
PTF Parallel Patterns Plugin
User’s Guide

PTF Version: 1.1
Parallel Patterns Plugin Version: 1.1

Research Group Scientific Computing, University of Vienna

13.04.2015

Contents

1 Introduction 2

2 Quick Start 5
2.1 Quick installation . 5
2.2 Running Pipeline Pattern Plugin 5
2.3 Execution results . 6

3 Autotuning Approach 7
3.1 Tuning parameters . 7
3.2 Search strategy . 9
3.3 Tuning scenario . 9
3.4 Tuning action . 9

4 How To Use the Tuning Advice 10

1

Chapter 1

Introduction

The parallel pattern plugin addresses automatic performance tuning of high-
level pipeline patterns for accelerated parallel systems. The plugin builds
on a component-based task-parallel programming framework that has been
developed within the European project PEPPHER1, which addressed pro-
grammability and performance portability for single-node heterogeneous
manycore systems.

Within the PEPPHER framework tasks correspond to multi-architectural
components that encapsulate different implementation variants of performance-
critical application functionality. Such component implementation variants
may be optimized for different execution units of a heterogeneous target
architecture (e.g., CPU core, GPU, Xeon PHI or similar). High-level coor-
dination primitives as well as patterns are provided to construct applications
from such components. A sophisticated runtime system is utilized to select
and dynamically schedule component implementation variants for efficient
parallel execution on heterogeneous many-core architectures.

The parallel pipeline patterns, as supported by the PEPPHER framework,
are based on while-loops with source- code annotations (Listing 1.1). Pipeline
stages usually correspond to calls to multi-architectural components, for
which multiple implementation variants may be provided. Such component
implementation variants may be optimized for different execution units of a
heterogeneous target architecture (e.g.: systems equipped with GPUs).

1 S. Benkner, S. Pllana, J. L. Träff, P. Tsigas, U. Dolinsky, C. Augonnet, B. Bachmayer,
C. Kessler, D. Moloney and V. Osipov, ”PEPPHER: Efficient and Productive Usage of
Hybrid Computing Systems”, IEEE Micro, vol. 31, no. 5, p. 2841, 2011.

2

CHAPTER 1. INTRODUCTION 3

...

#pragma pph pipeline with buffer (UNORDERED, N*2)

while (inputstream >> file) {

ReadImage(file , image);

ResizeAndColorConvert (image , outimage);

#pragma pph stage replication(rfactor)

DetectFace(outimage);

#pragma pph stage with buffer (PRIORITY, N*2)

WriteFaceDetectedImage(file , outimage);

}

...

Listing 1.1: ”Example of a high-level pipeline pattern code for image
processing. Pipeline consists of four stages. For the compute intensive
DetectFace stage different component implementation variants for GPU and
CPU exist and the PTF determines the best replication factor such that all
execution units of the target architecture are exploited and execution time
is minimized.”

Such high-level pipeline code is transformed by a source-to-source compiler
into a C++ code that utilizes a coordination layer for managing parallel ex-
ecution of pipelines. The coordination layer (also referred to as the pipeline
coordination layer or VPattern Library) manages all aspects of pipelined
execution on a heterogeneous many-core architecture, including the auto-
matic management of buffers for data passed between pipeline stages, the
replication of individual stages, and the coordination of task-parallel execu-
tion of pipeline stages. Internally, the pipeline coordination library utilizes
the StarPU2 heterogeneous runtime system, which is responsible for dy-
namically selecting suitable component implementation variants for pipeline
stages and for scheduling their execution to the different execution units of
a heterogeneous many-core system in a performance- and resource-efficient
way. StarPU also manages data transfers between execution units, ensures
memory coherency, and provides support for different scheduling strategies,
with the goal of utilizing all execution units of the target architecture.

The pipeline coordination layer exposes a set of tuning parameters, thus
allowing external tuners like Periscope Tuning Framework to automatically
tune the performance of applications using this pattern.

The plugin supports two modes of execution. In the first mode, overall
pipeline execution time of the application using different sets of tuning pa-
rameters is being measured and tracked. The search through all possible
configurations is performed exhaustively. In the second mode, the focused

2C. Augonnet, S. Thibault, R. Namyst and P.-A. Wacrenier, ”StarPU: A Unified Plat-
form for Task Scheduling on Heterogeneous Multicore Architectures,” Concurrency and
Computation: Practice and Experience, vol. 23, no. Special Issue: EuroPar, pp. 187-198,
2009.

CHAPTER 1. INTRODUCTION 4

tuning of the pipelines is enabled. In this mode, the plugin additionally uses
pipeline-specific performance analysis to detect performance-limiting stages
in the pre-analysis phase and constrains the search space accordingly. The
plugin produces a tuning advice, pointing out the configuration with the
shortest execution time, as well as the list of all executed scenarios.

Chapter 2

Quick Start

Tuning plugin for high-level pipeline patterns is being installed along with
the Periscope Tuning Framework. Please refer to the PTF Installation Guide
for a complete description of the installation process.

2.1 Quick installation

In order to use the plugin, PTF should be configured with –enable-vpattern
and following software packages need to be available on the system:

• VPattern Library >= 0.9

2.2 Running Pipeline Pattern Plugin

The plugin for high-level pipeline patterns runs as a plugin within the
Periscope Tuning Framework. It can be started using psc frontend (see
also PTF User’s Guide) by setting the tune flag to pipeline.

--tune=pipeline

For an arbitrary example, one would call from within the folder containing
the executable:

psc frontend --apprun=./<executable filename> --sir=./<sir filename>

--mpinumprocs=1 --tune=pipeline --force-localhost

This will start the measurements and the plugin tuning strategy for the
specified application using one process.

5

CHAPTER 2. QUICK START 6

Additionally, the --vpattern-focused command-line switch may be used
to enable focused tuning that tries to detect performance-limiting pipeline
stages and to constrain the search space accordingly.

2.3 Execution results

Upon successful completion of the tuning, the pipeline plugin displays at
the standard output the list of all (scenarios) that were used in the search
along with the corresponding execution times (severity). It also outputs the
scenario with the best execution time. Additionally, the plugin outputs all
tuning parameters and corresponding values for each executed scenario.

This is an example output of the above call to psc frontend:

AutoTune Results:

Search Steps: 6

Found Optimum Scenario: 4

STAGEREPLICATIONFACTOR 1 55: 3

...

NCPUS: 2

NGPUS: 1

SCHEDULING POLICY: 1

All Results:

Scenario | Severity

0 | 10.545700

1 | 10.165600

2 | 8.308380

3 | 6.061190

4 | 5.958680

5 | 10.591900

The optimum scenario is the tuning advice of the plugin and it consists of
the concrete values for tuning parameters that provided the best execution
time for executed application.

Chapter 3

Autotuning Approach

The tuning plugin for high-level pipeline patterns follows the general PTF
plugin approach (see also PTF User’s Guide).

3.1 Tuning parameters

The plugin supports three types of tuning parameters that address tuning of
pipeline-, runtime-, and machine-specific aspects of the pipeline execution.

The pipeline-specific tuning parameters target pipeline structural tuning
parameters such as stage replication factors, and sizes of input and output
buffers. Each stage in the pipeline may have two or more such parameters.
Therefore, the total number of tuning parameters depends on the structure
of the pipeline.

Machine-specific parameters NCPUS and NGPUS are used to describe avail-
able hardware resources such as the number of available CPU cores (or
available hardware threads) and number of usable graphic cards.

Finally, the runtime-specific parameters address runtime specific parameters
such as the scheduling policy used by the runtime system.

The list of all possible tuning parameters is given in the following listing:

• stage replication factor - the number of stage instances that may be
executed in parallel

• sizes of buffers - size of I/O buffers that hold data packets passed
between pipeline stages

• number of CPU cores - also the number available CPU hardware
threads to be used for execution

7

CHAPTER 3. AUTOTUNING APPROACH 8

• number of GPUs - number of available graphic cards to be used for
execution

• scheduling strategy - a scheduling policy used by StarPU runtime for
scheduling component calls to available execution units of the target
system

Each pipeline-specific parameter may be provided explicitly by the user in
the original code or directly by altering the generated SIR file. The pipeline-
specific tuning parameters may be expressed in the form of concrete values
or tuning ranges. Listing 3.2 demonstrates user-provided range for the stage
replication factor with min=2, max=10 and step=2, and output buffer size
set to 32. In the high-level code, this is expressed in the following way:

#pragma pph stage replicate (2:16:2) buffer (32, ...)

func1 (...)

Listing 3.1: ”User-provided ranges in PEPPHER high-level codes. The stage
replication is hinted to have values between 2 and 10 incremented by 2. The
buffer size is set to a concrete value of 32.”

In the SIR file, end-users may alter corresponding min, max and step values
for each tuning parameter:

...

<plugin pluginId="Pipeline">

...

<selector tuningActionType="VAR"

tuningActionName="STAGEREPLICATIONFACTOR 1 55"

min="1" max="8" step="1"/>

...

<selector tuningActionType="VAR"

tuningActionName="NCPUS"

min="1" max="8" step="1"/>

...

</plugin>

...

Listing 3.2: ”In order to influence the tuning process the SIR file may be
altered manually by changing the corresponding min max and step values
for each tuning parameter.”

In order to construct a variant space, the plugin processes the SIR file during
the initialization phase and collects information about tuning parameters
and pipeline regions. All tuning parameters together define the tuning space.

CHAPTER 3. AUTOTUNING APPROACH 9

3.2 Search strategy

In order to find the best set of tuning parameters for an application, a search
through the tuning space has to be performed.

In the default mode, the plugin utilizes the exhaustive search strategy and
evaluates all possible tuning scenarios in the tuning space. The total number
of scenarios for each pipeline is a cross product of all tuning parameters.

In the focused tuning mode, the plugin uses pre-analysis to detect performance-
limiting stages, and constrain the search space. The total number of scenar-
ios will be equal to the cross product of the number of values used for the
limiter stage replication factors tuning parameter, limiter stage buffer size
tuning parameter, runtime scheduling policy tuning parameter, hardware
description tuning parameters (NCPUS and NGPUS) and user-provided
tuning parameters (if any).

3.3 Tuning scenario

Based on the chosen strategy, consecutive tuning scenarios are then be-
ing generated at run time and the performance of the application is being
evaluated for each of these scenarios.

In the plugin for high-level pipeline patterns one scenario represents one
specific combination containing concrete values of all tuning points.

3.4 Tuning action

Applying one specific scenario to the application implies passing concrete
values of tuning parameters to the pipeline coordination layer.

Chapter 4

How To Use the Tuning
Advice

Upon successful completion, the plugin outputs a list of all tested scenarios
as well as the id of the best scenario and its configuration.

Given the plugin output:

AutoTune Results:

Search Steps: 6

Optimum Scenario: 4

STAGEREPLICATIONFACTOR 1 55: 3

NCPUS: 2

NGPUS: 1

SCHEDULING POLICY: 1

”Optimum scenario” is the tuning advice of the plugin and it consists of the
concrete values for tuning parameters that provided the best execution time
for executed application. These values should be inserted into the original
application.

10

	Introduction
	Quick Start
	Quick installation
	Running Pipeline Pattern Plugin
	Execution results

	Autotuning Approach
	Tuning parameters
	Search strategy
	Tuning scenario
	Tuning action

	How To Use the Tuning Advice

