
Periscope User’s Guide
PTF Version: 1.1

Periscope Version: xx.xx

Michael Gerndt, Anca Berariu

13.04.2015



Contents

1 Introduction 3

2 Quick Start 5
2.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 .periscope configuration file . . . . . . . . . . . . . . . 6
2.1.2 SSH access . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Basic analysis run . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Specify the phase region in NPB-MZ BT . . . . . . . 7
2.2.2 Modify the Makefile . . . . . . . . . . . . . . . . . . 8
2.2.3 Build the application . . . . . . . . . . . . . . . . . . . 9
2.2.4 Start Periscope analysis . . . . . . . . . . . . . . . . . 9
2.2.5 Explore the results . . . . . . . . . . . . . . . . . . . . 9

3 Analysis Flow within Periscope 10
3.1 Specification of a phase region . . . . . . . . . . . . . . . . . . 10
3.2 Enabling instrumentation - psc instrument . . . . . . . . . . 12
3.3 Automatic instrumentation . . . . . . . . . . . . . . . . . . . 13

3.3.1 Region types . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 .sir file . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.3 Fortran particularities - module instrumentation . . . 17
3.3.4 Reducing the instrumentation overhead . . . . . . . . 17

3.4 Manual instrumentation - user region . . . . . . . . . . . . 18
3.5 Starting performance analysis - psc frontend . . . . . . . . . 19
3.6 Exploring the results - GUI . . . . . . . . . . . . . . . . . . . . 20

4 Performance Tuning with Periscope 22
4.1 Tuning plugins . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Tuning advice . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 The tuning flow . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Uninstrumented applications . . . . . . . . . . . . . . . . . . 24

5 Configuration Options 26

1



CONTENTS 2

5.1 Environment Variables . . . . . . . . . . . . . . . . . . . . . . 26
5.2 The frontend - psc frontend . . . . . . . . . . . . . . . . . . 26
5.3 The instrumenter - psc instrument . . . . . . . . . . . . . . 30

6 Advanced user information - technical details 33
6.1 Agent hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7 Known Issues 35



Chapter 1

Introduction

Periscope is a scalable automatic performance analysis tool currently under
development at Technische Universität München and is part of the Periscope
Tuning Framework (PTF), along with tools like Pathway and tuning plugins.

Periscope provides two main functionalities for Fortran and C/C++ appli-
cations: performance analysis and performance tuning.

Performance analysis is performed at runtime, using an iterative approach.
There is a starting set of performance properties, which is then refined based
on the measurements and the chosen search strategy. In the end, the ap-
propriate set of performance properties is provided for the application being
analysed. The search threshold, the confidence value, and the severity are
defined by means of a formal specification of the properties.

Based on expert knowledge, Periscope uses several strategies to identify
possible performance issues. Such strategies include exploiting parallel MPI
or OpenMP regions, as well as system specific approaches, like for example
for Power6 machines.

The second functionality, performance tuning, is provided through the tun-
ing framework. Periscope offers the necessary support for measurements
and search logic for a series of tuning plugins. Different application and
environment setups are tested within the plugins and the best configuration
is provided as an advice at the end of the tuning.

Periscope consists of four main components: the frontend, the hierarchy of
communication and analysis agents, the monitoring library and the GUI.

• The frontend is responsible for starting both the application to be
analysed, as well as all the internal components of Periscope. All
settings regarding the execution of Periscope can be selected by means
of command-line parameters of the frontend process.

3



CHAPTER 1. INTRODUCTION 4

• The agent hierarchy is transparent for the common users. At the bot-
tom layer of the hierarchy there are the analysis agents. They control
and configure the measurements for each application node/process.
They can start, halt, or resume the execution, and they also retrieve
the performance data. The strategy is communicated upon startup by
the frontend and at the end of the local search, the performance prop-
erties are communicated back to the frontend via the agent hierarchy.

• The monitoring library is also transparent to the user and it provides
the measurement and communication layer between the application
being tested and the performance tool.

• The GUI is used to visualise and explore the performance results. It
is an Eclipse plugin which can be easily used to identify the most
sever performance properties, as well as the corresponding source lines
responsible for the performance issues.

Periscope Tuning Framework

Alongside Periscope, the Periscope Tuning Framework (PTF) also provides
PAThWay, a workflow management tool for HPC experiments, as well as a
series of tuning plugins for automatic tuning of applications.



Chapter 2

Quick Start

2.1 Installation

Periscope can be installed from the source files, following the common pro-
cess of configuring and building using Autotools.

Please check the Periscope Installation Manual for a thorough guide on how
to install Periscope on your machine. The basic installation steps are:

1. check and install prerequisites: ACE, Boost, etc.

2. checkout the source files from the Periscope repository

$git clone https://periscope.in.tum.de/git/Periscope.git

periscope

3. configure your installation choosing appropriate options1, for example:

$ configure --prefix=$HOME/install/psc

4. build the files

$ make -j 16

5. install the files

$ make install

If you are using SuperMUC, Periscope is already installed on the system.
In order to use it, you have to add to your .bashrc file:

$ module load periscope

1Please refer to the PTF Installation Manual for further details regarding available
options.

5

https://periscope.in.tum.de/git/Periscope.git


CHAPTER 2. QUICK START 6

and then issue in your home directory:

$ source .bashrc

Note: Please make sure to add the command for loading the periscope module
into your .bashrc. Just issuing the command at the command line is not
going to work properly.

2.1.1 .periscope configuration file

Before using Periscope, the .periscope setup file has to be created in your
home directory. You may create a new one, or copy it from the Periscope
installation directory:

$ cp $PSC ROOT/templates/.periscope ∼

The setup file contains a list of <option>=<value> pairs, as follows:

MACHINE = SuperMUC

SITE = LRZ

REGSERVICE HOST = localhost

REGSERVICE PORT = 50001

REGSERVICE HOST INIT = localhost

REGSERVICE PORT INIT = 50001

APPL BASEPORT = 51000

AGENT BASEPORT = 50002

If running on your local machine only, then the MACHINE option above should
be set to localhost.

MACHINE = localhost

Please refer to the PTF Periscope Installation Manual for a detailed descrip-
tion on how to choose the proper option values for your particular system.

2.1.2 SSH access

In order to run Periscope, a private key based ssh access has to be provided
on the machine running the tool. If not already configured, you can do so
in few steps:

1. $ mkdir ∼/.ssh

2. $ cd ∼/.ssh

3. $ ssh-keygen -t rsa -N ’’ -f id rsa

4. $ cat id rsa.pub >> authorized keys



CHAPTER 2. QUICK START 7

5. $ chmod 600 authorized keys

The ssh access is not required if running on your local machine, i.e. the
MACHINE option is set to localhost in your .periscope file.

2.1.3 GUI

The Periscope GUI used for analysing the performance measurements is
provided as an Eclipse plugin. You can install the GUI from this location

http://www.lrr.in.tum.de/~petkovve/psc/eclipse

following the common plugin installation process in Eclipse2.

2.2 Basic analysis run

Having Periscope properly installed, there are only few steps required for a
basic analysis of a test application:

1. specify a phase region by instrumenting the source code of the appli-
cation;

2. modify the Makefile to enable instrumentation;

3. build the application;

4. start the analysis;

5. visualize and explore the performance results.

For the remainder of this section we consider as the test application the
NPB-MZ BT benchmark3.

2.2.1 Specify the phase region in NPB-MZ BT

Periscope uses an iterative analysis approach. It starts first with a set of per-
formance properties which are measured for the test application throughout
an experiment run. Based on the measurements result, it then determines
new candidate properties which are going to be evaluated in the next exper-
iment. The iteration stops when there are no new candidate properties.

2Please refer to the PTF Periscope Installation Manual for a step-by-step description
of the installation process.

3See http://www.nas.nasa.gov/publications/npb.html for download and documen-
tation.

http://www.lrr.in.tum.de/~petkovve/psc/eclipse
http://www.nas.nasa.gov/publications/npb.html


CHAPTER 2. QUICK START 8

If the test application has a repetitive region, like for example the body of
a main loop, then the consecutive experiments could be performed without
the need of restarting the entire application. In order to do so, the repetitive
region has to be marked in the source code as a phase region.

For the BT application, the phase region can be defined in file bt.f, lines
188 to 198, by inserting !$MON user region and !$MON end user region

as shown below:

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c s t a r t the benchmark time step loop
c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

do s tep = 1 , n i t e r
c−−−−− l i n e s omitted here . . .

!$MON user reg ion
ca l l exch qbc (u , qbc , nx , nxmax , ny , nz )

do zone = 1 , num zones
ca l l adi ( r h o i ( s t a r t 1 ( zone ) ) , us ( s t a r t 1 ( zone ) ) ,

$ vs ( s t a r t 1 ( zone ) ) , ws ( s t a r t 1 ( zone ) ) ,
$ qs ( s t a r t 1 ( zone ) ) , square ( s t a r t 1 ( zone ) ) ,
$ rhs ( s t a r t 5 ( zone ) ) , f o r c i n g ( s t a r t 5 ( zone ) ) ,
$ u( s t a r t 5 ( zone ) ) ,
$ nx ( zone ) , nxmax( zone ) , ny ( zone ) , nz ( zone ) )

end do
!$MON end user reg ion
end do

2.2.2 Modify the Makefile

In order to enable performance measurements, the test application has to be
instrumented by the performance tool. To enable instrumentation, one has
to substitute the compile/link commands usually defined in the Makefile.

For NPB-MZ BT, one should edit the config/make.def file and update the
F77 variable as follows:

#--------------------------------------------------------

# This is the fortran compiler used for fortran programs

#--------------------------------------------------------

F77=psc instrument -i -v -d -s ../bin/bt-mz.$(CLASS).$(NPROCS).sir

-t user,mpi mpif90



CHAPTER 2. QUICK START 9

# This links fortran programs; usually the same as $(F77)

FLINK=$(F77)

2.2.3 Build the application

After the phase region was defined and the build command was adjusted,
one can continue with the common build process of the test application.

For the NPB-MZ BT example, one should go to the root directory of the
NPB-MZ series and issue:

$ make clean

$ make bt-mz CLASS=C NPROCS=16

2.2.4 Start Periscope analysis

Periscope can be started via its frontend psc frontend. Upon calling the
executable with proper parameters, both Periscope’s internal components
as well as the test application are being started and the performance mea-
surements are then carried out.

For the NPB-MZ BT example, one should go to the bin directory and then
call psc frontend as follows:

$ psc frontend --apprun=./bt-mz.C.16 --mpinumprocs=16

--strategy=MPI --force-localhost

2.2.5 Explore the results

Upon successful termination, Periscope generates a *.psc results file. This
is a standard XML file and could be opened using any text editor. Periscope
provides a Graphical User Interface (GUI) with enhanced visualisation and
exploration functionalities for working with these performance result files.

Having started Periscope like described above for the NPB-MZ BT bench-
mark, the properties *.psc should have been created into the same bin

directory. Please follow the instructions in section 3.6 for opening this file
within the GUI.



Chapter 3

Analysis Flow within
Periscope

Periscope follows an iterative analysis approach: it determines perfor-
mance properties based on measurements, decides on possible new candidate
properties and then it performs again new experiments to measure the data
required to check whether the candidate properties hold. See also the cycle
depicted in Figure 3.1.

Figure 3.1: Periscope iterative analysis.

The number of experiments carried out in one run of Periscope depends on
both the execution time of the application itself and also the performance
issues it might exhibit.

The number of experiments carried out in one run of Periscope depends on
the performance issues it might detect. Thus the total execution time of
one Periscope analysis will depend on both the the execution time of the
application itself, as well as the amount and severity of detected performance
issues.

3.1 Specification of a phase region

The performance measurements carried out within one experiment of the
iterative analysis could be applied to either the entire application or only
a particular execution phase or code region. Periscope offers the possibility
to define such a phase region by means of manual instrumentation of the
source code.

10



CHAPTER 3. ANALYSIS FLOW WITHIN PERISCOPE 11

Section 3.4 describes manual instrumentation in more detail. We only men-
tion here that a phase region can be in terms of Periscope code instrumen-
tation any regular user region.

A user region can be defined by inserting the following directives into the
source code:

Fortran:
!$MON USER REGION

S1

S2

...

!$MON END USER REGION

C/C++:
#pragma start user region

S1

S2

...

#pragma end user region

Periscope allows the specification of several user regions, but only one such
region can be defined as the phase region. This is done by passing the
--phase option to the psc frontend process at startup:

$ psc frontend --phase=fileid:rfl

where:

• fileid is the id of the file containing the phase region. It is the same
id used in the psc inst config file. See also Section 3.3.1.

• rfl is the region first line number. It represents the line number in
the source file specified above, at which the region starts.

If several user regions are defined, but none of them is specified as the phase
region, then the behaviour of Periscope is undefined.

If only one user region is specified, then this is automatically defined as the
phase region.

If no phase region is specified, Periscope will automatically restart the
application to perform new experiments, until no new candidate properties
are found and the search terminates.

The use of phase regions is strongly recommended:



CHAPTER 3. ANALYSIS FLOW WITHIN PERISCOPE 12

• it reduces the overall execution time of the Periscope performance
measurements;

• it delivers more accurate results, as measurements are only performed
for relevant execution fragments.

The best example for a phase region is the body of the main loop of an
application. It is common that scientific applications have a main loop
iterating through time steps or grid elements. If such a repetitive region
is defined in the source code as a phase region, then the experiments can
be done during the same application run. The application is suspended at
the beginningof the phase region and new measurements are requested. The
application is then released and the analysis is started. When the application
encounters again the end of the region, it is suspended and the measured
values are retrieved.

3.2 Enabling instrumentation - psc instrument

Measuring performance of an application is commonly based on the ability
of the performance tool to ”communicate” with the application at runtime.
This can be achieved through the instrumentation of the application, i.e.
inserting tool specific calls inside the source code or the compiled binary of
the application. See also the right hand side of figure 3.1.

In order to enable instrumentation with Periscope, one needs to prepend the
compiling and linking commands with the call to the psc instrument script.
This could usually be done by editing the Makefile of the application.

For example, one should replace

mpif90 -c <args>

with

psc instrument <psc options> mpif90 -c <args>

for a Fortran code, and

mpicc -c <args>

with

psc instrument <psc options> mpicc -c <args>

for a C/C++ code.

Do not forget to change both the compiling and the linking commands.



CHAPTER 3. ANALYSIS FLOW WITHIN PERISCOPE 13

Please note that the script recognizes the -c argument passed to the compiler
itself and uses it to decide between the instrumentation and the linking steps.
It is thus required that the respective test application is built in two distinct
steps: compilation and linking.

Please check the next section for detailed information regarding the most
common options in <psc options>. A complete list can be found in table ??.

3.3 Automatic instrumentation

psc instrument is a source code instrumenter. It parses the given source
files and modifies them accordingly. Usually this means inserting library
calls at the proper places in the code.

Please note that Periscope will create four additional directories to store the
instrumented versions of the files:

prep

inst

instmod

compmod

To switch to verbose mode and follow all actions performed by the instru-
menter, please pass the -v option to the psc instrument script:

psc instrument -v <other psc options> mpif90 -c <args>

Frequently used options are:

Option Description

-t <regions> List of region types to be instrumented.

Some commonly used region types:
mpi: mpi functions;
omp: OMP constructs except atomic;
user: user regions;
none: no instrumentation, files are only compiled.

See also Sections 3.3.1 and 5.3.



CHAPTER 3. ANALYSIS FLOW WITHIN PERISCOPE 14

-s <SIR file> This file name will be used for the static program
information. It is recommended to name the sir file as
the executable, adding the .sir extension.
Default: appl.sir .

See also Section 3.3.2.

-d Provide debug information.

3.3.1 Region types

Periscope’s automatic instrumentation can handle an entire set of region
types. It can detect MPI and OpenMP operations, loops, subroutines and
call statements. All these code entries are considered to be separate regions,
alongside the user regions that can be defined manually (see Section 3.4).

By default, Periscope instruments only the main routine. There are two
ways to instruct Periscope about which region types to instrument for the
current application:

The first method is to pass to psc instrument the option -t followed by a
comma separated list of region types. For example:

psc instrument -t user,mpi <other psc options> mpif90 ...

Please refer to Table 5.3 for the complete list of valid region types.

Passing region types via the -t option will enforce Periscope to apply the
same region types configuration to all the files.

Setting different region types per file for instrumentation is also possible.
This can be done by editing the psc inst config file. This file is generated
by psc instrument in the application source directory after the first build.
It contains a list of all the files that are going to be instrumented along with
their corresponding region types. For example:

#

# instrumentation control for periscope

#

# id filename [none,mod only,all,user,sub,call,loop,omp,mpi]

# (if any)

#

1 bt.f user,mpi

2 initialize.f user,mpi



CHAPTER 3. ANALYSIS FLOW WITHIN PERISCOPE 15

3 exact solution.f user,mpi

4 exact rhs.f user,mpi

5 set constants.f user,mpi

6 adi.f user,mpi

7 rhs.f user,mpi

8 zone setup.f user,mpi

9 x solve.f user,mpi

10 y solve.f user,mpi

11 exch qbc.f user,mpi

12 z solve.f user,mpi

13 solve subs.f user,mpi

14 add.f user,mpi

15 error.f user,mpi

16 verify.f user,mpi

Editing the region type for a specific file instructs Periscope to apply that
kind of instrumentation for that particular file.

For example, in the file listed above one could instruct Periscope to also
instrument subroutines and call statements for the bt.f file and only loops
for the adi.f and rhs.f files:

#

# instrumentation control for periscope

#

# id filename [none,mod only,all,user,sub,call,loop,omp,mpi]

# (if any)

#

1 bt.f user,mpi,sub,call

2 initialize.f user

3 exact solution.f user

4 exact rhs.f user

5 set constants.f user

6 adi.f loop

7 rhs.f loop

8 zone setup.f user

9 x solve.f user

...

Please note that the settings in the psc inst config file only apply if the
-t option is not passed when calling psc instrument. Passing -t to
psc instrument will overwrite any changes of the psc inst config file.



CHAPTER 3. ANALYSIS FLOW WITHIN PERISCOPE 16

Especially for the debugging phase, it might be interesting to use the none

value as a region type. This switches off instrumentation for some files and
could be useful to circumvent any issues that might occur due to the source
instrumenter. Please note that files which are not instrumented cannot
be analysed into detail. Thus, the selective instrumentation reduces the
overhead, but it is limiting the precision of the analysis with respect to the
location in the code.

Although available, the usage of the value all for the region type is strongly
not recommended. If needed, please use it with care, as it frequently pro-
duces a high amount of instrumentation overhead.

3.3.2 .sir file

Upon successful completion, psc instrument generates:

1. an instrumented executable of the application and

2. a .sir file storing static information about the program.

SIR stands for Standard Intermediate Representation and is a format specific
to Periscope1.

Periscope can only start its performance analysis, if both the executable of
the application, as well as the .sir file is provided.

By default, psc instrument stores the .sir file under the name appl.sir,
in the directory where the link process is executed. You can change the
name of the generated file by providing the option -s to the instrumenter:

psc instrument -s sirfilename.sir ...

The same file name will then have to be passed to the Periscope executable2

upon startup:

$ psc frontend --sir=sirfilename.sir ...

Please note that if --sir is not provided, Periscope will search for a .sir

file called <applname>.sir, where applname is the actual name of the ap-
plication executable. It is thus a good practice to name the SIR file as the
application itself, just adding the .sir extension at the end.

1For further information on the SIR format, please check section ?? of this Guide.
2More on psc frontend in section ??.



CHAPTER 3. ANALYSIS FLOW WITHIN PERISCOPE 17

3.3.3 Fortran particularities - module instrumentation

Fortran modules require special attention in the instrumentation process.
This is due to the fact that besides the common objects generated at compile
time, there is also an extra module description file (.mod) generated for each
module source.

The .mod files may have different formats from compiler to compiler. Periscope
instrumenter uses its own format as well, which most often do not match
formats used by compilers.

In this context, one should consider the following when instrumentating
Fortran code containing modules:

• if a file a.f90 refers to the module implemented in b.f90, e.g. it
contains a statement like USE MODULE BModule, then the file a.f90

can only be instrumented, if the Periscope instrumenter can also load
the corresponding module file bmodule.mod.

• due to format differences, the Periscope instrumenter can only load
.mod files generated by itself.

• a .mod file can only be generated if the corresponding source file (.f90,
.F90, etc.) is available.

There are two main issues that a user should take care of:

1. The psc instrument needs to know where the .mod files can be loaded
from. See option -M for setting the include paths.

2. If the application uses a module for which the source code is not avail-
able, then the files referencing this module cannot be instrumented.
They have to be marked in the psc inst conf with none for the region
type.

3.3.4 Reducing the instrumentation overhead

Especially in the case of large applications, the automatically instrumented
code has a high execution overhead. To overcome this issue, Periscope can
be instructed to perform an analysis of the generated overhead and to re-
instrument the code accordingly. This can be achieved by means of the
--inst parameter of the psc frontend executable:

psc frontend --inst=<overhead|all overhead|analysis>

There are three possible automatic re-instrumentation strategies: overhead,
all overhead and analysis.



CHAPTER 3. ANALYSIS FLOW WITHIN PERISCOPE 18

The overhead and all overhead strategies will first determine too fine gran-
ular regions and remove their instrumentation. The overhead strategy re-
moves only the overhead concerning the single node measurements. Other
overheads may still lead to an extended execution time. The all overhead
strategy removes all overhead so that the extra execution time produced due
to the instrumentation will be negligible.

The analysis instrumentation strategy first determines the too fine granu-
lar regions, like the previous strategies too, but, unlike those, it will then
only instrument those regions which are required in the next experiment.
These regions are determined based on the analysis strategy given by the
--strategy parameter3.

3.4 Manual instrumentation - user region

Besides the regions detected and instrumented automatically by Periscope,
the user also has the possibility to define own custom regions.

An user region can be defined by surrounding the corresponding piece of
code with the following directives, as also shown before:

Fortran:
!$MON USER REGION

S1

S2

...

!$MON END USER REGION

C/C++:
#pragma start user region

S1

S2

...

#pragma end user region

When psc instrument is called, the source file is parsed and the directives
are replaced with proper calls to the Periscope library.

There is no limit on the number of user regions that can be defined in a
code.

3See Table 5.2.



CHAPTER 3. ANALYSIS FLOW WITHIN PERISCOPE 19

Any user region has to be defined within one scope of the source code. For
example, a user region cannot pass beyond the end of a subroutine, if it
starts within that subroutine.

3.5 Starting performance analysis - psc frontend

The Periscope performance measurement and analysis process can be started
via the psc frontend executable. For example:

$ psc frontend --apprun=./bt-mz C.16 --mpinumprocs=16

--force-localhost --debug=1

All needed configuration options can be passed to Periscope by means of the
command line parameters.

The mandatory parameters which are required for Periscope analysis to start
are:

Option Description

--apprun=<command line> Specify the command line to start the
application. It will be passed to the
mpirun command.
The executable specified in the com-
mand line must exist when Periscope
is started.

--mpinumprocs=<np> Number of MPI processes for the
application.

For serial applications, please set
this value to 1. Periscope treats
serial applications as 1-process MPI
applications.

Other frequently used options are:

Option Description

--debug=<level> Level of debug output (default: 0).

--force-localhost Locally start the agents instead of us-
ing SSH.



CHAPTER 3. ANALYSIS FLOW WITHIN PERISCOPE 20

--strategy=<strategy> Specify one of the following strate-
gies: MPI, SCA, SCABF, P6, P6BF,
P6BF Memory, SCPS BF, scalabil-
ity OMP. Please note: Some strategies
are platform dependent (default: all).

--sir=<filename> SIR file to be used during the analysis
(default: <appl>.sir)

--propfile=<filename> Store the detected properties into file-
name (default: properties.psc)

--ompnumthreads=<threads> Number of OpenMP threads (default:
1).

Please see table 5.2 for a complete list of options accepted by psc frontend.

On startup, a hierarchy of analysis and communication agents is first created,
then the application to be measured is started and the analysis agents attach
to the application nodes. The performance data are gathered by means of
the monitoring library and communicated to the low-level agents. There
it is analysed using the strategy established at the beginning within the
frontend and based on the results, the next step of the iterative analysis is
established.

The final results are propagated through the agent hierarchy up to the fron-
tend, which then stores them in the properties file.

The frontend is the control point of Periscope. Users can configure and
direct the performance analysis process from here. The agent hierarchy and
the monitoring library remain transparent to the common user.

3.6 Exploring the results - GUI

The frontend writes the found performance properties into a file called
properties * with the .psc extension. This file is in XML format and can
be opened with any off-the-shelf text editor or a spreadsheet application.

Periscope also offers a Graphical User Interface (GUI) for an enhanced vi-
sualisation and exploration of the analysis results. It is an Eclipse based
plugin, featuring a multi-functional table for displaying and organizing the
textual data. Following functionalities are available:

• multiple criteria sorting algorithm

• complex categorization utility



CHAPTER 3. ANALYSIS FLOW WITHIN PERISCOPE 21

• searching engine using regular expressions

• filtering operations

• direct navigation from the bottlenecks to their precise source location
using the default IDE editor for that source file type (e.g. CDT/Pho-
tran editor).

An outline view for the instrumented code regions that were used in an
experiment is also available. The information it shows is a combination of
the standard intermediate representation of the analyzed application and
the distribution of its bottlenecks. The main goals of the view are to assist
the navigation in the source code and attract developer’s attention to the
most problematic code areas.

The multivariate statistical clustering is another key feature of the plug-in
that enhances the scalability of the GUI and provides means of conducting
Peta-scale performance analysis. It can effectively summarize the displayed
information and identify a runtime behavior possibly hidden in the large
amount of data.



Chapter 4

Performance Tuning with
Periscope

Performance tuning using PTF (Periscope Tuning Framework) is based on
the collaborative work performed by customized tuning plugins on the one
side and Periscope as the host application of the plugins on the other side.

The high-level architecture of PTF can be seen in figure 4.1. Similar to
using the analysis feature of PTF, users can start and configure the tuning
process by calling the psc frontend with appropriate parameters. The
option enabling the tuning execution mode of Periscope is --tune:

$ psc frontend --tune=<nameofplugin> ...

For example, the following will run compiler flags tuning (CFS) on the BT
application:

psc frontend --apprun="./bt-MZ.W" --mpinumprocs=1 --force-localhost

--tune=compilerflags --cfs-config="cfs config.cfg"

Depending on each particular plugin, there might be also other options
available for configuration. Please consult the corresponding User’s Guide
for details specific to each of the plugins.

All other components in figure 4.1 are transparent to the users of the plugins
and of the PTF tuning feature.

Figure 4.1: Plugin architecture of the Periscope Tuning Framework.

22



CHAPTER 4. PERFORMANCE TUNING WITH PERISCOPE 23

4.1 Tuning plugins

For the current version, PTF provides the following tuning plugins:

CFS: the Compiler Flags Selection plugin tunes the application to find the
combination of compiler flags with which the best execution time is
achieved.

DVFS: the Dynamic Voltage and Frequency Scaling plugin tunes the en-
ergy consumption of an application.

Master-Worker: the Master-Worker plugin tunes the number of tasks
and processes to be used by applications based on the master-worker
paradigm.

MPI Paramenters: automatically optimizes the values of a user selected
subset of MPI configuration parameters.

Patterns: the Parallel Patterns plugin works on applications using a Pipeline-
based execution to determine the best combination of the pipeline
stages.

4.2 Tuning advice

As a result of the tuning process, Periscope generates an XML file describing:

• the final tuning advice to be applied to the application

• the tuning scenarios which were used in searching the best advice

• other information specific to the tuning plugin, like, for example, the
tuning parameters, the execution times, or the energy consumption.

4.3 The tuning flow

Being the host of the tuning plugins, Periscope provides several services to
build a standard tuning flow.

Data model

The main components of the tuning data model are:

tuning parameters: represent the parameters based on which a tuning of
the application can be done. These are plugin dependent and their se-
mantics is strictly defined in each plugin. For example, the CFS plugin



CHAPTER 4. PERFORMANCE TUNING WITH PERISCOPE 24

uses compiler flags as tuning parameters, while the MPI Parameters
plugin uses MPI related switches and parameters.

For most plugins, the tuning parameters are the given by user input
through a configuration file.

tuning scenario: represents a combination of tuning parameters. The ap-
plication is analysed by Periscope using one scenario at a time.

Scenarios are computed internally based on a chosen search algorithm.
Users can choose between different search algorithms, but cannot di-
rectly define tuning scenarios.

tuning space: the set of all valid tuning scenarios.

analysis result: the analysis result associated with one specific tuning sce-
nario. Results are partially displayed in the final tuning advice pro-
vided by Periscope.

Operations

On the functional side, the tuning flow is supported by means two main
operations:

search algorithm: the search algorithm generates the tuning space and
delivers the next scenario to be evaluated. For most tuning plugins,
users can choose the preferred search algorithm.

There are several search algorithms available: exhaustive search, in-
dividual search, random search and GDE3 search (one genetic algo-
rithm).

pre-analysis: some plugins require an analysis step before the tuning pro-
cess can start. The Periscope performance analysis feature is being
used in this case.

Required pre-analysis is very much plugin specific. Please consult
the given User’s Guide to see whether user input is possible for each
particular case.

4.4 Uninstrumented applications

The CFS Plugin an the MPI Plugin also allow tunning of uninstrumented
applications, but this is strongly not encouraged. When measuring perfor-
mance for uninstrumented applications, Periscope relies exclusively on the
data retrieved from the system. This mostly leads to inaccuracies, especially



CHAPTER 4. PERFORMANCE TUNING WITH PERISCOPE 25

for applications with a short execution time. If one does want to use the
uninstrumented version, this can be done by passing the --uninstrumented
option to the psc frontend process at the command line.



Chapter 5

Configuration Options

5.1 Environment Variables

Option Description

PSC ROOT Root directory of the Periscope installation.

PERISCOPE DEBUG 0..2
0=quiet
1=startup, found properties in each search
2=candidate properties and found properties
in each strategy step

5.2 The frontend - psc frontend

The frontend starts up the application and the agent hierarchy.

Option Description

26



CHAPTER 5. CONFIGURATION OPTIONS 27

--apprun=<appl cmdline> This is the command line used to start the
application. It should be the same as in
mpirun -np <procs> <appl cmdline>.

This value is also used to determine
the name of the SIR file, when --sir is
missing.

The executable specified in the com-
mand line must exist when Periscope is
started. This is true also for the cases
where the tuning feature of Periscope is
used in combination with plugins which
by themselves re-build the application
from its source files (e.g. the CFS plugin).

--bg-mode=SMP|DUAL|VN The node mode used on the Bluegene.

--debug=level Level of debugging. All debug output up
to that level will be printed.
Default: PERISCOPE DEBUG or 0

--delay=<n> Number of phase executions that are
skipped before the search is started. This
is useful for applications that have a dif-
ferent behaviour at the beginning.

--dontcluster Do not use online clustering for the de-
tected bottlenecks.

--force-localhost Locally start the agents instead of using
SSH.

--help Help information



CHAPTER 5. CONFIGURATION OPTIONS 28

--inst=overhead |
all overhead |
analysis

Automatic instrumentation strategy.
The overhead and all overhead strategies
will first determine too fine granular re-
gions and remove their instrumentation.
It will then apply the selected analysis
strategy. The overhead strategy removes
the overhead that influences the single
node measurements but other overheads
may lead to a prolongation of the execu-
tion. The all overhead strategy removes
all overhead so that the prolongation of
the execution will be negligible.
The analysis instrumentation strategy
will first determine too fine granular re-
gions and will then instrument exactly
those regions that are required in the next
experiment.

--inst-folder=<relative path> Path to the folder with the instrumented
sources relative to the execution directory.
This is needed to modify the instrumenta-
tion in during automatic instrumentation.

--make=<make command> Command to be issued in order to recom-
pile the application.

--maxcluster=<n> Maximum number of MPI processes
analyzed by a single analysisagent.

It is not used on the Bluegene since
the analysisagents are running on the
IO nodes. All processes on the compute
nodes of an IO nodes connect to its
analysisagent.

Default: 64

--maxfan=<n> Determines the fan-out of the tree of
high-level agents in interactive mode.

Default: 4

--mpinumprocs=<n> Number of MPI processes to be started.



CHAPTER 5. CONFIGURATION OPTIONS 29

--nprops=<n> Specifies the number of properties the
frontend prints to standard output.
Regardless of this value, all properties are
output to the properties file.

Default: 50.

--ompnumthreads=<n> Number of OMP threads to be started
per MPI process.

Default: 1.

--pedantic Shows all detected properties.

--phase=<fileid:rfl> Specifies the phase region via the fileid
and the region first line number.

If no phase region is specified, a user
region is selected if at least one is given
in the code. If multiple are given, it is
undefined which is selected. If no user
region is given, the main program is
the user region and the program will be
restarted for each strategy step.

If you mark the phase region via a
user region and would like to use user
regions also to guide analysis, you have to
give the fileid and rfl for the phase region.

--propfile=<filename> Specify the file to use when exporting the
properties.

Default: properties.psc

--psc-inst-config=<relative
path to inst config file>

File name relative to the execution direc-
tory.

--quiet Turns off the debug messages.

--srcrev=<source revision> Specify the source code revision. It will be
written in the output file.

--sir=<filename> SIR file of the application to be analyzed.

Default: The file name is composed
of the executable’s name and the exten-
sion .sir. If --apprun is omitted, the
default is appl.sir.



CHAPTER 5. CONFIGURATION OPTIONS 30

--src-folder=<relative path> Path to the source folder relative to the ex-
ecution directory. This is needed to touch
the sources to trigger recompilation of the
instrumented versions.

--strategy=<strategyname> Strategy used by analysisagent. Currently
one of
MPI - MPI Communication analysis
OMP - OpenMP analysis
P6 - Power6 Analysis (only on Power6 ma-
chines)
P6BF - Power6 Breadth First (only on
Power6 machines)
P6BF Memory - Power6 Memory Behav-
ior Analysis (only on Power6machines)
SCPS BF - Generic memory analysis
strategy
scalability OMP - Automatic OpenMP
scalability analysis

--timeout=<secs> Timeout for startup of the agent hierar-
chy.
Default: varying depending on the num-
ber of processes

--uninstrumented Autotuning only: instructs Periscope to
tune an uninstrumented application. Use
with caution. See also Section 4.2.

--version Displays the version of Periscope.

--with-deviation-control Enables performance deviation control on
POWER architectures.

5.3 The instrumenter - psc instrument

psc instrument prepares the application for analysis with Periscope. In the
existing Makefile, the compilation step generating the object files has to
be modified by prepending psc instrument to the compiler. The script will
preprocess the file, instrument it, and finally call the compiler for generating
the instrumented object file. In addition, the compiler has to be augmented
with psc instrument in the linking step too. Here psc instrument will
link the monitoring library to the executable as well as generate the SIR
containing the static information of the program.



CHAPTER 5. CONFIGURATION OPTIONS 31

The instrumentation is controlled by a file called psc inst config in which
the file id and the region types to be instrumented are given for each file
individually.

The calling syntax is:

psc instrument [-t <regions>] [-s <sirfile>] [-f] [-n]

[-d] [-v] <compiler> [<options>] <file> [<libs>]

Please note that, while psc instrument can process both Fortran and C/C++
files, some options are specific to only one of the two programming languages.

Option Description

-d Provide debug information.

-f <fixed|free> Fortran only: forces a specific Fortran file format. By
default, .f90 files are in free format.

-M <path> Fortran only: location where module files are placed.

-n Dryrun: run the makefile without executing the com-
mands.

-s <SIR file> This file name will be used for the static program
information. It is recommended to name the SIR file as
the executable, adding the .sir extension.

Default: appl.sir



CHAPTER 5. CONFIGURATION OPTIONS 32

-t <regions> List of region types to be instrumented. This overwrites
the specifications in psc inst config.

Fortran and C/C++:
all: all regions (use with care, as this option will generate
a lot of instrumentation overhead);
loop: outermost loops only;
mpi: mpi functions;
none: no instrumentation, files are only compiled;
omp: OMP constructs except atomic;
par: OMP parallel and worksharing constructs;
sub: subroutines;
sync: OMP synchronization statements except atomic;
user: user regions.

Fortran only:
call: call statements;
forall: forall statements;
io: IO statements;
mod only: no instrumentation but processing by the
instrumenter to generate compatible module files;
nestedloop: non-perfectly nested loops;
vect: vector statements.

Default: all.

-v Verbose.

<compiler> Compiler for final compilation of the instrumented files,
e.g., mpif90 or mpicc.

<file> Name of the file to be instrumented.
Fortran only: file extensions .f90 and .F90 determine
free source format, while .f determines fixed source for-
mat.

<libs> Libraries for linking.

<options> List of compiler options used in the original call to the
compiler. These are passed to the compiler.

Please note that if -c is specified in the options list,
psc instrument will instrument and compile the given
file. Otherwise it will link the application.



Chapter 6

Advanced user information -
technical details

The application and the agent network are started through the psc frontend

process. First the set of available processors is analysed and based on this
the mapping of application and analysis agent processes are determined.
Both the application and the agent hierarchy are then started and a com-
mand is propagated from the frontend down to the analysis agents to start
the search. The search is performed according to a search strategy selected
when the frontend is started.

Each of the analysis agents, i.e. the nodes of the agent hierarchy, searches
autonomously for inefficiencies in a subset of the application processes.

The application processes are linked with a monitoring system that provides
the Monitoring Request Interface (MRI). The agents attach to the monitor
via sockets. The MRI allows the agent to configure the measurements, to
start, to halt, to resume the execution, and to retrieve the performance data.
The monitor currently only supports summary information.

At the end of the local search, the detected performance properties are
reported back via the agent hierarchy to the frontend.

6.1 Agent hierarchy

The layout of the agent hierarchy can be controlled by the user by means of
the specific parameters of the psc frontend executable:

maxfan: determines the fan-out of the tree of high-level agents. By default
this is set to 4.

33



CHAPTER 6. ADVANCEDUSER INFORMATION - TECHNICAL DETAILS34

maxcluster: gives the maximum number of MPI processes analysed by a
single analysisagent. The default number is 64.

Further information on how the agents work within a specific run of PTF
can be gathered by using the --selective-debug parameter of the same
psc frontend executable:

--selective-debug= <level1>,<level2>...

with the following levels being relevant for the agent hierarchy:

AgentApplComm: displays information regarding the communication be-
tween the agents and the application nodes.

AutotuneAgentStrategy: displays information regarding the analysis strat-
egy used in the analysis agent for tuning. To be used only when the
tuning feature of PTF is being used.

Other values for the --selective-debug parameter can be found in the
PTF Developer’s Guide.

Using a proper layout of the agent hierarchy is very important especially
when performing analysis and tuning of applications on large systems.

Please note that, if the --force-localhost option of the psc frontend

executable is being used, then the entire agent hierarchy will be started on a
single node. This is not recommended for applications using a large number
of processes, as the communication between the agents and the application
nodes would result in a bottleneck with a negative influence on the overall
analysis time.



Chapter 7

Known Issues

• Automatic restart of the application does not work on the Bluegene.
Make sure, you specify a user region that is executed repetitively.

• C instrumentation: The name of an OMP pragma should not occur
again as a string in another context in this pragma, e.g., in a variable
name.

• Measurements might be wrong in recursive algorithms.

• Multiple running instances of Periscope might not work on some sys-
tems.

35



Examples

You can find two examples with the adapted makefile in ~/psc/test/add and
~/psc/test/cx parallel. Both directories include a file makefile.psc instrument.

Example on SuperMUC

Periscope can be used in batch jobs.

Example batch script:

#!/bin/bash
#PBS -j oe
#PBS -S /bin/bash
#PBS -l select=80:ncpus=1
#PBS -l walltime=0:20:00
#PBS -N cx64
#PBS -M gerndt@in.tum.de
#PBS -m e
. /etc/profile
cd psc/test/cx parallel/
psc regsrv &
sleep 10
sudo /lrz/sys/lrz perf/bin/lrz perf off hlrb2

psc frontend --apprun=cx --mpinumprocs=64 --strategy=SCA --debug=1

#!/bin/bash
#
#@ job type = parallel
#@ class = test
#@ island count = 1
#@ node = 1

36



CHAPTER 7. KNOWN ISSUES 37

#@ wall clock limit = 1:12:30
#@ job name = add
#@ network.MPI = sn all,not shared,us
#@ initialdir = $(HOME)/TestingRepository/add/
#@ output = $(jobid).out
#@ error = $(jobid).err
#@ notification = never
#@ notify user = gerndtin.tum.de
#@ queue
. /etc/profile
. /etc/profile.d/modules.sh

psc frontend --apprun=add --mpinumprocs=4 --sir=add.sir --tune=demo --
force-localhost --debug=1


	Introduction
	Quick Start
	Installation
	.periscope configuration file
	SSH access
	GUI

	Basic analysis run
	Specify the phase region in NPB-MZ BT
	Modify the Makefile
	Build the application
	Start Periscope analysis
	Explore the results


	Analysis Flow within Periscope
	Specification of a phase region
	Enabling instrumentation - psc_instrument
	Automatic instrumentation
	Region types
	.sir file
	Fortran particularities - module instrumentation
	Reducing the instrumentation overhead

	Manual instrumentation - user region
	Starting performance analysis - psc_frontend
	Exploring the results - GUI

	Performance Tuning with Periscope
	Tuning plugins
	Tuning advice
	The tuning flow
	Uninstrumented applications

	Configuration Options
	Environment Variables
	The frontend - psc_frontend
	The instrumenter - psc_instrument

	Advanced user information - technical details
	Agent hierarchy

	Known Issues

