AOMedia AV1 Codec
blockd.h
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #ifndef AOM_AV1_COMMON_BLOCKD_H_
13 #define AOM_AV1_COMMON_BLOCKD_H_
14 
15 #include "config/aom_config.h"
16 
17 #include "aom_dsp/aom_dsp_common.h"
18 #include "aom_ports/mem.h"
19 #include "aom_scale/yv12config.h"
20 
21 #include "av1/common/common_data.h"
22 #include "av1/common/quant_common.h"
23 #include "av1/common/entropy.h"
24 #include "av1/common/entropymode.h"
25 #include "av1/common/mv.h"
26 #include "av1/common/scale.h"
27 #include "av1/common/seg_common.h"
28 #include "av1/common/tile_common.h"
29 
30 #ifdef __cplusplus
31 extern "C" {
32 #endif
33 
34 #define USE_B_QUANT_NO_TRELLIS 1
35 
36 #define MAX_MB_PLANE 3
37 
38 #define MAX_DIFFWTD_MASK_BITS 1
39 
40 #define INTERINTRA_WEDGE_SIGN 0
41 
42 #define DEFAULT_INTER_TX_TYPE DCT_DCT
43 
44 #define MAX_PALETTE_BLOCK_WIDTH 64
45 
46 #define MAX_PALETTE_BLOCK_HEIGHT 64
47 
50 // DIFFWTD_MASK_TYPES should not surpass 1 << MAX_DIFFWTD_MASK_BITS
51 enum {
52  DIFFWTD_38 = 0,
53  DIFFWTD_38_INV,
54  DIFFWTD_MASK_TYPES,
55 } UENUM1BYTE(DIFFWTD_MASK_TYPE);
56 
57 enum {
58  KEY_FRAME = 0,
59  INTER_FRAME = 1,
60  INTRA_ONLY_FRAME = 2, // replaces intra-only
61  S_FRAME = 3,
62  FRAME_TYPES,
63 } UENUM1BYTE(FRAME_TYPE);
64 
65 static INLINE int is_comp_ref_allowed(BLOCK_SIZE bsize) {
66  return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
67 }
68 
69 static INLINE int is_inter_mode(PREDICTION_MODE mode) {
70  return mode >= INTER_MODE_START && mode < INTER_MODE_END;
71 }
72 
73 typedef struct {
74  uint8_t *plane[MAX_MB_PLANE];
75  int stride[MAX_MB_PLANE];
76 } BUFFER_SET;
77 
78 static INLINE int is_inter_singleref_mode(PREDICTION_MODE mode) {
79  return mode >= SINGLE_INTER_MODE_START && mode < SINGLE_INTER_MODE_END;
80 }
81 static INLINE int is_inter_compound_mode(PREDICTION_MODE mode) {
82  return mode >= COMP_INTER_MODE_START && mode < COMP_INTER_MODE_END;
83 }
84 
85 static INLINE PREDICTION_MODE compound_ref0_mode(PREDICTION_MODE mode) {
86  static const PREDICTION_MODE lut[] = {
87  DC_PRED, // DC_PRED
88  V_PRED, // V_PRED
89  H_PRED, // H_PRED
90  D45_PRED, // D45_PRED
91  D135_PRED, // D135_PRED
92  D113_PRED, // D113_PRED
93  D157_PRED, // D157_PRED
94  D203_PRED, // D203_PRED
95  D67_PRED, // D67_PRED
96  SMOOTH_PRED, // SMOOTH_PRED
97  SMOOTH_V_PRED, // SMOOTH_V_PRED
98  SMOOTH_H_PRED, // SMOOTH_H_PRED
99  PAETH_PRED, // PAETH_PRED
100  NEARESTMV, // NEARESTMV
101  NEARMV, // NEARMV
102  GLOBALMV, // GLOBALMV
103  NEWMV, // NEWMV
104  NEARESTMV, // NEAREST_NEARESTMV
105  NEARMV, // NEAR_NEARMV
106  NEARESTMV, // NEAREST_NEWMV
107  NEWMV, // NEW_NEARESTMV
108  NEARMV, // NEAR_NEWMV
109  NEWMV, // NEW_NEARMV
110  GLOBALMV, // GLOBAL_GLOBALMV
111  NEWMV, // NEW_NEWMV
112  };
113  assert(NELEMENTS(lut) == MB_MODE_COUNT);
114  assert(is_inter_compound_mode(mode) || is_inter_singleref_mode(mode));
115  return lut[mode];
116 }
117 
118 static INLINE PREDICTION_MODE compound_ref1_mode(PREDICTION_MODE mode) {
119  static const PREDICTION_MODE lut[] = {
120  MB_MODE_COUNT, // DC_PRED
121  MB_MODE_COUNT, // V_PRED
122  MB_MODE_COUNT, // H_PRED
123  MB_MODE_COUNT, // D45_PRED
124  MB_MODE_COUNT, // D135_PRED
125  MB_MODE_COUNT, // D113_PRED
126  MB_MODE_COUNT, // D157_PRED
127  MB_MODE_COUNT, // D203_PRED
128  MB_MODE_COUNT, // D67_PRED
129  MB_MODE_COUNT, // SMOOTH_PRED
130  MB_MODE_COUNT, // SMOOTH_V_PRED
131  MB_MODE_COUNT, // SMOOTH_H_PRED
132  MB_MODE_COUNT, // PAETH_PRED
133  MB_MODE_COUNT, // NEARESTMV
134  MB_MODE_COUNT, // NEARMV
135  MB_MODE_COUNT, // GLOBALMV
136  MB_MODE_COUNT, // NEWMV
137  NEARESTMV, // NEAREST_NEARESTMV
138  NEARMV, // NEAR_NEARMV
139  NEWMV, // NEAREST_NEWMV
140  NEARESTMV, // NEW_NEARESTMV
141  NEWMV, // NEAR_NEWMV
142  NEARMV, // NEW_NEARMV
143  GLOBALMV, // GLOBAL_GLOBALMV
144  NEWMV, // NEW_NEWMV
145  };
146  assert(NELEMENTS(lut) == MB_MODE_COUNT);
147  assert(is_inter_compound_mode(mode));
148  return lut[mode];
149 }
150 
151 static INLINE int have_nearmv_in_inter_mode(PREDICTION_MODE mode) {
152  return (mode == NEARMV || mode == NEAR_NEARMV || mode == NEAR_NEWMV ||
153  mode == NEW_NEARMV);
154 }
155 
156 static INLINE int have_newmv_in_inter_mode(PREDICTION_MODE mode) {
157  return (mode == NEWMV || mode == NEW_NEWMV || mode == NEAREST_NEWMV ||
158  mode == NEW_NEARESTMV || mode == NEAR_NEWMV || mode == NEW_NEARMV);
159 }
160 
161 static INLINE int is_masked_compound_type(COMPOUND_TYPE type) {
162  return (type == COMPOUND_WEDGE || type == COMPOUND_DIFFWTD);
163 }
164 
165 /* For keyframes, intra block modes are predicted by the (already decoded)
166  modes for the Y blocks to the left and above us; for interframes, there
167  is a single probability table. */
168 
169 typedef struct {
170  // Value of base colors for Y, U, and V
171  uint16_t palette_colors[3 * PALETTE_MAX_SIZE];
172  // Number of base colors for Y (0) and UV (1)
173  uint8_t palette_size[2];
174 } PALETTE_MODE_INFO;
175 
176 typedef struct {
177  FILTER_INTRA_MODE filter_intra_mode;
178  uint8_t use_filter_intra;
179 } FILTER_INTRA_MODE_INFO;
180 
181 static const PREDICTION_MODE fimode_to_intradir[FILTER_INTRA_MODES] = {
182  DC_PRED, V_PRED, H_PRED, D157_PRED, DC_PRED
183 };
184 
185 #if CONFIG_RD_DEBUG
186 #define TXB_COEFF_COST_MAP_SIZE (MAX_MIB_SIZE)
187 #endif
188 
189 typedef struct RD_STATS {
190  int rate;
191  int64_t dist;
192  // Please be careful of using rdcost, it's not guaranteed to be set all the
193  // time.
194  // TODO(angiebird): Create a set of functions to manipulate the RD_STATS. In
195  // these functions, make sure rdcost is always up-to-date according to
196  // rate/dist.
197  int64_t rdcost;
198  int64_t sse;
199  int skip_txfm; // sse should equal to dist when skip_txfm == 1
200  int zero_rate;
201 #if CONFIG_RD_DEBUG
202  int txb_coeff_cost[MAX_MB_PLANE];
203 #endif // CONFIG_RD_DEBUG
204 } RD_STATS;
205 
206 // This struct is used to group function args that are commonly
207 // sent together in functions related to interinter compound modes
208 typedef struct {
209  uint8_t *seg_mask;
210  int8_t wedge_index;
211  int8_t wedge_sign;
212  DIFFWTD_MASK_TYPE mask_type;
213  COMPOUND_TYPE type;
214 } INTERINTER_COMPOUND_DATA;
215 
216 #define INTER_TX_SIZE_BUF_LEN 16
217 #define TXK_TYPE_BUF_LEN 64
222 typedef struct MB_MODE_INFO {
223 
228  BLOCK_SIZE bsize;
230  PARTITION_TYPE partition;
232  PREDICTION_MODE mode;
234  UV_PREDICTION_MODE uv_mode;
239 
244  int_mv mv[2];
246  MV_REFERENCE_FRAME ref_frame[2];
248  int_interpfilters interp_filters;
250  MOTION_MODE motion_mode;
252  uint8_t num_proj_ref;
257  WarpedMotionParams wm_params;
259  INTERINTRA_MODE interintra_mode;
263  INTERINTER_COMPOUND_DATA interinter_comp;
266 
272  int8_t angle_delta[PLANE_TYPES];
274  FILTER_INTRA_MODE_INFO filter_intra_mode_info;
278  uint8_t cfl_alpha_idx;
280  PALETTE_MODE_INFO palette_mode_info;
283 
288  int8_t skip_txfm;
290  TX_SIZE tx_size;
292  TX_SIZE inter_tx_size[INTER_TX_SIZE_BUF_LEN];
295 
302  int8_t delta_lf[FRAME_LF_COUNT];
305 
310  uint8_t segment_id : 3;
312  uint8_t seg_id_predicted : 1;
314  uint8_t ref_mv_idx : 2;
316  uint8_t skip_mode : 1;
318  uint8_t use_intrabc : 1;
320  uint8_t comp_group_idx : 1;
322  uint8_t compound_idx : 1;
324  uint8_t use_wedge_interintra : 1;
326  int8_t cdef_strength : 4;
331 
332 #if CONFIG_RD_DEBUG
334  RD_STATS rd_stats;
336  int mi_row;
338  int mi_col;
339 #endif
340 #if CONFIG_INSPECTION
342  int16_t tx_skip[TXK_TYPE_BUF_LEN];
343 #endif
344 } MB_MODE_INFO;
345 
348 static INLINE int is_intrabc_block(const MB_MODE_INFO *mbmi) {
349  return mbmi->use_intrabc;
350 }
351 
352 static INLINE PREDICTION_MODE get_uv_mode(UV_PREDICTION_MODE mode) {
353  assert(mode < UV_INTRA_MODES);
354  static const PREDICTION_MODE uv2y[] = {
355  DC_PRED, // UV_DC_PRED
356  V_PRED, // UV_V_PRED
357  H_PRED, // UV_H_PRED
358  D45_PRED, // UV_D45_PRED
359  D135_PRED, // UV_D135_PRED
360  D113_PRED, // UV_D113_PRED
361  D157_PRED, // UV_D157_PRED
362  D203_PRED, // UV_D203_PRED
363  D67_PRED, // UV_D67_PRED
364  SMOOTH_PRED, // UV_SMOOTH_PRED
365  SMOOTH_V_PRED, // UV_SMOOTH_V_PRED
366  SMOOTH_H_PRED, // UV_SMOOTH_H_PRED
367  PAETH_PRED, // UV_PAETH_PRED
368  DC_PRED, // UV_CFL_PRED
369  INTRA_INVALID, // UV_INTRA_MODES
370  INTRA_INVALID, // UV_MODE_INVALID
371  };
372  return uv2y[mode];
373 }
374 
375 static INLINE int is_inter_block(const MB_MODE_INFO *mbmi) {
376  return is_intrabc_block(mbmi) || mbmi->ref_frame[0] > INTRA_FRAME;
377 }
378 
379 static INLINE int has_second_ref(const MB_MODE_INFO *mbmi) {
380  return mbmi->ref_frame[1] > INTRA_FRAME;
381 }
382 
383 static INLINE int has_uni_comp_refs(const MB_MODE_INFO *mbmi) {
384  return has_second_ref(mbmi) && (!((mbmi->ref_frame[0] >= BWDREF_FRAME) ^
385  (mbmi->ref_frame[1] >= BWDREF_FRAME)));
386 }
387 
388 static INLINE MV_REFERENCE_FRAME comp_ref0(int ref_idx) {
389  static const MV_REFERENCE_FRAME lut[] = {
390  LAST_FRAME, // LAST_LAST2_FRAMES,
391  LAST_FRAME, // LAST_LAST3_FRAMES,
392  LAST_FRAME, // LAST_GOLDEN_FRAMES,
393  BWDREF_FRAME, // BWDREF_ALTREF_FRAMES,
394  LAST2_FRAME, // LAST2_LAST3_FRAMES
395  LAST2_FRAME, // LAST2_GOLDEN_FRAMES,
396  LAST3_FRAME, // LAST3_GOLDEN_FRAMES,
397  BWDREF_FRAME, // BWDREF_ALTREF2_FRAMES,
398  ALTREF2_FRAME, // ALTREF2_ALTREF_FRAMES,
399  };
400  assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
401  return lut[ref_idx];
402 }
403 
404 static INLINE MV_REFERENCE_FRAME comp_ref1(int ref_idx) {
405  static const MV_REFERENCE_FRAME lut[] = {
406  LAST2_FRAME, // LAST_LAST2_FRAMES,
407  LAST3_FRAME, // LAST_LAST3_FRAMES,
408  GOLDEN_FRAME, // LAST_GOLDEN_FRAMES,
409  ALTREF_FRAME, // BWDREF_ALTREF_FRAMES,
410  LAST3_FRAME, // LAST2_LAST3_FRAMES
411  GOLDEN_FRAME, // LAST2_GOLDEN_FRAMES,
412  GOLDEN_FRAME, // LAST3_GOLDEN_FRAMES,
413  ALTREF2_FRAME, // BWDREF_ALTREF2_FRAMES,
414  ALTREF_FRAME, // ALTREF2_ALTREF_FRAMES,
415  };
416  assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
417  return lut[ref_idx];
418 }
419 
420 PREDICTION_MODE av1_left_block_mode(const MB_MODE_INFO *left_mi);
421 
422 PREDICTION_MODE av1_above_block_mode(const MB_MODE_INFO *above_mi);
423 
424 static INLINE int is_global_mv_block(const MB_MODE_INFO *const mbmi,
425  TransformationType type) {
426  const PREDICTION_MODE mode = mbmi->mode;
427  const BLOCK_SIZE bsize = mbmi->bsize;
428  const int block_size_allowed =
429  AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
430  return (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) && type > TRANSLATION &&
431  block_size_allowed;
432 }
433 
434 #if CONFIG_MISMATCH_DEBUG
435 static INLINE void mi_to_pixel_loc(int *pixel_c, int *pixel_r, int mi_col,
436  int mi_row, int tx_blk_col, int tx_blk_row,
437  int subsampling_x, int subsampling_y) {
438  *pixel_c = ((mi_col >> subsampling_x) << MI_SIZE_LOG2) +
439  (tx_blk_col << MI_SIZE_LOG2);
440  *pixel_r = ((mi_row >> subsampling_y) << MI_SIZE_LOG2) +
441  (tx_blk_row << MI_SIZE_LOG2);
442 }
443 #endif
444 
445 enum { MV_PRECISION_Q3, MV_PRECISION_Q4 } UENUM1BYTE(mv_precision);
446 
447 struct buf_2d {
448  uint8_t *buf;
449  uint8_t *buf0;
450  int width;
451  int height;
452  int stride;
453 };
454 
455 typedef struct eob_info {
456  uint16_t eob;
457  uint16_t max_scan_line;
458 } eob_info;
459 
460 typedef struct {
461  DECLARE_ALIGNED(32, tran_low_t, dqcoeff[MAX_MB_PLANE][MAX_SB_SQUARE]);
462  eob_info eob_data[MAX_MB_PLANE]
463  [MAX_SB_SQUARE / (TX_SIZE_W_MIN * TX_SIZE_H_MIN)];
464  DECLARE_ALIGNED(16, uint8_t, color_index_map[2][MAX_SB_SQUARE]);
465 } CB_BUFFER;
466 
467 typedef struct macroblockd_plane {
468  PLANE_TYPE plane_type;
469  int subsampling_x;
470  int subsampling_y;
471  struct buf_2d dst;
472  struct buf_2d pre[2];
473  ENTROPY_CONTEXT *above_entropy_context;
474  ENTROPY_CONTEXT *left_entropy_context;
475 
476  // The dequantizers below are true dequantizers used only in the
477  // dequantization process. They have the same coefficient
478  // shift/scale as TX.
479  int16_t seg_dequant_QTX[MAX_SEGMENTS][2];
480  // Pointer to color index map of:
481  // - Current coding block, on encoder side.
482  // - Current superblock, on decoder side.
483  uint8_t *color_index_map;
484 
485  // block size in pixels
486  uint8_t width, height;
487 
488  qm_val_t *seg_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
489  qm_val_t *seg_qmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
490 } MACROBLOCKD_PLANE;
491 
492 #define BLOCK_OFFSET(i) ((i) << 4)
493 
497 typedef struct {
501  DECLARE_ALIGNED(16, InterpKernel, vfilter);
502 
506  DECLARE_ALIGNED(16, InterpKernel, hfilter);
507 } WienerInfo;
508 
510 typedef struct {
514  int ep;
515 
519  int xqd[2];
520 } SgrprojInfo;
521 
524 #if CONFIG_DEBUG
525 #define CFL_SUB8X8_VAL_MI_SIZE (4)
526 #define CFL_SUB8X8_VAL_MI_SQUARE \
527  (CFL_SUB8X8_VAL_MI_SIZE * CFL_SUB8X8_VAL_MI_SIZE)
528 #endif // CONFIG_DEBUG
529 #define CFL_MAX_BLOCK_SIZE (BLOCK_32X32)
530 #define CFL_BUF_LINE (32)
531 #define CFL_BUF_LINE_I128 (CFL_BUF_LINE >> 3)
532 #define CFL_BUF_LINE_I256 (CFL_BUF_LINE >> 4)
533 #define CFL_BUF_SQUARE (CFL_BUF_LINE * CFL_BUF_LINE)
534 typedef struct cfl_ctx {
535  // Q3 reconstructed luma pixels (only Q2 is required, but Q3 is used to avoid
536  // shifts)
537  uint16_t recon_buf_q3[CFL_BUF_SQUARE];
538  // Q3 AC contributions (reconstructed luma pixels - tx block avg)
539  int16_t ac_buf_q3[CFL_BUF_SQUARE];
540 
541  // Cache the DC_PRED when performing RDO, so it does not have to be recomputed
542  // for every scaling parameter
543  int dc_pred_is_cached[CFL_PRED_PLANES];
544  // The DC_PRED cache is disable when decoding
545  int use_dc_pred_cache;
546  // Only cache the first row of the DC_PRED
547  int16_t dc_pred_cache[CFL_PRED_PLANES][CFL_BUF_LINE];
548 
549  // Height and width currently used in the CfL prediction buffer.
550  int buf_height, buf_width;
551 
552  int are_parameters_computed;
553 
554  // Chroma subsampling
555  int subsampling_x, subsampling_y;
556 
557  // Whether the reconstructed luma pixels need to be stored
558  int store_y;
559 } CFL_CTX;
560 
561 typedef struct dist_wtd_comp_params {
562  int use_dist_wtd_comp_avg;
563  int fwd_offset;
564  int bck_offset;
565 } DIST_WTD_COMP_PARAMS;
566 
567 struct scale_factors;
568 
577 typedef struct macroblockd {
582  int mi_row;
583  int mi_col;
590 
609 
613  struct macroblockd_plane plane[MAX_MB_PLANE];
614 
618  TileInfo tile;
619 
625 
642 
667 
673  uint8_t *tx_type_map;
679 
694  const struct scale_factors *block_ref_scale_factors[2];
695 
703 
710  ENTROPY_CONTEXT *above_entropy_context[MAX_MB_PLANE];
717  ENTROPY_CONTEXT left_entropy_context[MAX_MB_PLANE][MAX_MIB_SIZE];
718 
725  PARTITION_CONTEXT *above_partition_context;
732  PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE];
733 
740  TXFM_CONTEXT *above_txfm_context;
747  TXFM_CONTEXT *left_txfm_context;
754  TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE];
755 
764  WienerInfo wiener_info[MAX_MB_PLANE];
765  SgrprojInfo sgrproj_info[MAX_MB_PLANE];
772  uint8_t width;
773  uint8_t height;
783  CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
788  uint16_t weight[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
789 
800 
805  uint8_t neighbors_ref_counts[REF_FRAMES];
806 
810  FRAME_CONTEXT *tile_ctx;
811 
815  int bd;
816 
820  int qindex[MAX_SEGMENTS];
824  int lossless[MAX_SEGMENTS];
836 
841 
845  struct aom_internal_error_info *error_info;
846 
850  const WarpedMotionParams *global_motion;
851 
875  int8_t delta_lf[FRAME_LF_COUNT];
892 
896  uint8_t *seg_mask;
897 
901  CFL_CTX cfl;
902 
913 
923  CONV_BUF_TYPE *tmp_conv_dst;
934  uint8_t *tmp_obmc_bufs[2];
935 } MACROBLOCKD;
936 
939 static INLINE int is_cur_buf_hbd(const MACROBLOCKD *xd) {
940 #if CONFIG_AV1_HIGHBITDEPTH
941  return xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? 1 : 0;
942 #else
943  (void)xd;
944  return 0;
945 #endif
946 }
947 
948 static INLINE uint8_t *get_buf_by_bd(const MACROBLOCKD *xd, uint8_t *buf16) {
949 #if CONFIG_AV1_HIGHBITDEPTH
950  return (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
951  ? CONVERT_TO_BYTEPTR(buf16)
952  : buf16;
953 #else
954  (void)xd;
955  return buf16;
956 #endif
957 }
958 
959 typedef struct BitDepthInfo {
960  int bit_depth;
966  int use_highbitdepth_buf;
967 } BitDepthInfo;
968 
969 static INLINE BitDepthInfo get_bit_depth_info(const MACROBLOCKD *xd) {
970  BitDepthInfo bit_depth_info;
971  bit_depth_info.bit_depth = xd->bd;
972  bit_depth_info.use_highbitdepth_buf = is_cur_buf_hbd(xd);
973  assert(IMPLIES(!bit_depth_info.use_highbitdepth_buf,
974  bit_depth_info.bit_depth == 8));
975  return bit_depth_info;
976 }
977 
978 static INLINE int get_sqr_bsize_idx(BLOCK_SIZE bsize) {
979  switch (bsize) {
980  case BLOCK_4X4: return 0;
981  case BLOCK_8X8: return 1;
982  case BLOCK_16X16: return 2;
983  case BLOCK_32X32: return 3;
984  case BLOCK_64X64: return 4;
985  case BLOCK_128X128: return 5;
986  default: return SQR_BLOCK_SIZES;
987  }
988 }
989 
990 // For a square block size 'bsize', returns the size of the sub-blocks used by
991 // the given partition type. If the partition produces sub-blocks of different
992 // sizes, then the function returns the largest sub-block size.
993 // Implements the Partition_Subsize lookup table in the spec (Section 9.3.
994 // Conversion tables).
995 // Note: the input block size should be square.
996 // Otherwise it's considered invalid.
997 static INLINE BLOCK_SIZE get_partition_subsize(BLOCK_SIZE bsize,
998  PARTITION_TYPE partition) {
999  if (partition == PARTITION_INVALID) {
1000  return BLOCK_INVALID;
1001  } else {
1002  const int sqr_bsize_idx = get_sqr_bsize_idx(bsize);
1003  return sqr_bsize_idx >= SQR_BLOCK_SIZES
1004  ? BLOCK_INVALID
1005  : subsize_lookup[partition][sqr_bsize_idx];
1006  }
1007 }
1008 
1009 static TX_TYPE intra_mode_to_tx_type(const MB_MODE_INFO *mbmi,
1010  PLANE_TYPE plane_type) {
1011  static const TX_TYPE _intra_mode_to_tx_type[INTRA_MODES] = {
1012  DCT_DCT, // DC_PRED
1013  ADST_DCT, // V_PRED
1014  DCT_ADST, // H_PRED
1015  DCT_DCT, // D45_PRED
1016  ADST_ADST, // D135_PRED
1017  ADST_DCT, // D113_PRED
1018  DCT_ADST, // D157_PRED
1019  DCT_ADST, // D203_PRED
1020  ADST_DCT, // D67_PRED
1021  ADST_ADST, // SMOOTH_PRED
1022  ADST_DCT, // SMOOTH_V_PRED
1023  DCT_ADST, // SMOOTH_H_PRED
1024  ADST_ADST, // PAETH_PRED
1025  };
1026  const PREDICTION_MODE mode =
1027  (plane_type == PLANE_TYPE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode);
1028  assert(mode < INTRA_MODES);
1029  return _intra_mode_to_tx_type[mode];
1030 }
1031 
1032 static INLINE int is_rect_tx(TX_SIZE tx_size) { return tx_size >= TX_SIZES; }
1033 
1034 static INLINE int block_signals_txsize(BLOCK_SIZE bsize) {
1035  return bsize > BLOCK_4X4;
1036 }
1037 
1038 // Number of transform types in each set type
1039 static const int av1_num_ext_tx_set[EXT_TX_SET_TYPES] = {
1040  1, 2, 5, 7, 12, 16,
1041 };
1042 
1043 static const int av1_ext_tx_used[EXT_TX_SET_TYPES][TX_TYPES] = {
1044  { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
1045  { 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
1046  { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
1047  { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 },
1048  { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 },
1049  { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
1050 };
1051 
1052 // The bitmask corresponds to the transform types as defined in
1053 // enums.h TX_TYPE enumeration type. Setting the bit 0 means to disable
1054 // the use of the corresponding transform type in that table.
1055 // The av1_derived_intra_tx_used_flag table is used when
1056 // use_reduced_intra_txset is set to 2, where one only searches
1057 // the transform types derived from residual statistics.
1058 static const uint16_t av1_derived_intra_tx_used_flag[INTRA_MODES] = {
1059  0x0209, // DC_PRED: 0000 0010 0000 1001
1060  0x0403, // V_PRED: 0000 0100 0000 0011
1061  0x0805, // H_PRED: 0000 1000 0000 0101
1062  0x020F, // D45_PRED: 0000 0010 0000 1111
1063  0x0009, // D135_PRED: 0000 0000 0000 1001
1064  0x0009, // D113_PRED: 0000 0000 0000 1001
1065  0x0009, // D157_PRED: 0000 0000 0000 1001
1066  0x0805, // D203_PRED: 0000 1000 0000 0101
1067  0x0403, // D67_PRED: 0000 0100 0000 0011
1068  0x0205, // SMOOTH_PRED: 0000 0010 0000 1001
1069  0x0403, // SMOOTH_V_PRED: 0000 0100 0000 0011
1070  0x0805, // SMOOTH_H_PRED: 0000 1000 0000 0101
1071  0x0209, // PAETH_PRED: 0000 0010 0000 1001
1072 };
1073 
1074 static const uint16_t av1_reduced_intra_tx_used_flag[INTRA_MODES] = {
1075  0x080F, // DC_PRED: 0000 1000 0000 1111
1076  0x040F, // V_PRED: 0000 0100 0000 1111
1077  0x080F, // H_PRED: 0000 1000 0000 1111
1078  0x020F, // D45_PRED: 0000 0010 0000 1111
1079  0x080F, // D135_PRED: 0000 1000 0000 1111
1080  0x040F, // D113_PRED: 0000 0100 0000 1111
1081  0x080F, // D157_PRED: 0000 1000 0000 1111
1082  0x080F, // D203_PRED: 0000 1000 0000 1111
1083  0x040F, // D67_PRED: 0000 0100 0000 1111
1084  0x080F, // SMOOTH_PRED: 0000 1000 0000 1111
1085  0x040F, // SMOOTH_V_PRED: 0000 0100 0000 1111
1086  0x080F, // SMOOTH_H_PRED: 0000 1000 0000 1111
1087  0x0C0E, // PAETH_PRED: 0000 1100 0000 1110
1088 };
1089 
1090 static const uint16_t av1_ext_tx_used_flag[EXT_TX_SET_TYPES] = {
1091  0x0001, // 0000 0000 0000 0001
1092  0x0201, // 0000 0010 0000 0001
1093  0x020F, // 0000 0010 0000 1111
1094  0x0E0F, // 0000 1110 0000 1111
1095  0x0FFF, // 0000 1111 1111 1111
1096  0xFFFF, // 1111 1111 1111 1111
1097 };
1098 
1099 static const TxSetType av1_ext_tx_set_lookup[2][2] = {
1100  { EXT_TX_SET_DTT4_IDTX_1DDCT, EXT_TX_SET_DTT4_IDTX },
1101  { EXT_TX_SET_ALL16, EXT_TX_SET_DTT9_IDTX_1DDCT },
1102 };
1103 
1104 static INLINE TxSetType av1_get_ext_tx_set_type(TX_SIZE tx_size, int is_inter,
1105  int use_reduced_set) {
1106  const TX_SIZE tx_size_sqr_up = txsize_sqr_up_map[tx_size];
1107  if (tx_size_sqr_up > TX_32X32) return EXT_TX_SET_DCTONLY;
1108  if (tx_size_sqr_up == TX_32X32)
1109  return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DCTONLY;
1110  if (use_reduced_set)
1111  return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DTT4_IDTX;
1112  const TX_SIZE tx_size_sqr = txsize_sqr_map[tx_size];
1113  return av1_ext_tx_set_lookup[is_inter][tx_size_sqr == TX_16X16];
1114 }
1115 
1116 // Maps tx set types to the indices.
1117 static const int ext_tx_set_index[2][EXT_TX_SET_TYPES] = {
1118  { // Intra
1119  0, -1, 2, 1, -1, -1 },
1120  { // Inter
1121  0, 3, -1, -1, 2, 1 },
1122 };
1123 
1124 static INLINE int get_ext_tx_set(TX_SIZE tx_size, int is_inter,
1125  int use_reduced_set) {
1126  const TxSetType set_type =
1127  av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
1128  return ext_tx_set_index[is_inter][set_type];
1129 }
1130 
1131 static INLINE int get_ext_tx_types(TX_SIZE tx_size, int is_inter,
1132  int use_reduced_set) {
1133  const int set_type =
1134  av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
1135  return av1_num_ext_tx_set[set_type];
1136 }
1137 
1138 #define TXSIZEMAX(t1, t2) (tx_size_2d[(t1)] >= tx_size_2d[(t2)] ? (t1) : (t2))
1139 #define TXSIZEMIN(t1, t2) (tx_size_2d[(t1)] <= tx_size_2d[(t2)] ? (t1) : (t2))
1140 
1141 static INLINE TX_SIZE tx_size_from_tx_mode(BLOCK_SIZE bsize, TX_MODE tx_mode) {
1142  const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
1143  const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bsize];
1144  if (bsize == BLOCK_4X4)
1145  return AOMMIN(max_txsize_lookup[bsize], largest_tx_size);
1146  if (txsize_sqr_map[max_rect_tx_size] <= largest_tx_size)
1147  return max_rect_tx_size;
1148  else
1149  return largest_tx_size;
1150 }
1151 
1152 static const uint8_t mode_to_angle_map[] = {
1153  0, 90, 180, 45, 135, 113, 157, 203, 67, 0, 0, 0, 0,
1154 };
1155 
1156 // Converts block_index for given transform size to index of the block in raster
1157 // order.
1158 static INLINE int av1_block_index_to_raster_order(TX_SIZE tx_size,
1159  int block_idx) {
1160  // For transform size 4x8, the possible block_idx values are 0 & 2, because
1161  // block_idx values are incremented in steps of size 'tx_width_unit x
1162  // tx_height_unit'. But, for this transform size, block_idx = 2 corresponds to
1163  // block number 1 in raster order, inside an 8x8 MI block.
1164  // For any other transform size, the two indices are equivalent.
1165  return (tx_size == TX_4X8 && block_idx == 2) ? 1 : block_idx;
1166 }
1167 
1168 // Inverse of above function.
1169 // Note: only implemented for transform sizes 4x4, 4x8 and 8x4 right now.
1170 static INLINE int av1_raster_order_to_block_index(TX_SIZE tx_size,
1171  int raster_order) {
1172  assert(tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4);
1173  // We ensure that block indices are 0 & 2 if tx size is 4x8 or 8x4.
1174  return (tx_size == TX_4X4) ? raster_order : (raster_order > 0) ? 2 : 0;
1175 }
1176 
1177 static INLINE TX_TYPE get_default_tx_type(PLANE_TYPE plane_type,
1178  const MACROBLOCKD *xd,
1179  TX_SIZE tx_size,
1180  int use_screen_content_tools) {
1181  const MB_MODE_INFO *const mbmi = xd->mi[0];
1182 
1183  if (is_inter_block(mbmi) || plane_type != PLANE_TYPE_Y ||
1184  xd->lossless[mbmi->segment_id] || tx_size >= TX_32X32 ||
1185  use_screen_content_tools)
1186  return DEFAULT_INTER_TX_TYPE;
1187 
1188  return intra_mode_to_tx_type(mbmi, plane_type);
1189 }
1190 
1191 // Implements the get_plane_residual_size() function in the spec (Section
1192 // 5.11.38. Get plane residual size function).
1193 static INLINE BLOCK_SIZE get_plane_block_size(BLOCK_SIZE bsize,
1194  int subsampling_x,
1195  int subsampling_y) {
1196  assert(bsize < BLOCK_SIZES_ALL);
1197  assert(subsampling_x >= 0 && subsampling_x < 2);
1198  assert(subsampling_y >= 0 && subsampling_y < 2);
1199  return ss_size_lookup[bsize][subsampling_x][subsampling_y];
1200 }
1201 
1202 /*
1203  * Logic to generate the lookup tables:
1204  *
1205  * TX_SIZE txs = max_txsize_rect_lookup[bsize];
1206  * for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level)
1207  * txs = sub_tx_size_map[txs];
1208  * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
1209  * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
1210  * const int bw_uint_log2 = mi_size_wide_log2[bsize];
1211  * const int stride_log2 = bw_uint_log2 - tx_w_log2;
1212  */
1213 static INLINE int av1_get_txb_size_index(BLOCK_SIZE bsize, int blk_row,
1214  int blk_col) {
1215  static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
1216  0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 0, 1, 1, 2, 2, 3,
1217  };
1218  static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
1219  0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1, 0, 2, 1, 3, 2,
1220  };
1221  static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
1222  0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 0, 1, 0, 1, 0, 1,
1223  };
1224  const int index =
1225  ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
1226  (blk_col >> tw_w_log2_table[bsize]);
1227  assert(index < INTER_TX_SIZE_BUF_LEN);
1228  return index;
1229 }
1230 
1231 #if CONFIG_INSPECTION
1232 /*
1233  * Here is the logic to generate the lookup tables:
1234  *
1235  * TX_SIZE txs = max_txsize_rect_lookup[bsize];
1236  * for (int level = 0; level < MAX_VARTX_DEPTH; ++level)
1237  * txs = sub_tx_size_map[txs];
1238  * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
1239  * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
1240  * const int bw_uint_log2 = mi_size_wide_log2[bsize];
1241  * const int stride_log2 = bw_uint_log2 - tx_w_log2;
1242  */
1243 static INLINE int av1_get_txk_type_index(BLOCK_SIZE bsize, int blk_row,
1244  int blk_col) {
1245  static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
1246  0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
1247  };
1248  static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
1249  0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
1250  };
1251  static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
1252  0, 0, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 3, 3, 0, 2, 0, 2, 0, 2,
1253  };
1254  const int index =
1255  ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
1256  (blk_col >> tw_w_log2_table[bsize]);
1257  assert(index < TXK_TYPE_BUF_LEN);
1258  return index;
1259 }
1260 #endif // CONFIG_INSPECTION
1261 
1262 static INLINE void update_txk_array(MACROBLOCKD *const xd, int blk_row,
1263  int blk_col, TX_SIZE tx_size,
1264  TX_TYPE tx_type) {
1265  const int stride = xd->tx_type_map_stride;
1266  xd->tx_type_map[blk_row * stride + blk_col] = tx_type;
1267 
1268  const int txw = tx_size_wide_unit[tx_size];
1269  const int txh = tx_size_high_unit[tx_size];
1270  // The 16x16 unit is due to the constraint from tx_64x64 which sets the
1271  // maximum tx size for chroma as 32x32. Coupled with 4x1 transform block
1272  // size, the constraint takes effect in 32x16 / 16x32 size too. To solve
1273  // the intricacy, cover all the 16x16 units inside a 64 level transform.
1274  if (txw == tx_size_wide_unit[TX_64X64] ||
1275  txh == tx_size_high_unit[TX_64X64]) {
1276  const int tx_unit = tx_size_wide_unit[TX_16X16];
1277  for (int idy = 0; idy < txh; idy += tx_unit) {
1278  for (int idx = 0; idx < txw; idx += tx_unit) {
1279  xd->tx_type_map[(blk_row + idy) * stride + blk_col + idx] = tx_type;
1280  }
1281  }
1282  }
1283 }
1284 
1285 static INLINE TX_TYPE av1_get_tx_type(const MACROBLOCKD *xd,
1286  PLANE_TYPE plane_type, int blk_row,
1287  int blk_col, TX_SIZE tx_size,
1288  int reduced_tx_set) {
1289  const MB_MODE_INFO *const mbmi = xd->mi[0];
1290  if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32) {
1291  return DCT_DCT;
1292  }
1293 
1294  TX_TYPE tx_type;
1295  if (plane_type == PLANE_TYPE_Y) {
1296  tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
1297  } else {
1298  if (is_inter_block(mbmi)) {
1299  // scale back to y plane's coordinate
1300  const struct macroblockd_plane *const pd = &xd->plane[plane_type];
1301  blk_row <<= pd->subsampling_y;
1302  blk_col <<= pd->subsampling_x;
1303  tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
1304  } else {
1305  // In intra mode, uv planes don't share the same prediction mode as y
1306  // plane, so the tx_type should not be shared
1307  tx_type = intra_mode_to_tx_type(mbmi, PLANE_TYPE_UV);
1308  }
1309  const TxSetType tx_set_type =
1310  av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi), reduced_tx_set);
1311  if (!av1_ext_tx_used[tx_set_type][tx_type]) tx_type = DCT_DCT;
1312  }
1313  assert(tx_type < TX_TYPES);
1314  assert(av1_ext_tx_used[av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi),
1315  reduced_tx_set)][tx_type]);
1316  return tx_type;
1317 }
1318 
1319 void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y,
1320  const int num_planes);
1321 
1322 /*
1323  * Logic to generate the lookup table:
1324  *
1325  * TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
1326  * int depth = 0;
1327  * while (depth < MAX_TX_DEPTH && tx_size != TX_4X4) {
1328  * depth++;
1329  * tx_size = sub_tx_size_map[tx_size];
1330  * }
1331  */
1332 static INLINE int bsize_to_max_depth(BLOCK_SIZE bsize) {
1333  static const uint8_t bsize_to_max_depth_table[BLOCK_SIZES_ALL] = {
1334  0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1335  };
1336  return bsize_to_max_depth_table[bsize];
1337 }
1338 
1339 /*
1340  * Logic to generate the lookup table:
1341  *
1342  * TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
1343  * assert(tx_size != TX_4X4);
1344  * int depth = 0;
1345  * while (tx_size != TX_4X4) {
1346  * depth++;
1347  * tx_size = sub_tx_size_map[tx_size];
1348  * }
1349  * assert(depth < 10);
1350  */
1351 static INLINE int bsize_to_tx_size_cat(BLOCK_SIZE bsize) {
1352  assert(bsize < BLOCK_SIZES_ALL);
1353  static const uint8_t bsize_to_tx_size_depth_table[BLOCK_SIZES_ALL] = {
1354  0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 2, 2, 3, 3, 4, 4,
1355  };
1356  const int depth = bsize_to_tx_size_depth_table[bsize];
1357  assert(depth <= MAX_TX_CATS);
1358  return depth - 1;
1359 }
1360 
1361 static INLINE TX_SIZE depth_to_tx_size(int depth, BLOCK_SIZE bsize) {
1362  TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
1363  TX_SIZE tx_size = max_tx_size;
1364  for (int d = 0; d < depth; ++d) tx_size = sub_tx_size_map[tx_size];
1365  return tx_size;
1366 }
1367 
1368 static INLINE TX_SIZE av1_get_adjusted_tx_size(TX_SIZE tx_size) {
1369  switch (tx_size) {
1370  case TX_64X64:
1371  case TX_64X32:
1372  case TX_32X64: return TX_32X32;
1373  case TX_64X16: return TX_32X16;
1374  case TX_16X64: return TX_16X32;
1375  default: return tx_size;
1376  }
1377 }
1378 
1379 static INLINE TX_SIZE av1_get_max_uv_txsize(BLOCK_SIZE bsize, int subsampling_x,
1380  int subsampling_y) {
1381  const BLOCK_SIZE plane_bsize =
1382  get_plane_block_size(bsize, subsampling_x, subsampling_y);
1383  assert(plane_bsize < BLOCK_SIZES_ALL);
1384  const TX_SIZE uv_tx = max_txsize_rect_lookup[plane_bsize];
1385  return av1_get_adjusted_tx_size(uv_tx);
1386 }
1387 
1388 static INLINE TX_SIZE av1_get_tx_size(int plane, const MACROBLOCKD *xd) {
1389  const MB_MODE_INFO *mbmi = xd->mi[0];
1390  if (xd->lossless[mbmi->segment_id]) return TX_4X4;
1391  if (plane == 0) return mbmi->tx_size;
1392  const MACROBLOCKD_PLANE *pd = &xd->plane[plane];
1393  return av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
1394  pd->subsampling_y);
1395 }
1396 
1397 void av1_reset_entropy_context(MACROBLOCKD *xd, BLOCK_SIZE bsize,
1398  const int num_planes);
1399 
1400 void av1_reset_loop_filter_delta(MACROBLOCKD *xd, int num_planes);
1401 
1402 void av1_reset_loop_restoration(MACROBLOCKD *xd, const int num_planes);
1403 
1404 typedef void (*foreach_transformed_block_visitor)(int plane, int block,
1405  int blk_row, int blk_col,
1406  BLOCK_SIZE plane_bsize,
1407  TX_SIZE tx_size, void *arg);
1408 
1409 void av1_set_entropy_contexts(const MACROBLOCKD *xd,
1410  struct macroblockd_plane *pd, int plane,
1411  BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
1412  int has_eob, int aoff, int loff);
1413 
1414 #define MAX_INTERINTRA_SB_SQUARE 32 * 32
1415 static INLINE int is_interintra_mode(const MB_MODE_INFO *mbmi) {
1416  return (mbmi->ref_frame[0] > INTRA_FRAME &&
1417  mbmi->ref_frame[1] == INTRA_FRAME);
1418 }
1419 
1420 static INLINE int is_interintra_allowed_bsize(const BLOCK_SIZE bsize) {
1421  return (bsize >= BLOCK_8X8) && (bsize <= BLOCK_32X32);
1422 }
1423 
1424 static INLINE int is_interintra_allowed_mode(const PREDICTION_MODE mode) {
1425  return (mode >= SINGLE_INTER_MODE_START) && (mode < SINGLE_INTER_MODE_END);
1426 }
1427 
1428 static INLINE int is_interintra_allowed_ref(const MV_REFERENCE_FRAME rf[2]) {
1429  return (rf[0] > INTRA_FRAME) && (rf[1] <= INTRA_FRAME);
1430 }
1431 
1432 static INLINE int is_interintra_allowed(const MB_MODE_INFO *mbmi) {
1433  return is_interintra_allowed_bsize(mbmi->bsize) &&
1434  is_interintra_allowed_mode(mbmi->mode) &&
1435  is_interintra_allowed_ref(mbmi->ref_frame);
1436 }
1437 
1438 static INLINE int is_interintra_allowed_bsize_group(int group) {
1439  int i;
1440  for (i = 0; i < BLOCK_SIZES_ALL; i++) {
1441  if (size_group_lookup[i] == group &&
1442  is_interintra_allowed_bsize((BLOCK_SIZE)i)) {
1443  return 1;
1444  }
1445  }
1446  return 0;
1447 }
1448 
1449 static INLINE int is_interintra_pred(const MB_MODE_INFO *mbmi) {
1450  return mbmi->ref_frame[0] > INTRA_FRAME &&
1451  mbmi->ref_frame[1] == INTRA_FRAME && is_interintra_allowed(mbmi);
1452 }
1453 
1454 static INLINE int get_vartx_max_txsize(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1455  int plane) {
1456  if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4;
1457  const TX_SIZE max_txsize = max_txsize_rect_lookup[bsize];
1458  if (plane == 0) return max_txsize; // luma
1459  return av1_get_adjusted_tx_size(max_txsize); // chroma
1460 }
1461 
1462 static INLINE int is_motion_variation_allowed_bsize(BLOCK_SIZE bsize) {
1463  assert(bsize < BLOCK_SIZES_ALL);
1464  return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
1465 }
1466 
1467 static INLINE int is_motion_variation_allowed_compound(
1468  const MB_MODE_INFO *mbmi) {
1469  return !has_second_ref(mbmi);
1470 }
1471 
1472 // input: log2 of length, 0(4), 1(8), ...
1473 static const int max_neighbor_obmc[6] = { 0, 1, 2, 3, 4, 4 };
1474 
1475 static INLINE int check_num_overlappable_neighbors(const MB_MODE_INFO *mbmi) {
1476  return mbmi->overlappable_neighbors != 0;
1477 }
1478 
1479 static INLINE MOTION_MODE
1480 motion_mode_allowed(const WarpedMotionParams *gm_params, const MACROBLOCKD *xd,
1481  const MB_MODE_INFO *mbmi, int allow_warped_motion) {
1482  if (!check_num_overlappable_neighbors(mbmi)) return SIMPLE_TRANSLATION;
1483  if (xd->cur_frame_force_integer_mv == 0) {
1484  const TransformationType gm_type = gm_params[mbmi->ref_frame[0]].wmtype;
1485  if (is_global_mv_block(mbmi, gm_type)) return SIMPLE_TRANSLATION;
1486  }
1487  if (is_motion_variation_allowed_bsize(mbmi->bsize) &&
1488  is_inter_mode(mbmi->mode) && mbmi->ref_frame[1] != INTRA_FRAME &&
1489  is_motion_variation_allowed_compound(mbmi)) {
1490  assert(!has_second_ref(mbmi));
1491  if (mbmi->num_proj_ref >= 1 && allow_warped_motion &&
1493  !av1_is_scaled(xd->block_ref_scale_factors[0])) {
1494  return WARPED_CAUSAL;
1495  }
1496  return OBMC_CAUSAL;
1497  }
1498  return SIMPLE_TRANSLATION;
1499 }
1500 
1501 static INLINE int is_neighbor_overlappable(const MB_MODE_INFO *mbmi) {
1502  return (is_inter_block(mbmi));
1503 }
1504 
1505 static INLINE int av1_allow_palette(int allow_screen_content_tools,
1506  BLOCK_SIZE sb_type) {
1507  assert(sb_type < BLOCK_SIZES_ALL);
1508  return allow_screen_content_tools &&
1509  block_size_wide[sb_type] <= MAX_PALETTE_BLOCK_WIDTH &&
1510  block_size_high[sb_type] <= MAX_PALETTE_BLOCK_HEIGHT &&
1511  sb_type >= BLOCK_8X8;
1512 }
1513 
1514 // Returns sub-sampled dimensions of the given block.
1515 // The output values for 'rows_within_bounds' and 'cols_within_bounds' will
1516 // differ from 'height' and 'width' when part of the block is outside the
1517 // right
1518 // and/or bottom image boundary.
1519 static INLINE void av1_get_block_dimensions(BLOCK_SIZE bsize, int plane,
1520  const MACROBLOCKD *xd, int *width,
1521  int *height,
1522  int *rows_within_bounds,
1523  int *cols_within_bounds) {
1524  const int block_height = block_size_high[bsize];
1525  const int block_width = block_size_wide[bsize];
1526  const int block_rows = (xd->mb_to_bottom_edge >= 0)
1527  ? block_height
1528  : (xd->mb_to_bottom_edge >> 3) + block_height;
1529  const int block_cols = (xd->mb_to_right_edge >= 0)
1530  ? block_width
1531  : (xd->mb_to_right_edge >> 3) + block_width;
1532  const struct macroblockd_plane *const pd = &xd->plane[plane];
1533  assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_x == 0));
1534  assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_y == 0));
1535  assert(block_width >= block_cols);
1536  assert(block_height >= block_rows);
1537  const int plane_block_width = block_width >> pd->subsampling_x;
1538  const int plane_block_height = block_height >> pd->subsampling_y;
1539  // Special handling for chroma sub8x8.
1540  const int is_chroma_sub8_x = plane > 0 && plane_block_width < 4;
1541  const int is_chroma_sub8_y = plane > 0 && plane_block_height < 4;
1542  if (width) {
1543  *width = plane_block_width + 2 * is_chroma_sub8_x;
1544  assert(*width >= 0);
1545  }
1546  if (height) {
1547  *height = plane_block_height + 2 * is_chroma_sub8_y;
1548  assert(*height >= 0);
1549  }
1550  if (rows_within_bounds) {
1551  *rows_within_bounds =
1552  (block_rows >> pd->subsampling_y) + 2 * is_chroma_sub8_y;
1553  assert(*rows_within_bounds >= 0);
1554  }
1555  if (cols_within_bounds) {
1556  *cols_within_bounds =
1557  (block_cols >> pd->subsampling_x) + 2 * is_chroma_sub8_x;
1558  assert(*cols_within_bounds >= 0);
1559  }
1560 }
1561 
1562 /* clang-format off */
1563 // Pointer to a three-dimensional array whose first dimension is PALETTE_SIZES.
1564 typedef aom_cdf_prob (*MapCdf)[PALETTE_COLOR_INDEX_CONTEXTS]
1565  [CDF_SIZE(PALETTE_COLORS)];
1566 // Pointer to a const three-dimensional array whose first dimension is
1567 // PALETTE_SIZES.
1568 typedef const int (*ColorCost)[PALETTE_COLOR_INDEX_CONTEXTS][PALETTE_COLORS];
1569 /* clang-format on */
1570 
1571 typedef struct {
1572  int rows;
1573  int cols;
1574  int n_colors;
1575  int plane_width;
1576  int plane_height;
1577  uint8_t *color_map;
1578  MapCdf map_cdf;
1579  ColorCost color_cost;
1580 } Av1ColorMapParam;
1581 
1582 static INLINE int is_nontrans_global_motion(const MACROBLOCKD *xd,
1583  const MB_MODE_INFO *mbmi) {
1584  int ref;
1585 
1586  // First check if all modes are GLOBALMV
1587  if (mbmi->mode != GLOBALMV && mbmi->mode != GLOBAL_GLOBALMV) return 0;
1588 
1589  if (AOMMIN(mi_size_wide[mbmi->bsize], mi_size_high[mbmi->bsize]) < 2)
1590  return 0;
1591 
1592  // Now check if all global motion is non translational
1593  for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
1594  if (xd->global_motion[mbmi->ref_frame[ref]].wmtype == TRANSLATION) return 0;
1595  }
1596  return 1;
1597 }
1598 
1599 static INLINE PLANE_TYPE get_plane_type(int plane) {
1600  return (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
1601 }
1602 
1603 static INLINE int av1_get_max_eob(TX_SIZE tx_size) {
1604  if (tx_size == TX_64X64 || tx_size == TX_64X32 || tx_size == TX_32X64) {
1605  return 1024;
1606  }
1607  if (tx_size == TX_16X64 || tx_size == TX_64X16) {
1608  return 512;
1609  }
1610  return tx_size_2d[tx_size];
1611 }
1612 
1615 #ifdef __cplusplus
1616 } // extern "C"
1617 #endif
1618 
1619 #endif // AOM_AV1_COMMON_BLOCKD_H_
Stores the prediction/txfm mode of the current coding block.
Definition: blockd.h:222
int8_t delta_lf_from_base
Definition: blockd.h:300
int_interpfilters interp_filters
Filter used in subpel interpolation.
Definition: blockd.h:248
uint8_t skip_cdef_curr_sb
Skip CDEF for this superblock.
Definition: blockd.h:330
int8_t interintra_wedge_index
The type of wedge used in interintra mode.
Definition: blockd.h:261
int_mv mv[2]
The motion vectors used by the current inter mode.
Definition: blockd.h:244
int8_t delta_lf[FRAME_LF_COUNT]
Definition: blockd.h:302
PREDICTION_MODE mode
The prediction mode used.
Definition: blockd.h:232
INTERINTER_COMPOUND_DATA interinter_comp
Struct that stores the data used in interinter compound mode.
Definition: blockd.h:263
uint8_t use_wedge_interintra
Whether to use interintra wedge.
Definition: blockd.h:324
UV_PREDICTION_MODE uv_mode
The UV mode when intra is used.
Definition: blockd.h:234
PALETTE_MODE_INFO palette_mode_info
Stores the size and colors of palette mode.
Definition: blockd.h:280
uint8_t segment_id
The segment id.
Definition: blockd.h:310
uint8_t cfl_alpha_idx
Chroma from Luma: Index of the alpha Cb and alpha Cr combination.
Definition: blockd.h:278
uint8_t ref_mv_idx
Which ref_mv to use.
Definition: blockd.h:314
uint8_t compound_idx
Indicates whether dist_wtd_comp(0) is used or not (0).
Definition: blockd.h:322
uint8_t overlappable_neighbors
The number of overlapped neighbors above/left for obmc/warp motion mode.
Definition: blockd.h:255
MV_REFERENCE_FRAME ref_frame[2]
The reference frames for the MV.
Definition: blockd.h:246
TX_SIZE inter_tx_size[INTER_TX_SIZE_BUF_LEN]
Transform size when recursive txfm tree is on.
Definition: blockd.h:292
int8_t cdef_strength
CDEF strength per BLOCK_64X64.
Definition: blockd.h:326
int current_qindex
The q index for the current coding block.
Definition: blockd.h:236
int8_t angle_delta[PLANE_TYPES]
Directional mode delta: the angle is base angle + (angle_delta * step).
Definition: blockd.h:272
int8_t skip_txfm
Whether to skip transforming and sending.
Definition: blockd.h:288
FILTER_INTRA_MODE_INFO filter_intra_mode_info
The type of filter intra mode used (if applicable).
Definition: blockd.h:274
WarpedMotionParams wm_params
The parameters used in warp motion mode.
Definition: blockd.h:257
MOTION_MODE motion_mode
The motion mode used by the inter prediction.
Definition: blockd.h:250
uint8_t num_proj_ref
Number of samples used by warp causal.
Definition: blockd.h:252
uint8_t seg_id_predicted
Only valid when temporal update if off.
Definition: blockd.h:312
int8_t cfl_alpha_signs
Chroma from Luma: Joint sign of alpha Cb and alpha Cr.
Definition: blockd.h:276
uint8_t comp_group_idx
Indicates if masked compound is used(1) or not (0).
Definition: blockd.h:320
uint8_t skip_mode
Inter skip mode.
Definition: blockd.h:316
INTERINTRA_MODE interintra_mode
The type of intra mode used by inter-intra.
Definition: blockd.h:259
PARTITION_TYPE partition
The partition type of the current coding block.
Definition: blockd.h:230
BLOCK_SIZE bsize
The block size of the current coding block.
Definition: blockd.h:228
TX_SIZE tx_size
Transform size when fixed size txfm is used (e.g. intra modes).
Definition: blockd.h:290
uint8_t use_intrabc
Whether intrabc is used.
Definition: blockd.h:318
Parameters related to Sgrproj Filter.
Definition: blockd.h:510
int ep
Definition: blockd.h:514
Parameters related to Wiener Filter.
Definition: blockd.h:497
Variables related to current coding block.
Definition: blockd.h:577
bool left_available
Definition: blockd.h:633
uint8_t * tx_type_map
Definition: blockd.h:673
int mb_to_bottom_edge
Definition: blockd.h:687
TXFM_CONTEXT * left_txfm_context
Definition: blockd.h:747
struct macroblockd_plane plane[3]
Definition: blockd.h:613
TileInfo tile
Definition: blockd.h:618
int mb_to_top_edge
Definition: blockd.h:686
int8_t delta_lf_from_base
Definition: blockd.h:860
int mb_to_right_edge
Definition: blockd.h:685
WienerInfo wiener_info[3]
Definition: blockd.h:764
bool up_available
Definition: blockd.h:629
CONV_BUF_TYPE * tmp_conv_dst
Definition: blockd.h:923
MB_MODE_INFO * above_mbmi
Definition: blockd.h:652
bool chroma_up_available
Definition: blockd.h:637
TXFM_CONTEXT * above_txfm_context
Definition: blockd.h:740
int bd
Definition: blockd.h:815
bool chroma_left_available
Definition: blockd.h:641
PARTITION_CONTEXT * above_partition_context
Definition: blockd.h:725
uint8_t * seg_mask
Definition: blockd.h:896
int qindex[8]
Definition: blockd.h:820
uint16_t weight[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE]
Definition: blockd.h:788
MB_MODE_INFO * chroma_left_mbmi
Definition: blockd.h:659
TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE]
Definition: blockd.h:754
int tx_type_map_stride
Definition: blockd.h:678
const WarpedMotionParams * global_motion
Definition: blockd.h:850
MB_MODE_INFO * chroma_above_mbmi
Definition: blockd.h:666
FRAME_CONTEXT * tile_ctx
Definition: blockd.h:810
uint8_t * tmp_obmc_bufs[2]
Definition: blockd.h:934
int mi_row
Definition: blockd.h:582
const YV12_BUFFER_CONFIG * cur_buf
Definition: blockd.h:702
int mi_stride
Definition: blockd.h:589
bool is_last_vertical_rect
Definition: blockd.h:794
bool is_first_horizontal_rect
Definition: blockd.h:799
uint8_t width
Definition: blockd.h:772
struct aom_internal_error_info * error_info
Definition: blockd.h:845
CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE]
Definition: blockd.h:783
int current_base_qindex
Definition: blockd.h:835
CFL_CTX cfl
Definition: blockd.h:901
const struct scale_factors * block_ref_scale_factors[2]
Definition: blockd.h:694
int lossless[8]
Definition: blockd.h:824
ENTROPY_CONTEXT left_entropy_context[3][MAX_MIB_SIZE]
Definition: blockd.h:717
bool cdef_transmitted[4]
Definition: blockd.h:891
ENTROPY_CONTEXT * above_entropy_context[3]
Definition: blockd.h:710
int8_t delta_lf[FRAME_LF_COUNT]
Definition: blockd.h:875
MB_MODE_INFO ** mi
Definition: blockd.h:624
uint8_t height
Definition: blockd.h:773
MB_MODE_INFO * left_mbmi
Definition: blockd.h:647
uint16_t color_index_map_offset[2]
Definition: blockd.h:912
SgrprojInfo sgrproj_info[3]
Definition: blockd.h:765
int cur_frame_force_integer_mv
Definition: blockd.h:840
PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE]
Definition: blockd.h:732
uint8_t neighbors_ref_counts[REF_FRAMES]
Definition: blockd.h:805
bool is_chroma_ref
Definition: blockd.h:608
int mi_col
Definition: blockd.h:583
int mb_to_left_edge
Definition: blockd.h:684
YV12 frame buffer data structure.
Definition: yv12config.h:39