TF

CFS Plugin User’s Guide

PTF Version: 1.1
CFS Plugin Version: 2.0

Anca Berariu

13.04.2015

Contents

3

2 Quick Start| 4
2.1 Quick installation|. 0000 4
[2.2 Basic configuration - cfs_config.cfgl 4
2.3 Running CES| 0. 5
2.4 Executionresults o oL 6

[3 CFS Autotuning Approach| 7
3.1 Tuning parameter| 7
[3.2 Search strategy| oo 7
3.3 Tuning scenario|. 8
3.4 Tuning action| 8

[4 Configuration| 9
4.1 cfs config.cfghile| L. 9
4.2 Application settings| L. 9
M43 Remotemakel 10
4.4 Search strategies| Lo 10
4.4.1 Exhaustive searchl 10

442 Individualsearchl 10

4.43 Random searchl 11

444 GDE3searchl o0 11

4.4.5 Machine learning| L. 12

4.5 CF5S tuning parameters| 12
[4.5.1 7ON/OFF” compiler flags[. 13

4.5.2 Flags with multiple values| 13

4.5.3 Combining flags| 14

[4.5.4 Excluding flags| 0. 14

|4.5.5 Compiler detault configuration| 14

4.6 Improved tuning time| Lo 16
[4.6.1 DSelectivemakel. oL 16

[4.6.2 Instrumented applications| 18

CONTENTS

4.7 Output options|
471 CSVoutput|.,
4.7.2 Routines measurements|

[6> How To Use the Tuning Advice]

6.2 Multiple compilers| 0000000

19
19
19

21

Chapter 1

Introduction

One of the main targets in performance optimization is the minimization of
the execution time of an application. Besides the choice of the implemented
algorithm and the way the program is written, another important factor is
represented by the compiler. The compiler generates the actual executed
code, the machine code, from the high-level source code.

Nowadays, compilers apply a large number of program transformations to
generate the best code for a given architecture. Such transformations are,
for example: loop interchange, data prefetching, vectorization, or software
pipelining. While the compiler ensures the correctness of the transforma-
tions, it is very difficult to predict the performance impact and also to select
the right sequence of transformations. They rather provide a long list of
compiler flags (and even directives) and expect the programmer to guide
the compiler in the optimization phase by choosing the right flags and com-
binations.

Due to the large number of flags and the required background knowledge in
the compiler transformations and their interaction with the application and
the hardware, it is very difficult for the programmer to select the best flags
and to guide the compiler by inserting directives. It is thus often the case,
that only the standard flags O2 and O3 are used to change the approach of
the compiler optimization.

The CFS Plugin automatically searches for the best combination of compiler
flags to be used when building a particular application. The programmer
only has to provide a list of flags which should be taken into consideration.
Using the Periscope Framework, the execution time of the application com-
piled with different configurations are being measured and tracked. The
combination with the best execution time is then being displayed.

Chapter 2

Quick Start

2.1 Quick installation

CFS is being installed along with the Periscope Tuning Framework. Please
refer to the PTF Installation Guide for a complete description of the instal-
lation process.

2.2 Basic configuration - cfs_config.cfg

In order to use CFS, a set of configuration instructions are required. These
instructions are read at execution time from the cfs_config.cfg configu-
ration file.

To start with, copy the default configuration file cfs_config.cfg.default
into the folder containing the executable of your application and rename it
to cfs_config.cfg.

$PSC_ROOT/templates/cfs_config.cfg.default —
$APP_ROOT/.../cfs_config.cfg

For example, for the NPB benchmarksﬂ copy the configuration file into the
bin folder:
>cp $PSC_ROOT/templates/cfs_config.cfg.default
NPB3.3-MZ/bin/cfs_config.cfg

Edit cfs_config.cfg to reflect the current context of your application. Here
is an example for the NPB BT-MZ benchmark:

!See http://www.nas.nasa.gov/publications/npb.html| for downloading and docu-
mentation.

http://www.nas.nasa.gov/publications/npb.html

CHAPTER 2. QUICK START)

// *¥xx*xx*xx* application related settings *xkx¥kx**x
// the path to the Makefile

makefile path="../";

// the variable containing the build flags

makefile flags_var="FFLAGS";

// arguments for the make command
makefile_args="BT-MZ CLASS=W TARGET=BT-MZ";

// path to the source files of the application
application_src_path="../BT-MZ";

[/ REEAA KKK KA Ko KoK Kok KoK o Kok KoK ok KoK oK ok oK oK ok K ok ok ok Kok oK ok oK oK ok

// Fxx*kxxkxx plugin related settings *kkkskkkxskkkkkkx

// the desired search algorithm: ezhaustive or individual
search_algorithm="exhaustive";

// the compiler flags to be considered in the search

tp "Opt" = n_n ["01", IIO2II’ llDSH];

[/ Frsrsrsksk koK sk sk sk sk koo ok ok sk sk ko kokok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok o ok o k k

2.3 Running CFS

CFS runs as a plugin within the Periscope Tuning Framework. It can be
started using psc_frontend (see also PTF User’s Guide) by setting the
tune flag to compilerflags.

--tune=compilerflags

For the NPB BT-MZ example, one would call from within the folder con-
taining the execution file:

psc_frontend --apprun="./bt-MZ.W" --uninstrumented
--mpinumprocs=1 --tune=compilerflags
--force-localhost --cfs-config="cfs_config.cfg"

This will start the measurements and the CFS tuning strategy for the unin-
strumented version of the BT benchmark using one process.

Please note that the application has to be built and the executable file passed
to the apprun flag must exist when calling psc_frontend.

CHAPTER 2. QUICK START 6
2.4 Execution results

Upon successful completion of the tuning measurements, the CFS plugin
displays at the standard output the list of all flags combinations (scenarios)
that were used in the search along with the corresponding execution times
(severity). It also outputs the scenario with the best execution time.

For example, this is the output of the above call to psc_frontend for the
BT-MZ benchmark:

AutoTune Results:

Optimum Scenario: 2

Compiler Flags tested:

Scenario 0 flags: " -01 "
Scenario 1 flags: " -02 "
Scenario 2 flags: " -03 "

All Results:
Scenario | Severity
0 | 3.82434
1| 3.81748
2 | 3.81678

Chapter 3

CFS Autotuning Approach

CFS follows the general PTF plugin approach (see also PTF User’s Guide).

3.1 Tuning parameter

Each entry in the flag list represents a tuning parameter. All tuning param-
eters define together the tuning space.

3.2 Search strategy

In order to find the best tuning of an application, a search through the tuning
space has to be performed. For the CFS plugin, the search strategy can be
selected by the plugin user. CFS provides the following search strategies:

e cxhaustive search

e individual search

e random search

e GDE3 search

e Random search based on machine learning

See section for more details about the search algorithms.

CHAPTER 3. CFS AUTOTUNING APPROACH 8
3.3 Tuning scenario

Based on the chosen strategy, consecutive tuning scemarios are then be-
ing generated at run time and the performance of the application is being
evaluated for each of these scenarios.

In the CFS plugin, one scenario represents one combination of compiler flags.

3.4 Tuning action

Applying one specific scenario to the application represents in the CFS case
recompiling the application using the compiler flags corresponding to that
particular scenario. Thus, the tuning action is the recompilation of the
application.

Chapter 4

Configuration

4.1 cfs config.cfg file

All configuration settings for the CFS plugin are read at execution time from
the configuration file. The default name of the configuration file is

cfs_config.cfg

Another configuration file can be specified by setting the cfs-config pa-
rameter when calling the psc_frontend:

psc_frontend --cfs-config="<config file name>"

The configuration file is being searched in the folder from which the psc_frontend
was started. Hence, if the name also includes a relative path to the file, it
has to be relative to that folder.

4.2 Application settings

All path settings within the configuration file are relative to the path from
which psc_frontend was started.

The following settings are mandatory for any application:
e the path to the application Makefile (where make should be issued)
e the variable used inside the Makefile to store compiler flags
e the path to the source files of the application

Additionally, one could use the makefile_args parameter for passing nec-
essary arguments to the make process.

CHAPTER 4. CONFIGURATION 10

makefile path="<pathName>";
makefile flags var="<varName>";
application_src_path="<pathName>";
makefile_args="<listOfArguments>";

4.3 Remote make

Some HPC systems do not support compilation of applications on a compute
node. To allow the CFS plugin to recompile the application, the make
command has to be executed on a remote system. This is called remote
make and is activated by setting in the configuration file remote_make to
true. The make command is then executed on a remote machine via ssh
with public key authentification. The following configuration options are
supported:

identity_path - path to the private key
remote make machine name - name of the remote system, e.g. on
SuperMUC one of the login nodes such as login05.

4.4 Search strategies

The search algorithm to be used by the CFS plugin can be set using the
search_algorithm parameter:

search_algorithm="<algorithmName>";

The default search algorithm is the exhaustive search.

4.4.1 Exhaustive search

Exhaustive search generates all possible combinations of the given flags (the
cross-product). This means that the size of the search space grows very fast
(exponentially) with the number of flags.

To select exhaustive search, one should add to the configuration file:

search_algorithm="exhaustive";

4.4.2 Individual search

Individual search starts with the scenario containing only the first given flag
and then iteratively adds the next flags, always keeping for the next step
only the k best scenarios from the current step.

CHAPTER 4. CONFIGURATION 11

To select individual search, one should add to the configuration file:

search_algorithm="individual";
individual _keep=<k>;

4.4.3 Random search

Random search selects & random points in the multi-dimensional search
space.

To select random search, one should add to the configuration file:

search_algorithm="random";
sample_count=<k>;

4.4.4 GDE3 search

GDE3 (Generalized Differential Evolution 3) is a genetic search algorithm.
The algorithm starts by randomly creating scenarios within the search space.
These scenarios are called parents and constitute a population. In each
generation, for every parent a child scenario is created by crossover between
three other parent scenarios and mutation of the parent scenario.

After all children are created and evaluated, parent scenarios are compared
to their respective children for dominance. A scenario dominates another
scenario if it is better with respect to all objectives. Dominated scenarios
are rejected, while non-dominated scenarios constitute parents for the next
generation. The search goes on until the stopping criterion is met. The
GDE3 search stops if any of the following conditions is met:

1. For three consecutive generations, same scenarios stay non-dominated
at the end of generation, which means there is no improvement in
solutions for three consecutive generations.

2. The limit for the maximum number of generations is reached.

3. The timer, if registered, expires. The timer is registered if the user
wants to put an upper limit on the tuning execution time.

4. The number of attempts at generating not yet explored children has
reached the upper limit. Currently, the number of attempts in each
generation is set to 10000.

To select GDE3 search, one should add to the configuration file:

search_algorithm="GDE3";
gde3_population_size=<k>;
minutes_to_search=<k>;

CHAPTER 4. CONFIGURATION 12

If the population size is not given, GDE3 will use a default value. If the
time to search is not specify, no limit is enforced.

4.4.5 Machine learning

If the search algorithm is random search, the probability for values of a
compiler flag can be determined based on previous tunings with the CFS
plugin. This approach is called machine learning and will be switched on
by:

machine_learning="true";
The plugin will first run a pre-analysis to determine the signature of the cur-

rent program. The signature is a vector of hardware counter measurements
taken after compiling the program with optimization 01.

This signature is then passed to the random search algorithm which will look
up similar programs and their tuning results in a tuning database. From
those previous results it computes a probability distribution for the compiler
flag values. This is then applied when a number of random samples is taken.

After the evaluation of the generated scenarios, the results are inserted into
the database to increase the gathered knowledge.

4.5 CFS tuning parameters

The tuning parameters for the CFS plugin are defined in the cfs_config.cfg
file as follows:

tp."<paramName>" _=_"<prefiz>" _[<valuesList>]
where
e <prefix> is a non-empty stringﬂ and
e <valuesList> specifies the list of values of the current parameter,

either as a list of strings:

<valuesList> = "waluel","value2",
with valuel, walue2, ... string values

or as a integer range:

<valuesList> = wvalStart,valEnd[,step]
with valStart, step and valEnd integer values.

'If you need an empty string here, please use instead a space inside the quotation
marks: 7.7,

CHAPTER 4. CONFIGURATION 13

If step is omitted, the default step value of 1 is being used.
The prefix is prepended to each of the values listed for a tuning parameter.

When building the scenarios, all given values of a tuning parameter are
considered one at a time when combining them with the values of the other
tuning parameters.

For example, having defined:

tp nTp1" = "-Q" [nou’u2n,n3 —opt—prefetch“]
tp WTp2" = non ["—ip"," n]

will generate the following scenarios:

-00 -ip
-00
-02 -ip
-02

-03 -opt-prefetch -ip
-03 -opt-prefetch

4.5.1 ”ON/OFF” compiler flags

The most simple tuning parameter for the CFS plugin is represented by one
single compiler flag which can either be enabled or disabled. Such are, for
example, the ip, ipo, or opt-prefetch flags.

An "ON/OFF” flag has two states which have to be given as two different
values. For example:

tp "SingleFlagl" = n n ["_ip"," n]
tp "SingleFlag2" = " " ["-opt-prefetch"," "]

4.5.2 Flags with multiple values

Some compiler flags also accept the assignment of a particular value. Such
are, for example, the unroll flag which accepts a value for the unroll trans-
formation factor, or the optimization flag 0 which also accepts an optimiza-
tion level.

These kinds of flags can be easily defined as tuning parameters with either
a range of integer values, or a list of string values:

tp "ParameterFlagl" = "-unroll=" [1,5]
tp IIParaIneterFlag2ll = II_OII [lloll , II2II , ll3ll]

CHAPTER 4. CONFIGURATION 14

4.5.3 Combining flags

There are cases where several compiler flags are known to give best results if
considered together. In this case one would like to define such a ”combined”
flag.

This can be achieved by simply giving the two or more flags as one single
value of a tuning parameter. For example:

tp "CombinedFlag” = " n ["—ip —ipO"," n]

4.5.4 Excluding flags

For conflicting compiler flags, where it is known that they actually should
exclude each other in any flags combination, one could set them as different
values of the same tuning parameter. For example:

tp "ExcludingFlags" = " " ["-03","-no-prefetch"]

4.5.5 Compiler default configuration

The CF'S plugin comes along with a series of standard configuration files for
different compilers. These can be used by specifying in the configuration file
the name of the compiler which is going to be used:

compiler="<comptlerName>"
Please note that currently only one compiler can be set per rurﬂ

As of the current version, the following compilers are provided with a stan-
dard flags selection file:

Compilers: ifort
icc
The complete list of the compilers supported by your installed version of

CFS can be retrieved by looking into the $PSC_RO0T/templates directory.
The compiler configuration files are named

$PSC_RO0T/templates/cfs_compilerName.cfg

Please note that only those compilerName which are present in the template
directory can be used as values for the compiler variable in the configuration
file. Custom locations for compiler template files are not supported.

2See section for more details on this issue.

CHAPTER 4. CONFIGURATION 15

Compiler templates contain a list of predefined tuning parameters and con-
figuration options. For example, the cfs_ifort.cfg has the following con-

tent:
tp "TP_IFORT_OPT" = "-" ["02", "O3", "04"];
tp "TP_IFORT XHOST" = " " ["-xhost", " "];
tp "TP_IFORT_UNROLL" = " " ["-unroll", " "];
tp "TP_IFORT_PREFETCH" = " " ["-opt-prefetch", " "];
tp "TP_IFORT_IP" = " " ["-ip -ipo", " "1;

individual_keep=1;
search_algorithm="individual";

The settings defined in the compiler configuration file are loaded at runtime
before those defined in the user configuration file. If the name of a tun-
ing parameter defined in the compiler file is also encountered in the user
configuration file, then a duplicate tuning parameter is being created.

All other settings besides the tuning parameters are being overwritten by
the settings in the user configuration file.

For example, if the following cfs_config.cfg file is being used:

compiler="ifort";

makefile path="../";

makefile flags_var="FFLAGS";

makefile args="BT-MZ CLASS=W TARGET=BT-MZ";
application_src_path="../BT-MZ";

search_algorithm="exhaustive";

tp "TP,IFORT,OPT" = n_n [l|02ll s IIOBII] ;

then, first of all, the compiler configuration file cfs_ifort.cfg is going to
be loaded, setting the search strategy to individual search. Afterwards the
settings in the config.cfg are also being parsed, thus changing the search
strategy from individual to exhaustive search.

The optimization levels, however, are not going to be overwritten. There will
be two tuning parameters called TP_IFORT_OPT. As result, in this particular
case, scenarios like -02 -02 and -03 -02 will also be created (which, of
course, is not a recommended practice).

CHAPTER 4. CONFIGURATION 16
4.6 Improved tuning time

There are two means to guide the CFS plugin to speedup the tuning process:
the selective build of source files and the instrumentation of the application.

4.6.1 Selective make

As described in section 3] the CFS plugin performs as a tuning action the
recompilation of the test application. This means that for each test scenario
the entire application will be rebuilt. Even for relatively small source codes
this might already require considerable time compared to the rest of the
autotuning process.

In order to avoid this overhead, the rebuild process can be directed to re-
compile only a restricted list of source files. These source files should be, in
most cases, the files which contain the code with a high percentage of the
execution time.

The selective make can be activated by setting in the configuration file
make _selective to true and selective file list to the corresponding
list of source files.

For the previous example, the NPB BT-MZ application, one would set:

make_selective="true";
selective_file list="x_solve.f y_solve.f
z_solve.f";

The list of source files to be rebuilt can be determined automatically using
one of the two methods:

1. the Intel compiler profiling, or
2. the Periscope profiling feature.

Intel compiler profiling - can be used only for serial and MPI applica-
tions and is based on the profiling measurements generated with the
help of the -profile-functions flag of the Intel compiler.

To use this method proceed as follows:
1. add the -profile-functions flag to your build command;
2. build the application using the Intel compiler;

3. run the application (as usually). This will generate in the current
folder one *.xml file and one *.dump file.

Periscope profiling - supports also parallel applications and is based on
the profiling feature of Periscope.

CHAPTER 4. CONFIGURATION 17

Unlike the previous method, this method is fully automatic. Never-
theless, it requires that the subroutines are instrumented in the test
application. This can be done by setting either all or sub as in-
strumentation method for PTF. Please check the Section Automatic
Instrumentation of the PTF User’s Guide for further details on in-
strumentation.

The Periscope profiler is being called if make_selective option is set
to true in the configuration file, but no list of files is given through the
selective file list flag and there are also no loop_prof_funcs_x
files generated.

Periscope executes a test run of the application and measures the
execution time of all routines. It then selects the routines taking more
than a given thresholdﬂ of the total execution time and registers the
corresponding files for selective rebuild. This process is transparent
to the user and it is integrated within the Periscope general tuning
workflow as the pre-analysis step.

Please note that, apart from speeding up the tuning process, using
the Periscope profiling also has the advantage that in the end it also
delivers the best compiler combinations for the given files and execu-
tion times for the most time consuming routine in each of the files,
as opposed to only providing the global best scenario for the entire
application.

The decision which profiling method to apply is taken based on the following

criteriaﬂ

1. If selective file list is given in the configuration file, then this
list of files is used.

2. If there is no list given in the configuration file, then the profile file
loop_prof _funcs_* is searched and used.

3. If the loop_prof _funcs_* is not given, then the Periscope profiler is
being used.

For the latter, the list of selected files can be checked by the user only in
the final output or in the advice file.

3The threshold is internally set within Periscope and cannot be changed by the user.
The common value is of 70%.
4Note that make_selective has to be set to true.

CHAPTER 4. CONFIGURATION 18

4.6.2 Instrumented applications

Another means to reduce the tuning time is to carry out performance mea-
surements only on a (short) interval of the execution and not on the entire
application. For example, if there is a main iterative loop, one could mea-
sure performance for only one iteration step instead of the entire execution
of the loop.

Such a behaviour can be achieved by instrumenting the application with an
appropriate phase region definition. More precisely, for the case above, the
entire body of the main loop would be defined as a phase regionﬂ

For example, the NPB BT-MZ application can be instrumented by adding
the phase region declarations to the bt.f file:

¢
¢ start the benchmark time step loop
¢

do step = 1, niter
! (lines omitted here ...)

ISMON wuser region
call exch_gbc(u, gbc, nx, nxmax, ny, nz)

do zone = 1, num_zones
call adi(rho_i(startl(zone)), us(startl(zone)),
vs(startl (zone)), ws(startl (zone)),
gs(startl (zone)), square(startl(zone)),
rhs(starth (zone)), forcing(starth(zone)),
u(startb(zone)),
nx (zone), nxmax(zone), ny(zone), nz(zone))

P H P H L

end do
ISMON end wuser region

end do

By default, CFS assumes that the application is instrumented. If no phase
region is given in the application, then the main program is used.

Besides the phase declarations, a minimal modification of the Makefile (or
of the compilation and linking commands for the application) is required, in

®Please refer to the PTF User’s Guide for more details regarding application instru-
mentation and running Periscope for an instrumented application.

CHAPTER 4. CONFIGURATION 19

order for Periscope to execute with the instrumented application. Basically,
the psc_inst script call has to be added in front of the compiler call in the
Makefile. Please refer to the Quick Start section of the PTF User’s Guide
for an example and details on how to work with instrumented applications.

In order to carry out the tuning process in the uninstrumented mode, one
can pass to psc_frontend the flag

——uninstrumented

Please note that, in the uninstrumented mode, the execution time is mea-
sured as the wall clock time of the system command which executes the
application. This means that reliable results can be achieved only if the
execution time of the application is not too smal]ﬁ

4.7 QOutput options

There are two options in the configuration file with respect to the output of
the CFS plugin:

4.7.1 CSV output
By default, the CFS plugin will generate two types of output, as described
in Section [5] of this guide:

1. console output in plain text and

2. standard Periscope advice in XML format.

There is a third option which can be activated in the configuration file by
means of the results_file flag:

results_file="<filePath>"

This is a CSV (Comma Separated Values) formatted file and it contains the
same information as the console output.

4.7.2 Routines measurements

The standard tuning output of the CFS plugin provides execution times and
compiler flag combinations with respect to the entire application. There is
a means to retrieve more fine granular information though, if the routine
option is used in the configuration file:

5See also section of this guide for more details.

CHAPTER 4. CONFIGURATION 20

routine=" <routinel>, <routine2>, ... "

If given, the routines are measured separately and their execution time is
output along with the best scenario for the corresponding file.

Please note that the same happens with the routines detected by Periscope
proﬁlingﬂ if the profiling feature is activated. Nevertheless, the two sets
of routines - those detected with the Periscope profiling feature, and these
declared here with the help of the routine flag - do not interfere with each
other.

Also note that, unlike the routines from the Periscope profiling list, all rou-
tines defined in the configuration file are going to be measured on the process
with rank 0 (for parallel applications, of course).

As in the case of the Periscope profiling too, in order to be able to use the
routine option in the configuration file, it is required that the instrumen-
tation of the subroutines is turned on for the application currently being

testedlg_l

"See Section 4A6.1l
8Please check the Section Automatic Instrumentation of the PTF User’s Guide for
further details on instrumentation.

Chapter 5

How To Use the Tuning
Advice

Upon successful completion, the CFS plugin outputs a list of all tested
scenarios and their corresponding global times, as well as the id of the best
scenario. The best global scenario refers to the entire application and it
consists of the compiler flag combination which provided the best execution
time of the test application.

If routines are also measuredﬂ then there will be more best scenarios printed,
namely the best scenario for each file containing one measured routine. The
best execution time for the routines are also being printed.

The output is delivered in two formats:
1. plain text at console output, and
2. XML format in the standard Periscope advice file.

The XML advice file also contains the routine execution times for all sce-
narios, besides the best execution time.

In order to use the results of the CFS plugin tuning, one should copy the
string indicating the best scenario (best combination) and add it to the
Makefile as an option for the compiler.

For example, given the CFS plugin console output:
AutoTune Results:

Optimum Scenario: 2

1See Sections and

21

CHAPTER 5. HOW TO USE THE TUNING ADVICE

Compiler Flags tested:

Scenario 0 flags: " -01 "
Scenario 1 flags: " -02 "
Scenario 2 flags: " -03 "

one should add in the Makefile:

gcc -02 myFile.c

22

Chapter 6

Limitations and Known
Issues

There are a couple of limitations and known issues of which the users of the
CF'S plugin should be aware of:

6.1 Unreliable measurements

The CFS tuning strategy highly relies on the performance measurements of
the underlying framework, namely the Periscope Tuning Framework (PTF),
which is responsible to deliver the execution time measurements. As with
most measurement tools, there is a limit in the accuracy level that can be
achieved, meaning that any values lower than the provided accuracy cannot
usually be registered.

The execution time which can be measured by PTF for uninstrumented
applications has such a limitation as well. While the exact threshold also
depends on the machine and the system on which the measurements are
conducted, one should generally consider a lower limit for the execution
times of approximately 2 s.

Please be aware that this refers to the region or phase actually measured by
PTF. For example, when performing tuning on instrumented applications,
it is not the total execution time, but the smallest region execution time
that should be considered.

23

CHAPTER 6. LIMITATIONS AND KNOWN ISSUES 24
6.2 Multiple compilers

As of the current version of the CFS plugin it is not possible to tune one
application with different compilers in one tuning run. For example, one
might like to declare in one configuration file two or more compilers and the
corresponding sets of flags and then use CFS to choose the best execution
time of all. This is not possible, as currently only one single compiler can
be defined in the configuration file (see section [4.5.5)).

Nevertheless, the above can be achieved by starting CFS several times, once
for each compiler, and then manually compare the execution times of the
best scenarios of each run.

	Introduction
	Quick Start
	Quick installation
	Basic configuration - cfs_config.cfg
	Running CFS
	Execution results

	CFS Autotuning Approach
	Tuning parameter
	Search strategy
	Tuning scenario
	Tuning action

	Configuration
	cfs_config.cfg file
	Application settings
	Remote make
	Search strategies
	Exhaustive search
	Individual search
	Random search
	GDE3 search
	Machine learning

	CFS tuning parameters
	"ON/OFF" compiler flags
	Flags with multiple values
	Combining flags
	Excluding flags
	Compiler default configuration

	Improved tuning time
	Selective make
	Instrumented applications

	Output options
	CSV output
	Routines measurements

	How To Use the Tuning Advice
	Limitations and Known Issues
	Unreliable measurements
	Multiple compilers

