STAT: the Stack Trace Analysis Tool

Gregory L. Lee
Dorian C. Arnold
Dong H. Ahn
Bronis R. de Supinski
Nicklas B. Jensen
Sven Karlsson
Matthew P. LeGendre
Barton P. Miller
Niklas Q. Nielsen
Martin Schulz

STAT: the Stack Trace Analysis Tool
by Gregory L. Lee

by Dorian C. Arnold

by Dong H. Ahn

by Bronis R. de Supinski
by Nicklas B. Jensen

by Sven Karlsson

by Matthew P. LeGendre
by Barton P. Miller

by Niklas Q. Nielsen

by Martin Schulz

Table of Contents

Disclaimer A
AUSPICE .ottt v
LECENISE s v

1. Introduction 1

2. Overview 3

3. Changelog 7
StAt VETSION 4.0.2 ..ottt sttt 7
Stat Version 4.0.1 c..c.coiiiiiiiiiiiie e 7
stat version 4.0.0 ... 7
Stat version 3.0.1 ..c..cooiiii e 7
StAt VETrSION 3.0 c.ccueiuiiiiiiiiciciece e 7
Stat VErSION 2.2 c..c.ooiiiiiiiiiiiiiiicccc e 8
STAt VETSION 2.1 ettt sttt s 8
STAT VEISION 2.0 ...cveuerieuirieirieienieienietenteieeetetstet et saere s beeese sttt ssesesaeseseenens 8

4. Installing STAT 11
Dependent Packages..........ccccoviviiiiiiiiiiiiiiiiiiiiiccnen 11
INSEAllAtionN....cveveieirieiricirc et 11

5. Using the stat-cl Command 15
DeSCIIPON ..o 15
Stat-Cl OPHIONSvvviiiicic e 15
STAT Usage EXample.........cccoovviiiiiiiiiiiiieiice s 17

6. Using the stat-view GUI 19
DeSCIiPHION ..o 19
The stat-view NOAE MENUccccerirueririeririeirieinieereerteeeeeeeee e 20
The stat-view TOOIDATcccoeiriiinirieircrccree et 22

7. Using the stat-gui GUI 25
DeSCIIPLION ...ccuiiiiie e 25
stat-gui OPHONScoouiieii 25
The stat-gui GUI ToOIDaTccccoeiiiiiiiiir s 26
Sample OPIONS ... 27
Process Table ..ottt 29
Equivalence Classes and Subset Debugging............ccccccoeiiiiciincncnnene. 30
AVAIlAbILItY ..o 30

8. Setting STAT Preferences and Options 31
Preference FIles ...ttt 31
Loading and Saving Preferences...........ccccccovvninininiiiiiicciinn 33
Environment Variables ... 33

9. Prescription-Based Debugging With Prototype DySectAPI..........ccccevcreruruenee 37
OVEIVIEW ..ttt ettt sttt ettt ettt sttt ettt sttt s be e 37
INStAllation....c.coveueirieiricirccc e 38
USAZE. ..ottt 38

10. Tips and Tricks Using STAT 41
Running STAT at scale.........ccccccvviviniiiiininiiiiiiee 41
Using STAT with IO Watchdog and SLURM ..o 41
Running STAT in a Batch Script ..., 42

11. Using the stat-bench Emulator 43
DeSCIIPHON ..ot 43
stat-bench Optionscccovvviviviiiii 43
stat-bench Usage EXxample ... 45

12. Using the stat-script Python Interface 47
DeSCIIPHION ..ttt 47

13. Troubleshooting Guide 49
TroubleShOOtNGvieeii 49

Bibliography 51

ii

v

Disclaimer

Auspice

This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

License
Copyright (c) 2007-2018, Lawrence Livermore National Security, LLC.

Produced at the Lawrence Livermore National Laboratory

Written by Gregory Lee [lee218@lInl.gov], Dorian Arnold, Matthew LeGendre,
Dong Ahn, Bronis de Supinski, Barton Miller, Martin Schulz, Niklas Nielson,
Nicklas Bo Jensen, Jesper Nileson, and Sven Karlsson.

LLNL-CODE-750488.
All rights reserved.

This file is part of STAT. For details, see http://www.github.com/LLNL/STAT.
Please also read STAT /LICENSE.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of
conditions and the disclaimer below.

Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the disclaimer (as noted below) in the documentation
and/or other materials provided with the distribution.

Neither the name of the LLNS/LLNL nor the names of its contributors may be
used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL LAWRENCE LIVERMORE NATIONAL
SECURITY, LLC, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Additional BSD Notice

1. This notice is required to be provided under our contract with the U.S. Depart-
ment of Energy (DOE). This work was produced at Lawrence Livermore National
Laboratory under Contract No. DE-AC52-07NA27344 with the DOE.

2. Neither the United States Government nor Lawrence Livermore National Secu-
rity, LLC nor any of their employees, makes any warranty, express or implied, or
assumes any liability or responsibility for the accuracy, completeness, or useful-
ness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately-owned rights.

3. Also, reference herein to any specific commercial products, process, or services
by trade name, trademark, manufacturer or otherwise does not necessarily con-
stitute or imply its endorsement, recommendation, or favoring by the United
States Government or Lawrence Livermore National Security, LLC. The views

0

Disclaimer

and opinions of authors expressed herein do not necessarily state or reflect those
of the United States Government or Lawrence Livermore National Security, LLC,
and shall not be used for advertising or product endorsement purposes.

vl

Chapter 1. Introduction

Notes

The Stack Trace Analysis Tool (STAT) is a highly scalable, lightweight debugger
for parallel applications. STAT is developed as a collaboration between the
Lawrence Livermore National Laboratory, the University of Wisconsin, the
University of New Mexico, and the Denmark Technical University. It is currently
open source software released under the Berkeley Software Distribution (BSD)
license. It builds on a highly-portable, open-source infrastructure, including
LaunchMON for tool daemon launching, MRNet for scalable communication,
and StackWalker for obtaining stack traces.

STAT works by gathering stack traces from all of a parallel application’s pro-
cesses and merging them into a compact and intuitive form. The resulting output
indicates the location in the code that each application process is executing, which
can help narrow down a bug. Furthermore, the merging process naturally groups
processes that exhibit similar behavior into process equivalence classes. A single
representative of each equivalence can then be examined with a full-featured de-
bugger like TotalView' or DDT? for more in-depth analysis.

STAT has been ported to several platforms, including Linux clusters, IBM’s Blue-
gene/L, Bluegene/P, and Bluegene/Q machines, and Cray systems. It works for
Message Passing Interface (MPI) applications written in C, C++, and Fortran and
also supports threads. STAT has already demonstrated scalability over 3,000,000
MPI tasks and its logarithmic scaling characteristics position it well for even
larger systems.

1. http://www.roguewave.com/products-services/totalview

2. http://www.allinea.com

Chapter 1. Introduction

Chapter 2. Overview

STAT, the Stack Trace Analysis Tool, helps isolate bugs by gathering stack traces
from each individual process of a parallel application and merging them into a
global, yet compact representation. Each stack trace, as depicted in Figure 2-1,
captures the function calling sequence of an individual process. The nodes are
labeled with the function names and the directed edges show the function calling
sequence from caller to callee. STAT’s stack trace merging process forms a call
graph prefix tree, which can be seen in Figure 2-1. The prefix tree groups together
traces from different processes that have the same calling sequence and labels the
edges with the count and set of tasks that exhibited that calling sequence. Nodes
in the prefix tree that are visited by the same set of tasks are given the same
color, providing the user with a quick means of identifying the various process
equivalence classes.

|

I0: 16536: [0 15535

-
¥

10 16536; [0 16535)

-

__libec_start_main

0, 16536 [0 16535]
|
r [|
0 16536 [0 16535]
Y

rn_simdation

alez: [0-15,32,...] | 4096 [16-24,30,...] ~ 4096:[25-29,31,...]
|
oo

Figure 2-1. A single stack trace (left) and a STAT merged call prefix tree (right)

STAT merges stack traces into 2D spatial and 3D spatial-temporal call prefix trees.
The 2D spatial call prefix tree (Figure 2-2) represents a single snapshot of the
entire application. The 3D spatial-temporal call prefix tree (Figure 2-3) takes a
series of snapshots from the application over time and is useful for analyzing
time-varying behavior.

Chapter 2. Overview

B

HO9E o 0-4035]
4

HO9E. 0-4095]

4034 [0,3-4098]

[prer Barrier | | do_sendorstall |

4034:{0,3- 4095] 1]

r
[MPIDI_BGLGI Barrier | [_gettimeckday |

393103 14,16-37 . [N 621 15,38,84,140,..]

013 0,358 1] NET (4163 59.127,0]

2613:[0,3-6,8-12,...[% 190:[2350,62,79,...]

2208:[0,3-69-12,..)

Figure 2-2. A 2D spatial call prefix tree

]

H096.{0-4095]

_start_blrts

K09 0-40195]

BGLMP_GIBatrier

4094 0,3-4095 [, 5324[5,17,23,27,..] 1:[2]

| BGLML_pallficn | | BGLM._Messager_advance] —

40940[0, 3405, 1410:[3,5,10-11,..]

BGELML_Messager_advance

986 0,3,1122,...]

4091:[0,3-394,3%-710,..

| BGLML_Mess ager_YWMadvance | BGLYFIFO stabie

Figure 2-3. A 3D spatial call prefix tree

Stack traces based on function names only provide a high-level overview of the
application’s execution. However, for certain bugs this view may be too coarse-
grained so STAT is also capable of gathering stack traces with more fine-grained
information. In particular, STAT can also record the program counter of each
frame or with the appropriate debug information compiled into the application
(i.e., with the "-g" compiler flag), STAT can gather the source file and line number
of each stack frame. Both of these refinements can further delineate processes and
refine the process equivalence classes.

In addition, line number information can be fed into a static code analysis engine
to derive the logical temporal order of the MPI tasks Figure 2-4. This analysis
traverses from the root of the tree towards the leaves, at each step analyzing the

Chapter 2. Overview

control flow of the source code and sorting sibling nodes by the amount of exe-
cution progress made through the code. For straight-line code, this simply means
that one task has made more progress if it has executed past the point of another
task, i.e., if it has a greater line number. This ordering is partial since two tasks
in different branches of an if-else are incomparable. In cases where the program
points being compared are within a loop, STAT can extract the loop ordering
variable from the application processes and further delineate tasks by execution
progress. This analysis is useful for identifying the culprit in a deadlocked or live-
locked application, where the problematic task has often either made the least or
most progress through the code, leaving the remaining tasks stuck in a barrier or
blocked pending a message. Note, this feature is still a prototype.

f /_,/"'i{l':]u.a-h:]/ 101 \:I_'_ﬂ
[mamgtii | [maingTl2 | _

|'_:|'_] 1[2] I'.I'_:!'_ﬂ

61:(0,4-63]

L J
| do_stuff@TL.1.1 | | do_stuff@TL.2.1 |

[
1:01] 1:[2] 1:3]

4
| compute@T1.1.1.1 | |MP|_WaImII@wahall.c:190 |

Figure 2-4. STAT’s temporal ordering analysis engine indicates that task 1 has
made the least progress. In this example, task 1 is stuck in a compute cycle,
while the other tasks are blocked in MPI communication, waiting for task 1.

Chapter 2. Overview

Chapter 3. Changelog

stat version 4.0.2

e DynlInst 10.X support
+ Core file merging enhancements

+ as always, numerous other bug fixes and minor enhancements (refer to
ChangeLog file in top-level directory)

stat version 4.0.1

+ Python 3 and xdot 0.9 support added

+ as always, numerous other bug fixes and minor enhancements (refer to
ChangeLog file in top-level directory)

stat version 4.0.0

+ Added GDB and Cuda GDB backend support

« Core file merging enhancements

+ GUI enhancements

« ability for Dysect API to dump lightweight core via callpath

» as always, numerous other bug fixes and minor enhancements (refer to
ChangeLog file in top-level directory)

stat version 3.0.1

¢ Dyninst 9.3.0 support
+ added ability to launch multiple daemons per node

« as always, numerous other bug fixes and minor enhancements (refer to
ChangeLog file in top-level directory)

stat version 3.0

added OpenMP OMPD support and ehanced thread display
 added data analytics to DySectAPI

added DySectAPI probe tree visualizer

fixes to FGFS and file broadcasting

Chapter 3. Changelog

» STAT now requires graphlib 3.0 to support generic edge labels

+ as always, numerous other bug fixes and minor enhancements (refer to
ChangeLog file in top-level directory)

stat version 2.2

» most edits for this release were bug fixes and enhancements to the prototype
DySectAPI (refer to ChangeLog file in top-level directory for details of changes)

» DySectAPI session added to STAT GUI
+ added module offset granularity

* cleaner daemon crash handling

* build system fixes

» as always, numerous other bug fixes and minor enhancements (refer to
ChangeLog file in top-level directory)

stat version 2.1

+ added prototype DySectAPI
« added prototype temporal ordering capability

+ improved python wrapping, including new python-script command and a
python-based test script to run through stat functionality

 modified cut/hide interface to allow for user-defined programming models

 modified dot file naming convention for easier sequencing. also allow specifi-
cation of dot filename on gather.

» new process table interface (via file->properties)
+ added cp location policy
 improved bg/q support, including use of stackwalker timeouts.

+ improved fgfs support, including adding bg/q support and re-enabling mrnet
failure recovery when fgfs is in use

* better labeling of error tasks in stack traces

« as always, numerous other bug fixes and minor enhancements (refer to
ChangeLog file in top-level directory)

STAT version 2.0

¢ The capitalized STAT commands have been deprecated in favor of all lower-
case commands. The STAT command is now stat-cl, STATGUI is now stat-gui,
STATview is now stat-view, and STATBench is now stat-bench.

+ Added optional build with Fast Global File Status plus target application bi-
nary file broadcasting

» Added Python-script-level debugging (Python must be built with -g and pre-
ferrably -O0)

Chapter 3. Changelog

Added ability to manually specify serial processes to attach to
Added count + representative level of detail

Added join equivalence class GUI feature

Added cut text GUI feature

Added GUI preferences menu item

(old) DynlInst support has been removed. STAT now strictly requires the Stack-
walker component of DynInst.

Graphlib 2.0 required (removed support for 1.X)
MRNet version 3 or greater required (removed support for 1.X and 2.X)
Added ability to manually specify list of processes

Numerous other bug fixes and minor enhancements (refer to ChangeLog file
in top-level directory)

Chapter 3. Changelog

10

Chapter 4. Installing STAT

Dependent Packages
STAT has several dependencies

Table 4-1. STAT Dependent Packages

Package ‘ What It Does

Package Web Page

Graphlib version 3.0 or greater ‘ Graph creation, merging, and export

https:/ /github.com/LLNL/graphlib/

Launchmon ‘ Scalable daemon co-location

https:/ /github.com/LLNL/LaunchMON

Libdwarf Debug information parsing (Required
by StackWalker)

https:/ /www.prevanders.net/dwarf.html

MRNet version 3.0 or greater Scalable multicast and reduction
network

https:/ /github.com/dyninst/mrnet

StackWalker Lightweight stack trace sampling

https://github.com/dyninst/dyninst

In addition, STAT requires Python' and the STAT GUI requires PyGTK?, both of
which are commonly preinstalled with many Linux operating systems. STAT can
be built with Python 2.X and PyGTK 2.X. However, starting with STAT version
4.0.1, STAT can optionally be built with Python 3.X. The use of Python 3.X also
requires PyGTK version 3.X and re(}uires you to manually install the xdot python
package’. STAT also requires SWIG" to generate Python wrappers for STAT's core
functionality. The Pygments® Python module can optionally be installed to allow
the STAT GUI to perform syntax highlighting of source code. Another GUI re-
quirement is the Graphviz® package to render the DOT format graph files.

STAT can also be optionally built with the Fast Global File Status (FGFS)’
library. This library helps STAT identify when a file (target binary) resides on
a shared file system that may become a bottleneck if all STAT daemons try
to access that file at the same time. If so, STAT will access the file from the
STAT frontend and distribute its contents to the daemons via the MRNet
communication tree. The two necessary components of FGFS can be
downloaded from https://github.com/LLNL/MountPointAttributes and
https:/ / github.com/LLNL/FastGlobalFileStatus

Installation

STAT and its dependencies can also be built via the Spack package management
tool, available at https://github.com/LLNL/spack. Running spack install stat
should build STAT and all of its dependencies, including those require for the
STAT GUI. Note that two Spack variants exist. The first is +examples, to enable
building example MPI code that STAT can be tested against. This is disabled by
default to avoid requiring an MPI library, but enabling it will trigger a build of
MPL The second is +dysect to enable building of the DySectAPI.

For STAT 4.0.1 and beyond, the spack build of STAT requires Python 3 and will re-
quire the activation of the py-xdot package ./bin/spack activate py-xdot. For ver-
sions up to and including STAT 4.0.0, the spack build of STAT requires Python 2
and requires the activation of the py-pygtk and py-enum34 packages ./bin/spack
activate py-pygtk and ./bin/spack activate py-enum34.

11

Chapter 4. Installing STAT

12

When building STAT itself, first run configure. You will need to use the
--with-package options to specify the install prefix for mrnet, graphlib,
launchmon, libdwarf, and stackwalker. These options will add the necessary
include and library search paths to the compile options. Refer to configure
--help for exact options. You may also wish to specify the maximum
number of communication processes to launch per node with the option
--with-procspernode=number, generally set to the number of cores per node.

STAT creates wrapper scripts for the stat-cl and stat-gui commands. These wrap-
pers set appropriate paths for the launchmon and mrnet_commnode executables,
based on the --with-launchmon and --with-mrnet configure options, thus it is
important to specify both of these even if they share a prefix.

STAT will try to build the GUI by default. Building and running the STAT GUI re-
quires SWIG and pygtk. If you need to modify your PYTHONPATH envirnment
variable to search for side installed site-packages, you can do this by specifying
STAT_PYTHONPATH=path during configure. This will add the appropriate direc-
tory to the SPYTHONPATH environment variable within the stat-gui script. To
disable the building of the GUI, use the --enable-gui=no configure option.

On BlueGene systems, be sure to configure --with-bluegene. This will enable the
BGL macro for BlueGene specific compilation. It is important to note that on Blue-
Gene systems, you may need to use an alternate hostname for the front-end node
in order to get MRNet to bind to the appropriate network interface that can com-
municate with the I/O nodes. By default, STAT will append "-io" to the hostname.
Alternatively, you can specify the hostname with the STAT_FE_HOSTNAME en-
vironment variable.

To compile on Cray systems runnig alps, you no longer need to specify
--with-cray-alps. An example configure line for Cray:

./configure —--with-launchmon=/tmp/work/lee218/install \
—-—with-mrnet=/tmp/work/lee218/install \
--with—-graphlib==/tmp/work/lee218/install \
—-with-stackwalker=/tmp/work/lee218/install \
—-with-libdwarf=/tmp/work/lee218/install \
—-prefix=/tmp/work/lee218/install \

MPICC=cc MPICXX=CC MPIF77=ftn --enable-shared LD=/usr/bin/1ld

Note that specifying LD=/usr/bin/1d may be required on Cray systems to
avoid using the compute node linker. It is also worth noting that Cray includes a
build of STAT as part of their system software stack. It is typically installed in
/opt/cray/stat and can be loaded via modules.

After running configure you just need to run:

make
make install

Note that STAT hardcodes the paths to its daemon and filter shared object, assum-
ing that they are in $prefix/bin and $prefix/lib respectively, thus testing should
be done in the install prefix after running make install and the installation direc-
tory should not be moved. The path to these components can, however, be over-
ridden with the --daemon and --filter arguments. Further, the STAT_PREFIX
environment variable can be defined to override the hardcoded paths in STAT.
STAT will also, by default, add rpaths to dependent libraries. This behavior can
be disabled by specifying --with-rpath=no. However, when doing so, you must
be sure to set LD_LIBRARY_PATH to point to the directories containing the de-
pendent libraries.

STAT can also be configured to use GDB as a backend instead of DynlInst. To
specify the path to gdb, use the ——with-gdb flag. Note that STAT currently still
requires DynlInst as a dependence even when using the GDB backend.

Notes

N o G »h =

http:/ /www.python.org/

http:/ /www.pygtk.org/

https:/ /pypi.org/project/xdot/

http:/ /www.swig.org/

http:/ /pygments.org/

http:/ /www.graphviz.org/
https://github.com /LLNL /FastGlobalFileStatus

Chapter 4. Installing STAT

13

Chapter 4. Installing STAT

14

Chapter 5. Using the stat-cl Command

Description

STAT (the Stack Trace Analysis Tool) is a highly scalable, lightweight tool that
gathers and merges stack traces from all of the processes of a parallel application.
After running the stat-cl command, STAT will create a stat_results directory in
your current working directory. This directory will contain a subdirectory, based
on your parallel application’s executable name, with the merged stack traces in
DOT format.

stat-cl Options

-a, --autotopo

let STAT automatically create topology.

-f, --fanout width
Sets the maximum tree topology fanout to width. Specify nodes to launch
communications processes on with ——nodes.

-d, --depth depth
Sets the tree topology depth to depth. Specify nodes to launch communica-
tions processes on with -—nodes.

-z, --daemonspernode num

Sets the number of daemons per node to num.

-u, --usertopology topology
Specify the number of communication nodes per layer in the tree topology,
separated by dashes, with topology. Specify nodes to launch communica-
tions processes on with --nodes. Example topologies: 4, 4-16, 5-20-75.

-n, --nodes nodelist
Use the specified nodes in nodelist. To be used with --fanout, -—depth, or
--usertopology. Example nodes lists: host1; host1,host2; host[1,5-7,9].

-N, --nodesfile rilename
Use the file rilename, which should contain the list of nodes for communi-
cation processes

-A, --appnodes
Allow tool communication processes to be co-located on nodes running ap-
plication processes.

-x, ——exclusive

Do not use the front-end or back-end nodes for communication processes.

-P, —-pYOCSs processes

Sets the maximum number of communication processes to be spawned per
node to processes. This should typically be set to a number less than or
equal to the number of CPU cores per node.

j, —jobid id

Append id to the output directory and file prefixes. This is useful for associ-
ating STAT results with a batch job.

15

Chapter 5. Using the stat-cI Command

16

-1, --retries count

Attempt count retries per sample to try to get a complete stack trace.

-R, --retryfreq frequency
Wait frequency microseconds between sample retries. To be used with the
--retries option.

-P, --withpc

Sample program counter values in addition to function names.

-m, --withmoduleoffset

Sample module offset only.

-1, --withline

Sample source line number in addition to function names.

-0, --withopenmp

Translate OpenMP stacks to logical application view

-c, --comprehensive
Gather 5 traces: function only; module offset; function + PC; function + line;
and 3D function only.

-U, --countrep
Only gather edge labels with the task count and a single representative. This
will improve performance at extreme (i.e., over 1 million tasks) scales.

-w, --withthreads

Sample stack traces from helper threads in addition to the main thread.

-H, --maxdaemonthreads count

Allow sampling of up to count threads per daemon.

-y, --withpython
Where applicable, gather Python script level stack traces, rather than show
the Python interpreter stack traces. This requires the Python interpreter be-
ing debugged to be built with -g and preferrably -O0.

-t, --traces count

Gather count traces per process.

-T, —-tracefreq frequency
Wait frequency milliseconds between samples. To be used with the
—-—traces option.

-S, --sampleindividual
Save all individual samples in addition to the 3D trace when using —-traces
option.

-C, --create arg_1list

Launch the application under STAT’s control. All arguments after -C are used
to launch the app. Namely, arg_1ist is the command that you would nor-
mally use to launch your application.

-1, --serial arg_list

Attach to a list of serial processes. All arguments after -I are interpreted as
processes. Namely, arg_1ist is a white-space-separated list of processes to
attach to, where each process is of the form [exe@][hostname:]PID.

Chapter 5. Using the stat-cl Command

-D, --daemon path
Specify the full path path to the STAT daemon executable. Use this only if
you wish to override the default.

-F, -filter path
Specify the full path path to the STAT filter shared object. Use this only if
you wish to override the default.

-s, —-sleep time
Sleep for time seconds before attaching and gathering traces. This gives the
application time to get to a hung state.

-1, -log

[FE | BE | cP]

Enable debug logging of the FE frontend, BE backend, cP communication
process, sw Stackwalker, swERR Stackwalker on error. Multiple log options
may be specified (i.e., -1 FE -1 BE).

-L, --logdir 1og_directory
Dump logging output into log_directory. To be used with the --1og op-
tion.

-M, --mrnetprintf
Use MRNet’s printf for STAT debug logging.

-X, --dysectapi session

Run the specified DySectAPI session.

-b, --dysectapi_batch secs

Run the specified DySectAPI in batch mode. Session stops after secs seconds
or detach action.

-G, --gdb
Use (cuda-)gdb to drive the daemons. If you are using cuda-gdb and want
stack traces from cuda threads, you must also explicitly specify -w.

-Q, --cudaquick

When using cuda-gdb as the BE, gather less comprehensive, but faster cuda
traces. Cuda frames will only show the top of the stack, not the full call path.
This also defaults to display filename and line number and will not resolve
the function name.

STAT Usage Example
The most typical usage is to invoke STAT on the job launcher’s PID:

% srun mpi_application argl arg2 &
[1] 16842
% ps

PID TTY TIME CMD
16755 pts/0 00:00:00 bash
16842 pts/0 00:00:00 srun
16871 pts/0 00:00:00 ps

% stat-cl 16842

17

Chapter 5. Using the stat-cI Command

18

You can also launch your application under STAT’s control with the -c option.
All arguments after -c are used for job launch:

o

% stat-cl -C srun mpi_application argl arg2

With the -a option (or when automatic topology is set as default), STAT will try to
automatically create a scalable topology for large scale jobs. However, if you wish
you may manually specify a topology at larger scales. For example, if you're run-
ning on 1024 nodes, you may want to try a fanout of sqrt(1024) = 32. You will need
to specify a list of nodes that contains enough processors to accommodate the
ceil(1024/32) = 32 communication processes being launched with the —-nodes
option. Be sure that you have login permissions to the specified nodes and that
they contain the mrnet_commnode executable and the STAT_FilterDefinitions.so
library.

% stat-cl --fanout 32 --nodes atlas[l1-4] --procs 8 16482

Upon successful completion, STAT will write its output to a stat_results directory
within the current working directory. Each run creates a subdirectory named after
the application with a unique integer ID. STAT’s output indicates the directory
created with a message such as:

Results written to /home/user/bin/stat_results/mpi_application.6

Within that directory will be one or more files with a .dot extension. These .dot
files can be viewed with stat-view.

Chapter 6. Using the stat-view GUI

Description

stat-view (Figure 6-1) is a GUI for viewing STAT-outputted dot files. stat-view
provides easy navigation of the call prefix tree and also allows manipulation of
the call tree to help focus on areas of interest. Each node in the STAT call prefix
tree represents a function call and the directed edges denote the calling sequence.
Further, the edges are labeled by the set of tasks that have taken that call path. For
simplification, stat-view will display the number of tasks in the set and truncate
long task lists in the main display with "..." notation. Similarly, long function node
label names will be truncated with "..." notation. The truncation length can be
modified via the File->Preferences menu (this requires clicking the Layout button
to rerender any already loaded graphs). Nodes are colored based on the set of
tasks of the incoming edge, providing a visual distinction when different tasks
take different branches.

The stat-view GUI also allows you to view the application source files in the stack
traces, when sampling is done at the source file and line number granularity. This
may require the source file’s path to be added to the search path, through File -
> Add Search Paths. If an application’s source code is edited after STAT is run,
the line numbers shown in the stack traces may not be accurate. To alleviate this
problem, STAT can optionally cache the source files for the currently displayed
.dot file. To cache files click on the File -> Add Search Paths menu item. This will
find and save the source files in the .dot file’s stat_results directory. The next time
you open the .dot file with stat-view, the source files will automatically be loaded
from the cache.

19

Chapter 6. Using the stat-view GUI

K () sTATview <@rzmerll>
File Edit View Help

& P (W] e —_—
8 B 9 ¢ @@ @ & T ¥ ¥ % & H wm wm g @
Open SaveAs Undo Redo Reset Layout Cut Join EqC Path Path Tasks Tasks TO TO Search EqC Toat
01_mpi_ringtopo.0151.2D.dot ‘
/T -Command History—
14:(0,3-15]
Join Equivalence Class
Collapse
Collapse Depth
Hide
Expand
Expand All 13:3.15)
‘ S
intra_shmerm_Bar View Source | intra_shmem_Barrier@intra_fns
Translate
Temporally Order Children Lz[l}]

Figure 6-1. A screenshot of the stat-view GUI.

The stat-view Node Menu

By left clicking on a node in the call prefix tree you will get a window displaying
the full list of tasks and the full frame label (Figure 6-2). This window also con-
tains buttons that allow for the manipulation of the graph from that node. Right
clicking on a node provides a pop-up menu with the same options. Note all of
these operations are performed on the current visible state of the call prefix tree.

20

Chapter 6. Using the stat-view GUI

X) Node <@rzmerl1>
Stack Frame:

14 Total Tasks:
0, 3-15

P Advanced

Join
Equivalence Collapse
Class

Expand Focus View
All Source

Collapse

Depth Hide Expand

Figure 6-2. The node pop-up window

The node operations are defined as follows:

Advanced
Display the full node and edge attributes.

Join Equivalence Class
collapses all of the descendent nodes with the same equivalence class into
the current node and renders in a new tab.

Collapse
hide all of the descendents of the selected node.

Collapse Depth
collapse the entire tree to the depth of the selected node.

Hide
the same as Collapse, but also hides the selected node.

Expand

show (unhide) the immediate children of the selected node.

Expand All
show (unhide) all descendents of the selected node.

Focus

hide all nodes that are neither ancestors nor descendents of the selected
node. (Note: This will not unhide any hidden ancestors.)

View Source

creates a popup window (Figure 6-3) displaying the source file (only for stack
traces with line number information). This may require the source file’s path
to be added to the search path, through File -> Add Search Paths.

Translate

For traces with module and offset granularity, this button will translate all
node labels into source file and line number information and open the re-
sulting graph in a new tab.

Temporally Order Children

(prototype only) determine the temporal order of the node’s children (only
for stack traces with line number information). Requires the source file’s path
and all include paths to be added to the search path, through File -> Add
Search Paths.

21

Temporally
Order
Children

oK

Chapter 6. Using the stat-view GUI

OK

closes the pop-up window.

A () Source View /g/g0/lee218/src/STAT/examples/src/mpi_ringtopo.c —— > = &)
mpi_ringtopo.c

v | UU_RELELVELRIEY, Ly, GLUILU), s1eysiu]); @
-041\ do_SendOrStall(next, tag, rank, &buf[1], &reqs[1], numtasks);
===042| MPI_Waitall(z, reqgs, stats);

043 |
Bo44| MPI_Barrier(MPL_COMM WORLD) ;

045 MPI_Finalize();

046 return 0;

047] }

048

049| void do_SendOrStall{int to, int tag, int rank, int* buf, MPL_Request* req, int n)

850] {

051] int 1i;

052] if (rank == 1)

053]

054 if (sleeptime == -1)

55|

656 printf("ss, MPI task %d of %d stalling\n", hostname, rank, n);

057 fflush(stdout);
B=Sos5s| while(1) ;

059 }

ol euse g
=] m | E|

Figure 6-3. The source view window. The colored arrows correspond to the
nodes in the call prefix tree.

The stat-view Toolbar

22

The main window also has several tree manipulation options (Figure 6-4). Note
the initial click of a traversal operation operates on the original call prefix tree,
while the remaining operations are performed on the current visible state of the
call prefix tree.

Open SaveAs Undo Redo Reset Layout Cut Join EqC Path Path Tasks Tasks TO TO Search EqC

Figure 6-4. The stat-view tree manipulation toolbar.

The toolbar operations are defined as follows:

Open
Open a STAT generated .dot file

Save As

Save the current graph in .dot format, which can be displayed by stat-view
or in an image format, such as PNG or PDF, which can be viewed on any
computer with an image viewer

Undo

Undo the previous operation

Redo

Redo the undone operation

Reset
Revert to the original graph

Layout

Reset the layout of the current graph and open in a new tab. This is useful
for compacting wide trees after performing some pruning operations.

Chapter 6. Using the stat-view GUI

Cut

This feature (Figure 6-5) allows you to collapse the prefix tree below
the implementation frames for various programming models. For
instance, a user may wish to hide all calls that happen within
the MPI library. The programming models may be entered in
a configuration file or added by the wuser. STATview looks for
configuration files in $prefix/etc/STAT/STATview_models.conf and in
$HOME/.STATview_models.conf. Programming models are specified as
regular expressions, using Python’s re module syntax, and the re.search
function is used in favor of re.match.

* (© Hide Programming Model Frames & @ ®@
Programming Models

Click |Programming | Case

to hide Model Sensitive Regey

| ﬂ| Pthreads ~pthread_[a-zA-Z];

| ﬂ| MPI L] ~prmpi_[a-zA-Z];
3

| Add Model /| Remove Model |

| Done |

Figure 6-5. The stat-view programming model cutting interface.

[Cut] MPI

Collapse the MPI implementation frames below the MPI function call.

[Cut] Pthreads
Collapse the Pthread implementation frames below the Pthread function
call.

Join
Join consecutive nodes of the same equivalence class into a single node and
render in a new tab. This is useful for condensing long call sequences.

[Traverse] Eq C
Traverse the prefix tree by expanding the leaves to the next equivalence class
set. The first click will display the top-level equivalence class.

[Traverse Longest] Path
Traversal focus on the next longest call path(s). The first click will focus on
the longest path.

[Traverse Shortest] Path
Traversal focus on the next shortest call path(s). The first click will focus on
the shortest path.

[Traverse Least] Tasks
Traversal focus on the path(s) with the next least visiting tasks. The first click
will focus on the path with the least visiting tasks.

[Traverse Most] Tasks

Traversal focus on the path(s) with the next most visiting tasks. The first click
will focus on the path with the most visiting tasks.

23

Chapter 6. Using the stat-view GUI

24

[Traverse Least] TO

Temporal Order traversal focus on the path(s) that have made the least exe-
cution progress in the application. The first click will focus on the path that
has made the least progress.

[Traverse Most] TO

Temporal Order traversal focus on the path(s) that have made the most exe-
cution progress in the application. The first click will focus on the path that
has made the most progress.

Search

Search for call paths containing specified text, taken by specified tasks, or
from specified hosts. Search text may be a regular expression, using the syn-
tax described in http:/ /docs.python.org/library /re.html.

[Identify] Eq C

Identify the equivalence classes of the visible graph. After clicking on this
button, a window will pop up showing the complete list of equivalence
classes.

Chapter 7. Using the stat-gui GUI

Description

STAT includes a graphical user interface (GUI) to run STAT and to visualize
STAT’s outputted call prefix trees (Figure 7-1). This GUI provides a variety of
operations to help focus on particular call paths and tasks of interest. It can also
be used to identify the various equivalence classes and includes an interface to
attach a heavyweight debugger to the representative subset of tasks.

KO sTar —0 — 00 ®
Ele Edit View Help
Open SaveAs Undo Redo Reset Layout Cut Join EqC Path Path Tasks Tasks T0

12_mpi_ringtopo.0079.3D.dot
Command History

Attach Hide Model: MPI

Arspn
O Search EqC e

=

=~

[2048:(0-2047]

_start@?

[2048:(0-2047]

_libc_start_main@libc-start.c:226

204610,3-2047]

main@mpi_ringtopo.c:44

2046:(0,3-2047]

PMPI_Barrier@barrier.c:70

main@mpi_ringtopo.c:41

do_SendOrStall@mpi_ringtopo.c:58

Figure 7-1. A screenshot of the STAT GUI

stat-gui Options
-a, —-attach [hostname:]PID
Attach to the parallel job with resource manager [hostname:]PID.
-P, --withpc
Sample program counter values in addition to function names.
-m, --withmoduleoffset
Sample module offset only.
-i, --withline
Sample source line number in addition to function names.
-0, --withopenmp
Translate OpenMP stacks to logical application view

-U, --countrep

Only gather edge labels with the task count and a single representative. This
will improve performance at extreme (i.e., over 1 million tasks) scales.

-w, --withthreads

Sample stack traces from helper threads in addition to the main thread.

25

Chapter 7.

Using the stat-gui GUI

-y, --withpython
Where applicable, gather Python script level stack traces, rather than show
the Python interpreter stack traces. This requires the Python interpreter be-
ing debugged to be built with -g and preferrably -O0.

-C, --create arg_1list

Launch the application under STAT’s control. All arguments after -C are used
to launch the app. Namely, arg_1ist is the command that you would nor-
mally use to launch your application.

-I, --serial arg_list
Attach to a list of serial processes. All arguments after -I are interpreted as
processes. Namely, arg_1ist is a white-space-separated list of processes to
attach to, where each process is of the form [exe@][hostname:]PID.

-d, --debugdaemons

launch the daemons under the deubgger

-s, —-sleep time
Sleep for time seconds before attaching and gathering traces. This gives the
application time to get to a hung state.

-1, --log

[FE | BE | cP]

Enable debug logging of the FE frontend, BE backend, cP communication
process, sw Stackwalker, swERR Stackwalker on error. Multiple log options
may be specified (i.e., -1 FE -1 BE).

-L, --logdir 10og_directory
Dump logging output into log_directory. To be used with the --1og op-
tion.

-M, --mrnetprintf
Use MRNet’s printf for STAT debug logging.

-G, —-gdb

Use (cuda-)gdb to drive the daemons. If you are using cuda-gdb and want
stack traces from cuda threads, you must also explicitly specify -w.

-Q, --cudaquick

When using cuda-gdb as the BE, gather less comprehensive, but faster cuda
traces. Cuda frames will only show the top of the stack, not the full call path.
This also defaults to display filename and line number and will not resolve
the function name.

The stat-gui GUI Toolbar

26

In addition to the operations provided by stat-view, stat-gui provides a toolbar
(Figure 7-2) to control STAT’s operation.

Chapter 7. Using the stat-gui GUI

-4

Attach
ReAttach

<|
Detach

Pause

Resume

=
%

Sample

@,

Sample
Multiple

Figure 7-2. The STAT GUI toolbar.

Attach

Attach to your application and gather an initial sample.

ReAttach

Reattach to the parallel application and gather an initial sample.

Detach

Detach from your application.

Pause

Put the application in a stopped state.

Resume

Set the application running.

Sample
Gather and merge a single stack trace from each task in your parallel appli-
cation. The application is left in a stopped state after sampling.

Sample Multiple

Gather and merge multiple stack traces from each task in your parallel ap-
plication over time. The application is left in a stopped state after sampling.

Sample Options

STAT has several options for stack trace sampling (Figure 7-3).

27

Chapter 7. Using the stat-gui GUI

28

A () stack Sample Preferences <@rzwiz5>- () (=) @

Per Sample Options
+ With Threads

Max Threads Per Daemon 512
4 With OpenMP

+ With CUDA Quick

+ Gather Python Traces

Stack Frame (node) Sample Options
function only
function and pc
module offset
) function and line
Process Set (edge) Sample Options
o) full list
count and representative

Run Time Before Sample (sec)| 0 =

~ Advanced

Num Retries 5 : Retry Frequency (us) 10
Multiple Sample Options
Nurm Traces| 10 : Trace Frequency (ms) 1000

Gather Individual Samples
+ Clear On Sample

Cancel oK

Figure 7-3. The stat-gui operation toolbar.

These options are defined as follows:

With Threads
Sample helper threads in addition to the main thread.

Max Threads Per Daemoncount

Allow sampling of up to count threads per daemon.

With CUDA Quick

When using cuda-gdb as the BE, gather less comprehensive, but faster cuda
traces. Cuda frames will only show the top of the stack, not the full call path.
This also defaults to display filename and line number and will not resolve
the function name.

With OpenMP

Translate OpenMP stacks into logical application view (requires application
built with OMPD-enabled OpenMP)

Gather Python Traces

Where applicable, gather Python script level stack traces, rather than show
the Python interpreter stack traces. This requires the Python interpreter be-
ing debugged to be built with -g and preferrably -O0.

function only | module offset | function and pc | function and line

Sample traces with function name only, or module name and offset, or func-
tion name with the CPU program counter, or function name with the source
file and line number. When gathering the module and offset, you can later
translate all of the node labels into source file and line number via the GUI
(left or right click on a node).

full list | count and representative

Sample traces with the full task list or just the count and a single representa-
tive. When gathering the count and representative, you can actually query an
individual STAT graph node (through the left-click menu) for the full edge
label, as long as the STAT session is still attached.

Chapter 7. Using the stat-gui GUI

Run Time Before Sample

Resume the application and let it run for the specified amount of time before
gathering the sample

Retries/Retry Frequency (Advanced)

Sometimes a process may be in a state (i.e., function prologue or epilogue)
such that a complete stack trace may not be obtainable. This option controls
how many times to retry sampling and how often to wait (in microseconds)
between retries to try and get a complete trace.

Traces/Trace Frequency

When sampling multiple traces over time, these options specify how many
traces to gather per process and how long to wait between samples.

Gather Individual Samples

When sampling multiple traces over time, this option enables STAT to gather
all of the intermediate 2D prefix trees in addition to the fully merged 3D
prefix tree. The traces will be displayed in individual tabs.

Clear On Sample

When sampling multiple traces over time, STAT accumulates the traces that
are gathered. This option determines whether to clear the accumulated traces
when gathering additional traces.

Process Table

The application process table can be accessed through the stat-gui
File->Properties menu item. This window (Figure 7-4) lists the properties of the
application, including the number of nodes, processes, the job launcher host and
PID and a 4-tuple list of application process rank, host, PID, and executable. The
executable path in the 4-tuple is an index into the executable list at the top of the
window in order to reduce duplication of text. The 4-tuple process table list can
be filtered by ranks or hosts.

XK (O Properties <@hype201>
Application Executable(s) (index:path)
0:/collabjusr/globaliteols/stat/chacs_5_x86_64_ib/stat-test/share/STAT/examples/bin/mpi_ringtopo)

Number of application nodes
128

Number of application processes
2048

Job Launcher (host:PID)
hype201:7281

Filter Ranks I] Filter Ranks

Filter Hosts [l Filter Hosts
Process Table (rank host:PID exe_index) —
Rank |Host |PID EXE H
hype201 7373 0

hype201 7374
hype201 7375
hype201 7376
hype201 7377
hype201 7378
hypez201 7379
hype201 7380
hype201 7381
hype201 7382
hype201 7383
hype201 7384
hype201 7385
hype201 7386
hypez201 7387
hype201 7388

[. I S YR R

[
B W N E o
T R O == R R R R

P
T

Figure 7-4. The properties window shows the application properties and lists
the individual application processes.

29

Chapter 7. Using the stat-gui GUI

Equivalence Classes and Subset Debugging

stat-gui can also serve as an interface to attach a full-featured debugger such as
TotalView or DDT to a subset of application tasks. This interface can be accessed
through the "identify equivalence classes" Eq C button, which will pop up the
equivalence classes window (Figure 7-5). You can then select a single represen-
tative, all, or none of an equivalence classes’ tasks to form a subset of tasks. The
Attach to Subset buttons will launch the specified debugger and attach to the
subset of tasks (note, this detaches STAT from the application). The Debugger
Options button allows you to modify the debugger path.

A () Equivalence Classes <@hype201> —— @ (3]

3 Equivalence Classes:

Rep All None tasks

O O selectall

@ o o H

® O o [@003:2047]
[

Manually Specify Additional Tasks:

Attach TotalView Attach DDT Debugger Cancel
to Subset to Subset Options

Figure 7-5. The equivalence classes window. The colored task lists correspond
to the nodes in the prefix tree.

Availability

30

STAT has been ported to Linux x86 clusters, IBM BlueGene systems, CORAL
and CORAL EA systems, Cray systems, and Intel Xeon Phi systems. It can be

run against various resource managers, including SLURM, OpenMPI’s OpenRTE,
and Intel MPI's mpiexec.hyrdra.

Chapter 8. Setting STAT Preferences and Options

Preference Files

Several files can influence how STAT runs. The first such file is
$prefix/etc/STAT /nodes.txt, which specifies a list of hostnames, one hostname
per line, on which to launch MRNet communication processes. This file is
designed to be shared by all users and should point to shared resources that all
users have remote shell access to, such as login nodes. Note that by default STAT
will not test access to a node before trying to launch communication processes. If
the STAT_CHECK_NODE_ACCESS environment variable is set to any value,
then STAT will try to run (via remote shell) a simple test to see if the node is
accessible before adding it to the MRNet tree. Also note that nodes.txt will not
be used if the -A or "Share App Nodes" option is enabled.

STAT GUI preferences can be set with an installation specific STAT.conf or
user specific .STATrc file. The installation specific file should be placed in
$prefix/etc/STAT/STAT.conf, while the user specific file should be placed in
$HOME/.STATrc. Options specified in the user’s .STATrc file will always take
precedence over the STAT installation’s .STATrc file. Each preference file
specifies one option per line of the format:

Option = Value

Here is a list of options:

Remote Host = hostname
Sets the default remote host to hostname to search for the job launcher pro-
cess.

Remote Host Shell = rsh/ssh
Sets the default remote host shell to rsh or ssh to get a process listing on
remote hosts.

Resource Manager = Auto/Alps/Slurm
Sets the default resource manager to A1ps or Slurm for searching for the job
launcher process, or use Auto to determine the resourece manager automat-
ically.

]Ob Launcher = regex
Sets the default regular expression to regex (i.e., "mpirun | srun") for filtering
the process listing for the job launcher process.

Tool Daemon Path = path
Use the STAT deamon executable installed in path instead of the default.

Filter Path = path
Use the STAT filter shared object installed in path instead of the default.

TOpOlOgy Type = automatic/depth|max fanout |custom
Use the specified topology type when building the MRNet communication
tree. The automatic topology is typically recommended and set by default.
TOpOlOgy = topology

Use topology for the specific topology configuration. This should be used
with the Topology Type option. Refer to the stat-cl options to see valid Topol-
ogy specifications for a given Topology Type.

Communication Nodes = nodelist

Use the nodes listed in node1ist for MRNet communication processes.

31

Chapter 8. Setting STAT Preferences and Options

32

Check Node Access = true/false
Controls whether to check access to a node before trying to launch MRNet
communication processes on it.

Cp policy = none/share app nodes|exclusive

Controls where to launch communication processes. When set to share app
nodes, they will be launched on nodes running application processes. On
BlueGene systems, this will actually place them on the I/O nodes, and re-
quires users to be able to access the I/O nodes via a remote shell. When set
to exclusive, then the communication processes will only be run on speci-
fied nodes that do not run other STAT tool processes (e.g., the STAT frontend
and the back-end daemons).
Communication Processes per Node = count

Launch no more than count MRNet communication processes per node.

Num Traces = count

Gather count stack traces when sampling multiple.

Trace Frequency (ms) = count

Let the process run count milliseconds between multiple samples.

Num Retries = count

Attempt count retries to try to obtain a complete stack trace.

Retry Frequency (ms) = count

Let the process run count milliseconds between stack sample retries.

With Threads = true/false

Controls whether to gather stack traces from threads.

With OpenMP = true/false
Controls whether to translate OpenMP stack traces to logical application
view.

Gather Python Traces = true/false

Controls whether to gather Python script level stack traces, rather than show
the Python interpreter stack traces.

Sample Type = function only/module offset|function and pc|function
and line

Controls the granularity of the nodes in the gathered stack traces.

Edge Type = full list/count and representative
Controls the granularity of the edges in the gathered stack traces.

DDT Path = path
Use the DDT executable installed in path for subset debugging.

DDT LaunchMON Prefix = path

Use the LaunchMON installation in path for improved DDT subset attach-
ing, otherwise attach via hostname:PID pairs.

TotalView Path = path
Use the TotalView executable installed in path for subset debugging.

Additional Debugger Args = args
Add args to the argument list when launching TotalView or DDT.

Chapter 8. Setting STAT Preferences and Options

Log Dir = directory
Write STAT debug logs to directory.

Log Frontend = true/false

Controls whether to enable debug logging of the STAT frontend.

Log Backend = true | false
Controls whether to enable debug logging of the STAT backend.

Log CP = true/false
Controls whether to enable debug logging of the STAT communication pro-
cesses.

Log SW = true/false
Controls whether to enable debug logging of Stackwalker by the STAT back-
end.

Log SWERR = true |false
Controls whether to enable debug logging of Stackwalker by the STAT back-
end when a Stackwalker error is detected.

Use MRNet Printf = true/ false

Controls whether to use MRNet’s printf when writing debug logs. This is
helpful to correlate timing between STAT log messages and MRNet
debug log messages, when MRNet logging is being logged (via the
STAT_MRNET_OUTPUT_LEVEL enviornment variable).

GDB BE = true | false

Controls whether to use (cuda-)gdb to drive the deamons.

With CUDA QUICK = true/false

When using cuda-gdb as the BE, controls whether to gather less comprehen-
sive, but faster cuda traces. Cuda frames will only show the top of the stack,
not the full call path. This also defaults to display filename and line number
and will not resolve the function name.

GDB Path = path

Use the gdb executable installed in path for debugging when GDB BE is set
to true.

Loading and Saving Preferences

Options from a STAT session can be saved to a preferences file that can be loaded
on subsequent sessions. This can be accessed through the File -> Load Prefer-
ences and File -> Save Preferences menu items.

Environment Variables

Several environment variables influence STAT and its dependent packages. Note
that dependent package environment variables are prefixed with "STAT_" to
avoid conflict with other tools using that package. The STAT process will then
set the appropriate (i.e., without "STAT_") environment variable to pass the
value to the dependent package.

33

Chapter 8. Setting STAT Preferences and Options

34

STAT_PREFIX=directory

Use directory as the installation prefix instead of the compile-time
STAT_PREFIX macro when looking for STAT components and configuration
files.

STAT_CONNECTION_TIMEOUT=t ime

Wait time seconds for daemons to connect to MRNet. Upon timeout, run
with the available subset.

STAT DAEMON_PATH=path

Use the STAT daemon executable path instead of the default. path must be
set to the full path of the STATD executable.

STAT_FILTER_PATH=path

Use the STAT filter shared object path instead of the default. path must be
set to the full path of the STAT_FilterDefinitions.so shared object file.

STAT_FGFS_FILTER_PATH=path

Use the STAT FGFS filter shared object path instead of the default. path must
be set to the full path of the STAT_FilterDefinitions.so shared object file.

STAT_MRNET_OUTPUT_LEVEL=1level
Enable MRNet debug logging at 1evel (0-5).

STAT_MRNET_PORT_BASE=port
Set the MRNet base port number to port.

STAT _MRNET _STARTUP_TIMEOUT=seconds

Set the MRNet connection timeout to seconds.

STAT CONNECT _TIMEOUT=seconds

Set the STAT connection timeout to seconds, after which STAT will try to
continue with any subset of daemons that have connected.

STAT_MRNET_DEBUG_LOG_DIRECTORY=directory
Write MRNet debug log files to directory.

STAT_OUTPUT_REDIRECT_DIR=directory

Redirect stdout and stderr to a set of hostname specific files in directory.

STAT _MRN_COMM_PATH=path

Use the mrnet_commnode executable path. path must be set to the full
path of the mrnet_commnode executable. (Deprecated along with MRNet’s
MRN_COMM_PATH)

STAT MRNET COMM_PATH=path

Use the mrnet_commnode executable path. path must be set to the full path
of the mrnet_commnode executable.

STAT XPLAT_RSH=path

Use the remote shell path for launching mrnet_commnode processes.

STAT_PROCS_PER_NODE=count

Allow up to count communication processes to be launched per node.

Chapter 8. Setting STAT Preferences and Options

STAT_FE_HOSTNAME=value

Set the STAT Front End hostname to vailue. This may be necessary for ex-
ample on BlueGene systems to use the proper network interface for the I/O
nodes to connect back to.

STAT_CHECK_NODE_ACCESS=value

Set to any value to have STAT check user access to any specified nodes before
launching communication processes.

STAT_GROUP_OPSZ value

Set to any value to enable Stackwalker’s group operations. Group operations
may help with performance when a single daemon needs to manage a large
number of target processes. This is on by default on BG/Q systems.

STAT_LMON_PREFIX=path
Sets the LaunchMON installation prefix to path.

STAT_LMON_LAUNCHMON_ENGINE_PATH=path

Use the launchmon executable path. path must be set to the full path of the
launchmon executable.

STAT LMON_REMOTE_LOGIN=command
Use the remote shell command for LaunchMON remote debugging.

STAT_LMON_DEBUG_BES=value

Launch the backends under a debugger’s control if value is set (must be
enabled in LaunchMON configuration).

STAT _USAGE_LOG=path

Record usage of STAT in the file located in path. path must be writeable by
user.

STAT_ADDR2LINE=path

Use the addr2line utility located in path to translate module and offset prefix
trees in the stat-view GUI.

STAT_GDBZ path
Use the gdb located in path to drive the daemons.

35

Chapter 8. Setting STAT Preferences and Options

36

Chapter 9. Prescription-Based Debugging With Prototype
DySectAPI

Overview

Debugging is a critical step in the development of any parallel program. How-
ever, the traditional interactive debugging model, where users manually step
through code and inspect their application, does not scale well even for current
supercomputers due its centralized nature. While lightweight debugging models,
such as STAT, scale well, they can currently only debug a subset of bug classes.
We therefore propose a new model, which we call prescriptive debugging, to fill
this gap between these two approaches. This user-guided model allows program-
mers to express and test their debugging intuition in a way that helps to reduce
the error space.

We have implemented a prototype implementation embodying the prescriptive
debugging model, the DySectAPl, allowing programmers to construct
probe trees for automatic, event-driven debugging at scale. The DySectAPI
implementation can run with a low overhead.

The traditional debugging paradigm has survived because it provides the rudi-
mentary operations that a user needs to effectively reduce the error search space.
In a typical debug session, a user first sets a breakpoint at a particular code lo-
cation. Once that breakpoint is triggered, the user will evaluate the state of the
application and subsequently set another breakpoint, perhaps on a subset of pro-
cesses that satisfy certain conditions. This process is then repeated until the bug
is isolated.

Our new prescriptive debugging model aims to capture the flexibility and gen-
erality of this interactive process, but allow users to codify individual steps and
sequences in the form of debug probes that can then be executed without the need
for individual interactions between debugger and user. Essentially, the prescrip-
tive debugging model provides the means for a user to codify their debugging
intuition into prescribed debug sessions. The application can then be submitted
into the system’s batch queue to be run under that debug session.

At runtime, the debugger follows the user’s intuition by executing the debug
probes and, at the end, scalably gathers summary information that can be exam-
ined by the user during the execution or at their convenience after the job has
completed. Our prescriptive parallel debugging model is built upon the notion
of probes that can be linked together into a probe tree. A probe itself is composed
of a domain, events, conditions, and actions as defined below.

The domain is the set of processes to install a probe into. It also includes a synchro-
nization operation that determines how long the probe should wait for processes
in the domain before proceeding. More precisely, after the first process triggers a
probe, the remaining processes have until some specified timeout to participate.

We define an event as an occurrence of interest. Events borrowed from traditional
debuggers include breakpoints, which specify a code location (when reached,
the debugger will stop the target process) and data watchpoints, which monitor
particular variables, memory locations or registers. An event can also be a user-
defined timeout that instructs a probe to be triggered after some elapsed amount
of time. Events can also capture asynchronous occurrences such as a program
crash, a signal being raised or a system-level event such as memory exhaustion.

These events allow programmers to express their debugging in terms of a set of
procedures and in terms of code behaviors (e.g., on detecting a hang or slow-
ness). Further, individual events can also be composed together to enable ad-
vanced fine-grained event selection. When an event occurs, its associated con-
dition is evaluated. The condition is an expression that can be evaluated either
locally on each backend or globally across the domain. A local condition may,
for instance, check if a variable equals a particular value. A global condition can
evaluate an aggregated value, such as minimum, maximum or average, across
the entire domain. Conditions can also be composed to specify multiple variables
of interest or to combine local and global evaluations.

37

Chapter 9. Prescription-Based Debugging With Prototype DySectAPI

If the condition is satisfied, the probe is said to be triggered, and the specified
actions are executed. Probe actions can be formulated by the user as an aggre-
gation or a reduction, for example, aggregated messages, merged stack traces
or the minimum and maximum of a variable. A probe can optionally include a
set of child probes, which is enabled upon the satisfaction of the parent probe’s
condition. In this manner, a user can create a probe tree. A probe tree naturally
matches the control-flow traversal that is typical of an interactive session with a
traditional debugger. This can effectively narrow down the search space across
the source-code dimension.

Installation

Usage

38

The DySectAPI comes included in STAT’s source code. It can be built by turning
on the —-enable-dysectapi configure flag. DySectAPI requires DynlInst library,
which can be specified with the --with-stackwalker=path configure option.

A DySectAPI probe session is constructed as a C++ program. You will need to
include the "DysectAPLh" header file, which contains the specifications for the
various DySectAPI objects and for the session routines. Your session must de-
fine a DysectStatus DysectAPI::onProcStart(int arge, char **argv) routine, which
will create and link Probe objects. This section will only cover the high-level ba-
sics of constructing a debug session. For detailed information about the various
constructs, you may refer to the header files or the reference guide.

A Probe consists of an Event, Condition, Domain, and an Action or list of Actions.
Various Probe signatures exist, so not all components are required. Probes can be
linked into a tree with the Probe::link(Probe *) routine. Probe tree roots can be
enabled via the Probe::setup() routine.

An Event is an occurence of interest. DySectAPI defines several event types: Loca-
tion; Timer; Async. Furthermore, Events can be combined with And, Or, and Not
releations. A Location, essentially a debugger breakpoint, specifies where to in-
stall a probe. DySectAPI supports three location specifications: a function name;
a source file and line number; or a program counter address. A Location can also
be marked as pending, which informs DySectAPI that the probe should not be
enabled until the parent probe has been triggered. A Timer specifies a timeout pe-
riod to wait before triggering the Probe. An Async can be various asynchronous
events, such as a signal, crash, or process exit.

A Condition specifies the circumstances under which a probe is to be triggered.
Most conditions evaluate a data expression, such as whether a specified variable
equals a certain value or falls within a given range. Conditions can be combined
with And, Or, and Not relations.

The Domain specifies the set of processes within which to install a probe. The sup-
ported domains are World (i.e., all processes), a rank-specified Group, or Inherit
(from the parent probe). A Domain can also specify a timeout, which indicates
the amount of time to wait after the first process encounters the probe’s event
before proceeding.

An Action indicates what to do once a probe has been triggered. The currently
implemented Actions are: trace, null, totalview, depositCore, signal, loadLibrary,
irpc, writeModuleVariable, stat, detach, detachAll, stackTrace, fullStackTrace,
startTrace, stopTrace. The trace action prints out an aggregated trace message.
The totalview action detaches DySectAPl from the target processes that
triggered the probe and attaches the TotalView debugger to that set of processes.
The depositCore action, which requires the libdepositcore library, causes the
triggering processes to dump a core file. The signal action sends the specified
integer signal to the triggered processes. The loadLibrary action loads the
specified shared library into the triggered processes. The irpc action will invoke
a function within the target processes. the writeModuleVariable action will
modify the contents of a variable. The stat action will gather a Stack Trace

Chapter 9. Prescription-Based Debugging With Prototype DySectAPI

Analysis Tool merged stack trace of the application. The detach action will
detach DySectAPI from the triggered processes, while the detachAll action
will detach DySectAPI from all application processes. The stackTrace and
fullStackTrace actions will print an aggregated, text-based stack trace of the
triggered processes. The startTrace and stopTrace actions indicate when to start
and stop data tracing.

An example DySectAPI session can be seen below:

/* File: session.C x/
#include <DysectAPI.h>
#include <stdio.h>

/+ Single entry for debug daemon =/
DysectStatus DysectAPI::onProcStart (int argc, char xxargv) {

/* Probe creation =*/

Probex entry = new Probe (Code::location("entry(foo)"),
Local::eval ("argc >= 5"),
Domain::group("12,25,65-70", Wait::inf));

/+* Within 500 ms and call frame has not been left x/

Probex timer = new Probe (Event::And(Time::within (500),
Event: :Not (Async::leaveFrame())),
Domain::group("..", 400),
Action::trace ("Took more than 500ms to return from

foo()"));

/* Event chain =*/
entry->link (timer);

/* Setup probe tree */
entry->setup () ;

return DysectOK;

The session can be compiled with the dysectc command.

o

% dysectc session.C

You will then need to run stat-cl and specify the generated session .so file with
the stat-cl -X=path option, for example:

% stat-cl -X $PWD/libsession.so -C srun mpi_application

39

Chapter 9. Prescription-Based Debugging With Prototype DySectAPI

40

Chapter 10. Tips and Tricks Using STAT

Running STAT at scale

STAT is highly scalable and its default analysis has been shown to run effectively
on jobs even over one million MPI tasks. Even so, at extreme scales, there are sev-
eral options that may make STAT’s operation even more scalable. The first is to
specify the underlying communication tree topology. By default, the stat-cl com-
mand and stat-gui will try to deploy the automatic topology, which defaults to a
fanout of 64. STAT will, by default, try to co-locate the communication processes
on the application nodes (or associated I/O node on BG systems). To avoid the
default co-location option for the stat-cl script (remove the -a option). For the
stat-gui GUI, create a preferences file and specify an alternative cP policy op-
tion. Refer to the options sections to learn about more topology options.

Typically, STAT launches one debug daemon per node. This can become a bot-
tleneck if that daemon is resposible for debugging many target processes. STAT
has a daemonspernode that allows users to request that multiple daemons be
launched per node and distribute the target processes between them. This will
help offload some of the debugging workload, however, be aware that this will
increase STAT’s memory usage per node.

Another consideration at scale is the granularity of debug information. At larger
scales, you may prefer to start with coarse-grained analysis. For example, you
may not need full task lists for the edge labels, but rather, would like to gather
edge labels with just the task count and a representative rank. Within the stat-gui
GUIL one can then request the full task list of a given edge via the left-click menu
of the desired edge’s target node. Note, with the stat-cl command, the full task
lists would not be gathered and thus would not be available for post-mortem
analysis via the stat-view GUL The count and representative granularity will re-
sult in faster sampling and smaller output-file size.

The granularity of the stack traces themselves can also be adjusted to alleviate
bottlenecks at scale. In particular, symbol resolution can be expensive, particu-
larly when gathering traces at the function and line level of granularity, but even
with the function only granularity. This can cause the many STAT daemons to
perform many file operation requests at the same time, straining the target file
system. To alleviate this issue, you may gather stack traces with the module and
offset granularity. The stat-gui and stat-view GUIs can later translate the module
and offset into function and line number via addr2line. This translation feature is
available only through a left-click of a module and offset node and will translate
the entire prefix tree. Note that the file-system bottleneck can also be mitigated
with the --with-fgfs configure option, to enable scalable file operations via the
FastGlobalFileStatus' module.

Using STAT with 10 Watchdog and SLURM

STAT can be used in conjunction with the IO Watchdog” utility, which monitors
application output to detect hangs. To enable STAT with the IO Watchdog, add
the following to the file (HOME/ .io-watchdogrc

search /usr/local/tools/io-watchdog/actions
timeout = 20m
actions = STAT, kill

You will then need to run your application with the --io-watchdog srun option:

)

% srun —--io-watchdog mpi_application

When STAT is invoked, it will create a stat_results directory in the current work-
ing directory, as it would in a typical STAT run. The outputted .dot files can then

41

Chapter 10. Tips and Tricks Using STAT

be viewed with stat-view. For more details about using IO Watchdog, refer to the
10 Watchdog README file in /usr/local/tools/io-watchdog/README.

Running STAT in a Batch Script

Notes

42

A good way to run STAT is at the end of a batch script. For example, if an applica-
tion is estimated to take 10 hours to run and 12 hours are allocated, then you may
consider your application hung if it is still running up to the 12th hour. In such a
situation, one may choose to run STAT in the last 10 minutes of the allocation to
get diagnostic information about the job.

The following example script demonstrates how one might setup STAT to catch
a hung job in a batch script.

#!/bin/sh
perform your batch script prologue/setup here

stat_wailt_time_minutes=120
application_exited=0

#run the application and get the launcher PID
srun mpi_ringtopo &
pid=$!

periodically check for application exit
for i in ‘seq ${stat_wait_time_minutes}®
do
sleep 60
ps -p ${pid}
if test $? -eq 1
then
the application exited, so we’re done!
application_exited=1
break
fi
done

if the application is still running then invoke STAT
if test ${application_exited} -eq 0
then

/usr/local/bin/stat-cl -c ${pid}

waitpid ${pid} # alternatively you may want to ‘kill -TERM ${pid}‘

fi

perform your batch script epilogue/cleanup here

Within the for loop, the script will check every minute (sleep for 60 seconds be-
tween checks) to see if the application is still running by running ‘ps’ on the PID
of the job launcher. If the application has exited, the script will break from the
loop and perform any remaining operations in the batch script. If the wait time,
120 minutes in this example, expires then STAT will be run to gather stack traces
from the application. The wait time should be set such that STAT has enough time
to run (i.e., 10 minutes to be safe) within the batch script’s allocated time. Note
the -c option to STAT gathers a "comprehensive" set of stack traces, with varying
levels of detail. After STAT completes, the script then waits for the application
to exit. Alternatively, you may want to kill the application if it isn’t making any
progress.

1. https://github.com/dongahn/FastGlobalFileStatus
2. http://code.google.com/p/io-watchdog/

Chapter 11. Using the stat-bench Emulator

Description

The Stack Trace Analysis Tool is a highly scalable, lightweight tool that gathers
and merges stack traces from all of the processes of a parallel application. stat-
bench is a benchmark that can emulate STAT’s performance. By utilizing your en-
tire parallel allocation (launching one stat-bench daemon emulator per core) and
generating artificial stack traces, stat-bench is able model STAT’s performance us-
ing less resources than an actual STAT run requires. With various options, you can
also map stat-bench to your target machine architecture and target application.
After completion, stat-bench will create a stat_results directory in your current
working directory. This directory will contain a subdirectory for the current run,
with the merged stack traces in DOT format as well as a performance results text
file. An example stat-bench generated prefix tree emulating 1M (1024*1024) tasks
can be seen in Figure 11-1.

]

1048576:[0-1048575]

y
| _ libc_start_main

1048576:[0-1048575]

B38784:(1-4,6-9,11-14,...]

629248:(0-2,5-7,10-12 ...]209664:(4,9,14,19,...] 200664:(2,7,12,17,...[%419456:[1,3.6,8,11,...]

depth1fund

419584:(0-1,5-6,10-11,...] 200664:(4,9.14,19,...] 209664:(3,8,13,18,...] Z209792:[1,6,11,16,...]

209792:[0,5,10,15,...] [209664:(3,8,13,18,

1 [09792:(1,6,11,16,..]

Figure 11-1. A stat-bench generated prefix tree emulating over 1 million tasks.

stat-bench Options

-a, --autotopo

let STAT automatically create topology.

-f, -fanout width
Sets the maximum tree topology fanout to width. Specify nodes to launch
communications processes on with —-nodes.

-d, -—depth depth

Sets the tree topology depth to depth. This option takes precedence over
the --fanout option. Specify nodes to launch communications processes on

43

Chapter 11. Using the stat-bench Emulator

44

with ——nodes.

-u, --usertopology topology

Specify the number of communication nodes per layer in the tree topology,
separated by dashes, with topology. This option takes precedence over the
-—fanout and --depth options. Specify nodes to launch communications
processes on with --nodes. Example topologies: 4, 4-16, 5-20-75.

-n, --nodes nodelist

Use the specified nodes in nodelist. To be used with ——fanout, -—depth, or
--usertopology options. Example nodes lists: host1; hostl,host2; host[1,5-
7,9].

-A, --appnodes
Allow tool communication processes to be co-located on nodes running ap-
plication processes.

-p, --procs processes
Sets the maximum number of communication processes to be spawned per
node to processes. This should typically be set to the number of CPUs per
node.

-D, --daemon path
Specify the full path path to the STATBenchD daemon executable. Use this
only if you wish to override the default.

-F, -filter path
Specify the full path path to the stat-bench filter shared object. Use this only
if you wish to override the default.

-t, --traces count

Gather count traces per process.

-1, --iters count

Perform count gathers.

-n, --numtasks count

Emulate count tasks per daemon.

-m, --maxdepth depth

Generate traces with a maximum depth of depth.

-b, --branch width

Generate traces with a max branching factor of width.

-e, —eqclasses count

Generate traces within count equivalence classes.

-U, --countrep

Only gather edge labels with the task count and a single representative.
-1, -log

[FE | BE | cP]

Enable debug logging of the r& frontend, BE backend, or cP communication
process. Multiple log options may be specified (i.e., -1 FE -1 BE).

Chapter 11. Using the stat-bench Emulator

-L, --logdir 10og_directory

Dump logging output into 1og_directory. To be used with the --10g op-
tion.

-M, --mrnetprintf
Use MRNet’s printf for STAT debug logging.

stat-bench Usage Example

In the simplest form, you can invoke stat-bench, from within a parallel allocation,
with no arguments. This will run through with the default settings:

% stat-bench

To model your target machine architecture, you can specify the number of tasks
to emulate per daemon. For instance if your target machine has 16-way SMP
compute nodes:

o

% stat-bench —--numtasks 16

You may also want to model a specific application. For instance, you may have a
climate modeling code with 5 distinct task behaviors, or equivalence classes. You
can also specify the maximum call depth of your application, the average branch-
ing factor from a given function, and the number of distinct traces expected per
task:

o

% stat-bench —--eqgclasses 5 —-—maxdepth 17 —--branch 5 —--traces 4

At larger scales, you may want to employ a more scalable tree topology. For ex-
ample, if you're running 1024 daemon emulators, you may want to try a fanout of
sqrt(1024) = 32. You will need to specify a list of nodes that contains enough pro-
cessors to accommodate the ceil(1024/32) = 32 communication processes being
launched. Be sure that you have login permissions to the specified nodes and that
they contain the mrnet_commnode executable and the STAT _FilterDefinitions.so
library:

o

% stat-bench —--fanout 32 --nodes atlas[l1-4] —--procs 8

45

Chapter 11. Using the stat-bench Emulator

46

Chapter 12. Using the stat-script Python Interface

Description

stat-script is a Python interface for STAT. When invoked without any arguments,
this will create an interactive Python environment with the appropriate paths
set to import the STAT module. You can run dir(STAT) to see the available
functions, flags, etc. running help() (ie., help(STAT.attach)) will display
the description of the function as well as the arguments required. Like the
python command, stat-script can also be supplied with a python script file to
execute. You may refer to examples/scripts/script_test.py in the STAT source or
share/STAT /examples/bin/script_test.py in the installation directory for an
example of how the stat scripting interface can be used.

47

Chapter 12. Using the stat-script Python Interface

48

Chapter 13. Troubleshooting Guide

Troubleshooting

STAT hangs when attaching to Intel MPI jobs

When using the Intel MPI, you may need to alter your LaunchMON installation’s
etc/rm_intel_hydra.conf file and set RM_launch_helper=mpirun. If it is set to
mpiexec.hydra, the daemons may fail to launch on remote nodes.

stack traces are empty

Some optimzations may make it impossible to debug, such as the GNU -fomit-
frame-pointer option, which is enabled at various -O optimization levels. You can
turn this off with the -fno-omit-frame-pointer flag.

stack walks not making it to _start

Processes can be in portions of code from which a debugger cannot walk the
stack (i.e., function prologue or epilogue). Try the -r option to enable STAT to let
the process run a bit and then retry the stack sample.

stack walks with line number information returning ??

Stack traces with line number information requires your code to be compiled with
debug information (i.e., with the -g flag).

/ust/lib/python2.6/site-packages/gtk-2.0/gtk/__init__.py :72: GtkWarning:
could not open display

Be sure to enable X-forwarding and to set your $DISPLAY environment variable.

STATview requires gtk

STAT requires the pygtk module to be installed. If it is side-installed, but sure to
set your $PYTHONPATH environment variable to the directory containing the
pygtk module.

ImportError: No module named STAT

Make sure to run ‘make install” to install STAT.py in the lib/python[version]/site-
packages directory or set your $PYTHONPATH environment variable to the di-
rectory containing STAT.py

(ERROR): LaunchMON Engine invocation failed, exiting: No such file or
directory

Make sure the launchmon executable is in your $PATH or set the
$STAT_LMON_LAUNCHMON_ENGINE_PATH engine path to the full path to
the executable.

OptionParsing (ERROR): unknown launcher: a.out

You need to attach to your mpirun or equivalent parallel job launch process.

OptionParsing (ERROR): the path[/ust/local/bin/STATD] does not exit.

STAT looks for its components in the configured $prefix. Be sure to run ‘make
install’ or set STAT_DAEMON_PATH to the full path to the STATD executable.

LaunchMON prints a usage message.

This is typically a mismatch in versions of the LaunchMON
API and the LaunchMON engine. Make sure to set your
$STAT_LMON_LAUNCHMON_ENGINE_PATH enviornment variable to the
full path to the appropriate launchmon executable.

49

Chapter 13. Troubleshooting Guide

50

(ERRORY): accepting a connection with an engine timed out

STAT may need additional time to launch all of its daemons. You may need to set
your $LMON_FE_ENGINE_TIMEOUT to a larger value, such as 600.

UnboundLocalError: local variable 'count’ referenced before assignment
This error results from trying to open a STAT >3.0 output with a STAT 2.X GUL

Hang on second attach when using CUDA GDB

In some CUDA environments, you may need to run your application with the
CUDA_VISIBLE_DEVICES environment variable set appropriately, otherwise
cuda-gdb will hang on attach when there is already an existing cuda-gdb session
on the same node. Refer to the "Simultaneous Sessions Support” section of
http:/ /docs.nvidia.com/cuda/cuda-gdb/index.html.

Bibliography

Notes

Nicklas B. Jensen, Niklas Q. Nielsen, Gregory L. Lee, Dong H. Ahn, Sven Karls-
son, Matthew P. Legendre, and Martin Schulz, “A Scalable Prescriptive Par-
allel Debugging Model,” International Parallel & Distributed Processing Sym-
posium, Hyderabad, India, May 2015.

Dong H. Ahn, Michael]J. Brim, Bronis R. de Supinski, Todd Gamblin, Gregory
L. Lee, Matthew P. Legendre, Barton P. Miller, Adam Moody, and Martin
Schulz, “Efficient and Scalable Retrieval Techniques for Global File Prop-
erties,” International Parallel & Distributed Processing Symposium, Boston,
Massachusetts, May 2013.

Dong H. Ahn, Bronis R. de Supinski, Ignacio Laguna, Gregory L. Lee, Ben Liblit,
Barton P. Miller, and Martin Schulz, “Scalable Temporal Order Analysis for
Large Scale Debugging,” Supercomputing 2009, Portland, Oregon, Novem-
ber 2009.

Gregory L. Lee, Dorian C. Arnold, Dong H. Ahn, Bronis R. de Supinski, Matthew
Legendre, Barton P. Miller, Martin Schulz, and Ben Liblit, “Lessons Learned
at 208K: Towards Debugging Millions of Cores,” Supercomputing 2008,
Austin, Texas, November 2008.

Dong H. Ahn, Dorian C. Arnold, Bronis R. de Supinski, Gregory L. Lee, Bar-
ton P. Miller, and Martin Schulz, “Overcoming Scalability Challenges for
Tool Daemon Launching,” 37th Internation Conference on Parallel Processing
(ICPP-08), Portland, Oregon, September, 2008.

Gregory L. Lee, Dorian C. Arnold, Dong H. Ahn, Bronis R. de Supinski, Barton P.
Miller, and Martin Schulz, “Benchmarking the Stack Trace Analysis Tool for
BlueGene/L,” International Conference on Parallel Computing (Parco) 2007,
Aachen and Julich, Germany, September 2007.

Dorian C. Arnold, Dong H. Ahn, Bronis R. de Supinski, Gregory L. Lee, Bar-
ton P. Miller, and Martin Schulz, “Stack Trace Analysis for Large Scale Ap-
plications,” International Parallel & Distributed Processing Symposium, Long
Beach, California, March 2007.

http:/ /ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7161535

ftp:/ /ftp.cs.wisc.edu/paradyn/papers/FGFS-IPDPS13-Ahn-validated.pdf
ftp:/ /ftp.cs.wisc.edu/paradyn/papers/Miller09ScalableDebugging.pdf
ftp:/ / ftp.cs.wisc.edu/paradyn/papers/Lee08ScalingSTAT.pdf

ftp:/ /ftp.cs.wisc.edu/paradyn/papers/ Ahn08LaunchMON.pdf

ftp:/ /ftp.cs.wisc.edu/paradyn/papers/Lee07STATBench.pdf

ftp:/ /ftp.cs.wisc.edu/paradyn/papers/ Arnold06STAT.pdf

N o=

51

52

	STAT: the Stack Trace Analysis Tool
	Table of Contents
	Disclaimer
	Auspice
	License

	Chapter 1. Introduction
	Chapter 2. Overview
	Chapter 3. Changelog
	stat version 4.0.2
	stat version 4.0.1
	stat version 4.0.0
	stat version 3.0.1
	stat version 3.0
	stat version 2.2
	stat version 2.1
	STAT version 2.0

	Chapter 4. Installing STAT
	Dependent Packages
	Installation

	Chapter 5. Using the statcl Command
	Description
	statcl Options
	STAT Usage Example

	Chapter 6. Using the statview GUI
	Description
	The statview Node Menu
	The statview Toolbar

	Chapter 7. Using the statgui GUI
	Description
	statgui Options
	The statgui GUI Toolbar
	Sample Options
	Process Table
	Equivalence Classes and Subset Debugging
	Availability

	Chapter 8. Setting STAT Preferences and Options
	Preference Files
	Loading and Saving Preferences
	Environment Variables

	Chapter 9. PrescriptionBased Debugging With Prototype DySectAPI
	Overview
	Installation
	Usage

	Chapter 10. Tips and Tricks Using STAT
	Running STAT at scale
	Using STAT with IO Watchdog and SLURM
	Running STAT in a Batch Script

	Chapter 11. Using the statbench Emulator
	Description
	statbench Options
	statbench Usage Example

	Chapter 12. Using the statscript Python Interface
	Description

	Chapter 13. Troubleshooting Guide
	Troubleshooting

	Bibliography

