Best Practice Guide

PTF Version: 1.1

AutoTune Partners

14.04.2015



AutoTune

Contents

(1 __Introductionl

2 in the ning Cyc

|3 Best Practice on how to use PTF: A Walkthrough|
3.1 PTF best practices: the basics| . . . . ... ... ... ... ... .....
[3.1.1  Building the application with the PTF plugin| . . . . . . . .. . ..
[3.1.2  Running the application with PTF for the first time] . . . . . . . .

[3.1.3  Reducing the overall execution time using a phase region| . . . . .

[3.1.4  Reducing initialization time| . . . . . . . .. ..o

[3.2.1 Application background| . . . . . . ... ... oL L.

[3.2.2  Finding the phase region|. . . . . . . .. .. .. ... ...
[3.2.3  Marking the PTF region in the source code| . . . . . . . ... ...

[3.2.4  Marking a user region in the source code| . . . . . ... ... ...
[3.2.5  Updating makefile to link against PTF lLibraries|. . . . . . ... ..
[3.2.6  Generating a SIR File] . . . . . .. ... ... ... .. ... ...,

[3.2.7  Executing the instrumented application with PTF . . . . . . . ..

[3.2.8  Improving the accuracy of PTF results|. . . . . .. ... ... ...

[3.2.10 Additional tips| . . . . . . . . ...

|4 Best Practice on how to use the PTF Tuning Plugins|

4.1 Compiler Flags Selection Plugin|. . . . . . . .. ... ... ... ... ...

[4.1.1  Using different search algorithms| . . . . . . .. ... ... .. ...

[4.1.2  Reducing the compilation time for selected flag combinations| . . .

[4.1.3  Measuring significant routines|. . . . . . . . . ... ...
[4.1.4 Remote Makel . . . . . .. ... ...
4.2 Parallel Patterns Plugin| . . . . . .. ... ... ... ... .........

© 0 N oo o o

10
11
11
12
14
14
15
16
16
17
18

19
19
19
21
22
23
24
24
26



AutoTune

[4.2.3  Tuning range specification via configuration file] . . . . . . . . . .. 26
[4.2.4  Focused tuning via performance analysis|. . . . . . . ... ... .. 27
[4.2.5 Additional tips| . . . .. ... 28
[4.3  Dynamic Voltage Frequency Scaling (DVFS) Pluginl . . . . ... ... .. 30
[4.3.1 Extending the search space] . . . . . . . . ... ... 30
[4.3.2  Selection of phase regions| . . . . . . .. ... Lo 31
[4.3.3 Multiple tuning objectives| . . . . . . ... ... ... ... 32
[4.3.4 Multiple application regions| . . . . . . . . ... ... ... ... .. 34
[4.3.5 Automatic implementation of the advice|. . . . . . .. .. ... .. 35
4.4 Master-Worker Plugin| . . . . . . ... ... ... ... ... . 0., 36
[4.4.1 Model-based reduction of search space| . . . . . .. .. ... .... 36
[4.4.2  Uninstrumented applications supported for number of workers| . . 38
4.5 MPI Parameters Plugin| . . . . ... ... ... ... ... ... ...... 40
[4.5.1  Multiple MPI flavors| . . . . . . . .. .. ... ... 40
452 Geneticsearchl . . . ... ... ... ... ... . o 41
[4.5.3  Eager-limit parameter strategy| . . . . . . . .. ... .. ... 43




AutoTune

1 Introduction

The Periscope Tuning Framework (PTF) is an extension to the existing performance
analysis tool Periscope. PTF makes it possible to use profiling information gathered by
Periscope and employ it for automatically tuning software applications.

There are five tuning plugins available as part of PTF, which target different tuning
problems/techniques and which can be used to improve the performance and energy
efficiency of a given application with one or more tuning techniques.

PTF and its associated tuning plugins provide many features to aid users in their effective
exploitation. It is therefore useful to understand these features and techniques so as to
be able to extract maximum benefit out of PTF.

This Best Practice Guide provides various ways to use each plugin more effectively as well
as obtain tuning results more efficiently. In Section 2 of this guide, we explain how PTF
fits into the overall tuning lifecycle. In Section 3, we provide several generic best practices
applicable for all the plugins as well as the steps required for manual instrumentation.
Finally, in Section 4, best practices specific to each of the separate plugins are provided.



AutoTune

2 PTF in the Tuning Cycle

The typical approach to software application tuning begins with selecting the baseline
which is a version of the application used as a reference in all the further tuning steps.
The process subsequently involves profiling the application to identify the performance
bottlenecks of the application. Once identified, these bottlenecks are analyzed and a
particular bottleneck is selected for tuning with the aim of improving the performance
(e.g., time to solution) of the application. The tuning technique to be used on the
bottleneck is identified and applied to the application and the tuning cycle begins again.

e
¢

Figure 1: Application tuning cycle

When implemented manually, the tuning process is iterative, cumbersome and often
very time consuming. PTF provides tuning plugins which can perform the application
tuning automatically and remove this burden of manual tuning from the application
developer. The tuning plugins explore the available tuning search space, evaluate different
tuning scenarios and return the end results to the users without any human interventions.
Along with automatic evaluation, PTF provides smarter ways to explore possible search
combinations using various search strategies. For example, in particular cases, PTF can
evaluate the optimal combination without complete execution of the application which
reduces the tuning times drastically.

Use of automatic tuning contributes towards the overall productivity of software devel-
opment. Additionally, due to codified expert knowledge in the form of PTF plugins it
can be applied many times to different applications by users who may not be experts in
application tuning.



AutoTune

3 Best Practice on how to use PTF: A Walkthrough

3.1 PTF best practices: the basics

In this section we will walk through the basics of how best to approach the instrumentation
and tuning of applications with PTF in the context of an example application.

To begin our walk-through demonstration on how to best exploit PTF, we first choose
to work with the BT-MZ benchmark. The BT benchmark is part of the NPB (NASA
Parallel Benchmark) Suite [? | and contains the kernel for a Block Tri-diagonal solver.
BT-MZ is a multi-zone version of the BT benchmark which is designed to exploit multiple
levels of parallelism in the application. The BT-MZ application is written in FORTRAN
with over 4.5k lines of code. The application is a serial application running on a single
core, where there is a potential for performance optimization through using a combination
of various compiler flags. As an application developer, we typically have some idea of
the compiler flags that are important for performance improvements but not necessarily
the optimal combination of the these flags. We also know that the incorrect combination
of flags may actually degrade the performance of our application. The required manual
experimentation of different flag combinations can be time consuming and cumbersome,
so we would like a tool to automate the task of selecting the optimal combination of the
compiler flags. The Compiler Flags Selection (CFS) plugin from PTF does exactly this
and also provides some additional features, which we will walk through in the following
sections.

3.1.1 Building the application with the PTF plugin

Using information in the CFS Plugin User’s Guide [? | the BT-MZ benchmark applica-
tion is compiled. From the CFS Plugin User’s Guide we learn that instrumentation of
the application is required so that PTF can collect performance measurements. In order
to collect measurements, the compilation process is tweaked to use the psc_instrument
command to perform instrumentation while compiling the application, as shown in Fig-

ure 2

# ...........................................................................
# This is the fortran compiler used for fortran programs

# ...........................................................................
F77 = mpif90

F77 = psc_instrument -i -v -4 -s ../bin/bt-mz.C.x.sir -t user mpif90

# This links fortran programs; usually the same as ${F77}
FLINK = $(F77)

Figure 2: Change made to make.def file to add psc_instrument wrapper



AutoTune

In order to test each possible combination of compiler flags, PTF recompiles the applica-
tion with each combination. PTF is informed about the compilation steps and arguments
using the cfs_config.cfg file, as mentioned in the CFS Plugin User’s Guide (available on
the PTF website). A template for the configuration file is installed along with the PTF
installation. A configuration file used for this example can be seen in Figure

=n, ./II;
="FFLAGS";
=C“;
=", ./BT-MZ";
="y solve.f y solve.f z solve.f";
="true";

="exhaustive";

= m_n [Ilolll‘_ “02“; “03“];
= n mn [ll_xhostn’ n “];

Figure 3: An example of a configuration file for the CFS plugin.

3.1.2 Running the application with PTF for the first time

Subsequent to this build step, the BT-MZ application is executed using the PTF
psc_frontend command as shown in the PTF User’s Guide [? ]. After successful ex-
ecution, the optimal combination of compiler flags along with a summary of results for
each combination is reported by the CFS plugin. For the example that we provide here,
the search for the optimal combination of flags took approximately 4697 seconds. This
overhead is expected because running PTF for this basic example involves recompilation
and re-execution of the application with each combination of the selected compiler flags.
Sample output of the PTF execution for the BT-MZ example discussed here is shown in

Figure [4]



AutoTune

Optimum Scenario: 2

Compiler Flags tested:

Scenario 0 flags: "-01 -xhost "
Scenario 1 flags: "-01 "
Scenario 2 flags: "-02 -xhost "
Scenario 3 flags: "-02 "
Scenario 4 flags: "-03 -xhost "
Scenario 5 flags: "-03 "

All Results:

Scenario | Severity
0 | 805.32
1 | 837.48
2 | 660.455
3 | 751.322
4 | 676.317
5 | 752.343

[psc_frontend] [INFO:fe] Plugin advice stored in: advice 6057.xml

End Periscope run! Search took 4697.16 seconds ( 24.3193 seconds for startup )

Figure 4: Sample output of PTF execution for the BT-MZ benchmark in naive mode.

3.1.3 Reducing the overall execution time using a phase region

The PTF User’s Guide explains the concept of a phase region. Many HPC applications
have a global progress loop, e.g., going through the simulated time steps. The execution
of the loop body for a single time step is called a phase. The phase region, i.e., the loop
body, can be marked for PTF in the source code as a user region. If the phase region
is given, PTF will perform all experiments for a single iteration instead of executing the
entire loop and thus, significantly reducing the tuning time. If no phase region is marked
via a user region, the main program region is used as the default phase region.

In our example, BT-MZ has a main time-stepping loop with a trip count of 200, where the
same type and amount of computation was executed for each iteration of the loop. A PTF
user region can therefore be placed around the body of this computationally dominant
loop. Only two pragma lines are required to be inserted into the BT-MZ source code,
representing the start and end of the user region, respectively. For the BT-MZ example,
this results in PTF executing only one iteration of the time-stepping loop rather than
the full 200 iterations, reducing the execution time of PTF to approximately 227 seconds
(relative to 4697 seconds without User Regions). Sample output from a PTF run using
the phase region approach is shown in Figure



AutoTune

Optimum Scenario: 2

Compiler Flags tested:

Scenario 0 flags: " -xhost -O1 "
Scenario 1 flags: " -oL v
Scenario 2 flags: " -xhost -02 "
Scenario 3 flags: " -o2
Scenario 4 flags: " -xhost -03 "
Scenario 5 flags: " -o3

All Results:

Scenario | Severity

0 | 3.92322

1 | 4.02684

2 | 3.68688

3 | 3.71803

4 | 3.709

5 | 3.72842

[psc_frontend] [INFO:fe]l] Plugin advice stored in: advice 5746 .xml

End Periscope run! Search took 227.583 seconds ( 15.3919 seconds for startup )

Figure 5: CFS output for the BT-MZ application with a marked phase region and selective
make enabled.

3.1.4 Reducing initialization time

The PTF User’s Guide provides information on the “fast starter” flag which can re-
duce the amount of time spent in the initialization of PTF. For example, by passing
--starter=FastInteractive to the psc_frontend command, the total execution time
for PTF can be reduced further to approximately 161 seconds for the BT-MZ example
described here (reducing the time spent in initialization time from approximately 20 sec-
onds to 5 seconds. Sample output showing the effect of ——starter=FastInteractive
can be seen in Figure [6]



AutoTune

Optimum Scenario: 2

Compiler Flags tested:

Scenario 0 flags: " -xhost -01 "
Scenario 1 flags: " o1
Scenario 2 flags: " -xhost -02 ©
Scenario 3 flags: " -02
Scenario 4 flags: " -xhost -03 "
Scenario 5 flags: " -3 v

All Results:
Scenario
0

Severity
.9099%6
.03489
.68716
.72185
.71522
.73112

N WP
W wWwwwkWw

End Periscope run! Search took 161.18 seconds ( 4.67674 seconds for startup )

Figure 6: Sample output for the BT-MZ appliation showing the reduction in time spent
in initialization of PTF by using the FastInteractive flag.

3.2 Manual instrumentation

Manual instrumentation is an important technique to be exploited when dealing with
codes that use complex language constructs and that are consequently difficult to instru-
ment using the built-in psc_instrument command (it is often useful for C++ codes). In
our second use case we will manually instrument a C+4++ application and run it using
the CFS plugin. The following subsections will walk through each step involved in the
manual instrumentation of the code and its significance. We instrument code in order
to inform PTF about computationally intensive parts of a given code so as to steer the
focus of PTF tuning efforts. These steps mainly involve identifying the computationally
intensive parts of the code through profiling, and then marking them with specific PTF
library calls . The build procedure is subsequently updated to link against the PTF li-
braries to make these functions available. Finally, a SIR file is created to convey manual
instrumentation information to PTF.

10



AutoTune

3.2.1 Application background

By way of demonstrating best practices on manual instrumentation we will focus on the
C++ LULESH (Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics)
[? ] code. LULESH is one of the proxy applications proposed by Lawrence Livermore
National Lab (LLNL) as part of co-design efforts to address exascale challenges. By its
nature, LULESH is a highly simplified application, hard-coded to only solve a simple
Sedov blast problem with analytic answers. It represents the numerical algorithms, data
motion, and programming style typical in HPC applications written in C or C+—+.

3.2.2 Finding the phase region

To identify the computationally intensive parts of LULESH we will profile the code using
gprof by adding the -pg compiler flag. This requires updating the Makefile of the ap-
plication. After executing the newly compiled binary we obtain the profiling data in the
form of a binary file named gmon.out. Using a tool such gprof allows us see the amount
of time spent in each function of our application. Figure [7|shows partial output from the
gprof profile of LULESH running in sequential mode, showing that the majority of time
during execution was spent in the LagrangeLeapFrog function.

0.00 5.31 100/100 main [1]

[2] 100.0 0.00 5.31 100 LagrangeLeapFrog (Domaing) [2]
0.01 3.68 100/100 LagrangeElements (Domain&, int) [3]
0.99 0.00 100/100 CalcElemVolumeDerivative (double*,

Figure 7: Partial output from gprof showing hotspot functions in LULESH.

Inspecting the source code reveals that the LagrangeLeapFrog function is called within
an iterative time-stepping loop (a so-called“ phase region”). Figure |8 shows a segment of
LULESH source code from the lulesh.cc file, containing the while loop which iterates
over a given number of time-steps.

11



AutoTune

// BEGIN timestep to solution */
#if USE MPI

double start = MPI_Wtime() ;
felse

timeval start;

gettimeofday (&start, NULL) ;
#endif

((locDom->time () < locDom->stoptime()) && (locDom->cycle() < opts.its)) {

TimeIncrement (*locDom) ;
LagrangeLeapFrog (*1locDom) ;

((opts.showProg |= 0) && (opts.quiet == 0) && (myRank == 0)) {
printf ("cycle = %d, time = %e, dt=%e\n",
locDom->cycle(), double(locDom->time()), double(locDom->deltatime()) )

}

// Use reduced max elapsed time
double elapsed time;
#if USE MPI
elapsed _time = MPI Wtime() - start;
felse

Figure 8: The compute intensive while loop interating over the timesteps and calling the
LagrangeLeapFrog function in LULESH.

At this stage, we will convey this information about the computationally intensive part
of the code to PTF by placing the user region around this segment of the code.

3.2.3 Marking the PTF region in the source code

To start with the instrumentation we need to mark the beginning and end of the applica-
tion. Figure [0 shows how we mark the beginning of an application using the PTF region,
and Figure [I0] shows the end of PTF region.

The following guidelines need to be followed when marking the start of a PTF region in
the example code we work with here (LULESH):
e Firstly, we have to include a header file mrimonitor.h.

e Then we need to find the main function of the application and declare some of
PTF-specific variables.

e Next we call the startMonLib() function to start a monitoring library.

e We then insert a call to the startRegion() function with the third argument as
the line number where the call to start a monitoring library is made.

12



AutoTune

e Finally, we put the content of the entire main function into the code block sur-
rounded by the curly braces.

2692

2693 int main(int argec, char #*argvl[])
2694 {

2695 //Periscope specific

2696 int psc ret val;

2697 int psc0ldTaskId=0;

2698 startMonLib() ;

2699

2700 //Marking start of main region
2701 startRegion(1l,1,2698,0,-1);

Figure 9: The main function is marked with the start of a PTF region.

The following guidelines need to be followed while marking the end of a PTF region.

e Assign a zero value to psc_ret_val variable.

e Make a call to endRegion() function with the same arguments as that of the
startRegion() function.

Stop the monitoring library by calling stopMonLib() function.

Place these calls before the MPI_Finalize() call.

psc _ret_val = 0;
}
//Marking end of main Region
endRegion(1,1,2698,0,-1);
//Stopping the monitoring library
stopMonLib () ;

#if USE MPI
MPI Finalize() :
#endif

return (psc_ret_val);

}

Figure 10: The end of the PTF region is marked with in the main function.

13



AutoTune

3.2.4 Marking a user region in the source code

A user region can be used to mark the phase region of the application. It then identi-
fies a part of the code where we want PTF to focus it’s optimization efforts. User region
pragmas are placed around computationally intensive code sections. In the case of a com-
putationally intensive loop traversing a high trip count, performance of a single iteration
of the loop for a particular optimization can often be representive of the overall perfor-
mance of an application for that optimization. When such a loop is marked as a User
Region, PTF executes the loop for only a single iteration to measure the performance
improvements.

((locDom->time() < locDom->stoptime()) && (locDom->cycle() < opts.its)) {

startRegion(27,1,2700,0,-1);
{
TimeIncrement (*locDom) ;
LagrangeLeapFrog (*locDom) ;
((opts.showProg != 0) && (opts.quiet == 0) && (myRank == 0)) {
printf ("cycle = %d, time = %e, dt=%e\n®",
locDom->cycle() , double(locDom->time()),
double (locDom->deltatime()) ) ;
}
}
endRegion(27,1,2700,0,-1) ;

Figure 11: Instrumented version of the timestep loop.

Figure shows the updated time-stepping loop. The following guidelines need to be
followed when marking code with a user region.

e Call startRegion() and endRegion() functions at the beginning and end of the
loop. Make a note that both the function calls are inside the loop.

e The third parameter in the function is the line number of the statement before the
outer startRegion() call.

e The user region marking the phase region entails a collective synchronization. PTF
configures application monitoring in startRegion() and endRegion(). This con-
figuration leads to a barrier synchronization.

3.2.5 Updating makefile to link against PTF libraries

When instrumenting the code we include the mrimonitor.h header file and insert function
calls startRegion and endRegion() to mark the region to be instrumented. While

14



AutoTune

compiling this manually instrumented code we need to inform the compiler about the
location of the header file to include it, and also inform the linker about the name and
location of the libraries containing the necessary function calls.

PSC CXXFLAGS = -I$(HOME)/install/Periscope/include/
MRI_LDFLAGS = -L§ (HOME) /install/Periscope/lib -lmrimon -lmpiprofiler \

-lpscreg -1lpscutil -lqualexpr -1lm

PAPI_LDFLAGS = -L/lrz/sys/tools/papi/5.0.0/1lib -1lpapi
PSC LDFLAGS = $(MRI_LDFLAGS) $(PAPI_LDFLAGS)

#Default build suggestions with OpenMP for g+=
CXXFLAGS = -g -03 -fopenmp -I. §(PSC_CXXFLAGS) §$(DEVEL_INC) -Wall
LDFLAGS = -g -03 -fopenmp §(PSC_LDFLAGS)

Figure 12: Updated Makefile to find PTF header files and link the PTF libraries.

In Figure [12] we show an updated Makefile for LULESH. Relevant changes include -

e The path for the PTF headers is provided to compiler by adding to CXXFLAGS.

e The path and name of the PTF libraries are provided using LDFLAGS variable.

e Additional libraries are pointed to by aggregating them into the PSC_LDFLAGS vari-

able.

3.2.6 Generating a SIR File

By way of a SIR file we can inform PTF about the outer and User Regions generated
during the manual or automatic instrumentation, with an example SIR file shown in

Figure [13] .

1
2

10
11
12
13

<?xml version="1.0" encoding="UTF-8%"7>

<gir xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance® xmlns="http:
J/www.lrr.in.tum.de/Periscope® xsi:schemaLocation="http://www.lrr.in.tu
m.de/Periscope psc_properties.xsd®™ language="C">

<l-- ./prep/lulesh.sir -->

<unit type="program® name="int main(int, char **) C®" id="1-2698">
<position startLine="2698" endLine="2823">
<file name="./prep/lulesh.c®/>
</position>
<codeRegion type="userRegion® name="" id="1-2700">
<position startLine="2700" endLine="2824">
<file name="./prep/lulesh.c"/>
</position>
</codeRegion>
</unit>

14 </sir>

Figure 13: SIR file

15



AutoTune

To generate a SIR file one can follow template or any existing SIR file and update it using
the guidelines below to suit a given application.

e Update the id field of a unit tag, to 1-(line number of a line where the call to
startMonLib() is made). The id of a region is composed of the two numbers, you
can choose both but unique.

e The position tag under the unit tag should contain startLine as a line number
specified in the outer tag after 1 and endLine should be the line where the outer
region ends.

e The file tag should contain the value name in the ./<file_name>.c. The name
of the file containing the outer region should go here.

e The codeRegion should have id as 1-(line number of a line where the call to
startRegion() is made) and type should be userRegion.

e The position and file tag should follow the same format as the position tag
used above.

3.2.7 Executing the instrumented application with PTF

Once the instrumentation is completed, the execution of the application is carried out in
the same way as of an application automatically instrumented with the psc_instrument
command. In this case, we use the following commands:

module load gcc ace/6.1 papi
module load boost/1.45 gcc mpi.intel

psc_frontend --apprun="./lulesh2.0" --sir="./lulesh.sir"
--mpinumprocs=8 --tune=compilerflags

The module load commands configure an environment on the SuperMUC system with
paths for the necessary libraries and the psc_frontend command is used to start
the tuning running the CFS plugin. Here, we have used the same configuration file
cfs_config.cfg as that used for the BT-MZ use case.

3.2.8 Improving the accuracy of PTF results

In the case of an instrumented applications with a single iteration of a computationally
intensive loop executing for a short amount of time, tuning results may not be consistent.
This is mainly due to OS noise or the resolution of the instrumentation. In such cases we
can modify the code by increasing the number of iterations to be instrumented in order
to obtain consistent results. This can also be achieved by loop splitting. Figure [14] shows

16



AutoTune

the version of LULESH code shown in Figurdl]] after splitting the loop into two loops.
In the new version, a user region is placed around the inner loop which runs for 1000
iterations.

2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798

startRegion(27,1,2700,0,-1);
{
for(int innerCounter=0; innerCounter<1000; innerCounter++)
{
TimeIncrement (*locDom) ;
LagrangeLeapFrog (*locDom) ;
if ((opts.showProg != 0) && (opts.quiet == 0) && (myRank == 0)) {
printf ("cycle = %d, time = %e, dt=%e\n",
locDom->cycle(), double(locDom->time()),
double (locDom->deltatime()) ) ;

}
}
endRegion(27,1,2700,0,-1);

Figure 14: Splitting the loop to execute more iterations in the User Region in LULESH.

3.2.9 Results for LULESH

e CFS Plugin

Figure demonstrates that the combination of the compiler flags suggested by
PTF results in 9.5% improvement in the overall execution time of LULESH.

Time (sec)

51

50

49

48

47

46

45

44

43

50.59

45.77

Baseline (-02) PTF Suggested

Figure 15: Execution time with the optimal compiler flags suggested by PTF and the
baseline reading taken without using PTF.

17



AutoTune

3.2.10 Additional tips

e [t is recommended to add a delay of one or more executions of the phase region in
the psc_frontend command using the --delay flag to avoid the warm up phase of
the application.

e Check the reproducibility of the measurements.

18



AutoTune

4 Best Practice on how to use the PTF Tuning Plugins

In the previous section we focused on walking through two examples of how to best
employ PTF on sample applications with the CFS plugin. In this section we provide an
overview of the features of each of the PTF plugins which can help to employ PTF and
the plugins more effectively as part of a typical PTF tuning workflow.

4.1 Compiler Flags Selection Plugin

By way of guiding the user on how to best exploit the CFS plugin, we will focus on two
applications from the CESAR suite of exascale proxy applications [? |, NEKBONE and
MOCFE. The NEKBONE proxy application is a thermal hydraulics simulation code for
reactor simulations that solves the Poisson equation, Helmholz equation, as well as other
differential equations. It is an MPI-based FORTRAN application consisting of 13 files.
For the example discussed here, the application was executed with 8 processes and 50
elements per process, a polynomial order of 10, and without the multi-grid preconditioner
(i.e. ‘Example 3’ in the provided source code).

The MOCFE application simulates the main procedures in a 3D method of characteristics
(MOC) code for numerical solution of the steady state neutron transport equation. 3D-
MOC features heterogeneous geometry capability, high degree of accuracy, and potential
for scalability. It is a FORTRAN 90 MPI application consisting of 36 files. We have
instrumented the inner loop of Method FGMRES.F90 as a phase_region of the application.
For the example cases described here MOCFE was executed with 16 processes and a
Krylov iteration size of 60.

4.1.1 Using different search algorithms

The CFS plugin searches for the best possible combination of compiler flags from a list
of flags provided in the cfs_config.cfg file of the plugin. It uses one of five search
algorithms, i.e., Fxhaustive Search, Random Search, Individual Search, Genetic Search,
and Machine Learning-based Random Search for selecting the best combination of flags.
In general, the Individual Search strategy provides good results and is recommended as
a good starting point. The Genetic Search and Random Search algorithms can be used
in combination with Machine Learning to perform a broader search.

The search algorithms of the CFS plugin are described below:

e Exhaustive Search (ES): The plugin compiles and executes the application with all
combinations of the specified compiler flags.

e Random Search (RS): The plugin randomly selects combinations of flags.
o Individual (IS): This algorithm adds-up each compiler flag one after the other from

the tuning parameter list in the order used in the specification file.

19



AutoTune

e Genetic Search (GS): GS searches for the combination of compiler flags based on
the GDE3 genetic algorithm.

e Machine learning based Random Search (MLRS): MLRS uses the Tuning Database
of PTF, which is a collection of CFS tuning results for different applications, to
model and predict the suitable compiler flags for the current application. The
database, in our case, was filled with the NAS parallel benchmark experiments.

For the example cases discussed here, we can run all of these algorithms (apart from
ES due to the huge number of scenarios) on the NEKBONE application. In the case of
the NEKBONE application, the body of the progress loop in the NEKBONE application
was marked as a User Region and we also use the following CFS plugin specific features:
i) the Selective Make option of the CFS plugin to recompile only compute intensive
files instead of the entire application and ii) the Remote Make option to perform the
compilation on the login nodes of SuperMUC, the supercomputer at LRZ that we run
our use cases on. For the use-cases described here the compiler flags were pre-defined in
the cfs_config.cfg file of the CFS plugin.

We focus on the following FORTRAN compiler flags of Intel’s ifort compiler when
auto-tuning NEKBONE using the CFS plugin:

tp "TP_IFORT_OPT" = "-" ["02", "0O3", "04"];

tp "TP_IFORT_XHOST" = " " ["-xhost", " "1;

tp "TP_IFORT_UNROLL" = " " ["-unroll", " "I;

tp "TP_IFORT_VERSION" = " " ["-opt-multi-version-aggressive", " "];

tp "TP_IFORT_FMA" = " " ["-fma", " "];

tp "TP_IFORT_INLINE" = " " ["-finline-functions","-fno-inline-functions"];

tp "TP_IFORT_PREFETCH" = "-opt-prefetch=" [1,4,1];

tp "TP_IFORT_UNROLL" = "-unroll" [1,16,4];

tp "TP_IFORT_OPTBLOCK" = "-opt-block-factor=" [1,3,1];

tp "TP_IFORT_STREAM" = " " ["-opt-streaming-stores always",
"-opt-streaming-stores never", "-opt-streaming-stores auto"];

tp "TP_IFORT_IP" = " " ["-ip", " "];

Figure compares the execution times for the different search algorithms for the
NEKBONE application for a given number of experiments.

It can be seen that all three search algorithms converge to approximately the same execu-
tion time for the instrumented application ( 0.38 seconds). While the IS algorithm results
in the best execution time after only five experiments, the RS algorithm requires 22 ex-
periments and the GS algorithm requires 80 experiments to obtain the shortest execution
time for the instrumented application, thus demonstrating the potential advantages of
some search algorithms over others when using the CFS plugin. As mentioned, the In-
dividual Search strategy generally provides good results and is recommended as a good
starting point when employing the CFS plugin.

20



AutoTune

0,43
=
)
§ 0,42 — Genetic
L
5
= e | ndlividual
]
80'41
x Random
w
0,4
0,39 \ \
| —
0,38 } } } } } } } } t |
N OO M N TN OOMNNS AN OOMMN WO MNSN Wi O mMm S
T EH AN NN T NN OO ONNOOOWWONWO O

Experiments

Figure 16: Comparison of IS, GS, and RS for NEKBONE.

Full Compile \ Selective Compile

Code #Files | Time (s) | #Files | Time (s)
MOCFE 36 32.12 4 4.503
NEKBONE 13 45.16 1 2.22

Table 1: Compilation time for the whole application relative to compilation time selecting
only the most significant application files.

4.1.2 Reducing the compilation time for selected flag combinations

The Selective Make feature of the CFS plugin allows users to reduce the compilation time
for a selected combination of flags by recompiling only significant target application files,
i.e., files that account for most of the execution time. To demonstrate the impact of this
feature here, we apply the CFS plugin (with Individual Search) to the NEKBONE and
MOCFE applications . As can be seen from Table [I] the compilation time for the appli-
cations differs significantly between recompiling the whole application and recompiling
only the significant files using Selective Make. Indeed, for applications composed of many
files the Selective Make feature generally leads to a significant reduction in the overhead
of searching through CFS parameter spaces and is recommended to CFS plugin users to
improve productivity.

Table [2| compares the results running MOCFE and NEKBONE with the full compila-
tion and the compilation using Selective Make. The results demonstrate that selective

21



AutoTune

Full Compile ‘ Selective Compile

Code Search (s) ‘ Exec (s) ‘ Search (s) ‘ Exec (s)
MOCFE 1498 8.4 855 8.3
NEKBONE 1950 0.37 914 0.38

Table 2: Comparison of search time and resultant execution time for selective compilation.

’ Scenario \ Total \ x_solve | y_solve | z_solve | compute_rhs

0 4.04 1.14 1.16 1.26 0.42
1 4.03 1.13 1.15 1.25 0.42
2 4.02 1.13 1.15 1.25 0.42
3 3.94 1.10 1.12 1.20 0.44
4 3.93 1.10 1.13 1.19 0.44

Table 3: Tuning results for individual subroutines in NPB BT-MZ.

compilation leads to a significant reduction of the search time while the results vary only
slightly, since the most time consuming routines were recompiled anyway.

4.1.3 Measuring significant routines

The CFS plugin also allows users to determine the best flag combinations per file. This
is based on the identification of routines that take up the majority of computation time
in each file selected for selective compilation, where the effect of the compiler flags on the
execution of these routines is used to identify the file-specific best flag combination. To
demonstrate this feature, we focus on the BT-MZ application as used in section 2 of this
guide and run the application with 4 MPI processes and problem size C from the BT-MZ
test cases. We use Machine Learning based Random Search with 5 samples. The results
presented in Table [3| were achieved for the five samples:

The following flags were tested in the scenarios:

1. -03 -xhost -fma -fno-inline-functions -opt-prefetch=4 -unrollil3
-opt-block-factor=1 -opt-streaming-stores never

2. -03 -xhost -fma -finline-functions -opt-prefetch=4 -unrollil3
-opt-block-factor=1 -opt-streaming-stores auto

3. -03 -xhost -fma -finline-functions -opt-prefetch=3 -unrollil3
-opt-block-factor=3 -opt-streaming-stores auto

4. -03 -xhost -fma -finline-functions -opt-prefetch=1 -unrollil
-opt-block-factor=3 -opt-streaming-stores always

22



AutoTune

5. -03 -xhost -fma -fno-inline-functions -opt-prefetch=2 -unrolll
-opt-block-factor=3 -opt-streaming-stores always -ip

Subroutines x_solve, y_solve, and z_solve are very similar and the best configurations
were found to be scenario 4 for x_solve and z_solve. A very small time difference was
reported for scenarios 3 and 4 for y_solve. These scenarios are almost identical and
thus we can summarize that all three routines work well with scenario 4. For subroutine
compute_rhs a more significant difference can be seen for scenarios 0-2 and 3-4. Therefore,
the plugin recommends to compile file rhs.f with the flag combination from scenario 1.
The global optimum is scenario 4 since the all three solve routines are almost three times
as time consuming as compute_rhs.

4.1.4 Remote Make

Finally, compute nodes of HPC systems often have a light-weight version of Linux and
may not have all the necessary files to recompile the application. In order to recompile
the application with the different flags combinations, the CFS plugin supports remote
building of the application. The compilation is then run on, for example, a login node
via ssh. Please consult the CFS Plugin User’s Guide on how to configure the CFS plugin
to use remote make.

23



AutoTune

4.2 Parallel Patterns Plugin

By way of guiding the user on how to best exploit the Parallel Patterns plugin, we
will focus on the FaceDetect application [? ]. The FaceDetect application uses an
image-processing pipeline built on top of the PEPPHER framework. Within PEPPHER,
pipeline patterns are expressed using annotated while-loops that comprise calls to multi-
architectural components. The high-level FaceDetect code is shown in Figure The
application uses a four stage pipeline to perform detection of human faces on a stream of
images.

The Parallel Patterns plugin for PTF supports automatic performance tuning of high-
level pipeline patterns built on top of the PEPPHER framework. The plugin searches for
the best combination of pattern-specific parameters, parameters exposed by the runtime
system, and machine-specific parameters such that execution is optimized for a given
workload and target architecture.

The plugin for Parallel Patterns allows for the restriction of a potentially large search
space via:

e tuning range specifications for stage replication factors and stage buffer sizes by
means of source code directives
e tuning range specifications for all tuning parameters via configuration file

e performance analysis to focus tuning on the most time-consuming stage

#pragma pph pipeline

while ( inputstream >> file ) {
ReadImage ( file , image );
#pragma pph stage replicate(?) buffer(?)
ResizeAndColorConvert ( image, oimage );
#pragma pph stage replicate(?) buffer(?)
DetectFaces ( oimage );
WriteFaceDetectedImage ( file , oimage );

Figure 17: A pipeline pattern for face detection in a stream of images. The 77" symbols
within the annotations indicate that the tuning ranges for ResizeAndColorConvert and
DetectFaces stages should be automatically determined.

4.2.1 Default behavior
The total number of tuning scenarios in the search space is created as a crossproduct of

the value ranges of all available tuning parameters. By default, for each of the tuning
parameters the tuning range of possible values is determined by the system as follows:

24



AutoTune

e for each stage replication factor that has been annotated with the ”?” in the high-
level code, the range of the stage replication factor is set to [1:(maz_execution_units
- number_of_pipeline_stages - 1):1]

e for each Dbuffer size, that has been annotated with the 77”7
in the high-level code, the range of the buffer size is set to
[maz_ezecution_units:max_execution_units*3:max_execution_units]

e the NCPUS range is set to [1:maz_cpu_cores:1]
e the NGPUS range is set to [0:maz_gpus:1]
e the SCHEDULING_POLICY is set to two scheduling policies EAGER and HEF TE]

These default values are based on the runtime system requirements and on the application
testing experience. To minimize oversubscription, the total number of stages plus stage
replicas is set to not exceed the number of execution units on the system. The buffer size
influences the memory footprint of the application. For each stage, the buffer size is set
to have minimum equal to the replication factor of that stage, and to have maximum of
that value multiplied by 3.

Tuning the pipeline on the system with many execution units may require an exploration
of a huge search space. For instance, on the system with 16 CPU cores, and 4 GPUs,
a full exhaustive search for the FaceDetect application would require an evaluation of
17*3*17*3*16*5%2 = 416,160 scenarios. In Table 4| we summarize the possible values for
each tuning parameter in this setup.

Tuning parameter Possible values
ResizeAndColorConvert Replication Factor 1,2, 3,.., 17
ResizeAndColorConvert Buffer Size 20, 40, 60
DetectFaces Replication Factor 1,2,3,., 17
DetectFaces Buffer Size 20, 40, 60
Number of CPU cores 1,2,3,.,16
Number of GPUs 0,1,2,3,4
Scheduling Policy “EAGER”, “HEFT”

Table 4: Tuning parameters and their values on the PHIA system for the setup with no
restrictions.

The following three subsections demonstrate how to efficiently restrict the search space,
and yet test majority of the performance-relevant scenarios.

"HEFT (Heterogeneous Earliest Finish Time) considers inter-component data dependencies and sched-
ules components to workers taking into account the current system load, available component implemen-
tation variants, and historical execution profiles, with the goal of minimizing overall execution time by
favoring implementations variants with the lowest expected execution time. EAGER is a simply greedy
scheduler.

25



AutoTune

4.2.2 Tuning range specification via directives

The tuning range source code directives allow users to steer the tuning process of the
plugin by specifying values for the stage replication factors and buffer sizes. Careful
specification of the tuning ranges for such parameters in the high-level code may reduce
the total number of scenarios that need to be tested.

For the FaceDetect application tuning, we used these directives to provide tuning ranges
for the replication factors of the two middle stages in the pipeline. As shown in Figure
the user specified tuning range starts with the minimum value of 1, which is incremented
by 4 until it reaches the maximum value of 17, resulting in a total of 5 values for each
tuning parameter. The minimum value of 1 will reveal if incrementing the replication
factor for the certain stage has any effect on the performance. For the maximum value,
it is usually good to keep the default of maz_execution_units - number_of_pipeline_stages
- 1. This will ensure that oversubscription is avoided. Finally, a good guideline for the
increment is actual number of GPUs in the system, since the runtime system needs one
CPU core for each GPU card it uses.

#pragma pph pipeline

while ( inputstream >> file ) {
ReadImage ( file , image );
#pragma pph stage replicate(1:17:4)
ResizeAndColorConvert ( image, oimage );
#pragma pph stage replicate(1:17:4)
DetectFaces ( oimage );
WriteFaceDetectedImage ( file , oimage );

Figure 18: User-provided tuning hints. For the middle stages the tuning ranges for the
stage replication factor is specified in the form (min:max:step).

By specifying tuning ranges for stage replication factors as shown in Figure the search
space is reduced from 416,160 to 36,000 scenarios.

4.2.3 Tuning range specification via configuration file

Another option for enabling users to restrict the search space is by specifying tuning
ranges in the SIR file for some or all tuning parameters (including NCPUS, NGPUS).
In the configuration file, it is a good idea to provide tuning ranges for machine-specific
tuning parameters, i.e., NCPUS and NGPUS. For instance, NCPUS parameter may be
restricted in a way that the minimum number of CPU cores to be used for execution
is equal to the number of pipeline stages, and the maximum is equal to the number of
available CPU cores with an increment of 4 (see Figure . As a consequence only 4
values for the NCPUS tuning parameter are considered, further restricting the search
space to 9,000 scenarios. The tuning parameters and corresponding values that describe

26



AutoTune

this restricted search space are summarized in Table

<selector tuningActionType="VAR" tuningActionName="NCPUS" min="4" max="16" step="4"/>

Figure 19: In order to influence the tuning process the SIR file may be altered manually
by changing the corresponding min max and step values for the desired tuning parameter.

Tuning parameter Possible values
ResizeAndColorConvert Replication Factor 1, 5,9, 13, 17
ResizeAndColorConvert Buffer Size 20, 40, 60
DetectFaces Replication Factor 1,5,9, 13, 17
DetectFaces Buffer Size 20, 40, 60
Number of CPU cores 4, 8,12, 16
Number of GPUs 0,1,2,3,4
Scheduling Policy “EAGER”, “HEFT”

Table 5: Tuning parameters and restricted values on the PHIA system.

4.2.4 Focused tuning via performance analysis

Focused tuning of pipeline patterns via PTF pre-analysis may be enabled via
—--vpattern-focused command-line switch. In this mode, the plugin uses PTF’s pre-
analysis to detect the most performance-demanding stage in the pipeline. Once it has
been detected, the tuning efforts are focused on the stage replication factor and buffer
size of that stage.

The focused tuning can be used without any additional user-provided hints. In the
standalone mode it reduces the search space from initial 416,160 to 8,100. A combination
of focused tuning with user-provided tuning ranges may be used to further decrease the
search space. For the FaceDetect application the stage replication factor for the most
performance-demanding stage (DetectFaces), is automatically set to [1:17:1], while for
all other stages tuning of stage replication factors (and buffer sizes) is omitted. As a
result, the resulting scenario pool contains only 600 scenarios, significantly reduced from
the initial total of 416,160 scenarios.

Figure [20| shows the effect of the different plugin features on the size of the search space.
The first blue bar shows the number of scenarios when source code directives were used to
restrict the search space from 416,160 to 36,000. The second blue bar represents additional
restriction of the search space by adjusting tuning ranges directly in the configuration

27



AutoTune

file. The third blue bar shows the number scenarios when only focused tuning via pre-
analysis was used. Finally, the fourth blue bar shows the number of the scenarios when
all features were used.

40000
36000

35000 [ I -
30000 [ I -
2
3
S 25000 [ [ -
O
3
20000 [ I -
S
S so00f
g 1
z

10000

5000

Directives Directives Focused tuning  All combined
+Configuration File

Figure 20: Restricting the search space for the FaceDetect application using different
plugin features of the Parallel Patterns plugin.

4.2.5 Additional tips

e Stage Replication Factors

Stage replication factors determine the number of stage instances executed in par-
allel and therefore influence the degree of potential parallelism during application
execution. Each stage replica will execute in an additional thread. To avoid over-
subscription, the total number of stages plus stage replicas should not exceed the
number of execution units on the system. On the other hand, if the replication fac-
tors are too low, the performance might be limited, so a good guideline is to increase
stage replication factors for the stages that have higher performance demands.

e Machine-specific Parameters

The machine-specific parameters (NCPUS and NGPUS) are closely related to stage
replication factors. The effective usage of system execution units may be hindered

28



AutoTune

if the stage replication factors are not sufficiently high. On the other hand, if the
total number of available execution units is small, the replication factor will have
no effect.

29



AutoTune

4.3 Dynamic Voltage Frequency Scaling (DVFS) Plugin

As an example of how to best employ the features of the DVFS plugin we have chosen
the SeisSol application [? | as our use case here. The SeisSol application is devel-
oped by the Department of Earth and Environmental Sciences at the Ludwig-Maximilian
University. It is a MPI application written in Fortran 90. The application is used for
simulating realistic earthquake scenarios, accounting for a variety of geophysical processes
that affect the propagation of seismic waves, e.g. viscoelastic attenuation, strong material
heterogeneities and anisotropy. SeisSol contains a computation kernel which simulates
the specified number of time steps.

4.3.1 Extending the search space

The objective of the DVFS plugin is to tune the energy consumption of an application.
The DVFS plugin can be configured with the number of frequencies that the plugin
should use for the search space. The models predict one frequency according to the
tuning objective. The number of neighboring frequencies (neighbors of the predicted
frequencies) to be analyzed can be set. Environment variable PSC_FREQ_NEIGHBORS
is used for this purpose. The value of this variable specifies the number of neighbors to
the right and to the left of the predicted frequency. The maximum value for this variable
is limited to 7 neighbors. If the value exceeds 7 neighbors or if it is negative then the
plugin will use the default value of 1 neighbor on each side. The user is advised to use a
higher number of neighbors when the execution time does not play a role, i.e., when the
tuning is completed in an acceptable time-frame for the user. If it is suspected that the
model delivers inaccurate predictions, a higher number of frequencies can help mitigate
this problem.

Figure [21] shows the sample output of the DVFS plugin for the SeisSol application with
PSC_FREQ_NEIGHBORS=3. The tuning objective was to minimize the Energy Delay
Product (EDP).

Found Optimum Scenario:3 Frequency: 2700

Search Path:

Scenario | Governor | Freq (MHz) | Energy (J) | Runtime (s) | EDP
---------- B T e e i S
0 | Userspace | 2400 | 2681.000 | 13.023 | 34914.931
1 | Userspace | 2500 | 2762.000 | 12.611 | 34831.306
2 | Userspace | 2600 | 2841.000 | 12.065 | 34275.813
3 | Userspace | 2700 | 2940.000 | 11.624 | 34174.854

Figure 21: Output of the DVFS plugin for inspecting the predicted and three neighbor
frequencies.

The output shows that the three neighbors below the predicted CPU frequency of 2.7 GHz
are measured compared to the default of one neighbor as shown in Figurd23] Since 2.7GHz

30



AutoTune

is the highest CPU frequency supported by the Sandy Bridge processors of SuperMUC,
only the three lower neighboring frequencies are evaluated.

4.3.2 Selection of phase regions

There are several methods to prepare the application selected for energy tuning. Many
scientific codes have a time stepping loop, also known as a phase region. The most
common method is to target the phase region in a code for tuning. The phase region is
typically the region that consumes the most amount of time. Instrumenting the phase
region consists of simply inserting the appropriate directives as follows:

e Fortran:
DOi=1,10
!$ MON USER REGION
kernel...
!$ MON END USER REGION
ENDDO !Instrumented var

e C/CH++
for(int i = 0; i <10; i4++)
{
#pragma start_user_region
kernel...
#pragma end_user_region

}

Not every application has an outermost iterative loop with a time stepping scheme that
can be used as a phase region. Either the main region can be used as phase region,
resulting in an automatic restart of the application for each experiment, or some other
region can be marked a phase region to restrict the tuning to this region.

PTF user region can also be used to mark code regions also for other purposes then as a
phase region. If a single user region is given, this is assumed to be used as phase region
in PTF. If multiple user regions are given, the phase region can be identified by an input
argument to the PTF frontend. The argument has the format --phase=‘‘<file id
>:<region first line >’’. For example:

psc\_frontend --apprun="./Seissolxx PAR.par" --mpinumprocs=32
--tune=dvfs --phase="31:809" --sir=SeisSol.sir

If there is no phase region use the command as you would normally do.

31



AutoTune

Note that there can only be one phase region within the source code and it should
be the outer most loop of all other instrumented regions. The presence of phase regions
ensure faster automatic tuning, as each experiment is carried out by running one iteration
(as opposed to running the entire application per experiment). It is important not to
have significant variations of time among iterations, otherwise the comparisons between
experiments will produce wrong results. If the iterations at the phase region are suspected
to have variations among them, then do not use a phase region. The loop of the phase
region should have at least 2m+1 iterations, where m is the number of frequencies chosen.
One iteration is for the pre-analysis, and 2m other iterations for the experiments.

4.3.3 Multiple tuning objectives

There are three models used in this plugin to predict the best frequency for a given objec-
tive, i.e., one for each of the quantities Time, Power, and Energy. The rest of the models
are derived from these three main models and are used for the tuning objectives. Energy is
modeled directly and this is the default model of the DVFS Plugin. Nevertheless, there is
an energy model derived from the product of modeled power and time separately (export
the environment variable “export PSC_DVFS_MODEL=2" before running). Variations
are not significant between these two energy models and the user is encouraged to use
any of the two when tuning for energy consumption.

There are several tuning objectives that can be chosen. You can optimize the energy
consumption, the energy delay product, tune for power capping, optimize the total cost
of ownership, or tune the energy consumption for an allowed performance degradation.
The choice of the metric depends on the needs of the user. Here are some examples:

e Consider optimizing the energy consumption when other costs related to time are

minimal compared to energy costs. (PSC_DVFS_MODEL is either 1 or 2)

e The energy delay product provides a strong emphasis on time (export
PSC_DVFS_MODEL=3). The formula has time squared times power.

e Consider using the total cost of ownership when you need to balance the influence
of power-related costs and time-related costs (export PSC_DVFS_MODEL=4).

The Total Cost of Ownership (TCO) was used with the following cost formula (given
per compute node):
TCO=a-P-t+b-t, (1)

where P is the average power in watts, ¢ the time in seconds, a the cost of the energy
(in the plugin a = 2.7-1074[EU R/ J]), b the cost of personnel and other fixed costs
amortized over the lifespan of the HPC system (in the plugin b = 0.1115[EU R/s]).

e Power capping is used to limit the power and avoid trespassing a system-wide
power limit which can generate more costs as electric companies penalize strong

32



AutoTune

oscillations (export PSC_DVFS_MODEL=5). The power capping tuning objective
uses a maximum power limit of 110 W per node.

e Use PSC_.DVFS_MODEL=6 when the increase of performance should be greater
than an increase in energy consumption in order to choose higher frequencies and
power capping is not needed.

e Use PSC_DVFS_MODEL=7 when the increase of performance should be greater
than the increase in power. This case is more restrictive than the previous policy
(selected using PSC_.DVFS_MODEL=6) as it considers power instead of energy.

e Use PSC_.DVFS_MODEL=8 when power capping considerations are important.
The frequency used will be chosen such that the power used is below the power
threshold or have significant performance increase with respect to the nominal fre-
quency 2.0 GHz.

e Use PSC_DVFS_MODEL=9 when the performance degradation with respect to the

nominal frequency should be no more than 10%.

Figure shows the execution of the SeisSol application using a default energy model
PSC_DVFS_MODEL=1 and thus tuning for minimum energy usage.

Found Optimum Scenario: 0
Search Path:

Scenario | Governor | Freq (MHz) | Energy (J) | Runtime (s) |
---------- e e T I IS ISR
0 | Userspace | 1200 | 981.000 | 25.541 |
1 | Userspace | 1300 | 986.000 | 23.328 |

Figure 22: Output of the DVFS plugin for energy tuning for SeisSol.

The results show that executing SeisSol at 1.2 GHz would minimize the energy consumed
during the execution. When choosing the Energy Delay Product as tuning objective
instead of consumed energy, the plugin determines 2.6 GHz as the optimal frequency

(Figure [23)).

Found Optimum Scenario: 0
Search Path:

Scenario | Governor | Freqg (MHz) | Energy (J) | Runtime (s) | EDP

---------- i e e it LR S S
0 | Userspace | 2600 | 2783.000 | 11.890 | 33088.757
1 | Userspace | 2700 | 2861.000 | 11.616 | 33234.234

Figure 23: Output of the DVFS plugin for tuning the Energy Delay Product for SeisSol.

33



AutoTune

4.3.4 Multiple application regions

The DVFS plugin can not only determine a global best frequency but also individual
best frequencies for different regions of the application. These regions have to be suited
for energy tuning, i.e., they have to be coarse enough to amortize for the overhead of
changing the processor frequency.

To demonstrate this feature, three regions were marked in SeisSol for energy tuning.
Table[6] The two inner regions group similar computations and are included in the phase
region (region in calc_seissol.f90). (In the table each region is given an identification

number.)
File Region First Line | Region ID
calc_seissol.f90 489 1
galerkin3d_tetra.f90 | 193 2
galerkin3d_tetra.f90 | 289 3

Table 6: Instrumented regions in SeisSol.

Tables and [0]show the results of for the SeisSol application when run with the tuning
objective that optimizes for energy consumption. Regardless of the tuning objective, the
output of the plugin always displays the energy consumption, the runtime, Energy Delay
Product (EDP), Energy Delay squared Product (ED?P), the average power, and Total
Cost of Ownership (TCO). Time and energy (and indirectly average power) are measured

and reported on in the output.

Frequency | Energy | Runtime | EDP EDDP | Average Power | TCO
[GHz| [J] [s] [J - s] [J - s%] [Watt] [Euro]
1.6 1132 18.196 20597.4 | 374782.4 62.2 2.3341
1.7 1143 17.075 19516.6 | 333244.2 66.9 2.2121
1.8 1172 16.230 19021.3 | 308712.3 72.2 2.1257
Table 7: Energy figures for Region 1.

Frequency | Energy | Runtime | EDP | EDDP | Average Power | TCO

[GHz] [J] [s] [J-s] | [Js?] [Watt] [Euro]

1.6 185 1.545 285.8 | 441.6 119.7 0.2222

1.7 185 1.548 286.4 | 443.5 119.5 0.2226

1.8 186 1.547 287.8 | 445.4 120.2 0.2227

Table 8: Energy figures for Region 2.

34



AutoTune

Frequency | Energy | Runtime | EDP EDDP | Average Power | TCO
[GHz] [J] [s] [J- 5] [Js?] [Watt] [Euro]
1.6 912 16.2 14805.2 | 240345.1 56.2 2.0560

1.7 928 15.3 14152.7 | 215837.8 60.8 1.9507

1.8 971 14.6 14136.7 | 205814.7 66.7 1.8852

Table 9: Energy figures for Region 3.

These results show that using 1.6 GHz optimizes the energy consumption of SeisSol for
all three regions. The energy savings per region with respect to the worst case scenario
are shown in Table [10l

’ Region ID ‘ Energy Savings ‘

1 3.4%
2 0.5%
3 6.1%

Table 10: Energy savings per region.

The plugin can be configured to use a tuning objective of either EDP, power capping, or
TCO. The EDP search space is the same as the one shown in Tables and [9] The
results for the case of EDP point to an optimization when using 1.8 GHz for the outer
loop (Region 1) and Region 3. The frequency that tunes EDP for Region 2 is 1.6 GHz.

The results of the tested scenarios for TCO are shown in Table [[1l The minimum TCO
is achieved by setting 2.7 GHz and costs are reduced by 2.3%.

Frequency | TCO
[GHz] [Euro]
2.6 1.7438
2.7 1.7055

Table 11: DVFS output for Region 1 for TCO.

4.3.5 Automatic implementation of the advice

The output of the DVFS plugin is not only printed to standard out, but also given in a
special formatted file for the enopt library. The instrumented application can be linked
exclusively with enopt (without PTF) for production runs. In this case, the enopt library
will read the region-specific settings from the output file and automatically enforce them
at runtime.

35



AutoTune

4.4 Master-Worker Plugin

As an example of how to best exploit the Master-Worker plugin, we will focus on the
Modprimes application as our use case here. The performance of master-worker type
applications such as Modprimes depends on two main factors. Firstly, it is important to
achieve a balanced computational load distributed among workers; and, secondly, it is
important to decide the appropriate number of workers.

4.4.1 Model-based reduction of search space

Load balancing and the number of workers can often present huge parameter spaces to
search through and so the Master-Worker plugin sets about reducing a potentially huge
search space to only nine scenarios using analytical models for estimating the partition
factor and number of workers. In the case of the partition factor, the plugin computes
the number of tasks processed by the application and the mean execution time each
worker dedicates to process a task. Using this information, in combination with user
provided parameters (network latency, bandwidth, and task size), the plugin estimates
the partition factor that results in the most balanced workload distribution. In the case of
finding the optimal number of workers, the plugin measures both the total number of bytes
communicated between workers and the time each worker spends doing computation.
With this information (as well as user-provided parameters), the Master-Worker plugin
estimates the optimal number of workers for which the execution time is minimized.

The Modprimes application loads a set of random numbers from a file and distributes
them among the available workers which each use a brute force algorithm to determine
which of the set of numbers are prime numbers. To demonstrate how to best exploit some
of the features of the Master-Worker plugin, we will use this application with an input
set of 64,000 long integer numbers. For this input data set, the total number of bytes
communicated is 512KB and the total time spent by the workers executing the brute force
algorithm is approximately 3.25s. Starting the application with 10 workers, the partition
factor estimation algorithm will compute the values shown in Table Based on this
estimation, the plugin will choose 0.65 as the best partition factor.

Next, the plugin estimates that the optimal number of workers for this application is
188. Finally, the plugin will generate nine different scenarios consisting of the estimated
partition factor, the number of workers and small variations (£10%) of these values.
Table shows the nine scenarios generated for the Modprimes example and the total
execution time for each. Based on the results for the example here, the plugin advises
the user to use a partition factor of 0.65 and 206 workers.

Assuming a range of 0.10-1.00 (with increments of size 0.5) for the partition factor and a
range of 100-500 (with increments of size 4) for the number of workers, exhaustive search
of both parameters would have led to the execution of 14,400 scenarios. Even for an
example with a very small workload as the one that has been used here, this would have
represented several hours of PTF execution time. Figure shows the execution time

36



AutoTune

Partition Factor

Estimated Execution Time

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

0.33023
0.32983
0.32964
0.32951
0.32942
0.32935
0.32931
0.32928
0.32924
0.32922
0.32918
0.32917
0.32947
0.32940
0.33380
0.33700
0.33689
0.33143

Table 12: Estimation of the application execution time for different values of the partition

factor.

’ Scenario ‘ Execution Time | Partition Factor | Number of Workers

0

0 3 O Ui W N -

0.0591
0.0539
0.0523
0.0610
0.0544
0.0510
0.0582
0.0780
0.0553

0.59
0.59
0.59
0.65
0.65
0.65
0.71
0.71
0.71

170
188
206
170
188
206
170
188
206

Table 13: Results for the plugin generated scenarios.

37



AutoTune

Model Primes (64K numbers)

3 real (no tuning - PF:1.0) +
real (no tuning - PF:0.65) *
#*
0.1 Fy
E %
= 3%2
18}
x
Q
0.01 g, SR -E|.-|=|-|-.g-+\\.+-Fl+k|-|2"+"=|-H+“+'FE'
0.001 . L L . . . . .

50 100 150 200 250 300 350 400
#workers

Figure 24: Real application execution time for partition factor values 1.0 and 0.65.

of the application using a partition factor of 1.0 and 0.65 in the range 4 to 430 workers.
It can be seen that using a partition factor of 0.65 reduces the execution time of the
application and that the best time is obtained for 186 workers.

4.4.2 Uninstrumented applications supported for number of workers

The Master-Worker plugin cannot use analytical models for estimating the partition
factor and number of workers if the application is not instrumented or it does not include
a partition factor variable in its source code. However, the plugin includes the possibility
of tuning only the number of workers using an exhaustive search strategy. In this case,
the user can just specify the range of workers and the step of the search. For example,
the forest fire propagation application S2F2M [? | does not include a mechanism for load
balancing (partition factor). In this case, we specify the range of 32 to 192 workers with
step 4. The results obtained by PTF are shown in Table where it can be seen that
the plugin advises the user to choose 176 workers (scenario 36).

38



AutoTune

’ Scenario ‘ Execution Time | Number of Workers

0 53.376 32
1 47.975 36
2 43.410 40
3 39.664 44
4 36.662 48
) 34.372 52
27 19.196 140
28 19.428 144
29 17.815 148
30 17.361 152
31 18.008 156
32 17.069 160
33 17.520 164
34 17.940 168
35 17.374 172
36 15.983 176
37 17.337 180
38 17.213 184
39 16.546 188
40 17.181 192

Table 14: Results for the plugin generated scenarios.



AutoTune

4.5 MPI Parameters Plugin

In order to guide the user on how best to exploit certain features of the MPI Parameters
Plugin we will focus on the the Fish School Simulator application (FSSIM) [? |].

4.5.1 Multiple MPI flavors

The MPI Parameters plugin offers some degree of support for three different implemen-
tations of MPI: IBM MPI, Intel MPI and OpenMPI. In these cases, the keywords ibm,
intel, or openmpi should appear at the beginning of the configuration file. Then, the
plugin interprets that the user is specifying command line options and modifies the ap-
plication execution command accordingly to the syntax established by the specific imple-
mentation.

Assuming that the user has included the parameter for tuning the eager limit in the
configuration file, the MPI Parameters plugin will, for example, generate the following
command line in each case:

e IBM MPI: mpiexec -n 64 executable -eager_limit 16384
e Intel MPI: mpiexec -genv [ MPI_ EAGER_THRESHOLD 16384 -n 64 executable

e OpenMPI: mpiexec -mca osc_pt2pt_eager_limit 16384 -n 64 executable

In any other case, the plugin interprets that the parameters indicated by the user are envi-
ronment variables and produces the corresponding export commands before re-executing
the application. In addition, three example configuration files are provided along with the
MPI Parameters plugin, one for each supported implementation (Intel MPI, IBM MPI
and OpenMPI). They can be used as a quite complete starting point for tuning a rich
set of MPI parameters. However, the user can also modify them (eliminating, adding or
changing parameters) with the objective of fitting them to a particular application.

The three configuration files included with the PTF release are the following:
1. IBM MPI

MPIPO_BEGIN ibm
eager_1imit=4096:2048:65560;
buffer_mem=8388608:2097152:134217728;
use_bulk_xfer=yes,no;
bulk_min_msg_size=4096:4096:1048576;
pe_affinity=yes,no;
cc_scratch_buf=yes,no;
wait_mode=nopoll,poll;
css_interrupt=yes,no;

40



AutoTune

polling_interval=100000:10000:1000000;
SEARCH=gde3;
MPIPO_END

2. Intel MPI

MPIPO_BEGIN intel
I_MPI_EAGER_THRESHOLD=4096:2048:65560;
I_MPI_INTRANODE_EAGER_THRESHOLD=4096:2048:65560;
I_MPI_SHM_LMT=shm,direct,no;
I_MPI_SPIN_COUNT=1:2:500;
I_MPI_SCALABLE_OPTIMIZATION=yes,no;
I_MPI_WAIT_MODE=yes,no;
I_MPI_USE_DYNAMIC_CONNECTIONS=yes,no;
I_MPI_SHM_FBOX=yes,no;
I_MPI_SHM_FBOX_SIZE=2048:512:65472;
I_MPI_SHM_CELL_NUM=64:4:256;
I_MPI_SHM_CELL_SIZE=2048:1024:65472;
SEARCH=gde3;

MPIPO_END

3. OpenMPI

MPIPO_BEGIN openmpi
mpi_paffinity_alone=0,1;
btl_openib_eager_1imit=1024:2048:65560;
btl_openib_free_list_num=2:4:128;
btl_openib_use_eager_rdma=0,1;
btl_openib_eager_rdma_num=1:2:32;
btl_sm_eager_limit=1024:2048:65560;
btl_sm_num_fifos=1:1:10;
btl_sm_fifo_size=2048:512:65472;
btl_sm_free_list_num=2:4:128;
MPIPO_END

4.5.2 Genetic search

PTF has been enriched with the implementation of a search strategy based on the Gen-
eralized Differential Evolution 3 (GDES3) genetic algorithm. In this strategy a population
of ten initial scenarios is randomly generated and executed, then, an iterative process is
followed, generating new populations by selecting the best five scenarios (those with the
smallest execution time) for the next generation (elitism), generating five new scenarios
by crossing over the previous population (crossover), and introducing mutations with a

41



AutoTune

MPI_PIPO BEGIN ibm
eager_limit=4096:15366:65560;
use_bulk_xfer=yes,no;
bulk_min_msg_size=4096:4096:1048576;
task_affinity=CORE,MCM;
pe-affinity=yes,no;
cc_scratch_buf=yes,no;

MPI_PIPO END

Table 15: Configuration file for the exhaustive search.

MPIPO_BEGIN ibm
eager_limit=4096:2048:65560;
buffer_mem=8388608:2097152:134217728;
use_bulk_xfer=yes,no;
bulk_min_msg_size=4096:4096:1048576;
cc_scratch_buf=yes,no;
wait_mode=nopoll,poll;
css_interrupt=yes,no;
polling_interval=100000:10000:1000000;
task_affinity=CORE,MCM;
pe-affinity=yes,no;

SEARCH=gde3;

MPI_PIPO END

Table 16: Configuration file for the GDE3 search.

fixed probability (mutation). The number of iterations can be configured, but, generally,
a close to optimal solution can be found in less than 30 iterations (generations).

For our use cases we have used a medium size population of fishes (64K), to avoid long
executions, and have run the MPI application on 64 compute cores. In addition, given
that it is not possible to test a large set of parameters combinations exhaustively in a
reasonable time, we have used the exhaustive search strategy for a very limited config-
uration (see Table of the parameters, and the heuristic search strategy for a more
complete configuration (see Table .

The exhaustive search strategy generates all possible combinations of the selected pa-
rameters and values, 320 in our example. Each scenario is executed and the one with
the smallest wall time is chosen as the best one. The best combination corresponds
to scenario 217: use_bulk_xfer yes, bulk.min msg size 796672, cc_scratch_buf no,
task_affinity CORE, eager limit 50194, pe_affinity yes. The execution time for
this scenario was 2.8 sec, which is 1.6 times better than the time for the execution using
the parameters default values (4.4 sec). The drawback is that for finding the optimal
scenario in the set of tested ones, PTF needed 21505.2 sec (almost 6 hours) for the use
case here.

42



AutoTune

The genetic search strategy (GDE3) can also be used for the same tuning space, but
can even handle much larger tuning spaces consisting of significantly more parameters
and possible values. For the use case we provide here, it executes 20 different scenar-
ios in 1138.65 sec (approximately 20 min), which reduces the analysis time by a factor
of 19 with respect to the exhaustive search. The best scenario in this case was found
to be number 14: use_bulk xfer no, bulk min msg _size 988789, css_interrupt no,
wait_mode poll, polling interval 636027, cc_scratch_buf no, task_affinity CORE,
buffer mem 102205313, eager_limit 59434, pe_affinity yes. The execution time for
this scenario was 2.8 sec, again significantly better than the one obtained with the de-
fault values and now the search time has also been significantly reduced. These results
demonstrate that using the genetic search strategy can lead to results that are almost as
good as the ones produced by the exhaustive search in only a fraction of the time needed
for the latter.

4.5.3 Eager-limit parameter strategy

The MPI Parameters plugin includes an automatic strategy for determining if it is worthy
to include the eager limit and memory buffer parameters into the plugin search space.
Moreover, if it determines that it is worthy to include these parameters in the search, it
will automatically generate the range of values that should be searched, trying to shrink
this range in order to reduce the size of the search space. For using this strategy, the user
only has to specify in the configuration file the option AUTO_EAGER LIMIT=<eager-limit
parameter>,<buffer-mem parameter>. In our case, using IBM MPI, the configuration
option is AUTO_EAGER LIMIT=eager l1imit, buffer mem;.

Here we test the plugin using this configuration option, where the FSSIM application
was executed with a medium size population of 64K fishes and on 64 cores. The plugin
determines that it is worthy to include the eager_limit and buffer mem parameters
into the search space because the total number of bytes communicated in point-to-point
messages smaller than 64Kb was found to be greater than 30% of the total number of
bytes communicated in point-to-point messages. In addition, the plugin determines that
the search range for the eager limit parameter should be between 1Kb and 32Kb because
more than 80% of the messages sent eagerly were in this range. Finally, the plugin uses
the values determined for the eager limit and expression [2] to compute the range for the
buffer mem parameter range (128Kb to 4Mb).

mem_buff = 2n x maz(eager_limit, 64) (2)

Figures [25] and [26| clearly show that increasing the eager limit for this application up to
approximately 30Kb produces significant performance improvements, and that beyond
this size no extra gains are obtained. This demonstrates that the eager limit strategy is
successfully identifying the range of values that should be explored by the user for finding
the best value for this parameter.

43



AutoTune

Exec. Time
55

\ =#=—Exec. Time
5

\\‘x
M

Kl
n

time [sec]

T

35

1024
3072
5120
7168
9216
11264
13312
15360
17408
19456
21504
23552
25600
27648
9B96
31744
33792
35840
37888
39936
41984
44032
46080
48128
50176
52224
54272
56320
8368
60416
62464
64512

[

eager limit (bytes)

Figure 25: FSSIM execution time for different values of the eager limit and memory buffer
parameters (IBM MPI).

FSSim 64K 64 cores Intel
4.7 T T T T T T T T T T T T T T T

465 | + ]

46 1 ]

455 + ot .

exectime

45 | ]

445 | oo ]
7 ++, +++++ +iy +++++ R ++
4.4 1 I 1 I 1 1 I P } H + +
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

1 1 +I 1 ++T +--
eagerlimit

Figure 26: FSSIM execution time for different values of the eager limit and memory
buffers parameters (Intel MPI).

44



	Introduction
	PTF in the Tuning Cycle
	Best Practice on how to use PTF: A Walkthrough
	PTF best practices: the basics 
	Building the application with the PTF plugin
	Running the application with PTF for the first time
	Reducing the overall execution time using a phase region
	Reducing initialization time

	Manual instrumentation
	Application background
	Finding the phase region
	Marking the PTF region in the source code
	Marking a user region in the source code 
	Updating makefile to link against PTF libraries
	Generating a SIR File
	Executing the instrumented application with PTF
	Improving the accuracy of PTF results
	Results for LULESH
	Additional tips


	Best Practice on how to use the PTF Tuning Plugins
	Compiler Flags Selection Plugin
	Using different search algorithms
	Reducing the compilation time for selected flag combinations
	Measuring significant routines
	Remote Make

	Parallel Patterns Plugin
	Default behavior
	Tuning range specification via directives
	Tuning range specification via configuration file
	Focused tuning via performance analysis
	Additional tips

	Dynamic Voltage Frequency Scaling (DVFS) Plugin
	Extending the search space
	Selection of phase regions
	Multiple tuning objectives
	Multiple application regions
	Automatic implementation of the advice

	Master-Worker Plugin
	Model-based reduction of search space
	Uninstrumented applications supported for number of workers

	MPI Parameters Plugin
	Multiple MPI flavors
	Genetic search
	Eager-limit parameter strategy



