threads.

In many cases communication has hidden costs, in that additional high level synchronization, or locking,
is needed to ensure proper protocol between the communicating threads. Synchronization inevitably leads
to serialization of the execution of the threads, which can be alimiting factor for performance. Whenever
there is communication, ensure that proper synchronization is used, but that locks are held as short atime
aspossible.

Finally, carefully binding the two threads to cores sharing a cache can make a difference, since the data
will not have to migrate at all as both the producer and the consumer share that cache. This also depends
on the cache size and the footprint of each thread sharing this cache.

The communication hot-spot issue has these sections:
» Statistics for instructions of thisissue
 |nstructionsinvolved in thisissue

* Instructions acting as producers. These are the instructions in other threads that write the data that
are being consumed by the instructions identified by thisissue.

* Instructions previously writing to related data
e Loop statistics

» Loop instructions
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Chapter 9. Technical Support

ParaT ools ThreadSpotter isfree software released under LGPL. If you have problemsinstalling, or running
your software and wish to purchase support, please contact ParaToals, Inc.

http://www.paratools.com
Please be prepared to provide the following information when you e-mail ParaTools:

» Name and version number of the product. For example, ThreadSpotter™ 2012.1.1

The type of system on which the software is being run. For example, Opteron, Intel x86.

» The operating system and version number. For example, Red Hat Enterprise Linux 6 or Windows 7,
and whether it is a 32 or 64 bit operating system.

* Your customer ID or entitlement code.

A detailed description of the problem.

Table9.1. Electronic Services

Service Address

General e-mail info@paratools.com

Support e-mail threadspotter-support@paratools.com
World Wide Web http://www.paratools.com/

ParaTools ThreadSpotter | http://www.paratool s.com/threadspotter
Software Forums

120


http://www.paratools.com
mailto:info@paratools.com
mailto:threadspotter-support@paratools.com
http://www.paratools.com/
http://www.paratools.com/threadspotter

Appendix A. Sampling MPI
Applications

A.l. Introduction

As systems become larger and applications are distributed, there is a need to sample and analyze MPI
applications. For local applications, ThreadSpotter™ analyzes one process at atime. The sameistrue for
distributed application; ThreadSpotter™ samples and analyzes each rank individually.

It is important, however, to analyze the correct process in the distributed environment. As shown in
the figure below, it is possible to analyze the bootstrapping program mpirun rather than the distributed
instances of the application. To enable ThreadSpotter™ to produce useful samples of the application,
ThreadSpotter™ needs to be distributed along with the application. Use the command:

$ mpirun ... sanple -r application

to launch the sampler on each node. Each sampler then launches and samples an instance of your
application and creates afingerprint file from the execution. Take care to assign unique filenamesto each

of thesefiles.
$sample-r mpirun ... application $mpirun ... sample -r application
l Node Node Node
—

\ \ \
Node Node Node v v '

Not what you want OK

Figure A.1. MPI Sampling Principles

On some systems (e.g., SGI, Cray), and with some MPI variants (e.g., MPT), the MPI runtime system
may optimize the process of launching several ranks per node and improve performance in communication
between these nodes by making use of an extra shepherd process. In such case, it is necessary to tell
ThreadSpotter™ to refrain from sampling the shepherd process by telling it which process generation to
sample.
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$mpirun ... sample-g1-r application

Node *
Sheperd i To samplethisprocess, say:
process
® mpirun ... sample-go0 ...
Forksn times = a
// | \\
@ ® ® mpirun ...sample-g1...

Figure A.2. Message Passing Toolkit, runtime system and shepherd process

Use sample -g 1 to sample the children processes of a sheperd process.

@\ Note

If only one rank is requested, the shepard process turns into a compute process and you should
give the command sample -g O instead.

A.2. Scope

As far as the ThreadSpotter™ sampler is concerned, an MPI instance (or rank) is just like any other
application. There are two points to keep in mind:

» TheMPI library appearslike any other library. Its memory behavior is assessed together with the rest
of the application. This means that ThreadSpotter™ [ooks at memory access patterns and complains
about poor memory usage in relevant parts of the application, aswell asin the MPI library.

On platforms where several MPI ranks are hosted within a single machine, the MPI library may
use shared memory as a mechanism to transfer data between co-located ranks. The analysis of
ThreadSpotter™ does not extend into correctly classifying memory use from other processes. It
considers each process in isolation.
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» Sometools analyze the communication between MPI peers, including judging communication speed
and patterns, node imbalances or general effectiveness of the actual M PlI-communication.

Such analysisisoutside the scope of ThreadSpotter™, asit only looks at the behavior of each process
in isolation.

On the other hand, different processes in ajob may work on data with different characteristics, and
therefore have different runtime behavior. In some cases, processes exercise completely different part
of the application code. The reports produced by ThreadSpotter™ for nodes with different behavior
look different and point to optimizations that are important to their respective process.

A.3. Sampling of MPI Applications

When sampling a normal, non-MPI application, the sample command creates a fingerprint file called
sanpl e. snp by default, unless overridden by an explicit parameter like so:

$ sanple -o nyapp-test4.snp -r ./nmyapp argl

InaMPI environment, there are several instances of the sampler that all try to create their own fingerprint
files, typically in the same directory. Clearly, they need to use different names for their files, or else the
files overwrite one ancther. It is your responsibility to provide a template for the names of these files as
an input to the sample command:

$ npirun -np 16 sanple -0 test4/ nyapp-%.snp -r ./nyapp argl

The %r isaspecia sequence that expands to a unique value for each rank. On many systems it expands
to the MPI rank number, but on systems where the rank number is not available to ThreadSpotter™, it
expands to a combination of hostname and a unique number, e.g., " node45- 17", wherenode45 isthe
name of the node, and 17 is a sequential number within that node.

The following table lists the special sequences that ThreadSpotter™ recognizes:

Table A.1. Fingerprint filename substitutions

Sequence | Substitution

%r If executed in an MPI environment thisis replaced with the MPI rank number, if known.
On other systemsit is equivalent to % h-%p (see below).

Example: x-%r.smp becomes x-17.smp (MPI), or x-myhost-123.smp (otherwise)

%h Replaced with the current hostname of the machine.

Example: x-%h.smp becomes x-myhost.smp

%p Replaced with a unique number within the current host. Note: It is not related to the Pid
of the target process.

Example: x-%p.smp becomes x-123.smp

%u Expandsto".nunber " in such away that the resulting filename becomes unique. Numbers
aretried sequentially, starting with 0. As a special case, the number ".0" is elided.

Example: x%u.smp becomes x.smp (first file), x.1.smp (next file) etc.

%U Expandsto".nunber " in such away that the resulting filename becomes unique. Numbers
aretried sequentialy until a unique number is found.

Example: x%U.smp becomes x.0.smp (first file), x.1.smp (next file), etc.

123



Sampling MPI Applications

Sequence | Substitution

%({ ENV} Replaced with the content of the environment variable ENV
Example: x-%{ USER} .smp becomes x-demo.smp

%% Replaced withasingle % . Thisissometimes useful on Windowswhen encoding commands
in abatch file.
Example: x%%.smp becomes x%.smp

The following table lists the environment variables that ThreadSpotter™ tries in sequence to determine

the MPI rank number.

Table A.2. %r substitutions

Environment variable® Used for MPI type:
PMI_RANK MPICH 2 and derivatives
OMPI_COMM_WORLD_RANK OpenMPI 1.3
OMPI_MCA_ns nds vpid OpenMPI 1.2 and derivatives
PMI_ID SLURM PMI
SLURM_PROCID SLURM

LAMRANK LAM

MPI_RANKID HP MPI for Linux
MP_CHILD IBM PE

MP_RANK SunCT
MPIRUN_RANK MVAPICH 1.1

8Theinclusion of an environment variablein thislist does not automatically imply that ThreadSpotter™ is certified for that platform.

A.4. Alternative method: wrapper scripts

If you require more complicated substitutions than the substitution mechanisms provide, or if different
sampling options should apply depending on the rank, you have the option of providing awrapper script
that implements the required logic. The script can reference environment variables and call other utilities

that exist on the host.

You must then invoke mpirun (mpiexec, srun, aprun etc.) on this wrapper script instead of the sample

binary.

This technique relies on a few things to be successful:

» The cluster nodes must have a suitable script interpreter (e.g., / bi n/ sh).

» The binaries of ThreadSpotter™ need to be made available in each cluster node, either by referring
to them with absolute paths or proper relative paths or by setting the PATH environment variable

properly.

» Thepathtothetarget application needsto be properly set tolocateit in the cluster node (with absolute
path name or a proper relative path name).

« On some systems (e.g., Cray), the default application staging mechanism has to be disabled. It is
not able to identify al the binaries that need to be staged. All applications (ThreadSpotter™, user
applications) need to be visible from each cluster node.
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In these examples it is assumed the fingerprint files are created in the working directory where mpirun
startsthe script. The exact capabilities and mechanismsvary with different MPI systems. On some systems
you have to write your script to explicitly set the appropriate working directory or use explicit paths.

Example A.1. Sampling Open MPI ranksusing a wrapper script

If you are using Open MPI and want to run the MPI application mpi-test, your wrapper script could look
like the following example:

sanpl e_npi _test. sh:

#!/ bin/sh
sanple -0 rank$OVWl _COVM WORLD RANK. snp -r npi-test "$@

Invoke this by:
$ npirun -np ... sanple_npi_test.sh argl arg2

The script samples each rank of the MPI application mpi-test and createsasamplefilenamedr ank0. snp
for rank O, r ank1. snp for rank 1, and so on

Example A.2. Sampling with a wrapper script

If your MPI implementation does not provide an environment variable that identifies the MPI rank, you
can replace the rank in the file name with another unique identifier, for example, the host name and the
PID of the script. The following script is an example:

sampl e_npi _test 2. sh:

#!/ bi n/ sh
sanpl e -0 rank- $HOSTNAME- $$. snp -r npi-test "$@

Invoke this by:
$ npirun -np 16 sanple_npi _test2.sh argl arg2

The script samples each rank of the MPI application mpi-test and creates a sample file named r ank-
node42- 4711. snp for rank 0, r ank- node42- 4718. snp for rank 1, and so on.

Example A.3. Selectively sampling ranks

If the rank is available through an environment variable, you can aso selectively sample ranks. For
example, the following script would sample rank 0 and run the other ranks without sampling with Open

MPI:
#!/ bin/sh
if [ $OMPI_COWM WORLD RANK == 0 ]: then
sanple -0 rank$OVWl _COVW WORLD RANK. snp -r npi-test "$@
el se

mpi -test "$@
fi

A.5. Scratch directories

Compute clusters may have different environments on the front-end nodes, the service nodes and the
compute nodes. It does not necessarily hold that the same file systems exist on all nodes or are mounted
in the same location.
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ThreadSpotter™ produces temporary files during sampling. These can become quite large for long
executions, although the growth rate tapers off during the run. To impose a minimum disturbance on the
network and 1/0 system, you need to ensure that these temporary files are stored as close to the node as
possible.

To control where temporary files are stored, you should either point one of the environment variables
THREADSPOTTER_TMPDI R or TMPDI R to a suitable directory or provide the directory name in a
parameter to the sample command. The default is the system temporary directory, typicaly / t np, which
may not be suitable. On some systems this directory is in a memory mapped file system with limited

capacity.

A.6. Cray, Torque PBS, and ALPS

The Cray Linux Environment sometime uses the Torque scheduler and the ALPS launcher for spawning
jobs. In this environment, you typically write a batch script, and submit it with the gsub command. The
script invokes the ALPS tool aprun to launch your binary across the cluster.

By default aprun optimizes the launch by pushing your supplied application binary to aram disk on each
compute node. This staging mechanism improves the launch time for normal runs.

When aprun launches the sampler from ThreadSpotter™, the primary sampler binary also enjoys this
staging, but unfortunately ALPS does not know about the other ThreadSpotter™ binaries, or even your
application, so these binaries are not staged. Consequently, execution fails when these applications cannot
be located.

In the Cray environment, you must rewrite your batch script to invoke apr un with the -b flag. Thisinhibits
the staging mechanism altogether, and the normal rules for launching applications are used again.

The aprun command accepts the following options:

-b Bypasses the transfer of the application executable to compute nodes.
By default, the executable is transferred to the compute nodes as part
of the aprun process of launching an application. You would likely use
the -b option only if the executable to be launched was part of a file
system accessible from the compute node. For more information, see the
EXAMPLES section.

—From: aprun(1) manual page

The proper way to launch a ThreadSpotter™ sampling in a Cray Linux Environment with Torque and
ALPSisto create abatch file:

ny-j ob. pbs:

#1/ bi n/ bash

#PBS -N ny-job

#PBS -1 nppw dt h=64

#PBS -1 nppnppn=32

#PBS -1 wal |l ti me=00: 10: 00

# set PATH to include the ThreadSpotter ™bin directory
PATH=$PATH: i nst al | ati on_directory/bin

# change directory where the job was submtted from
cd $PBS_O WORKDI R
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aprun -b -n 64 -N 32 sanple -g 1 -0 ny-job-sanplefil es/process-%.snp \
-r ./my-job argl arg2?

and invoke this script using:
$ gsub ny-j ob. pbs
Sample files appear in the directory $PBS_O WORKDI R/ ny- j ob- sanpl efi | es.

If you only launch one rank, omit -g 1, or changeit into-g 0

A.7. Cray, SLURM, and ALPS

An aternate scheduler in the Cray Linux Environment is SLURM. In thisenvironment, you typically write
abatch script and submit it with the shatch command. The script invokes the ALPS tool aprun to launch
your binary across the cluster.

The same considerations as outlined in Section A.6, “ Cray, Torque PBS, and ALPS’ apply to parameters
for the aprun and sample command.

@\ Note

Sample file replacement token %r does not expand to a meaningful value on this platform.
Please use %h-%p instead.

The proper way to launch a ThreadSpotter™ sampling in a Cray Linux Environment with SLURM and
ALPSisto create a batch file:

ny-j ob. shat ch:

#!/ bi n/ bash -1

#

#SBATCH - -j ob- nane="ny-j ob"
#SBATCH - -ti ne=00: 05: 00
#SBATCH - - nodes=2

#SBATCH - - nt asks- per - node=32
#SBATCH - - mem per - cpu=1024
#SBATCH - - out put =my-job. % .o
#SBATCH --error=ny-job.%.e

nmodul e | oad slurm

# set PATH to include the ThreadSpotter ™bin directory
PATH=$PATH: i nstal | ati on_directory/bin

echo "The current job IDis $SLURM JOB | D'

echo "Runni ng on $SLURM NNODES nodes"

echo "Usi ng $SLURM NTASKS PER NODE t asks per node"

echo "A total of $SLURM NPROCS tasks is used"

aprun -b -n $SLURM NPRCCS sample -g 1 -o ny-job-sanpl efil es/ %-%. snp \
-r ./ny-job argl arg 2

and invoke this script using:
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$ sbatch ny-job. sbatch

Sample files appear in directory ny- j ob- sanpl ef i | es.

A.8. MPI related limitations

There are some limitations in the way ThreadSpotter™ supports MPI. Each rank is sampled separately,
and no attempts are made to correlate or synchronize the sampling of different ranks.

Specific limitations include:

Each rank contacts the license server separately, which for wide jobs could be a bottleneck or ahard
limitation.

Burst mode may not be effective to reduce overhead if ranks communicate with each other.

Not all MPI versions make the rank number available as an environment variable. This means that
ThreadSpotter™ will not be able to produce sample files with names that directly relate to the MPI
rank number. Instead, some sequential numbering schemeis used.

Some MPI environments (e.g., Cray) use optimizationsto stage binaries before executing them. Such
optimizations need to be disabled when sampling.

Automatic processor detection at the time of report generation looks at the current processor in the
machine where the report generation is performed. | n a heterogenous system that processor type does
not need to be identical to the processors in the compute nodes.
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Analysis

B.1. Introduction

ThreadSpotter™ is equipped with a powerful cross-architecture analysis feature. While it can currently
only sample applications compiled for the x86 and x86-64 architectures, its analysis is still perfectly
applicableto help understanding performance problemsin the context of other architectures, such asARM
and PowerPC.

The information that ThreadSpotter™ collects during sampling is related to the memory access patterns
of the application. The memory access patterns of an application are usually very similar regardless of the
processor architecture and the operating system it is running on.

If you can compile your application to run on x86, you can sample it on x86 and then perform the analysis
for the processor architecture on which it normally runs. ThreadSpotter™ includes analysis models for a
number non-x86 processors.

Similarly, if you have an application that normally runs on an x86 processor, but not on one of the operating
systems supported by ThreadSpotter™, you can still analyzeit if you can compileit for one of the supported
operating systems.

B.2. Supported Non-x86 Processors

ThreadSpotter™ currently supports analysis for a number PowerPC and ARM processors. For these
processors ThreadSpotter™ has an analysis model complete with all the essential information such as
cache hierarchy layout, cache sizes and cache line sizes, the availability of prefetch instructions and their
effect at different cache levels and whether hardware prefetching is available different at cache levels.

The supported PowerPC processors are:
» Freescale QorlQ P4080
 Freescale QorlQ P4040
» Freescale QorlQ P2020
» Freescale QorlQ P2010
» Freescale QorlQ P1020
» Freescale QorlQ P1011

The supported ARM processors are;

* ARM Cortex A8

ARM Cortex A9

ARM Cortex A9 MPCore Single-Core

ARM Cortex A9 MPCore Dual-Core
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* ARM Cortex A9 MPCore Quad-Core

The ARM Cortex processors can be configured with many different combinations of L1 and L2 cache
sizes, and with or without L2 cache. The ThreadSpotter™ default models for these processors include a
16 kilobyte L1 data cache and a 128 kilobyte L2 cache.

If this does not match the configuration of the processor you are using, select the closest processor model
and the desired cache level, and then specify a different cache size to override the default.

If your processor does not have an L2 cache cache, ssmply do not perform an L2 analysis. The L1 cache
analysis done by ThreadSpotter™ is gtill valid.

B.3. Considerations for Accurate Cross-
Architecture Analysis

To get the best possible results from cross-architecture analysis, there are a couple of things to consider:
» Usethe same word size on both architectures.

Compile the application with the sameword size asit normally uses. If the application normally runs
on a 32-hit processor, then compile it as a 32-bit x86 binary when sampling it. If the application
normally runs on a 64-bit processor, then compile it as a 64-bit x86-64 binary when sampling it.

Using the same word size on both architectures ensures that data types that depend on the word size,
for example, pointers, are the same size on on both architectures. This minimizes the differencesin
the memory layout of the application's data structures, and ensures that the application's memory
access patterns are affected as little as possible by the change of architecture.

 Use the same compiler and options for both architectures.

If possible, use the same compiler and compilation options when compiling for both architectures.
The compiler and compilation options affect the compiler optimizations that are performed on the
application, which in turn affect the memory access patterns observed by ThreadSpotter™.

For example, if different compilers or options are used, the compiler used when compiling for x86
may perform an optimization that fixes a performance problem in the application while the compiler
normally used does not fix it. In that case ThreadSpotter™ will not observe the problem when
sampling on x86 and not report an issue, even though the problem shows up on the architecture where
the application is normally run.

Similarly, the x86 compiler may not perform an optimization that the target compiler normally used
performs. In that case ThreadSpotter™ may observe the problem and report an issue, even though
fixing the problem is actually unnecessary because the target compiler normally used fixesit for you.

B.4. Sampling the Required Cache Line Size

By default ThreadSpotter™ only records information required for performing the analysis for 64-byte
cache lines when sampling an application, 64 bytes being the cache line size of all modern x86 processors.
Other architectures may use other cache line sizes, though, the most common are 32 bytes or 128 bytes.

If you want to perform the analysis for a processor that uses a different cache line size than 64 bytes, you
must therefore make sure to select the desired cache line size when sampling. Otherwise you will get an
error message saying "no samples found" when running the analysis.
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B.5. x86-centric Issues

B.5.1.

B.5.2.

ThreadSpotter™ can generate a couple of issues that are slightly x86-centric. These issues will still
be generated when analyzing a non-x86 architecture, but the corresponding solution will be different
depending on architecture.

Non-Temporal Data

The non-temporal data issue, see Section 8.10, “Non-Temporal Data’, indicates that there is data that is
not going to be reused that is taking up space in the cache that could be better used for other things. On
x86 processors non-temporal prefetches can be used to tell the processor to completely evict the datafrom
the cache hierarchy onceit is evicted from the L 1 cache, thus preventing the it from unnecessarily taking
up cache space.

PowerPC and ARM processors do not have any instructions that directly correspond to a non-temporal
prefetch, but a similar effect can be achieved by using cache line flushes (called clean and invalidate on
ARM) to evict the cache lines from the cache once they are no longer needed.

However, accidentally flushing a cache line that will be reused will cause expensive extra cache misses,
so cache line flushes have to be used carefully.

Non-Temporal Store Possible

ThreadSpotter™ reportsanon-temporal storeissue, see Section 8.9, “Non-Temporal Store Possible”, when
piece of code completely overwrites entire cache lines. By using non-temporal storesto write to the cache
lines, the application can tell the processor to avoid fetching such lines, avoiding the fetch latency and
reducing the memory bandwidth used.

On PowerPC, alocating the cache linein the cache using the dcba or dcbz instructions before overwriting
them can be used to achieve a similar effect.

B.6. Considerations for Specific Processors

The ARM Cortex processors contain a preload engine that software can use to explicitly load a memory
region into the L 2 cache. The x86 architecture does not have acorresponding feature, and ThreadSpotter ™
has no model for it.

If your application does use the preload engine and you want to model the effect of using it when sampling
on x86, insert aloop loading the data into the cache using one of the x86 prefetch instruction where the
preload engine would otherwise be used. Thiswill give asimilar anaysis result.
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Appendix C. Supported CPU types

ThreadSpotter™ has a built-in database with CPU model parameters. The following tables list the
processors currently included in this database.

The model names generally follow a pattern of: codenane_cor es_t hr ead_cache- si ze. In some
cases, some components have been omitted if there is no ambiguity.

TableC.1. AMD

Pr ocessor Command lineinterface: use'--cpu amd/*', where* isone of:

Agena agena

Albany albany 128, albany 256

Athens athens

Barcelona barcelona

Brisbane brishane 1024, brishane 512

Budapest budapest

Callisto calisto, callisto 2 6144

Caspian caspian_1 512, caspian 2 1024, caspian_2 2048

Champlain champlain_2_ 1024, champlain_2 512, champlain_3 512, champlain_4 512

Clawhammer clawhammer_s754 1024, clawvhammer_s754 512, clawhammer_s939 1024,
clawhammer_s939 512

Conesus conesus 1 256, conesus 2 1024, conesus 2 512

Deneb deneb_4096, deneb_6144

Denmark denmark

Dublin dublin_128, dublin_256

Egypt egypt

Geneva geneva 1 1024, geneva 1 512, geneva 2 1024

Georgetown georgetown_128, georgetown_256

Griffin griffin_1024, griffin_1 512, griffin_2048

Heka heka

Interlagos interlagos 12 16384, interlagos 16 16384, interlagos 4 16384,
interlagos 8 16384

I stanbul istanbul

Italy italy

Keene keene 256, keene 512

Kuma kuma

Lancaster lancaster_1024, lancaster_512

Lima lima_model 111, lima_model 127

Lisbon lisbon_6

Llano llano_2 1024, llano_2 512, llano_3 1024, llano_4 1024

Magny-Cours magny_cours 12, magny_cours_8
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Processor Command lineinterface: use'--cpu amd/*', where* isone of:

Manchester manchester_s939 512, manchester s939 x2 1024, manchester s939 x2 512

Manila manila 4f 128, manila_4f 256, manila 5f 128, manila 5f 256

Neo neo 111, neo_127

Newark newark

Newcastle newcastle s754 256, newcastle s754 512, newcastle s939 512

Oakville oakville

Odessa odessa

Ontario ontario_1 512, ontario_2 512

Orleans orleans 2, orleans f3

Palermo palermo_s754 d0 128, palermo_s754 d0 256, palermo_s754 e 128,
palermo_s754 e 256, palermo_s939 128, palermo_s939 256

Propus propus

Rana rana

Regor regor_1024, regor_2048

Richmond richmond

Roma roma_128, roma_256

Sable sable

San Diego san_diego s939 1024, san_diego_s939 512

Santa Ana santa_ana

Santa Rosa santa rosa

Sargas sargas

Shanghai shanghai

Sherman sherman_256, sherman_512

Sledgehammer sledgehammer

Sonora sonora 128, sonora 256

Sparta sparta_256, sparta 512

Suzuka suzuka

Taylor taylor

Thuban thuban 6 6144

Toledo toledo_X2 s939 1024, toledo_s939 1024, toledo_x2_s939 2048

Toliman toliman

Trinidad trinidad

Troy troy

Tyler tyler_1024, tyler_512

Valencia valencia 4 8192, valencia 6 8192, valencia 8 8192

Venice venice s754 512, venice s939 512

Venus venus_model 39, venus model 55

Winchester winchester_s939 512
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Processor Command lineinterface: use'--cpu amd/*', where* isone of:

Windsor windsor_67_ 1024, windsor_67 2048, windsor_67 512, windsor_75 1024,
windsor_75 2048, windsor_75 512

Zacate zacate 1 512, zacate 2 512

Zambezi zambezi_4 4096, zambezi_4 8192, zambezi 6 8192, zambezi 8 8192

Zosma zosma 4 6144

Zurich zurich_4 4096, zurich_8 8192

TableC.2. ARM

Pr ocessor Command lineinterface: use'--cpu arm/*', where* is one of:

Cortex A8 cortex_a8

Cortex A9 cortex_a9, cortex_a9 mpcore_1, cortex_a9 mpcore_2, cortex_a9_mpcore 4

Table C.3. Freescale

Pr ocessor Command lineinterface: use'--cpu freescale/*', where* is one of:
QorlQ P1 goriq_p1011, goriq_p1020

QorlQ P2 gorig_p2010, goriq_p2020

QorlQ P4 goriq_p4040, gorigq_p4080
Table C.4.1BM

Pr ocessor Command lineinterface: use'--cpu ibm/*', where * is one of:
BlueGene/L bal

BlueGene/P bgp

BlueGene/Q bgg

POWER6 power6

POWER7 power7_4, power7_6, power7_8

Wire-Speed wirespeed
Table C.5. Intel

Pr ocessor Command lineinterface: use'--cpu intel/*', where* isone of:

silverthorne_1 2 512
Arrandale arrandale 2 2 2048, arrandale 2 2 3072, arrandale 2 4 3072,
arrandale 2 4 4096

Bloomfield bloomfield_ 4 8 8192

Clarkdale clarkdale 2 2 3072, clarkdale 2 4 4096

Clarksfield clarksfield_4 8 6144, clarksfield 4 8 8192

Clovertown clovertown_4 8192

Conroe conroe_1 512, conroe_2_ 1024, conroe_2 2048, conroe_2_ 4096, conroe_2 512
Dempsey dempsey 2 2 4,dempsey 2 4

Diamonadville diamondville_1_2 512, diamondville 2_4 1024
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Processor Command lineinterface: use'--cpu intel/*', where* isone of:

Dunnington dunnington_4 12288, dunnington_4 16384, dunnington_4 8192,
dunnington_6_12288, dunnington_6_16384

Gulftown gulftown 6 12 12288

Harpertown harpertown_4 12288

Ivy Bridge ivy_bridge 2 4 3072, ivy_bridge 2 4 4096, ivy _bridge 2 4 6144,
ivy_bridge 4 4 6144, ivy bridge 4 4 8192, ivy bridge 4 8 6144,
ivy_bridge 4 8 8192

Jasper Forest jasper_forest 1 1 2048, jasper_forest 1 2 2048, jasper_forest 2 2 4096,
jasper_forest 2 4 4096, jasper_forest 4 4 8096, jasper_forest 4 8 8096

Kentsfield kentsfield_4 8192

Lincroft lincroft_1 2 512

Lynnfield lynnfield 4 4 8192, lynnfield 4 8 8192

Merom merom_1 1024, merom_1 512, merom_2 1024, merom_2_ 2048,
merom_2_ 4096

Nehalem EP nehalem_ep 2 2 4096, nehalem_ep 2 4 8192, nehalem _ep 4 4 4096,
nehalem ep 4 8 8192

Nehalem EX nehalem ex 4 8 12288, nehalem ex 4 8 18432, nehalem ex 6 12 12288,
nehalem _ex 6 12 18432, nehalem ex 6 6 18432, nehalem ex 8 16 18432,
nehalem _ex 8 16 24576

Paxville paxville 2_2, paxville 2_4

Penryn penryn_1 1024, penryn_1_3072, penryn_2 1024, penryn_2 2048,
penryn_2 3072, penryn_2_6144, penryn_4 12288, penryn_4 6144

Pineview pineview 1 2 512, pineview_2 4 1024

Predler presler 2 4

Presler HT presler-ht 2 4

Sandy Bridge sandy_bridge 1 1 1024, sandy_bridge 1 1 1536, sandy bridge 2 2 2048,
sandy_bridge 2 2 3072, sandy_bridge 2 4 3072, sandy bridge 2 4 4096,
sandy_bridge 4 4 6144, sandy_bridge 4 4 8192, sandy bridge 4 8 6144,
sandy_bridge 4 8 8192

Sandy Bridge E sandy _bridge e 4 8 10240, sandy bridge e 6 12 12288,
sandy_bridge e 6 12 15360

Sandy Bridge EP  |sandy _bridge ep 2 4 5120, sandy bridge ep 4 4 10240,
sandy_bridge ep 4 8 10240, sandy_bridge ep 6 12 12288,
sandy_bridge ep 6 12 15360, sandy _bridge ep 8 16 20480

Silverthorne silverthorne 1 1 512

Smithfield smithfield 2_2

Stellarton stellarton_1 2 512

Tigerton tigerton_2 8196, tigerton_4 4096, tigerton_4 6144, tigerton_4 8192

Tulsa tulsa 2 2 16,tulsa 2 2 8

Tunnel Creek tunnel_creek 1 2 512

Westmere EP westmere ep_ 4 4 12288, westmere_ep_4 4 4096, westmere ep 4 4 8192,

westmere ep 4 8 12288, westmere ep 6 12 12288
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Processor Command lineinterface: use'--cpu intel/*', where* isone of:

Westmere EX westmere ex_10 20 24576, westmere ex_10 20 30720,
westmere ex 6 12 18432, westmere_ex_8 16 18432,
westmere ex_8 16 24576, westmere_ex_8 8 24576

Wolfdale wolfdale 2 1024, wolfdale 2 2048, wolfdale 2 3072, wolfdale 2 6144

Woodcrest woodcrest 2 4096

Y orkfield yorkfield 4 12288, yorkfield 4 4096, yorkfield 4 6144
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Appendix D. Credits
D.1. libelf

GNU Library General Public License, version 2
Copyright (C) 1995 - 2006 Michael Riepe

D.2. libdwarf

GNU Lesser General Public License, version 2.1
Portions copyright (C) 2000,2004 Silicon Graphics, Inc. All Rights Reserved.

Portions copyright (C) 2007 David Anderson.

D.3. libgd-2.0.34

Portions copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 by Cold Spring Harbor
Laboratory. Funded under Grant P41-RR02188 by the National Institutes of Health.

Portions copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002 by Boutell.Com, Inc.

Portions relating to GD2 format copyright 1999, 2000, 2001, 2002 Philip Warner.

Portions relating to PNG copyright 1999, 2000, 2001, 2002 Greg Roelof s.

Portions relating to gdttf.c copyright 1999, 2000, 2001, 2002 John Ellson (ellson@lucent.com).

Portions relating to gdft.c copyright 2001, 2002 John Ellson (ellson@lucent.com).

Portions copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Pierre-Alain Joye (pierre@libgd.org).

Portions relating to JPEG and to color quantization copyright 2000, 2001, 2002, Doug Becker and
copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, Thomas G. Lane. This softwareis
based in part on the work of the Independent JPEG Group. See the file README-JPEG.TXT for more
information.

Portions relating to WBM P copyright 2000, 2001, 2002 Maurice Szmurlo and Johan Van den Brande.

Permission has been granted to copy, distribute and modify gd in any context without fee, including a
commercial application, provided that this notice is present in user-accessible supporting documentation.

This does not affect your ownership of the derived work itself, and the intent is to assure proper credit
for the authors of gd, not to interfere with your productive use of gd. If you have questions, ask.
"Derived works" includes all programs that utilize the library. Credit must be given in user-accessible
documentation.

Thissoftwareisprovided"ASIS." The copyright holdersdisclaim all warranties, either expressor implied,
including but not limited to implied warranties of merchantability and fitnessfor a particular purpose, with
respect to this code and accompanying documentation.

Although their code does not appear in gd, the authors wish to thank David Koblas, David Rowley, and
Hutchison Avenue Software Corporation for their prior contributions.
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D.4. OpenSSL

This product includes software devel oped by the OpenSSL Project for usein the OpenSSL Toolkit. (http://
www.openssl.org/)

D.5. klibc

klibc version 1.4 by H. Peter Anvin

Permission ishereby granted, free of charge, to any person obtaining acopy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

Any copyright notice(s) and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE ISPROVIDED "ASIS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF ORIN CONNECTION WITH THE SOFTWARE OR THEUSE OROTHER
DEALINGSIN THE SOFTWARE.
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Name
threadspotter — GUI for ThreadSpotter™ sampling and report generation

Synopsis
t hr eadspot t er [-h, --help] [--version] [--tmpdir TMPDI R] [ -- PROGRAM[ARGUMENT...] ]

Description

threadspotter is asimple graphical user interface for sampling applications and generating reports with
ThreadSpotter™.

The same graphical user interface can be used to:
« Start an application and sample it, optionally create a report and optionally display the report.

* Attach to an aready running application, sampleit, optionally create areport and optionally display
the report, or

» Generate areport from an existing samplefile, and optionally display the new report.
 Display and existing report.

The program allows setting the same parameters as the corresponding command line programs, sample,
report and view.

The target application is executed in a new 'xterm' window. After completing the sampling, please close
the xterm window.

Options
-h, --help Print help message.
--version Print version information.
--tnpdir TMPDI R Name the directory where all temporary files will be stored.
Thisdirectory can alternatively be specified by environment variables
THREADSPOTTER _TMPDI Ror TMPDI R. The command line option
takes precendence over the environment variables.
PROGRAM Use PROGRAM as the default program to launch.
ARGUMENT. . . Use ARGUMENTS as the default arguments when launching a
program.
Exit Status
0 Successful program execution.
>0 An error occured.

Environment

RW LI CENSE_FI LE Environment variable pointing to the licensefile. Should only be used
to override default license locations.
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BRONBER Web browser to use to display the report.

Files

$HOMVE/ . t hr eadspot ter/ Directory containing per-user license files. ThreadSpotter 1ooks for
license license files here if no system wide license file can be found.
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sample — sample the memory access pattern of a process and generate a samplefile

Synopsis

sanpl e [-h] [--version] [-0 FI LENAME] [-s PERI OD] [-| BYTES [,BYTES...]] [-n] [-f] [-d DELAY]
[-t DURATI ON] [-c COUNT]

[-b RUNTI MVE] [-g QUALI TY] [--safe-stack] [--tmpdir TMPDI R] [--preallocation S| ZE]
[--use-target-stderr] [--unsupported-attach] [-g GENERATI ON|

[ { --start-at-function FUNCTI ON | --start-at-address ADDRESS } [--start-at-ignore COUNT] ]

[ { --stop-at-function FUNCTI ON | --stop-at-address ADDRESS } [--stop-at-ignore COUNT] ]

{ -pPI D|-r Bl NARY [ARGUVENT...] }

Description

sanpl e isthe tool that starts and monitors the fingerprinting operation of the target application. It can
either start a new target process, or it can attach to an aready running process. After the execution is
complete, or after the sample tool has detached from the target process, it will post-process the fingerprint
information and optionally reduce the fingerprint volume to a standard size.

Options
-h Show help message and exit.
--version Print version information.
-0 FI LENAME Sample file name, sample.smp by default.

FI LENAME can contain certain substitution sequences, which are
useful to automatically derive unique filenames. This feature is
particularly useful when sampling parallel jobs (e.g., MPI) to create
unique filenames based on properties of each node.

The following table lists the special sequences that ThreadSpotter™
recognizes:

Table 9. Filename substitutions

Sequence |Substitution

%r If executed inan MPI environment thisisreplaced with
the MPI rank number, if known. On other systems it
isequivaent to % h-%p (see below).

Example: x-%r.smp becomes x-17.smp (MPl), or x-
myhost-123.smp (otherwise)

%h Replaced with the current hostname of the machine.

Example: x-%h.smp becomes x-myhost.smp

%p Replaced with aunique number within the current host.
Note: It isnot related to the Pid of the target process.

Example: x-%p.smp becomes x-123.smp
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-S

-Nn

PERI CD

BYTES [, BYTES. . .]

Sequence | Substitution

%u Expands to ".number™ in such a way that the
resulting filename becomes unique. Numbers are tried
sequentialy, starting with 0. As a special case, the
number ".0" is elided.

Example: x%u.smp becomes x.smp (first file), x.1.smp
(next file) etc.

%U Expands to ".nunber" in such a way that the
resulting filename becomes unique. Numbers are tried
sequentially until a unique number is found.

Example: x%U.smp becomes x.0.smp (first file),
x.1.smp (next file), etc.

%({ ENV} Replaced with the content of the environment variable
ENV

Example: x-%{ USER} .smp becomes x-demo.smp

%% Replaced with asingle % . Thisis sometimes useful on
Windows when encoding commands in a batch file.

Example: x%%.smp becomes x%.smp

The following table lists the environment variables that
ThreadSpotter™ tries in sequence to figure out the MPI rank number
for the %r substitution.

Table 10. %r substitutions

Environment variable® Used for MPI type:
PMI_RANK MPICH 2 and derivatives
OMPI_COMM_WORLD_RANK |OpenMPI 1.3
OMPI_MCA_ns nds vpid OpenMPI 1.2 and derivatives
PMI_ID SLURM PMI
SLURM_PROCID SLURM

LAMRANK LAM

MPI_RANKID HP MPI for Linux
MP_CHILD IBM PE

MP_RANK SunCT
MPIRUN_RANK MVAPICH 1.1

&Theinclusion of an environment variablein thislist does not automatically imply that
ThreadSpotter™ is certified for that platform.

Sample period in number of memory accesses, default 100.
Line sizesto sample in bytes. Default is 64 byte line size.

Don't decimate the samplefile.
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-f

-d DELAY
-t DURATI ON
- ¢ COUNT

-b RUNTI ME

-q QUALITY

--saf e-stack

--tnpdir TMPDIR

--preal location SIZE

--use-target-stderr

--unsupported-attach

- g GENERATI ON

Use fixed sample period. Default is to use automatic sample period
adjustment.

Start sampling after DELAY seconds.
Detach after sampling for DURATION seconds.
Collect COUNT samples. Default is 50000.

Enable burst sampling. RUNTIME should be the estimated run time
of the application in minutes.

Adjusts the quality parameter for bursting. Default quality level is
‘normal’.

fast Decreases sampling overhead by sacrificing accuracy.
Accuracy should normally be good for caches of 8
MB or smaller, and is generally acceptable for 16 MB
caches.

normal The normal accuracy level, which isdefault, providesa
good compromise between accuracy and performance.

detailed Increases sampling overhead by roughly a factor
2. Improves accuracy particularly when analyzing
applications with small fetch ratios running on systems
with large caches (32 MB or larger).

This setting also allows more long range blocking and
fusion opportunities to be found.

Disable the sampler's use of the application stack. May be needed for
applications with non-standard stack handling.

Name the directory where al temporary files will be stored.

Thisdirectory can alternatively be specified by environment variables
THREADSPOTTER _TMPDI R or TMPDI R on Linux or TMP on
Windows. The command line option takes precendence over the
environment variables.

Reduces the amount of virtual address space reserved to the sampler
to SIZE megabytes. Thisisonly applicable to 64-bit installations and
only needed on systems enforcing virtual memory limits. Minimum
preallocation sizeis 128 MB, default is 2048 MB.

Allow the sampler to log warnings and errors on the target
application's stderr. Such messages are normally shown on the
sampler control application's console instead.

Relaxes the sampler permission checks to allow attaching to other
users processes when running as root. Use of this option may cause
security issues, particularly on systems with multiple simultaneous
users, and is not recommended.

Whether to sample the invoked process (=0, default) or its children
(=1) etc. In some MPI environments, like SGI and Cray, the target
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--start-at-function
FUNCTI ON

--start-at-address
ADDRESS

--start-at-ignore
COUNT

--stop-at-function
FUNCTI ON

--stop-at-address
ADDRESS

--stop-at-ignore
COUNT

-p PID

application is bootstrapped using an intermediate process which
should not be sampled.

Start sampling when the execution reaches the specified function.
Start sampling when the execution reaches the specified address.
Ignore the first COUNT times the sampling start location (set with --
start-at-function or --start-at-address) is reached.

Stop sampling when the execution reaches the specified function.
Stop sampling when the execution reaches the specified address.
Ignore the first COUNT times the sampling stop location (set with --

stop-at-function or --stop-at-addr ess) is reached.

Sample the already running process with the specified pid.

-r Bl NARY  Start BINARY with ARGUMENTS.

[ ARGUMENT. . . ]
Examples

Example 4. Starting an application in the sampler

Acquire fingerprint information from target process'ls, run with '-I' command line parameter:
$ sanple -r Is -1

Example 5. Attaching to a running process

Acquire fingerprint information from target process with pid 3344 and naming the output file:
$ sanple -p 3344 -o fingerprint.snp

Example 6. Burst sampling along running application

Long running applications generally benefit from burst sampling. Thefollowing examplewill burst sample
a hypothetical benchmark that is normally expected to run for 15 minutes:

$ sanple -b 15 -r ./benchmark

Example 7. Using a template namefor output file

Sampling in an MPI environment requires that sample file names are unique. The following example will
launch a number of instances of the sampler across an MPI environment, assigning a unique name to each
samplefile.

$ mpirun -np 16 sanmple -o experinmentl/file-%.smp -r ./ny-npi-application
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EXit Status

3

Environment

Files

RW LI CENSE_FI LE

$HOVE/ . t hr eadspotter/
license

Successful program execution.
Usage error.
Sampling failed.

Samplefile post processing failed.

Environment variable pointing to the licensefile. Should only be used
to override default license locations.

Directory containing per-user license files. ThreadSpotter 1ooks for
licensefiles here if no system wide license file can be found.
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report — generate areport from asamplefile

Synopsis

report [-h,--help] [--version] [--verbose] -i, --in-file FI LENAME [-t, --title TI TLE] [-0, --report NAME]
[-s, --source-dir DI RECTORY...] [-D, --debug-dir DI RECTORY...] [-b, --binary Bl NARY...] [--debug-
symbol-level LEVEL] [--c++filt[ =FI LTER] ]

[-p, --percent PERCENT] [-d, --depth FRAMES] [--new-hwpf-algorithm]

[--cpu CPU] [--number-of-cpus NUM [--level LEVEL]

[-c, --cache-size S| ZE] [, --line-size SI ZE] [-r, --replacement POLI CY] [-n, --number-of-caches NUM

Description

report generates areport based on an existing samplefile.

Options
-h, --help
--version
--verbose
-, --in-file
FI LENAME
-t, --title TITLE
-0, --report NAME
-S, --source-dir
DI RECTORY
-D, --debug-dir
DI RECTORY
-b, --binary BI NARY

- - debug- synbol - | evel

Print help message.
Print version information.

Show which filenames are tried when searching for debug information
and source code.

Specifiestheinput file.

Title of report.

Name of the generated report file, defaultstor eport . t sr.
Additional directories to look for source code in.

Additional directories to look for external debug information in. The
report tool will by default look in the system global debug directory
(/usr/1ib/debug), the. debug directory in the same directory

as the binary and the same directory as the binary.

Specifies an additional binary containing debug information to use if
the sampled binary with the same file name can not be found.

(experimental) Balance debug symbol detail and processing speed.

0 no debug symbols

1 line number

2 line number and public symbols
3 full debug info (default)
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--c++-filt[=FILTER

-p, --percent PERCENT

-d, --depth FRAMES

--new hwpf -al gorithm

--cpu CPU

- - nunber - of - cpus NUM

--l evel LEVEL

-c, --cache-size SIZE

-1, --line-size SIZE

-r, - -repl acenent
PQOLI CY

-n, - - nunber - of -
caches NUM

Specify an external symbol demangler program to trandate the
symbols for presentation. Useful for c++ code compiled with the
'stabs’ debugging format.

If --c++filt isgiven without a program, the external program c+
+filt isused.

If --c++filt=Fl LTERIs specified, use the program FILTER.
Default isto not translate symbols.

Percent of total fetches, upgrades or write-backs required for advice
to be reported. The default is 1.

Stack depth to use for separating issues caused by different calls to
the same function. Default 1. Use 0 to merge all different call paths
into afunction for analysis.

Use a new experimental version of the hardware prefetch analysis
algorithm, that more diligently captures complex patterns. It
consumes more memory and takes longer for someinput sets than the
default algorithm.

Selects the processor model to usein the analysis. CPUis specified as
vendor - i d/cpu-i d. Default isto 'auto'.

The following special processor models are defined:

help Lists available processor models.
auto Auto-detects the processor model of the computer the

report is being generated on.

Number of physical processors to include in the analysis. Each
physical processor may have multiple logical processors (cores/
threads). The special value '0' may be used to indicate that auto-
detection should be used, which is also the default.

Selects the cache level to analyze. The number of available cache
levels depend on the selected processor model. Default is to analyze
the highest cache level.

Overrides the cache size specified in the processor model.

Overrides the cache line size specified in the processor model. Must
be power of two.

Cache replacement policy. Must be 'random' or 'Iru’. The default is
‘random’.

Total number of cachesto assign threadsto. Should match the number
of caches of the desired cache level for the intended processor/
architecture. Default: Determined by the processor model, cache level
and the number of physical processors.

The special value '0' may be used to assign one private cache to each
thread in the application.

148



report

Examples

Example 8. Analyzing samplefiles using autodetected CPU models
Perform an analysis of sanpl e. snp for the currently running processor on cache level 2:
$ report --level 2 -i sanple.snp

The report tool will create areport file named r eport . t sr by default.

Example 9. Specifying a CPU model

If you are running a different processor than you are analyzing for, you may specify the --cpu nodel
option.

First, use --cpu help to get alist of available CPUs.
$ report --cpu help

Find the processor you want to perform analysis for, for example the Intel Quad-Core Xeon E5345 which
has the model name 'clowertown_4 8.

Use the manufacturer name together with the model name like this when calling report:

$ report --cpu intel/clovertown_4_8 -i sanple.snp
Exit Status

0 Successful program execution.

>0 An error occured.

Environment

Files

RW LI CENSE_FI LE Environment variable pointing to the licensefile. Should only be used
to override default license locations.

$HOME/ . t hr eadspot ter/ Directory containing per-user license files. ThreadSpotter 1ooks for
license license files here if no system wide license file can be found.
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view — start areport viewer

Synopsis

vi ew[-h, --help] [-version] -i, --in-file FI LENAME [--port PORT] [--timeout SECONDS] [--no-browser]

Description

view diplays an existing report. It runs as a web server serving the report as web pages on a port on the
local host. By default it also starts aweb browser displaying the report.

view will try to start the default web browser on the system. If you want it to use a different browser you
can specify it using the BROASER environment variable.

Options
-h, --help
--version

-, --in-file
FI LENAME

--port PORT

--ti meout SECONDS

- - no- br owser

Exit Status

0
>0

Environment

RW LI CENSE_FI LE

BRONGER

Files

$HOMVE/ . t hr eadspot ter/
i cense

Print help message.
Print version information.

Specifies the input report file.

Launch the web server on the specified port instead of selecting an
arbitrary free port.

Terminate the web server when no activity has been seen from the
web browser viewing the report for the specified number of seconds.
The default is 10 seconds.

Try increasing the timeout if the web server quits unexpectedly while
you are viewing the report.

Do not launch a web browser viewing the report, just start the web
server serving it.

Successful program execution.

An error occured.

Environment variable pointing to the licensefile. Should only be used
to override default license locations.

Web browser to use to display the report.

Directory containing per-user license files. ThreadSpotter looks for
license files here if no system wide license file can be found.

150



Name

license — Install alicensefile
Synopsis

I i cense [-h] [--version] {[--file FI LENANE] [[--server por t @host ]...]} [--system]

Description
| i cense isthetool that is used to install licenses for use by ThreadSpotter™.
Options
-h Show help message and exit.
--version Print version information.
--file FILENAME Install the named licensefile. This can either be anode locked license
file for the current host, or alicense file for a server.
The license file will be installed for the user, unless [ - - syst en
is specified.
[[--server Create a license file that identifies the named license server. Several
PORT@HOST] . . . ] redundant license servers can be specified. The server information is
written as alicensefile.
The license file will be installed for the user, unless [ - - syst en
is specified.
[--systen] Install the licensefile for all usersin the ThreadSpotter™ installation
directory.
Examples

Example 10. Installing a license file for the current user

Install alocal license file for the current user. The license file can either be a node-locked file, or a copy
of the licensefile installed on alicense server machine.

$ license --file license.lic

Example 11. Installing a reference to three license servers

Install a system wide license file pointing to three machines running redundant FlexNet Publisher license
servers on the default port.

$ license --system--server @0.0.0.2 --server @0.0.0.3 --server @0.0.0.4

EXxit Status

0 Successful program execution.
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Files

$HOME/ . t hr eadspot ter/
licensel/license.lic

[opt/threadspotter/
license/license.lic

Usage error.

L ocation of per-user licensefiles. ThreadSpotter looksfor licensefiles
here if no system wide license file can be found.

L ocation of system wide licensefile.
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