TF

PTF Master-Worker Plugin
User’s Guide

PTF Version: 1.1
MW Plugin Version: 1.1

Gertvjola Saveta, Eduardo Cesar, Anna Sikora

13.04.2015



Contents

[2

Quick Start|

2.1 Quick installation|. . . . . . . ... ... 0000
[2.2  Basic configuration - param_spec.conf|. . . . . .. . ... ..
[2.2.1  Unistrumented Application| . . . . ... .. ... ...
[2.2.2  Instrumented Application| . . . . . . ... ... ...
2.3 Running Master-Worker pluginl . . . . . ... ... ... ...
2.4 Executionresults . . . ... .. ... oL

Master-Worker Autotuning Approach|

3.1  Tuning parameter| . . . . . . ... ... ... ...
[3.2  Search strategyl . . . . . . ... o oL
3.3 Tuning scenario|. . . . . . . . . ...
3.4 Tuning action| . . . . . . . . . ...
[3.4.1  Uninstrumented application| . . . . . ... ... .. ..
[3.4.2  Instrumented application| . . . . ... ... ... ...

Configuration|

4.1 param spec.conf file[. . . . . . ..o oL
4.2 Master-Worker tuning parameters| . . . ... ... ... ...
[4.2.1  Uninstrumented Application| . . . ... ... ... ..
[4.2.2  Instrumented Application| . . . . .. ... ... .. ..
4.3 Improved tuning time| . . . . .. ... ... ...

How To Use the Tuning Advice|

11
11
11
11
12
12

14



Chapter 1

Introduction

Most parallel applications are designed and implemented using well known
patterns such as master-worker (or Process Farm), pipeline, or divide and
conquer. These patterns usually present specific performance problems that
could affect any application based on the pattern. Consequently, defining
performance models associated to the pattern of the applications can be
used to implement generic tuning strategies for wider sets of applications.

This approach has been followed to design and implement the Master-
Worker tuning plugin. We have used a performance model to develop a
plugin that can be used to automatically tune many MPI master-worker
applications, only asking the application developer to identify a few code
regions and communication phases.

The master-worker framework is a well-known parallel programming struc-
ture because it enables expression, in a natural way, of the behavioral charac-
teristics of a wide range of high-level parallel application patterns. Basically,
this framework includes a master process which sends tasks to a set of worker
processes, then each worker makes some kind of computation on the received
tasks, a computation that generally requires a variable and unpredictable
time, and finally it sends back the results to the master.

The performance of master-worker applications mainly depends of two fac-
tors. First, it is important to get a balanced computational load among
workers; and, second, it is important to decide the appropriate number of
workers.

A partition strategy of the set of tasks is used for balancing the load among
workers. Instead of distributing the whole set of tasks among workers and
then waiting for the results, the master makes a partial distribution of the
tasks dividing the original set into portions (called batches) of decreasing
size. The idea is to distribute the first of these batches among workers in



CHAPTER 1. INTRODUCTION 3

chunks of (roughly) the same number of tasks. When a worker ends the
processing of its assigned chunk the master sends to that worker a new
chunk; the process continues until all batches are completely distributed.
This way, workers that received tough tasks will not receive more work, and
workers that received lighter tasks are employed to do more work. Logically,
smaller batches lead to better load balancing but increase the communica-
tion overhead, while bigger batches could lead to poorer load balancing and
less communication.

In an ideal master-worker application the total execution time would be
equal to the sequential execution time divided by the number of workers.
Nevertheless, in this case we are assuming that communication is free, the
application executes on a dedicated and homogeneous platform, there is
a perfect load balancing, and the computation also scales ideally. In this
ideal world, any available resource that can be assigned to the application
must be assigned since it can be efficiently used to improve the performance
of the application. In the real world, however, we can observe that the
speedup of the application usually decreases as new resources are assigned
to it, indicating a loss in efficiency. Moreover, at some point, assigning
more resources to the application produces drops in performance because
the introduced costs are bigger than the advantages brought about by the
new resources.

Consequently, there are two tuning parameters associated to any master-
worker application, a partition factor that determines the appropriate num-
ber of tasks of each batch to be sent to the workers, and the best number
of workers to be used. Both parameters can be estimated using an analyt-
ical approach. Therefore, they can be tuned automatically if the necessary
measurements (computation time of the workers and communication cost of
tasks) can be obtained.

The Master-Worker plugin can work on instrumented applications using
analytical performance models to estimate these performance parameters,
but also on uninstrumented applications only for estimating the number of
workers.

The combination of values leading to the lowest execution time is provided
to the user as an advice.



Chapter 2

Quick Start

2.1 Quick installation

Master-Worker plugin is being installed along with the Periscope Tuning
Framework. Please refer to the PTF Installation Guide for a complete de-
scription of the installation process.

2.2 Basic configuration - param spec.conf

In order to use the Master-Worker plugin, a set of configuration parameters
is required. These parameters are read from a configuration file (by default
param_spec.conf).

You can start by copying the example configuration file param_spec.conf
into the folder containing the executable of your application.

$PSC_ROOT/templates/param_spec.conf —
$APP_ROOT/. . ./param_spec.conf

Then, you can edit param_spec.conf to adapt the configuration file to your
application and architecture characteristics.

The configuration file will be different if the application is uninstrumented
or instrumented. In the case of instrumented application, several parame-
ters should be provided for computing the analytical models, while, in the
uninstrumented one, only the range for the number of workers should be
specified.



CHAPTER 2. QUICK START )

2.2.1 Unistrumented Application

# Configuration File Start

MWT_BEGIN
NW=<initial-value>:<step>:<final-value>
MWT_END

The NW parameter defines the range of workers that should be exhaustively
tested using the indicated step.

2.2.2 Instrumented Application

# Configuration File Start
MWT_BEGIN
MASTERRECV=<file-id>:<1line>
[MASTERRECV=<file-id>:<line>]
WORKERRECV=<file-id>:<1line>
[WORKERRECV=<file-id>:<1line>]
WORKERFUNC=<file-id>:<initial-line>
NETLATENCY=<value in sec>
NETSPEED=<value in sec/byte>
IMBALANCETHR=<value in %>
TASKSIZE=<value in bytes>
MWT_END

e WORKERRECV : the parameter defines the line (or lines) in the code of
the MPI_Recv call that receives tasks in the workers;

e WORKERFUNC : the parameter indicates the line in the code of the func-
tion for task processing;

e MASTERRECV : the parameter indicates the line (or lines) in the code
where the master calls MPI_Recv for receiving data from workers;

e TASKSIZE : the parameter indicates the size of each task;

e NETLATENCY : the parameter specifies the average library latency for
building messages;

e NETSPEED : the parameter specifies the average communication time
per byte(inverse bandwidth);

e IMBALANCETHR : the parameter indicates the maximum acceptable ex-
ecution time difference (in %) between the fastest and the slowest



CHAPTER 2. QUICK START 6

worker, beyond which the plugin considers that the application is im-
balanced.

2.3 Running Master-Worker plugin

The Master-Worker runs as a plugin within the Periscope Tuning Frame-
work. It can be started using psc_frontend (see also PTF User’s Guide)
by setting the tune flag to masterworker.

—-—tune=masterworker

For an uninstrumented application, the user should execute:
psc_frontend --apprun="./Application" --tune=masterworker --uninstrumented

This will start the measurements and the master-worker tuning strategy for
an uninstrumented application.

Please note that, in the uninstrumented mode, the execution time is mea-
sured as the wall clock time of the system command which executes the
application. This means that reliable results can be achieved only if the
execution time of the application is not too small.

By default, the PTF runs on instrumented applications. For an instru-
mented application the user should execute:

psc_frontend --apprun="./Application" --tune=masterworker

This will start the measurements and the master-worker tuning strategy for
an instrumented application.

2.4 Execution results

Upon successful completion, the Master-Worker plugin displays at the stan-
dard output the list of all parameters combination (scenarios) that were
used in the search along with the corresponding execution times (severity).
It also outputs the scenario with the best execution time.

For example, the following is the output of the above call to psc_frontend
for an uninstrumented master-worker application using different numbers of
workers:



CHAPTER 2. QUICK START

Optimum Scenario:0
NumberOfWorkers Value: 2

All Results:

Scenario | Severity | Tuning Parameters

0 11.077821 Name: NumberOfWorkers Value:
1 11.078959 Name: NumberOfWorkers Value:
2 11.080354 Name: NumberOfWorkers Value:

FNIN

and, the following is an example of the output for an instrumented master-

worker application:

Found best Scenario: 5

TuningParameter: O Name: PartitionFactor Value:
TuningParameter: 1 Name: NumberOfWorkers Value:

A1l Results (9):

Scenario | Severity Tuning Parameters

0 | 0.11575 Name: PartitionFactor Value:
Value: 269

1 | 0.110449 Name: PartitionFactor Value:

Value: 298

2 | 0.107365 Name: PartitionFactor Value:

Value: 327

3 | 0.114166 Name: PartitionFactor Value:

Value: 269

4 | 0.108855 Name: PartitionFactor Value:

Value: 298

5 | 0.105826 Name: PartitionFactor Value:

Value: 327
6 | 0.11606 Name: PartitionFactor Value:
Value: 269

7 | 0.107335 Name: PartitionFactor Value:

Value: 298

8 | 0.108243 Name: PartitionFactor Value:

Value: 327

50 Name:

50 Name:

50 Name:

55 Name:

55 Name:

55 Name:

60 Name:

60 Name:

60 Name:

327

NumberOfWorkers

NumberOfWorkers

Number0OfWorkers

NumberOfWorkers

NumberOfWorkers

NumberOfWorkers

NumberOfWorkers

NumberOfWorkers

NumberOfWorkers



Chapter 3

Master-Worker Autotuning
Approach

The Master-Worker plugin follows the general PTF plugin approach (see
also PTF User’s Guide).

3.1 Tuning parameter

In case of an uninstrumented application, the only parameter that can be
tuned is the number of workers. The user should specify the desire number of
workers to be tuned in the configuration file. However, for an instrumented
application the plugin predicts and tunes the number of workers and the
partition factor. For being able to predict the user have to specify the tun-
ing parameters depending on his apllication. The parameters asked to be
specified are: the WORKERRECV parameter defines the line (or lines) in the
code of the MPI_Recv call that receives tasks in the workers; the WORKERFUNC
parameter indicates the line in the code of the function for task processing;
the MASTERRECV parameter indicates the line (or lines) in the code where
the master calls MPI_Recv for receiving data from workers; the TASKSIZE
parameter indicates the size of each task; NETLATENCY and NETSPEED param-
eters are used for specifying the average library latency for building messages
and the average communication time per byte (inverse bandwidth); finally,
the IMBALANCETHR parameter indicates the maximum acceptable execution
time difference (in %) between the fastest and the slowest worker, beyond
which the plugin considers that the application is imbalanced.



CHAPTER 3. MASTER-WORKER AUTOTUNING APPROACH 9
3.2 Search strategy

In order to find the best tuning of an application, a search through the tuning
space has to be performed. For an uninstrumented application, the Master-
Worker plugin uses an exhaustive search strategy. For an instrumented one,
the Master-Worker plugin uses prediction models for determining the most
promising values of the partition factor and number of workers generating
a reduced search space around these values.

3.3 Tuning scenario

Tuning scenarios are being generated at run time and the performance of
the application is being evaluated for each of these scenarios. In the Master-
Worker plugin, one scenario represents the number of workers (uninstru-
mented application) or the number of workers and partition factor (instru-
mented application).

For instrumented applications the plugin performs two tuning steps. The
first for tuning the partition factor and the second for estimating the num-
ber of workers. When the prediction is done, the plugin creates for each
tuning parameter three values. The predicted value, and two expanding the
predicted value +-10% to calculate the estimated error. In total the plugin
will create 9 scenarios. Scenarios are created at the end of the second tuning
step. Each tuning step predicts the best value for a tuning parameter and
then a set of scenarios are created nearby the predicted values.

3.4 Tuning action

Applying a scenario to the application means, in the case of the Master-
Worker plugin, re-executing the application with a different number of work-
ers (uninstrumented application) or a different number of workers and par-
tition factor (instrumented application).

3.4.1 Uninstrumented application

For the unisntrumented application the plugin will go through one tuning
step. This step is to re-execute the application with a different number of
workers.



CHAPTER 3. MASTER-WORKER AUTOTUNING APPROACH 10

3.4.2 Instrumented application

On the other hand, instrumented applications require two tuning steps. Pre-
analysis is required for both tuning steps of the plugin.

e The Periscope pre-analysis is used to optimize the partition factor.
The ExecTime and MPITime properties are used to obtain the average
execution time of the workers and total number of tasks processed.
In addition, the plugin obtains the execution time for the worker that
took longer and the one that took less time to process the assigned
tasks. With this information it can decide if the application is balanced
or not. If the difference between the slowest and the fastest workers is
over a given threshold, a simulator is triggered to estimate the partition
factor that would lead to the most balanced distribution of the load.

e Then, fixing the partition factor to the value obtained in the first
tuning step and calling a new pre-analysis for the same properties as
in tuning step 1, the plugin gets the information needed to estimate
the appropriate number of workers, i.e., the total number of bytes
transferred and the total execution time of all application workers.
This number of workers is calculated with the provided mathematical
model. Finally, the plugin creates one scenario with the two estimated
parameters, and 7 extra scenarios introducing a 10% variation on the
number of workers and the partition factor.

Thus, the tuning action is to re-execute the application.



Chapter 4

Configuration

4.1 param spec.conf file

All configuration settings for the Master-Worker plugin are read at execution
time from the configuration file. The default name of the configuration file
is:

param_spec.conf

Otherwise, an environment variable (PSC_PARAM_SPEC_FILE) is used to spec-
ify the name of the configuration file.

4.2 Master-Worker tuning parameters

The tuning parameters for the Master-Worker plugin are defined in the
param_spec.conf file as follows:

4.2.1 Uninstrumented Application

# Configuration File Start

MWT_BEGIN
NW=<initial-value>:<step>:<final-value>
MWT_END

The NW parameter defines the range of workers that should be exhaustively
tested using the indicated step.

11



CHAPTER 4. CONFIGURATION 12

4.2.2 Instrumented Application

# Configuration File Start
MWT_BEGIN
MASTERRECV=<file-id>:<line>
[MASTERRECV=<file-id>:<line>]
WORKERRECV=<file-id>:<1line>
[WORKERRECV=<file-id>:<line>]
WORKERFUNC=<file-id>:<initial-line>
NETLATENCY=<value in sec>
NETSPEED=<value in sec/byte>
IMBALANCETHR=<value in %>
TASKSIZE=<value in bytes>
MWT_END

e WORKERRECV : the parameter defines the line (or lines) in the code of
the MPI_Recv call that receives tasks in the workers;

e WORKERFUNC : the parameter indicates the line in the code of the func-
tion for task processing;

e MASTERRECV : the parameter indicates the line (or lines) in the code
where the master calls MPI_Recv for receiving data from workers;

e TASKSIZE : the parameter indicates the size of each task;

e NETLATENCY : the parameter specifies the average library latency for
building messages;

e NETSPEED : the parameter specifies the average communication time
per byte(inverse bandwidth);

e IMBALANCETHR : the parameter indicates the maximum acceptable ex-
ecution time difference (in %) between the fastest and the slowest
worker, beyond which the plugin considers that the application is im-
balanced.

It is worth noticing that for setting NETLATENCY and NETSPEED the user may
use the specifications for the target hardware or run a program for measuring
the MPI performance, such as ping-pong or mpptest.

4.3 Improved tuning time

The only way to guide the Master-Worker plugin for reducing the tuning
time is to instrument the application.



CHAPTER 4. CONFIGURATION 13

In this case, the tuning has two phases, in the first, it runs a Periscope
pre-analysis of the application using a partition factor of 1 (all tasks are
evenly distributed among the workers at the beginning of the iteration)
and measures the differences among the workers’ execution times. If the
difference between the fastest and the slowest worker is bigger than the
threshold indicated by the user then the plugin simulates the execution of
the application using different partition factors, choosing the one that leads
to the best results. If this difference is bellow the threshold the partition
factor remains equal to 1.

In the second phase, the plugin executes a second pre-analysis of the appli-
cation only if the partition factor has been changed for taking new measure-
ments on the balanced application. During this phase an analytical model
is used to estimate the appropriate number of workers.

Next, only nine scenarios are created using the estimated values and varia-
tions (£10%) of them.

Finally, the advice given to the user consists of the partition factor and
number of workers that led to the best execution time.



Chapter 5

How To Use the Tuning
Advice

The best combination of values, in our case the partition factor and the
number of workers, is selected based on the execution-time metric and pro-
vided to the user as a recommendation. Moreover, all scenarios created are
shown to verify the advice. The advice about the partition factor can be
used changing the corresponding variable in the source code of the applica-
tion or passing the value as an application command-line parameter. The
advice about the number of workers must be used in the mpirun command
through -np option.

14



	Introduction
	Quick Start
	Quick installation
	Basic configuration - param_spec.conf
	Unistrumented Application
	Instrumented Application

	Running Master-Worker plugin
	Execution results

	Master-Worker Autotuning Approach
	Tuning parameter
	Search strategy
	Tuning scenario
	Tuning action
	Uninstrumented application
	Instrumented application


	Configuration
	param_spec.conf file
	Master-Worker tuning parameters
	Uninstrumented Application
	Instrumented Application

	Improved tuning time

	How To Use the Tuning Advice

