AOMedia AV1 Codec
svc_encoder_rtc
1 /*
2  * Copyright (c) 2019, Alliance for Open Media. All Rights Reserved.
3  *
4  * Use of this source code is governed by a BSD-style license
5  * that can be found in the LICENSE file in the root of the source
6  * tree. An additional intellectual property rights grant can be found
7  * in the file PATENTS. All contributing project authors may
8  * be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 // This is an example demonstrating how to implement a multi-layer AOM
12 // encoding scheme for RTC video applications.
13 
14 #include <assert.h>
15 #include <math.h>
16 #include <stdio.h>
17 #include <stdlib.h>
18 #include <string.h>
19 
20 #include "aom/aom_encoder.h"
21 #include "aom/aomcx.h"
22 #include "av1/common/enums.h"
23 #include "av1/encoder/encoder.h"
24 #include "common/args.h"
25 #include "common/tools_common.h"
26 #include "common/video_writer.h"
27 #include "examples/encoder_util.h"
28 #include "aom_ports/aom_timer.h"
29 
30 #define OPTION_BUFFER_SIZE 1024
31 
32 typedef struct {
33  const char *output_filename;
34  char options[OPTION_BUFFER_SIZE];
35  struct AvxInputContext input_ctx;
36  int speed;
37  int aq_mode;
38  int layering_mode;
39  int output_obu;
40 } AppInput;
41 
42 typedef enum {
43  QUANTIZER = 0,
44  BITRATE,
45  SCALE_FACTOR,
46  AUTO_ALT_REF,
47  ALL_OPTION_TYPES
48 } LAYER_OPTION_TYPE;
49 
50 static const arg_def_t outputfile =
51  ARG_DEF("o", "output", 1, "Output filename");
52 static const arg_def_t frames_arg =
53  ARG_DEF("f", "frames", 1, "Number of frames to encode");
54 static const arg_def_t threads_arg =
55  ARG_DEF("th", "threads", 1, "Number of threads to use");
56 static const arg_def_t width_arg = ARG_DEF("w", "width", 1, "Source width");
57 static const arg_def_t height_arg = ARG_DEF("h", "height", 1, "Source height");
58 static const arg_def_t timebase_arg =
59  ARG_DEF("t", "timebase", 1, "Timebase (num/den)");
60 static const arg_def_t bitrate_arg = ARG_DEF(
61  "b", "target-bitrate", 1, "Encoding bitrate, in kilobits per second");
62 static const arg_def_t spatial_layers_arg =
63  ARG_DEF("sl", "spatial-layers", 1, "Number of spatial SVC layers");
64 static const arg_def_t temporal_layers_arg =
65  ARG_DEF("tl", "temporal-layers", 1, "Number of temporal SVC layers");
66 static const arg_def_t layering_mode_arg =
67  ARG_DEF("lm", "layering-mode", 1, "Temporal layering scheme.");
68 static const arg_def_t kf_dist_arg =
69  ARG_DEF("k", "kf-dist", 1, "Number of frames between keyframes");
70 static const arg_def_t scale_factors_arg =
71  ARG_DEF("r", "scale-factors", 1, "Scale factors (lowest to highest layer)");
72 static const arg_def_t min_q_arg =
73  ARG_DEF(NULL, "min-q", 1, "Minimum quantizer");
74 static const arg_def_t max_q_arg =
75  ARG_DEF(NULL, "max-q", 1, "Maximum quantizer");
76 static const arg_def_t speed_arg =
77  ARG_DEF("sp", "speed", 1, "Speed configuration");
78 static const arg_def_t aqmode_arg =
79  ARG_DEF("aq", "aqmode", 1, "AQ mode off/on");
80 static const arg_def_t bitrates_arg =
81  ARG_DEF("bl", "bitrates", 1,
82  "Bitrates[spatial_layer * num_temporal_layer + temporal_layer]");
83 static const arg_def_t dropframe_thresh_arg =
84  ARG_DEF(NULL, "drop-frame", 1, "Temporal resampling threshold (buf %)");
85 static const arg_def_t error_resilient_arg =
86  ARG_DEF(NULL, "error-resilient", 1, "Error resilient flag");
87 static const arg_def_t output_obu_arg =
88  ARG_DEF(NULL, "output-obu", 1,
89  "Write OBUs when set to 1. Otherwise write IVF files.");
90 
91 #if CONFIG_AV1_HIGHBITDEPTH
92 static const struct arg_enum_list bitdepth_enum[] = {
93  { "8", AOM_BITS_8 }, { "10", AOM_BITS_10 }, { "12", AOM_BITS_12 }, { NULL, 0 }
94 };
95 
96 static const arg_def_t bitdepth_arg = ARG_DEF_ENUM(
97  "d", "bit-depth", 1, "Bit depth for codec 8, 10 or 12. ", bitdepth_enum);
98 #endif // CONFIG_AV1_HIGHBITDEPTH
99 
100 static const arg_def_t *svc_args[] = {
101  &frames_arg, &outputfile, &width_arg,
102  &height_arg, &timebase_arg, &bitrate_arg,
103  &spatial_layers_arg, &kf_dist_arg, &scale_factors_arg,
104  &min_q_arg, &max_q_arg, &temporal_layers_arg,
105  &layering_mode_arg, &threads_arg, &aqmode_arg,
106 #if CONFIG_AV1_HIGHBITDEPTH
107  &bitdepth_arg,
108 #endif
109  &speed_arg, &bitrates_arg, &dropframe_thresh_arg,
110  &error_resilient_arg, &output_obu_arg, NULL
111 };
112 
113 #define zero(Dest) memset(&(Dest), 0, sizeof(Dest))
114 
115 static const char *exec_name;
116 
117 void usage_exit(void) {
118  fprintf(stderr, "Usage: %s <options> input_filename -o output_filename\n",
119  exec_name);
120  fprintf(stderr, "Options:\n");
121  arg_show_usage(stderr, svc_args);
122  exit(EXIT_FAILURE);
123 }
124 
125 static int file_is_y4m(const char detect[4]) {
126  return memcmp(detect, "YUV4", 4) == 0;
127 }
128 
129 static int fourcc_is_ivf(const char detect[4]) {
130  if (memcmp(detect, "DKIF", 4) == 0) {
131  return 1;
132  }
133  return 0;
134 }
135 
136 static const int option_max_values[ALL_OPTION_TYPES] = { 63, INT_MAX, INT_MAX,
137  1 };
138 
139 static const int option_min_values[ALL_OPTION_TYPES] = { 0, 0, 1, 0 };
140 
141 static void open_input_file(struct AvxInputContext *input,
143  /* Parse certain options from the input file, if possible */
144  input->file = strcmp(input->filename, "-") ? fopen(input->filename, "rb")
145  : set_binary_mode(stdin);
146 
147  if (!input->file) fatal("Failed to open input file");
148 
149  if (!fseeko(input->file, 0, SEEK_END)) {
150  /* Input file is seekable. Figure out how long it is, so we can get
151  * progress info.
152  */
153  input->length = ftello(input->file);
154  rewind(input->file);
155  }
156 
157  /* Default to 1:1 pixel aspect ratio. */
158  input->pixel_aspect_ratio.numerator = 1;
159  input->pixel_aspect_ratio.denominator = 1;
160 
161  /* For RAW input sources, these bytes will applied on the first frame
162  * in read_frame().
163  */
164  input->detect.buf_read = fread(input->detect.buf, 1, 4, input->file);
165  input->detect.position = 0;
166 
167  if (input->detect.buf_read == 4 && file_is_y4m(input->detect.buf)) {
168  if (y4m_input_open(&input->y4m, input->file, input->detect.buf, 4, csp,
169  input->only_i420) >= 0) {
170  input->file_type = FILE_TYPE_Y4M;
171  input->width = input->y4m.pic_w;
172  input->height = input->y4m.pic_h;
173  input->pixel_aspect_ratio.numerator = input->y4m.par_n;
174  input->pixel_aspect_ratio.denominator = input->y4m.par_d;
175  input->framerate.numerator = input->y4m.fps_n;
176  input->framerate.denominator = input->y4m.fps_d;
177  input->fmt = input->y4m.aom_fmt;
178  input->bit_depth = input->y4m.bit_depth;
179  } else {
180  fatal("Unsupported Y4M stream.");
181  }
182  } else if (input->detect.buf_read == 4 && fourcc_is_ivf(input->detect.buf)) {
183  fatal("IVF is not supported as input.");
184  } else {
185  input->file_type = FILE_TYPE_RAW;
186  }
187 }
188 
189 static aom_codec_err_t extract_option(LAYER_OPTION_TYPE type, char *input,
190  int *value0, int *value1) {
191  if (type == SCALE_FACTOR) {
192  *value0 = (int)strtol(input, &input, 10);
193  if (*input++ != '/') return AOM_CODEC_INVALID_PARAM;
194  *value1 = (int)strtol(input, &input, 10);
195 
196  if (*value0 < option_min_values[SCALE_FACTOR] ||
197  *value1 < option_min_values[SCALE_FACTOR] ||
198  *value0 > option_max_values[SCALE_FACTOR] ||
199  *value1 > option_max_values[SCALE_FACTOR] ||
200  *value0 > *value1) // num shouldn't be greater than den
202  } else {
203  *value0 = atoi(input);
204  if (*value0 < option_min_values[type] || *value0 > option_max_values[type])
206  }
207  return AOM_CODEC_OK;
208 }
209 
210 static aom_codec_err_t parse_layer_options_from_string(
211  aom_svc_params_t *svc_params, LAYER_OPTION_TYPE type, const char *input,
212  int *option0, int *option1) {
214  char *input_string;
215  char *token;
216  const char *delim = ",";
217  int num_layers = svc_params->number_spatial_layers;
218  int i = 0;
219 
220  if (type == BITRATE)
221  num_layers =
222  svc_params->number_spatial_layers * svc_params->number_temporal_layers;
223 
224  if (input == NULL || option0 == NULL ||
225  (option1 == NULL && type == SCALE_FACTOR))
227 
228  input_string = malloc(strlen(input));
229  if (!input_string) die("Failed to allocate input string.");
230  memcpy(input_string, input, strlen(input));
231  if (input_string == NULL) return AOM_CODEC_MEM_ERROR;
232  token = strtok(input_string, delim); // NOLINT
233  for (i = 0; i < num_layers; ++i) {
234  if (token != NULL) {
235  res = extract_option(type, token, option0 + i, option1 + i);
236  if (res != AOM_CODEC_OK) break;
237  token = strtok(NULL, delim); // NOLINT
238  } else {
239  break;
240  }
241  }
242  if (res == AOM_CODEC_OK && i != num_layers) {
244  }
245  free(input_string);
246  return res;
247 }
248 
249 static void parse_command_line(int argc, const char **argv_,
250  AppInput *app_input,
251  aom_svc_params_t *svc_params,
252  aom_codec_enc_cfg_t *enc_cfg) {
253  struct arg arg;
254  char **argv = NULL;
255  char **argi = NULL;
256  char **argj = NULL;
257  char string_options[1024] = { 0 };
258 
259  // Default settings
260  svc_params->number_spatial_layers = 1;
261  svc_params->number_temporal_layers = 1;
262  app_input->layering_mode = 0;
263  app_input->output_obu = 0;
264  enc_cfg->g_threads = 1;
265  enc_cfg->rc_end_usage = AOM_CBR;
266 
267  // process command line options
268  argv = argv_dup(argc - 1, argv_ + 1);
269  if (!argv) {
270  fprintf(stderr, "Error allocating argument list\n");
271  exit(EXIT_FAILURE);
272  }
273  for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) {
274  arg.argv_step = 1;
275 
276  if (arg_match(&arg, &outputfile, argi)) {
277  app_input->output_filename = arg.val;
278  } else if (arg_match(&arg, &width_arg, argi)) {
279  enc_cfg->g_w = arg_parse_uint(&arg);
280  } else if (arg_match(&arg, &height_arg, argi)) {
281  enc_cfg->g_h = arg_parse_uint(&arg);
282  } else if (arg_match(&arg, &timebase_arg, argi)) {
283  enc_cfg->g_timebase = arg_parse_rational(&arg);
284  } else if (arg_match(&arg, &bitrate_arg, argi)) {
285  enc_cfg->rc_target_bitrate = arg_parse_uint(&arg);
286  } else if (arg_match(&arg, &spatial_layers_arg, argi)) {
287  svc_params->number_spatial_layers = arg_parse_uint(&arg);
288  } else if (arg_match(&arg, &temporal_layers_arg, argi)) {
289  svc_params->number_temporal_layers = arg_parse_uint(&arg);
290  } else if (arg_match(&arg, &speed_arg, argi)) {
291  app_input->speed = arg_parse_uint(&arg);
292  if (app_input->speed > 10) {
293  aom_tools_warn("Mapping speed %d to speed 10.\n", app_input->speed);
294  }
295  } else if (arg_match(&arg, &aqmode_arg, argi)) {
296  app_input->aq_mode = arg_parse_uint(&arg);
297  } else if (arg_match(&arg, &threads_arg, argi)) {
298  enc_cfg->g_threads = arg_parse_uint(&arg);
299  } else if (arg_match(&arg, &layering_mode_arg, argi)) {
300  app_input->layering_mode = arg_parse_int(&arg);
301  } else if (arg_match(&arg, &kf_dist_arg, argi)) {
302  enc_cfg->kf_min_dist = arg_parse_uint(&arg);
303  enc_cfg->kf_max_dist = enc_cfg->kf_min_dist;
304  } else if (arg_match(&arg, &scale_factors_arg, argi)) {
305  parse_layer_options_from_string(svc_params, SCALE_FACTOR, arg.val,
306  svc_params->scaling_factor_num,
307  svc_params->scaling_factor_den);
308  } else if (arg_match(&arg, &min_q_arg, argi)) {
309  enc_cfg->rc_min_quantizer = arg_parse_uint(&arg);
310  } else if (arg_match(&arg, &max_q_arg, argi)) {
311  enc_cfg->rc_max_quantizer = arg_parse_uint(&arg);
312 #if CONFIG_AV1_HIGHBITDEPTH
313  } else if (arg_match(&arg, &bitdepth_arg, argi)) {
314  enc_cfg->g_bit_depth = arg_parse_enum_or_int(&arg);
315  switch (enc_cfg->g_bit_depth) {
316  case AOM_BITS_8:
317  enc_cfg->g_input_bit_depth = 8;
318  enc_cfg->g_profile = 0;
319  break;
320  case AOM_BITS_10:
321  enc_cfg->g_input_bit_depth = 10;
322  enc_cfg->g_profile = 2;
323  break;
324  case AOM_BITS_12:
325  enc_cfg->g_input_bit_depth = 12;
326  enc_cfg->g_profile = 2;
327  break;
328  default:
329  die("Error: Invalid bit depth selected (%d)\n", enc_cfg->g_bit_depth);
330  break;
331  }
332 #endif // CONFIG_VP9_HIGHBITDEPTH
333  } else if (arg_match(&arg, &dropframe_thresh_arg, argi)) {
334  enc_cfg->rc_dropframe_thresh = arg_parse_uint(&arg);
335  } else if (arg_match(&arg, &error_resilient_arg, argi)) {
336  enc_cfg->g_error_resilient = arg_parse_uint(&arg);
337  if (enc_cfg->g_error_resilient != 0 && enc_cfg->g_error_resilient != 1)
338  die("Invalid value for error resilient (0, 1): %d.",
339  enc_cfg->g_error_resilient);
340  } else if (arg_match(&arg, &output_obu_arg, argi)) {
341  app_input->output_obu = arg_parse_uint(&arg);
342  if (app_input->output_obu != 0 && app_input->output_obu != 1)
343  die("Invalid value for obu output flag (0, 1): %d.",
344  app_input->output_obu);
345  } else {
346  ++argj;
347  }
348  }
349 
350  // Total bitrate needs to be parsed after the number of layers.
351  for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) {
352  arg.argv_step = 1;
353  if (arg_match(&arg, &bitrates_arg, argi)) {
354  parse_layer_options_from_string(svc_params, BITRATE, arg.val,
355  svc_params->layer_target_bitrate, NULL);
356  } else {
357  ++argj;
358  }
359  }
360 
361  // There will be a space in front of the string options
362  if (strlen(string_options) > 0)
363  strncpy(app_input->options, string_options, OPTION_BUFFER_SIZE);
364 
365  // Check for unrecognized options
366  for (argi = argv; *argi; ++argi)
367  if (argi[0][0] == '-' && strlen(argi[0]) > 1)
368  die("Error: Unrecognized option %s\n", *argi);
369 
370  if (argv[0] == NULL) {
371  usage_exit();
372  }
373 
374  app_input->input_ctx.filename = argv[0];
375  free(argv);
376 
377  open_input_file(&app_input->input_ctx, 0);
378  if (app_input->input_ctx.file_type == FILE_TYPE_Y4M) {
379  enc_cfg->g_w = app_input->input_ctx.width;
380  enc_cfg->g_h = app_input->input_ctx.height;
381  }
382 
383  if (enc_cfg->g_w < 16 || enc_cfg->g_w % 2 || enc_cfg->g_h < 16 ||
384  enc_cfg->g_h % 2)
385  die("Invalid resolution: %d x %d\n", enc_cfg->g_w, enc_cfg->g_h);
386 
387  printf(
388  "Codec %s\n"
389  "layers: %d\n"
390  "width %u, height: %u\n"
391  "num: %d, den: %d, bitrate: %u\n"
392  "gop size: %u\n",
394  svc_params->number_spatial_layers, enc_cfg->g_w, enc_cfg->g_h,
395  enc_cfg->g_timebase.num, enc_cfg->g_timebase.den,
396  enc_cfg->rc_target_bitrate, enc_cfg->kf_max_dist);
397 }
398 
399 static unsigned int mode_to_num_temporal_layers[11] = { 1, 2, 3, 3, 2, 1,
400  1, 3, 3, 3, 3 };
401 static unsigned int mode_to_num_spatial_layers[11] = { 1, 1, 1, 1, 1, 2,
402  3, 2, 3, 3, 3 };
403 
404 // For rate control encoding stats.
405 struct RateControlMetrics {
406  // Number of input frames per layer.
407  int layer_input_frames[AOM_MAX_TS_LAYERS];
408  // Number of encoded non-key frames per layer.
409  int layer_enc_frames[AOM_MAX_TS_LAYERS];
410  // Framerate per layer layer (cumulative).
411  double layer_framerate[AOM_MAX_TS_LAYERS];
412  // Target average frame size per layer (per-frame-bandwidth per layer).
413  double layer_pfb[AOM_MAX_LAYERS];
414  // Actual average frame size per layer.
415  double layer_avg_frame_size[AOM_MAX_LAYERS];
416  // Average rate mismatch per layer (|target - actual| / target).
417  double layer_avg_rate_mismatch[AOM_MAX_LAYERS];
418  // Actual encoding bitrate per layer (cumulative across temporal layers).
419  double layer_encoding_bitrate[AOM_MAX_LAYERS];
420  // Average of the short-time encoder actual bitrate.
421  // TODO(marpan): Should we add these short-time stats for each layer?
422  double avg_st_encoding_bitrate;
423  // Variance of the short-time encoder actual bitrate.
424  double variance_st_encoding_bitrate;
425  // Window (number of frames) for computing short-timee encoding bitrate.
426  int window_size;
427  // Number of window measurements.
428  int window_count;
429  int layer_target_bitrate[AOM_MAX_LAYERS];
430 };
431 
432 // Reference frames used in this example encoder.
433 enum {
434  SVC_LAST_FRAME = 0,
435  SVC_LAST2_FRAME,
436  SVC_LAST3_FRAME,
437  SVC_GOLDEN_FRAME,
438  SVC_BWDREF_FRAME,
439  SVC_ALTREF2_FRAME,
440  SVC_ALTREF_FRAME
441 };
442 
443 static int read_frame(struct AvxInputContext *input_ctx, aom_image_t *img) {
444  FILE *f = input_ctx->file;
445  y4m_input *y4m = &input_ctx->y4m;
446  int shortread = 0;
447 
448  if (input_ctx->file_type == FILE_TYPE_Y4M) {
449  if (y4m_input_fetch_frame(y4m, f, img) < 1) return 0;
450  } else {
451  shortread = read_yuv_frame(input_ctx, img);
452  }
453 
454  return !shortread;
455 }
456 
457 static void close_input_file(struct AvxInputContext *input) {
458  fclose(input->file);
459  if (input->file_type == FILE_TYPE_Y4M) y4m_input_close(&input->y4m);
460 }
461 
462 // Note: these rate control metrics assume only 1 key frame in the
463 // sequence (i.e., first frame only). So for temporal pattern# 7
464 // (which has key frame for every frame on base layer), the metrics
465 // computation will be off/wrong.
466 // TODO(marpan): Update these metrics to account for multiple key frames
467 // in the stream.
468 static void set_rate_control_metrics(struct RateControlMetrics *rc,
469  double framerate,
470  unsigned int ss_number_layers,
471  unsigned int ts_number_layers) {
472  int ts_rate_decimator[AOM_MAX_TS_LAYERS] = { 1 };
473  ts_rate_decimator[0] = 1;
474  if (ts_number_layers == 2) {
475  ts_rate_decimator[0] = 2;
476  ts_rate_decimator[1] = 1;
477  }
478  if (ts_number_layers == 3) {
479  ts_rate_decimator[0] = 4;
480  ts_rate_decimator[1] = 2;
481  ts_rate_decimator[2] = 1;
482  }
483  // Set the layer (cumulative) framerate and the target layer (non-cumulative)
484  // per-frame-bandwidth, for the rate control encoding stats below.
485  for (unsigned int sl = 0; sl < ss_number_layers; ++sl) {
486  unsigned int i = sl * ts_number_layers;
487  rc->layer_framerate[0] = framerate / ts_rate_decimator[0];
488  rc->layer_pfb[i] =
489  1000.0 * rc->layer_target_bitrate[i] / rc->layer_framerate[0];
490  for (unsigned int tl = 0; tl < ts_number_layers; ++tl) {
491  i = sl * ts_number_layers + tl;
492  if (tl > 0) {
493  rc->layer_framerate[tl] = framerate / ts_rate_decimator[tl];
494  rc->layer_pfb[i] =
495  1000.0 *
496  (rc->layer_target_bitrate[i] - rc->layer_target_bitrate[i - 1]) /
497  (rc->layer_framerate[tl] - rc->layer_framerate[tl - 1]);
498  }
499  rc->layer_input_frames[tl] = 0;
500  rc->layer_enc_frames[tl] = 0;
501  rc->layer_encoding_bitrate[i] = 0.0;
502  rc->layer_avg_frame_size[i] = 0.0;
503  rc->layer_avg_rate_mismatch[i] = 0.0;
504  }
505  }
506  rc->window_count = 0;
507  rc->window_size = 15;
508  rc->avg_st_encoding_bitrate = 0.0;
509  rc->variance_st_encoding_bitrate = 0.0;
510 }
511 
512 static void printout_rate_control_summary(struct RateControlMetrics *rc,
513  int frame_cnt,
514  unsigned int ss_number_layers,
515  unsigned int ts_number_layers) {
516  int tot_num_frames = 0;
517  double perc_fluctuation = 0.0;
518  printf("Total number of processed frames: %d\n\n", frame_cnt - 1);
519  printf("Rate control layer stats for %u layer(s):\n\n", ts_number_layers);
520  for (unsigned int sl = 0; sl < ss_number_layers; ++sl) {
521  tot_num_frames = 0;
522  for (unsigned int tl = 0; tl < ts_number_layers; ++tl) {
523  unsigned int i = sl * ts_number_layers + tl;
524  const int num_dropped =
525  tl > 0 ? rc->layer_input_frames[tl] - rc->layer_enc_frames[tl]
526  : rc->layer_input_frames[tl] - rc->layer_enc_frames[tl] - 1;
527  tot_num_frames += rc->layer_input_frames[tl];
528  rc->layer_encoding_bitrate[i] = 0.001 * rc->layer_framerate[tl] *
529  rc->layer_encoding_bitrate[i] /
530  tot_num_frames;
531  rc->layer_avg_frame_size[i] =
532  rc->layer_avg_frame_size[i] / rc->layer_enc_frames[tl];
533  rc->layer_avg_rate_mismatch[i] =
534  100.0 * rc->layer_avg_rate_mismatch[i] / rc->layer_enc_frames[tl];
535  printf("For layer#: %u %u \n", sl, tl);
536  printf("Bitrate (target vs actual): %d %f\n", rc->layer_target_bitrate[i],
537  rc->layer_encoding_bitrate[i]);
538  printf("Average frame size (target vs actual): %f %f\n", rc->layer_pfb[i],
539  rc->layer_avg_frame_size[i]);
540  printf("Average rate_mismatch: %f\n", rc->layer_avg_rate_mismatch[i]);
541  printf(
542  "Number of input frames, encoded (non-key) frames, "
543  "and perc dropped frames: %d %d %f\n",
544  rc->layer_input_frames[tl], rc->layer_enc_frames[tl],
545  100.0 * num_dropped / rc->layer_input_frames[tl]);
546  printf("\n");
547  }
548  }
549  rc->avg_st_encoding_bitrate = rc->avg_st_encoding_bitrate / rc->window_count;
550  rc->variance_st_encoding_bitrate =
551  rc->variance_st_encoding_bitrate / rc->window_count -
552  (rc->avg_st_encoding_bitrate * rc->avg_st_encoding_bitrate);
553  perc_fluctuation = 100.0 * sqrt(rc->variance_st_encoding_bitrate) /
554  rc->avg_st_encoding_bitrate;
555  printf("Short-time stats, for window of %d frames:\n", rc->window_size);
556  printf("Average, rms-variance, and percent-fluct: %f %f %f\n",
557  rc->avg_st_encoding_bitrate, sqrt(rc->variance_st_encoding_bitrate),
558  perc_fluctuation);
559  if (frame_cnt - 1 != tot_num_frames)
560  die("Error: Number of input frames not equal to output!\n");
561 }
562 
563 // Layer pattern configuration.
564 static void set_layer_pattern(
565  int layering_mode, int superframe_cnt, aom_svc_layer_id_t *layer_id,
566  aom_svc_ref_frame_config_t *ref_frame_config,
567  aom_svc_ref_frame_comp_pred_t *ref_frame_comp_pred, int *use_svc_control,
568  int spatial_layer_id, int is_key_frame, int ksvc_mode, int speed) {
569  int i;
570  int enable_longterm_temporal_ref = 1;
571  int shift = (layering_mode == 8) ? 2 : 0;
572  *use_svc_control = 1;
573  layer_id->spatial_layer_id = spatial_layer_id;
574  int lag_index = 0;
575  int base_count = superframe_cnt >> 2;
576  ref_frame_comp_pred->use_comp_pred[0] = 0; // GOLDEN_LAST
577  ref_frame_comp_pred->use_comp_pred[1] = 0; // LAST2_LAST
578  ref_frame_comp_pred->use_comp_pred[2] = 0; // ALTREF_LAST
579  // Set the reference map buffer idx for the 7 references:
580  // LAST_FRAME (0), LAST2_FRAME(1), LAST3_FRAME(2), GOLDEN_FRAME(3),
581  // BWDREF_FRAME(4), ALTREF2_FRAME(5), ALTREF_FRAME(6).
582  for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = i;
583  for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->reference[i] = 0;
584  for (i = 0; i < REF_FRAMES; i++) ref_frame_config->refresh[i] = 0;
585 
586  if (ksvc_mode) {
587  // Same pattern as case 9, but the reference strucutre will be constrained
588  // below.
589  layering_mode = 9;
590  }
591  switch (layering_mode) {
592  case 0:
593  // 1-layer: update LAST on every frame, reference LAST.
594  layer_id->temporal_layer_id = 0;
595  ref_frame_config->refresh[0] = 1;
596  ref_frame_config->reference[SVC_LAST_FRAME] = 1;
597  break;
598  case 1:
599  // 2-temporal layer.
600  // 1 3 5
601  // 0 2 4
602  if (superframe_cnt % 2 == 0) {
603  layer_id->temporal_layer_id = 0;
604  // Update LAST on layer 0, reference LAST.
605  ref_frame_config->refresh[0] = 1;
606  ref_frame_config->reference[SVC_LAST_FRAME] = 1;
607  } else {
608  layer_id->temporal_layer_id = 1;
609  // No updates on layer 1, only reference LAST (TL0).
610  ref_frame_config->reference[SVC_LAST_FRAME] = 1;
611  }
612  break;
613  case 2:
614  // 3-temporal layer:
615  // 1 3 5 7
616  // 2 6
617  // 0 4 8
618  if (superframe_cnt % 4 == 0) {
619  // Base layer.
620  layer_id->temporal_layer_id = 0;
621  // Update LAST on layer 0, reference LAST.
622  ref_frame_config->refresh[0] = 1;
623  ref_frame_config->reference[SVC_LAST_FRAME] = 1;
624  } else if ((superframe_cnt - 1) % 4 == 0) {
625  layer_id->temporal_layer_id = 2;
626  // First top layer: no updates, only reference LAST (TL0).
627  ref_frame_config->reference[SVC_LAST_FRAME] = 1;
628  } else if ((superframe_cnt - 2) % 4 == 0) {
629  layer_id->temporal_layer_id = 1;
630  // Middle layer (TL1): update LAST2, only reference LAST (TL0).
631  ref_frame_config->refresh[1] = 1;
632  ref_frame_config->reference[SVC_LAST_FRAME] = 1;
633  } else if ((superframe_cnt - 3) % 4 == 0) {
634  layer_id->temporal_layer_id = 2;
635  // Second top layer: no updates, only reference LAST.
636  // Set buffer idx for LAST to slot 1, since that was the slot
637  // updated in previous frame. So LAST is TL1 frame.
638  ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1;
639  ref_frame_config->ref_idx[SVC_LAST2_FRAME] = 0;
640  ref_frame_config->reference[SVC_LAST_FRAME] = 1;
641  }
642  break;
643  case 3:
644  // 3 TL, same as above, except allow for predicting
645  // off 2 more references (GOLDEN and ALTREF), with
646  // GOLDEN updated periodically, and ALTREF lagging from
647  // LAST from ~4 frames. Both GOLDEN and ALTREF
648  // can only be updated on base temporal layer.
649 
650  // Keep golden fixed at slot 3.
651  ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3;
652  // Cyclically refresh slots 5, 6, 7, for lag altref.
653  lag_index = 5;
654  if (base_count > 0) {
655  lag_index = 5 + (base_count % 3);
656  if (superframe_cnt % 4 != 0) lag_index = 5 + ((base_count + 1) % 3);
657  }
658  // Set the altref slot to lag_index.
659  ref_frame_config->ref_idx[SVC_ALTREF_FRAME] = lag_index;
660  if (superframe_cnt % 4 == 0) {
661  // Base layer.
662  layer_id->temporal_layer_id = 0;
663  // Update LAST on layer 0, reference LAST.
664  ref_frame_config->refresh[0] = 1;
665  ref_frame_config->reference[SVC_LAST_FRAME] = 1;
666  // Refresh GOLDEN every x ~10 base layer frames.
667  if (base_count % 10 == 0) ref_frame_config->refresh[3] = 1;
668  // Refresh lag_index slot, needed for lagging altref.
669  ref_frame_config->refresh[lag_index] = 1;
670  } else if ((superframe_cnt - 1) % 4 == 0) {
671  layer_id->temporal_layer_id = 2;
672  // First top layer: no updates, only reference LAST (TL0).
673  ref_frame_config->reference[SVC_LAST_FRAME] = 1;
674  } else if ((superframe_cnt - 2) % 4 == 0) {
675  layer_id->temporal_layer_id = 1;
676  // Middle layer (TL1): update LAST2, only reference LAST (TL0).
677  ref_frame_config->refresh[1] = 1;
678  ref_frame_config->reference[SVC_LAST_FRAME] = 1;
679  } else if ((superframe_cnt - 3) % 4 == 0) {
680  layer_id->temporal_layer_id = 2;
681  // Second top layer: no updates, only reference LAST.
682  // Set buffer idx for LAST to slot 1, since that was the slot
683  // updated in previous frame. So LAST is TL1 frame.
684  ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1;
685  ref_frame_config->ref_idx[SVC_LAST2_FRAME] = 0;
686  ref_frame_config->reference[SVC_LAST_FRAME] = 1;
687  }
688  // Every frame can reference GOLDEN AND ALTREF.
689  ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1;
690  ref_frame_config->reference[SVC_ALTREF_FRAME] = 1;
691  // Allow for compound prediction using LAST and ALTREF.
692  if (speed >= 7) ref_frame_comp_pred->use_comp_pred[2] = 1;
693  break;
694  case 4:
695  // 3-temporal layer: but middle layer updates GF, so 2nd TL2 will
696  // only reference GF (not LAST). Other frames only reference LAST.
697  // 1 3 5 7
698  // 2 6
699  // 0 4 8
700  if (superframe_cnt % 4 == 0) {
701  // Base layer.
702  layer_id->temporal_layer_id = 0;
703  // Update LAST on layer 0, only reference LAST.
704  ref_frame_config->refresh[0] = 1;
705  ref_frame_config->reference[SVC_LAST_FRAME] = 1;
706  } else if ((superframe_cnt - 1) % 4 == 0) {
707  layer_id->temporal_layer_id = 2;
708  // First top layer: no updates, only reference LAST (TL0).
709  ref_frame_config->reference[SVC_LAST_FRAME] = 1;
710  } else if ((superframe_cnt - 2) % 4 == 0) {
711  layer_id->temporal_layer_id = 1;
712  // Middle layer (TL1): update GF, only reference LAST (TL0).
713  ref_frame_config->refresh[3] = 1;
714  ref_frame_config->reference[SVC_LAST_FRAME] = 1;
715  } else if ((superframe_cnt - 3) % 4 == 0) {
716  layer_id->temporal_layer_id = 2;
717  // Second top layer: no updates, only reference GF.
718  ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1;
719  }
720  break;
721  case 5:
722  // 2 spatial layers, 1 temporal.
723  layer_id->temporal_layer_id = 0;
724  if (layer_id->spatial_layer_id == 0) {
725  // Reference LAST, update LAST.
726  ref_frame_config->refresh[0] = 1;
727  ref_frame_config->reference[SVC_LAST_FRAME] = 1;
728  } else if (layer_id->spatial_layer_id == 1) {
729  // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1
730  // and GOLDEN to slot 0. Update slot 1 (LAST).
731  ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1;
732  ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 0;
733  ref_frame_config->refresh[1] = 1;
734  ref_frame_config->reference[SVC_LAST_FRAME] = 1;
735  ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1;
736  }
737  break;
738  case 6:
739  // 3 spatial layers, 1 temporal.
740  // Note for this case, we set the buffer idx for all references to be
741  // either LAST or GOLDEN, which are always valid references, since decoder
742  // will check if any of the 7 references is valid scale in
743  // valid_ref_frame_size().
744  layer_id->temporal_layer_id = 0;
745  if (layer_id->spatial_layer_id == 0) {
746  // Reference LAST, update LAST. Set all buffer_idx to 0.
747  for (i = 0; i < INTER_REFS_PER_FRAME; i++)
748  ref_frame_config->ref_idx[i] = 0;
749  ref_frame_config->refresh[0] = 1;
750  ref_frame_config->reference[SVC_LAST_FRAME] = 1;
751  } else if (layer_id->spatial_layer_id == 1) {
752  // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1
753  // and GOLDEN (and all other refs) to slot 0.
754  // Update slot 1 (LAST).
755  for (i = 0; i < INTER_REFS_PER_FRAME; i++)
756  ref_frame_config->ref_idx[i] = 0;
757  ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1;
758  ref_frame_config->refresh[1] = 1;
759  ref_frame_config->reference[SVC_LAST_FRAME] = 1;
760  ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1;
761  } else if (layer_id->spatial_layer_id == 2) {
762  // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2
763  // and GOLDEN (and all other refs) to slot 1.
764  // Update slot 2 (LAST).
765  for (i = 0; i < INTER_REFS_PER_FRAME; i++)
766  ref_frame_config->ref_idx[i] = 1;
767  ref_frame_config->ref_idx[SVC_LAST_FRAME] = 2;
768  ref_frame_config->refresh[2] = 1;
769  ref_frame_config->reference[SVC_LAST_FRAME] = 1;
770  ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1;
771  // For 3 spatial layer case: allow for top spatial layer to use
772  // additional temporal reference. Update every 10 frames.
773  if (enable_longterm_temporal_ref) {
774  ref_frame_config->ref_idx[SVC_ALTREF_FRAME] = REF_FRAMES - 1;
775  ref_frame_config->reference[SVC_ALTREF_FRAME] = 1;
776  if (base_count % 10 == 0)
777  ref_frame_config->refresh[REF_FRAMES - 1] = 1;
778  }
779  }
780  break;
781  case 7:
782  // 2 spatial and 3 temporal layer.
783  ref_frame_config->reference[SVC_LAST_FRAME] = 1;
784  if (superframe_cnt % 4 == 0) {
785  // Base temporal layer
786  layer_id->temporal_layer_id = 0;
787  if (layer_id->spatial_layer_id == 0) {
788  // Reference LAST, update LAST
789  // Set all buffer_idx to 0
790  for (i = 0; i < INTER_REFS_PER_FRAME; i++)
791  ref_frame_config->ref_idx[i] = 0;
792  ref_frame_config->refresh[0] = 1;
793  } else if (layer_id->spatial_layer_id == 1) {
794  // Reference LAST and GOLDEN.
795  for (i = 0; i < INTER_REFS_PER_FRAME; i++)
796  ref_frame_config->ref_idx[i] = 0;
797  ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1;
798  ref_frame_config->refresh[1] = 1;
799  }
800  } else if ((superframe_cnt - 1) % 4 == 0) {
801  // First top temporal enhancement layer.
802  layer_id->temporal_layer_id = 2;
803  if (layer_id->spatial_layer_id == 0) {
804  for (i = 0; i < INTER_REFS_PER_FRAME; i++)
805  ref_frame_config->ref_idx[i] = 0;
806  ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3;
807  ref_frame_config->refresh[3] = 1;
808  } else if (layer_id->spatial_layer_id == 1) {
809  // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1,
810  // GOLDEN (and all other refs) to slot 3.
811  // No update.
812  for (i = 0; i < INTER_REFS_PER_FRAME; i++)
813  ref_frame_config->ref_idx[i] = 3;
814  ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1;
815  }
816  } else if ((superframe_cnt - 2) % 4 == 0) {
817  // Middle temporal enhancement layer.
818  layer_id->temporal_layer_id = 1;
819  if (layer_id->spatial_layer_id == 0) {
820  // Reference LAST.
821  // Set all buffer_idx to 0.
822  // Set GOLDEN to slot 5 and update slot 5.
823  for (i = 0; i < INTER_REFS_PER_FRAME; i++)
824  ref_frame_config->ref_idx[i] = 0;
825  ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 5 - shift;
826  ref_frame_config->refresh[5 - shift] = 1;
827  } else if (layer_id->spatial_layer_id == 1) {
828  // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1,
829  // GOLDEN (and all other refs) to slot 5.
830  // Set LAST3 to slot 6 and update slot 6.
831  for (i = 0; i < INTER_REFS_PER_FRAME; i++)
832  ref_frame_config->ref_idx[i] = 5 - shift;
833  ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1;
834  ref_frame_config->ref_idx[SVC_LAST3_FRAME] = 6 - shift;
835  ref_frame_config->refresh[6 - shift] = 1;
836  }
837  } else if ((superframe_cnt - 3) % 4 == 0) {
838  // Second top temporal enhancement layer.
839  layer_id->temporal_layer_id = 2;
840  if (layer_id->spatial_layer_id == 0) {
841  // Set LAST to slot 5 and reference LAST.
842  // Set GOLDEN to slot 3 and update slot 3.
843  // Set all other buffer_idx to 0.
844  for (i = 0; i < INTER_REFS_PER_FRAME; i++)
845  ref_frame_config->ref_idx[i] = 0;
846  ref_frame_config->ref_idx[SVC_LAST_FRAME] = 5 - shift;
847  ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3;
848  ref_frame_config->refresh[3] = 1;
849  } else if (layer_id->spatial_layer_id == 1) {
850  // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 6,
851  // GOLDEN to slot 3. No update.
852  for (i = 0; i < INTER_REFS_PER_FRAME; i++)
853  ref_frame_config->ref_idx[i] = 0;
854  ref_frame_config->ref_idx[SVC_LAST_FRAME] = 6 - shift;
855  ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3;
856  }
857  }
858  break;
859  case 8:
860  // 3 spatial and 3 temporal layer.
861  // Same as case 9 but overalap in the buffer slot updates.
862  // (shift = 2). The slots 3 and 4 updated by first TL2 are
863  // reused for update in TL1 superframe.
864  // Note for this case, frame order hint must be disabled for
865  // lower resolutios (operating points > 0) to be decoedable.
866  case 9:
867  // 3 spatial and 3 temporal layer.
868  // No overlap in buffer updates between TL2 and TL1.
869  // TL2 updates slot 3 and 4, TL1 updates 5, 6, 7.
870  // Set the references via the svc_ref_frame_config control.
871  // Always reference LAST.
872  ref_frame_config->reference[SVC_LAST_FRAME] = 1;
873  if (superframe_cnt % 4 == 0) {
874  // Base temporal layer.
875  layer_id->temporal_layer_id = 0;
876  if (layer_id->spatial_layer_id == 0) {
877  // Reference LAST, update LAST.
878  // Set all buffer_idx to 0.
879  for (i = 0; i < INTER_REFS_PER_FRAME; i++)
880  ref_frame_config->ref_idx[i] = 0;
881  ref_frame_config->refresh[0] = 1;
882  } else if (layer_id->spatial_layer_id == 1) {
883  // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1,
884  // GOLDEN (and all other refs) to slot 0.
885  // Update slot 1 (LAST).
886  for (i = 0; i < INTER_REFS_PER_FRAME; i++)
887  ref_frame_config->ref_idx[i] = 0;
888  ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1;
889  ref_frame_config->refresh[1] = 1;
890  } else if (layer_id->spatial_layer_id == 2) {
891  // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2,
892  // GOLDEN (and all other refs) to slot 1.
893  // Update slot 2 (LAST).
894  for (i = 0; i < INTER_REFS_PER_FRAME; i++)
895  ref_frame_config->ref_idx[i] = 1;
896  ref_frame_config->ref_idx[SVC_LAST_FRAME] = 2;
897  ref_frame_config->refresh[2] = 1;
898  }
899  } else if ((superframe_cnt - 1) % 4 == 0) {
900  // First top temporal enhancement layer.
901  layer_id->temporal_layer_id = 2;
902  if (layer_id->spatial_layer_id == 0) {
903  // Reference LAST (slot 0).
904  // Set GOLDEN to slot 3 and update slot 3.
905  // Set all other buffer_idx to slot 0.
906  for (i = 0; i < INTER_REFS_PER_FRAME; i++)
907  ref_frame_config->ref_idx[i] = 0;
908  ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3;
909  ref_frame_config->refresh[3] = 1;
910  } else if (layer_id->spatial_layer_id == 1) {
911  // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1,
912  // GOLDEN (and all other refs) to slot 3.
913  // Set LAST2 to slot 4 and Update slot 4.
914  for (i = 0; i < INTER_REFS_PER_FRAME; i++)
915  ref_frame_config->ref_idx[i] = 3;
916  ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1;
917  ref_frame_config->ref_idx[SVC_LAST2_FRAME] = 4;
918  ref_frame_config->refresh[4] = 1;
919  } else if (layer_id->spatial_layer_id == 2) {
920  // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2,
921  // GOLDEN (and all other refs) to slot 4.
922  // No update.
923  for (i = 0; i < INTER_REFS_PER_FRAME; i++)
924  ref_frame_config->ref_idx[i] = 4;
925  ref_frame_config->ref_idx[SVC_LAST_FRAME] = 2;
926  }
927  } else if ((superframe_cnt - 2) % 4 == 0) {
928  // Middle temporal enhancement layer.
929  layer_id->temporal_layer_id = 1;
930  if (layer_id->spatial_layer_id == 0) {
931  // Reference LAST.
932  // Set all buffer_idx to 0.
933  // Set GOLDEN to slot 5 and update slot 5.
934  for (i = 0; i < INTER_REFS_PER_FRAME; i++)
935  ref_frame_config->ref_idx[i] = 0;
936  ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 5 - shift;
937  ref_frame_config->refresh[5 - shift] = 1;
938  } else if (layer_id->spatial_layer_id == 1) {
939  // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1,
940  // GOLDEN (and all other refs) to slot 5.
941  // Set LAST3 to slot 6 and update slot 6.
942  for (i = 0; i < INTER_REFS_PER_FRAME; i++)
943  ref_frame_config->ref_idx[i] = 5 - shift;
944  ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1;
945  ref_frame_config->ref_idx[SVC_LAST3_FRAME] = 6 - shift;
946  ref_frame_config->refresh[6 - shift] = 1;
947  } else if (layer_id->spatial_layer_id == 2) {
948  // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2,
949  // GOLDEN (and all other refs) to slot 6.
950  // Set LAST3 to slot 7 and update slot 7.
951  for (i = 0; i < INTER_REFS_PER_FRAME; i++)
952  ref_frame_config->ref_idx[i] = 6 - shift;
953  ref_frame_config->ref_idx[SVC_LAST_FRAME] = 2;
954  ref_frame_config->ref_idx[SVC_LAST3_FRAME] = 7 - shift;
955  ref_frame_config->refresh[7 - shift] = 1;
956  }
957  } else if ((superframe_cnt - 3) % 4 == 0) {
958  // Second top temporal enhancement layer.
959  layer_id->temporal_layer_id = 2;
960  if (layer_id->spatial_layer_id == 0) {
961  // Set LAST to slot 5 and reference LAST.
962  // Set GOLDEN to slot 3 and update slot 3.
963  // Set all other buffer_idx to 0.
964  for (i = 0; i < INTER_REFS_PER_FRAME; i++)
965  ref_frame_config->ref_idx[i] = 0;
966  ref_frame_config->ref_idx[SVC_LAST_FRAME] = 5 - shift;
967  ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3;
968  ref_frame_config->refresh[3] = 1;
969  } else if (layer_id->spatial_layer_id == 1) {
970  // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 6,
971  // GOLDEN to slot 3. Set LAST2 to slot 4 and update slot 4.
972  for (i = 0; i < INTER_REFS_PER_FRAME; i++)
973  ref_frame_config->ref_idx[i] = 0;
974  ref_frame_config->ref_idx[SVC_LAST_FRAME] = 6 - shift;
975  ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3;
976  ref_frame_config->ref_idx[SVC_LAST2_FRAME] = 4;
977  ref_frame_config->refresh[4] = 1;
978  } else if (layer_id->spatial_layer_id == 2) {
979  // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 7,
980  // GOLDEN to slot 4. No update.
981  for (i = 0; i < INTER_REFS_PER_FRAME; i++)
982  ref_frame_config->ref_idx[i] = 0;
983  ref_frame_config->ref_idx[SVC_LAST_FRAME] = 7 - shift;
984  ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 4;
985  }
986  }
987  if (layer_id->spatial_layer_id > 0) {
988  // Always reference GOLDEN (inter-layer prediction).
989  ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1;
990  if (ksvc_mode) {
991  // KSVC: only keep the inter-layer reference (GOLDEN) for
992  // superframes whose base is key.
993  if (!is_key_frame) ref_frame_config->reference[SVC_GOLDEN_FRAME] = 0;
994  }
995  if (is_key_frame && layer_id->spatial_layer_id > 1) {
996  // On superframes whose base is key: remove LAST to avoid prediction
997  // off layer two levels below.
998  ref_frame_config->reference[SVC_LAST_FRAME] = 0;
999  }
1000  }
1001  // For 3 spatial layer case 8 (where there is free buffer slot):
1002  // allow for top spatial layer to use additional temporal reference.
1003  // Additional reference is only updated on base temporal layer, every
1004  // 10 TL0 frames here.
1005  if (enable_longterm_temporal_ref && layer_id->spatial_layer_id == 2 &&
1006  layering_mode == 8) {
1007  ref_frame_config->ref_idx[SVC_ALTREF_FRAME] = REF_FRAMES - 1;
1008  ref_frame_config->reference[SVC_ALTREF_FRAME] = 1;
1009  if (base_count % 10 == 0 && layer_id->temporal_layer_id == 0)
1010  ref_frame_config->refresh[REF_FRAMES - 1] = 1;
1011  }
1012  break;
1013  default: assert(0); die("Error: Unsupported temporal layering mode!\n");
1014  }
1015 }
1016 
1017 #if CONFIG_AV1_DECODER
1018 static void test_decode(aom_codec_ctx_t *encoder, aom_codec_ctx_t *decoder,
1019  const int frames_out, int *mismatch_seen) {
1020  aom_image_t enc_img, dec_img;
1021 
1022  if (*mismatch_seen) return;
1023 
1024  /* Get the internal reference frame */
1027 
1028 #if CONFIG_AV1_HIGHBITDEPTH
1029  if ((enc_img.fmt & AOM_IMG_FMT_HIGHBITDEPTH) !=
1030  (dec_img.fmt & AOM_IMG_FMT_HIGHBITDEPTH)) {
1031  if (enc_img.fmt & AOM_IMG_FMT_HIGHBITDEPTH) {
1032  aom_image_t enc_hbd_img;
1033  aom_img_alloc(&enc_hbd_img, enc_img.fmt - AOM_IMG_FMT_HIGHBITDEPTH,
1034  enc_img.d_w, enc_img.d_h, 16);
1035  aom_img_truncate_16_to_8(&enc_hbd_img, &enc_img);
1036  enc_img = enc_hbd_img;
1037  }
1038  if (dec_img.fmt & AOM_IMG_FMT_HIGHBITDEPTH) {
1039  aom_image_t dec_hbd_img;
1040  aom_img_alloc(&dec_hbd_img, dec_img.fmt - AOM_IMG_FMT_HIGHBITDEPTH,
1041  dec_img.d_w, dec_img.d_h, 16);
1042  aom_img_truncate_16_to_8(&dec_hbd_img, &dec_img);
1043  dec_img = dec_hbd_img;
1044  }
1045  }
1046 #endif
1047 
1048  if (!aom_compare_img(&enc_img, &dec_img)) {
1049  int y[4], u[4], v[4];
1050 #if CONFIG_AV1_HIGHBITDEPTH
1051  if (enc_img.fmt & AOM_IMG_FMT_HIGHBITDEPTH) {
1052  aom_find_mismatch_high(&enc_img, &dec_img, y, u, v);
1053  } else {
1054  aom_find_mismatch(&enc_img, &dec_img, y, u, v);
1055  }
1056 #else
1057  aom_find_mismatch(&enc_img, &dec_img, y, u, v);
1058 #endif
1059  decoder->err = 1;
1060  printf(
1061  "Encode/decode mismatch on frame %d at"
1062  " Y[%d, %d] {%d/%d},"
1063  " U[%d, %d] {%d/%d},"
1064  " V[%d, %d] {%d/%d}",
1065  frames_out, y[0], y[1], y[2], y[3], u[0], u[1], u[2], u[3], v[0], v[1],
1066  v[2], v[3]);
1067  *mismatch_seen = frames_out;
1068  }
1069 
1070  aom_img_free(&enc_img);
1071  aom_img_free(&dec_img);
1072 }
1073 #endif // CONFIG_AV1_DECODER
1074 
1075 int main(int argc, const char **argv) {
1076  AppInput app_input;
1077  AvxVideoWriter *outfile[AOM_MAX_LAYERS] = { NULL };
1078  FILE *obu_files[AOM_MAX_LAYERS] = { NULL };
1079  AvxVideoWriter *total_layer_file = NULL;
1080  FILE *total_layer_obu_file = NULL;
1081  aom_codec_enc_cfg_t cfg;
1082  int frame_cnt = 0;
1083  aom_image_t raw;
1084  int frame_avail;
1085  int got_data = 0;
1086  int flags = 0;
1087  unsigned i;
1088  int pts = 0; // PTS starts at 0.
1089  int frame_duration = 1; // 1 timebase tick per frame.
1090  aom_svc_layer_id_t layer_id;
1091  aom_svc_params_t svc_params;
1092  aom_svc_ref_frame_config_t ref_frame_config;
1093  aom_svc_ref_frame_comp_pred_t ref_frame_comp_pred;
1094 
1095 #if CONFIG_INTERNAL_STATS
1096  FILE *stats_file = fopen("opsnr.stt", "a");
1097  if (stats_file == NULL) {
1098  die("Cannot open opsnr.stt\n");
1099  }
1100 #endif
1101 #if CONFIG_AV1_DECODER
1102  int mismatch_seen = 0;
1103  aom_codec_ctx_t decoder;
1104 #endif
1105 
1106  struct RateControlMetrics rc;
1107  int64_t cx_time = 0;
1108  int64_t cx_time_sl[3]; // max number of spatial layers.
1109  double sum_bitrate = 0.0;
1110  double sum_bitrate2 = 0.0;
1111  double framerate = 30.0;
1112  int use_svc_control = 1;
1113  int set_err_resil_frame = 0;
1114  zero(rc.layer_target_bitrate);
1115  memset(&layer_id, 0, sizeof(aom_svc_layer_id_t));
1116  memset(&app_input, 0, sizeof(AppInput));
1117  memset(&svc_params, 0, sizeof(svc_params));
1118 
1119  // Flag to test dynamic scaling of source frames for single
1120  // spatial stream, using the scaling_mode control.
1121  const int test_dynamic_scaling_single_layer = 0;
1122 
1123  /* Setup default input stream settings */
1124  app_input.input_ctx.framerate.numerator = 30;
1125  app_input.input_ctx.framerate.denominator = 1;
1126  app_input.input_ctx.only_i420 = 1;
1127  app_input.input_ctx.bit_depth = 0;
1128  app_input.speed = 7;
1129  exec_name = argv[0];
1130 
1131  // start with default encoder configuration
1134  if (res) {
1135  die("Failed to get config: %s\n", aom_codec_err_to_string(res));
1136  }
1137 
1138  // Real time parameters.
1140 
1141  cfg.rc_end_usage = AOM_CBR;
1142  cfg.rc_min_quantizer = 2;
1143  cfg.rc_max_quantizer = 52;
1144  cfg.rc_undershoot_pct = 50;
1145  cfg.rc_overshoot_pct = 50;
1146  cfg.rc_buf_initial_sz = 600;
1147  cfg.rc_buf_optimal_sz = 600;
1148  cfg.rc_buf_sz = 1000;
1149  cfg.rc_resize_mode = 0; // Set to RESIZE_DYNAMIC for dynamic resize.
1150  cfg.g_lag_in_frames = 0;
1151  cfg.kf_mode = AOM_KF_AUTO;
1152 
1153  parse_command_line(argc, argv, &app_input, &svc_params, &cfg);
1154 
1155  unsigned int ts_number_layers = svc_params.number_temporal_layers;
1156  unsigned int ss_number_layers = svc_params.number_spatial_layers;
1157 
1158  unsigned int width = cfg.g_w;
1159  unsigned int height = cfg.g_h;
1160 
1161  if (app_input.layering_mode >= 0) {
1162  if (ts_number_layers !=
1163  mode_to_num_temporal_layers[app_input.layering_mode] ||
1164  ss_number_layers !=
1165  mode_to_num_spatial_layers[app_input.layering_mode]) {
1166  die("Number of layers doesn't match layering mode.");
1167  }
1168  }
1169 
1170  // Y4M reader has its own allocation.
1171  if (app_input.input_ctx.file_type != FILE_TYPE_Y4M) {
1172  if (!aom_img_alloc(&raw, AOM_IMG_FMT_I420, width, height, 32)) {
1173  die("Failed to allocate image (%dx%d)", width, height);
1174  }
1175  }
1176 
1177  aom_codec_iface_t *encoder = get_aom_encoder_by_short_name("av1");
1178 
1179  memcpy(&rc.layer_target_bitrate[0], &svc_params.layer_target_bitrate[0],
1180  sizeof(svc_params.layer_target_bitrate));
1181 
1182  unsigned int total_rate = 0;
1183  for (i = 0; i < ss_number_layers; i++) {
1184  total_rate +=
1185  svc_params
1186  .layer_target_bitrate[i * ts_number_layers + ts_number_layers - 1];
1187  }
1188  if (total_rate != cfg.rc_target_bitrate) {
1189  die("Incorrect total target bitrate");
1190  }
1191 
1192  svc_params.framerate_factor[0] = 1;
1193  if (ts_number_layers == 2) {
1194  svc_params.framerate_factor[0] = 2;
1195  svc_params.framerate_factor[1] = 1;
1196  } else if (ts_number_layers == 3) {
1197  svc_params.framerate_factor[0] = 4;
1198  svc_params.framerate_factor[1] = 2;
1199  svc_params.framerate_factor[2] = 1;
1200  }
1201 
1202  if (app_input.input_ctx.file_type == FILE_TYPE_Y4M) {
1203  // Override these settings with the info from Y4M file.
1204  cfg.g_w = app_input.input_ctx.width;
1205  cfg.g_h = app_input.input_ctx.height;
1206  // g_timebase is the reciprocal of frame rate.
1207  cfg.g_timebase.num = app_input.input_ctx.framerate.denominator;
1208  cfg.g_timebase.den = app_input.input_ctx.framerate.numerator;
1209  }
1210  framerate = cfg.g_timebase.den / cfg.g_timebase.num;
1211  set_rate_control_metrics(&rc, framerate, ss_number_layers, ts_number_layers);
1212 
1213  AvxVideoInfo info;
1214  info.codec_fourcc = get_fourcc_by_aom_encoder(encoder);
1215  info.frame_width = cfg.g_w;
1216  info.frame_height = cfg.g_h;
1217  info.time_base.numerator = cfg.g_timebase.num;
1218  info.time_base.denominator = cfg.g_timebase.den;
1219  // Open an output file for each stream.
1220  for (unsigned int sl = 0; sl < ss_number_layers; ++sl) {
1221  for (unsigned tl = 0; tl < ts_number_layers; ++tl) {
1222  i = sl * ts_number_layers + tl;
1223  char file_name[PATH_MAX];
1224  snprintf(file_name, sizeof(file_name), "%s_%u.av1",
1225  app_input.output_filename, i);
1226  if (app_input.output_obu) {
1227  obu_files[i] = fopen(file_name, "wb");
1228  if (!obu_files[i]) die("Failed to open %s for writing", file_name);
1229  } else {
1230  outfile[i] = aom_video_writer_open(file_name, kContainerIVF, &info);
1231  if (!outfile[i]) die("Failed to open %s for writing", file_name);
1232  }
1233  }
1234  }
1235  if (app_input.output_obu) {
1236  total_layer_obu_file = fopen(app_input.output_filename, "wb");
1237  if (!total_layer_obu_file)
1238  die("Failed to open %s for writing", app_input.output_filename);
1239  } else {
1240  total_layer_file =
1241  aom_video_writer_open(app_input.output_filename, kContainerIVF, &info);
1242  if (!total_layer_file)
1243  die("Failed to open %s for writing", app_input.output_filename);
1244  }
1245 
1246  // Initialize codec.
1247  aom_codec_ctx_t codec;
1248  if (aom_codec_enc_init(&codec, encoder, &cfg, 0))
1249  die("Failed to initialize encoder");
1250 
1251 #if CONFIG_AV1_DECODER
1252  if (aom_codec_dec_init(&decoder, get_aom_decoder_by_index(0), NULL, 0)) {
1253  die("Failed to initialize decoder");
1254  }
1255 #endif
1256 
1257  aom_codec_control(&codec, AOME_SET_CPUUSED, app_input.speed);
1258  aom_codec_control(&codec, AV1E_SET_AQ_MODE, app_input.aq_mode ? 3 : 0);
1274  cfg.g_threads ? get_msb(cfg.g_threads) : 0);
1275  if (cfg.g_threads > 1) aom_codec_control(&codec, AV1E_SET_ROW_MT, 1);
1276 
1277  svc_params.number_spatial_layers = ss_number_layers;
1278  svc_params.number_temporal_layers = ts_number_layers;
1279  for (i = 0; i < ss_number_layers * ts_number_layers; ++i) {
1280  svc_params.max_quantizers[i] = cfg.rc_max_quantizer;
1281  svc_params.min_quantizers[i] = cfg.rc_min_quantizer;
1282  }
1283  for (i = 0; i < ss_number_layers; ++i) {
1284  svc_params.scaling_factor_num[i] = 1;
1285  svc_params.scaling_factor_den[i] = 1;
1286  }
1287  if (ss_number_layers == 2) {
1288  svc_params.scaling_factor_num[0] = 1;
1289  svc_params.scaling_factor_den[0] = 2;
1290  } else if (ss_number_layers == 3) {
1291  svc_params.scaling_factor_num[0] = 1;
1292  svc_params.scaling_factor_den[0] = 4;
1293  svc_params.scaling_factor_num[1] = 1;
1294  svc_params.scaling_factor_den[1] = 2;
1295  }
1296  aom_codec_control(&codec, AV1E_SET_SVC_PARAMS, &svc_params);
1297  // TODO(aomedia:3032): Configure KSVC in fixed mode.
1298 
1299  // This controls the maximum target size of the key frame.
1300  // For generating smaller key frames, use a smaller max_intra_size_pct
1301  // value, like 100 or 200.
1302  {
1303  const int max_intra_size_pct = 300;
1305  max_intra_size_pct);
1306  }
1307 
1308  for (unsigned int slx = 0; slx < ss_number_layers; slx++) cx_time_sl[slx] = 0;
1309  frame_avail = 1;
1310  while (frame_avail || got_data) {
1311  struct aom_usec_timer timer;
1312  frame_avail = read_frame(&(app_input.input_ctx), &raw);
1313  // Loop over spatial layers.
1314  for (unsigned int slx = 0; slx < ss_number_layers; slx++) {
1315  aom_codec_iter_t iter = NULL;
1316  const aom_codec_cx_pkt_t *pkt;
1317  int layer = 0;
1318  // Flag for superframe whose base is key.
1319  int is_key_frame = (frame_cnt % cfg.kf_max_dist) == 0;
1320  // For flexible mode:
1321  if (app_input.layering_mode >= 0) {
1322  // Set the reference/update flags, layer_id, and reference_map
1323  // buffer index.
1324  set_layer_pattern(app_input.layering_mode, frame_cnt, &layer_id,
1325  &ref_frame_config, &ref_frame_comp_pred,
1326  &use_svc_control, slx, is_key_frame,
1327  (app_input.layering_mode == 10), app_input.speed);
1328  aom_codec_control(&codec, AV1E_SET_SVC_LAYER_ID, &layer_id);
1329  if (use_svc_control) {
1331  &ref_frame_config);
1333  &ref_frame_comp_pred);
1334  }
1335  } else {
1336  // Only up to 3 temporal layers supported in fixed mode.
1337  // Only need to set spatial and temporal layer_id: reference
1338  // prediction, refresh, and buffer_idx are set internally.
1339  layer_id.spatial_layer_id = slx;
1340  layer_id.temporal_layer_id = 0;
1341  if (ts_number_layers == 2) {
1342  layer_id.temporal_layer_id = (frame_cnt % 2) != 0;
1343  } else if (ts_number_layers == 3) {
1344  if (frame_cnt % 2 != 0)
1345  layer_id.temporal_layer_id = 2;
1346  else if ((frame_cnt > 1) && ((frame_cnt - 2) % 4 == 0))
1347  layer_id.temporal_layer_id = 1;
1348  }
1349  aom_codec_control(&codec, AV1E_SET_SVC_LAYER_ID, &layer_id);
1350  }
1351 
1352  if (set_err_resil_frame) {
1353  // Set error_resilient per frame: off/0 for base layer and
1354  // on/1 for enhancement layer frames.
1355  int err_resil_mode =
1356  (layer_id.spatial_layer_id > 0 || layer_id.temporal_layer_id > 0);
1358  err_resil_mode);
1359  }
1360 
1361  layer = slx * ts_number_layers + layer_id.temporal_layer_id;
1362  if (frame_avail && slx == 0) ++rc.layer_input_frames[layer];
1363 
1364  if (test_dynamic_scaling_single_layer) {
1365  if (frame_cnt >= 200 && frame_cnt <= 400) {
1366  // Scale source down by 2x2.
1367  struct aom_scaling_mode mode = { AOME_ONETWO, AOME_ONETWO };
1368  aom_codec_control(&codec, AOME_SET_SCALEMODE, &mode);
1369  } else {
1370  // Source back up to original resolution (no scaling).
1371  struct aom_scaling_mode mode = { AOME_NORMAL, AOME_NORMAL };
1372  aom_codec_control(&codec, AOME_SET_SCALEMODE, &mode);
1373  }
1374  }
1375 
1376  // Do the layer encode.
1377  aom_usec_timer_start(&timer);
1378  if (aom_codec_encode(&codec, frame_avail ? &raw : NULL, pts, 1, flags))
1379  die_codec(&codec, "Failed to encode frame");
1380  aom_usec_timer_mark(&timer);
1381  cx_time += aom_usec_timer_elapsed(&timer);
1382  cx_time_sl[slx] += aom_usec_timer_elapsed(&timer);
1383 
1384  got_data = 0;
1385  while ((pkt = aom_codec_get_cx_data(&codec, &iter))) {
1386  got_data = 1;
1387  switch (pkt->kind) {
1389  for (unsigned int sl = layer_id.spatial_layer_id;
1390  sl < ss_number_layers; ++sl) {
1391  for (unsigned tl = layer_id.temporal_layer_id;
1392  tl < ts_number_layers; ++tl) {
1393  unsigned int j = sl * ts_number_layers + tl;
1394  if (app_input.output_obu) {
1395  fwrite(pkt->data.frame.buf, 1, pkt->data.frame.sz,
1396  obu_files[j]);
1397  } else {
1398  aom_video_writer_write_frame(outfile[j], pkt->data.frame.buf,
1399  pkt->data.frame.sz, pts);
1400  }
1401  if (sl == (unsigned int)layer_id.spatial_layer_id)
1402  rc.layer_encoding_bitrate[j] += 8.0 * pkt->data.frame.sz;
1403  }
1404  }
1405  // Write everything into the top layer.
1406  if (app_input.output_obu) {
1407  fwrite(pkt->data.frame.buf, 1, pkt->data.frame.sz,
1408  total_layer_obu_file);
1409  } else {
1410  aom_video_writer_write_frame(total_layer_file,
1411  pkt->data.frame.buf,
1412  pkt->data.frame.sz, pts);
1413  }
1414  // Keep count of rate control stats per layer (for non-key).
1415  if (!(pkt->data.frame.flags & AOM_FRAME_IS_KEY)) {
1416  unsigned int j = layer_id.spatial_layer_id * ts_number_layers +
1417  layer_id.temporal_layer_id;
1418  rc.layer_avg_frame_size[j] += 8.0 * pkt->data.frame.sz;
1419  rc.layer_avg_rate_mismatch[j] +=
1420  fabs(8.0 * pkt->data.frame.sz - rc.layer_pfb[j]) /
1421  rc.layer_pfb[j];
1422  if (slx == 0) ++rc.layer_enc_frames[layer_id.temporal_layer_id];
1423  }
1424 
1425  // Update for short-time encoding bitrate states, for moving window
1426  // of size rc->window, shifted by rc->window / 2.
1427  // Ignore first window segment, due to key frame.
1428  // For spatial layers: only do this for top/highest SL.
1429  if (frame_cnt > rc.window_size && slx == ss_number_layers - 1) {
1430  sum_bitrate += 0.001 * 8.0 * pkt->data.frame.sz * framerate;
1431  rc.window_size = (rc.window_size <= 0) ? 1 : rc.window_size;
1432  if (frame_cnt % rc.window_size == 0) {
1433  rc.window_count += 1;
1434  rc.avg_st_encoding_bitrate += sum_bitrate / rc.window_size;
1435  rc.variance_st_encoding_bitrate +=
1436  (sum_bitrate / rc.window_size) *
1437  (sum_bitrate / rc.window_size);
1438  sum_bitrate = 0.0;
1439  }
1440  }
1441  // Second shifted window.
1442  if (frame_cnt > rc.window_size + rc.window_size / 2 &&
1443  slx == ss_number_layers - 1) {
1444  sum_bitrate2 += 0.001 * 8.0 * pkt->data.frame.sz * framerate;
1445  if (frame_cnt > 2 * rc.window_size &&
1446  frame_cnt % rc.window_size == 0) {
1447  rc.window_count += 1;
1448  rc.avg_st_encoding_bitrate += sum_bitrate2 / rc.window_size;
1449  rc.variance_st_encoding_bitrate +=
1450  (sum_bitrate2 / rc.window_size) *
1451  (sum_bitrate2 / rc.window_size);
1452  sum_bitrate2 = 0.0;
1453  }
1454  }
1455 
1456 #if CONFIG_AV1_DECODER
1457  if (aom_codec_decode(&decoder, pkt->data.frame.buf,
1458  (unsigned int)pkt->data.frame.sz, NULL))
1459  die_codec(&decoder, "Failed to decode frame.");
1460 #endif
1461 
1462  break;
1463  default: break;
1464  }
1465  }
1466 #if CONFIG_AV1_DECODER
1467  // Don't look for mismatch on top spatial and top temporal layers as they
1468  // are non reference frames.
1469  if ((ss_number_layers > 1 || ts_number_layers > 1) &&
1470  !(layer_id.temporal_layer_id > 0 &&
1471  layer_id.temporal_layer_id == (int)ts_number_layers - 1)) {
1472  test_decode(&codec, &decoder, frame_cnt, &mismatch_seen);
1473  }
1474 #endif
1475  } // loop over spatial layers
1476  ++frame_cnt;
1477  pts += frame_duration;
1478  }
1479 
1480  close_input_file(&(app_input.input_ctx));
1481  printout_rate_control_summary(&rc, frame_cnt, ss_number_layers,
1482  ts_number_layers);
1483  printf("\n");
1484  printf("Frame cnt and encoding time/FPS stats for encoding: %d %f %f\n",
1485  frame_cnt, 1000 * (float)cx_time / (double)(frame_cnt * 1000000),
1486  1000000 * (double)frame_cnt / (double)cx_time);
1487 
1488  if (ss_number_layers > 1) {
1489  printf("Per spatial layer: \n");
1490  for (unsigned int slx = 0; slx < ss_number_layers; slx++)
1491  printf("Frame cnt and encoding time/FPS stats for encoding: %d %f %f\n",
1492  frame_cnt, (float)cx_time_sl[slx] / (double)(frame_cnt * 1000),
1493  1000000 * (double)frame_cnt / (double)cx_time_sl[slx]);
1494  }
1495 
1496  if (aom_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy codec");
1497 
1498 #if CONFIG_INTERNAL_STATS
1499  if (mismatch_seen) {
1500  fprintf(stats_file, "First mismatch occurred in frame %d\n", mismatch_seen);
1501  } else {
1502  fprintf(stats_file, "No mismatch detected in recon buffers\n");
1503  }
1504  fclose(stats_file);
1505 #endif
1506 
1507  // Try to rewrite the output file headers with the actual frame count.
1508  for (i = 0; i < ss_number_layers * ts_number_layers; ++i)
1509  aom_video_writer_close(outfile[i]);
1510  aom_video_writer_close(total_layer_file);
1511 
1512  if (app_input.input_ctx.file_type != FILE_TYPE_Y4M) {
1513  aom_img_free(&raw);
1514  }
1515  return EXIT_SUCCESS;
1516 }
Describes the encoder algorithm interface to applications.
enum aom_chroma_sample_position aom_chroma_sample_position_t
List of chroma sample positions.
aom_image_t * aom_img_alloc(aom_image_t *img, aom_img_fmt_t fmt, unsigned int d_w, unsigned int d_h, unsigned int align)
Open a descriptor, allocating storage for the underlying image.
#define AOM_IMG_FMT_HIGHBITDEPTH
Definition: aom_image.h:38
@ AOM_IMG_FMT_I420
Definition: aom_image.h:45
void aom_img_free(aom_image_t *img)
Close an image descriptor.
Provides definitions for using AOM or AV1 encoder algorithm within the aom Codec Interface.
Declares top-level encoder structures and functions.
#define AOM_MAX_LAYERS
Definition: aomcx.h:1566
aom_codec_iface_t * aom_codec_av1_cx(void)
The interface to the AV1 encoder.
#define AOM_MAX_TS_LAYERS
Definition: aomcx.h:1568
@ AV1E_SET_ROW_MT
Codec control function to enable the row based multi-threading of the encoder, unsigned int parameter...
Definition: aomcx.h:360
@ AV1E_SET_ENABLE_TPL_MODEL
Codec control function to enable RDO modulated by frame temporal dependency, unsigned int parameter.
Definition: aomcx.h:407
@ AV1E_SET_AQ_MODE
Codec control function to set adaptive quantization mode, unsigned int parameter.
Definition: aomcx.h:467
@ AV1E_SET_SVC_LAYER_ID
Codec control function to set the layer id, aom_svc_layer_id_t* parameter.
Definition: aomcx.h:1271
@ AV1E_SET_SVC_REF_FRAME_CONFIG
Codec control function to set reference frame config: the ref_idx and the refresh flags for each buff...
Definition: aomcx.h:1282
@ AV1E_SET_CDF_UPDATE_MODE
Codec control function to set CDF update mode, unsigned int parameter.
Definition: aomcx.h:505
@ AV1E_SET_MV_COST_UPD_FREQ
Control to set frequency of the cost updates for motion vectors, unsigned int parameter.
Definition: aomcx.h:1249
@ AV1E_SET_SVC_REF_FRAME_COMP_PRED
Codec control function to set reference frame compound prediction. aom_svc_ref_frame_comp_pred_t* par...
Definition: aomcx.h:1384
@ AV1E_SET_ENABLE_WARPED_MOTION
Codec control function to turn on / off warped motion usage at sequence level, int parameter.
Definition: aomcx.h:1033
@ AV1E_SET_COEFF_COST_UPD_FREQ
Control to set frequency of the cost updates for coefficients, unsigned int parameter.
Definition: aomcx.h:1229
@ AV1E_SET_ENABLE_CDEF
Codec control function to encode with CDEF, unsigned int parameter.
Definition: aomcx.h:665
@ AV1E_SET_DV_COST_UPD_FREQ
Control to set frequency of the cost updates for intrabc motion vectors, unsigned int parameter.
Definition: aomcx.h:1353
@ AV1E_SET_SVC_PARAMS
Codec control function to set SVC paramaeters, aom_svc_params_t* parameter.
Definition: aomcx.h:1276
@ AOME_SET_MAX_INTRA_BITRATE_PCT
Codec control function to set max data rate for intra frames, unsigned int parameter.
Definition: aomcx.h:305
@ AV1E_SET_ERROR_RESILIENT_MODE
Codec control function to enable error_resilient_mode, int parameter.
Definition: aomcx.h:441
@ AV1E_SET_ENABLE_OBMC
Codec control function to predict with OBMC mode, unsigned int parameter.
Definition: aomcx.h:692
@ AV1E_SET_LOOPFILTER_CONTROL
Codec control to control loop filter.
Definition: aomcx.h:1399
@ AOME_SET_SCALEMODE
Codec control function to set encoder scaling mode, aom_scaling_mode_t* parameter.
Definition: aomcx.h:196
@ AV1E_SET_TILE_COLUMNS
Codec control function to set number of tile columns. unsigned int parameter.
Definition: aomcx.h:379
@ AV1E_SET_ENABLE_ORDER_HINT
Codec control function to turn on / off frame order hint (int parameter). Affects: joint compound mod...
Definition: aomcx.h:860
@ AV1E_SET_DELTAQ_MODE
Codec control function to set the delta q mode, unsigned int parameter.
Definition: aomcx.h:1126
@ AV1E_SET_ENABLE_GLOBAL_MOTION
Codec control function to turn on / off global motion usage for a sequence, int parameter.
Definition: aomcx.h:1023
@ AOME_SET_CPUUSED
Codec control function to set encoder internal speed settings, int parameter.
Definition: aomcx.h:219
@ AV1E_SET_GF_CBR_BOOST_PCT
Boost percentage for Golden Frame in CBR mode, unsigned int parameter.
Definition: aomcx.h:338
@ AV1E_SET_MODE_COST_UPD_FREQ
Control to set frequency of the cost updates for mode, unsigned int parameter.
Definition: aomcx.h:1239
@ AV1_GET_NEW_FRAME_IMAGE
Codec control function to get a pointer to the new frame.
Definition: aom.h:70
const char * aom_codec_iface_name(aom_codec_iface_t *iface)
Return the name for a given interface.
aom_codec_err_t aom_codec_control(aom_codec_ctx_t *ctx, int ctrl_id,...)
Algorithm Control.
const struct aom_codec_iface aom_codec_iface_t
Codec interface structure.
Definition: aom_codec.h:254
const char * aom_codec_err_to_string(aom_codec_err_t err)
Convert error number to printable string.
aom_codec_err_t aom_codec_destroy(aom_codec_ctx_t *ctx)
Destroy a codec instance.
aom_codec_err_t
Algorithm return codes.
Definition: aom_codec.h:155
#define AOM_CODEC_CONTROL_TYPECHECKED(ctx, id, data)
aom_codec_control wrapper macro (adds type-checking, less flexible)
Definition: aom_codec.h:521
const void * aom_codec_iter_t
Iterator.
Definition: aom_codec.h:288
#define AOM_FRAME_IS_KEY
Definition: aom_codec.h:271
@ AOM_BITS_12
Definition: aom_codec.h:321
@ AOM_BITS_8
Definition: aom_codec.h:319
@ AOM_BITS_10
Definition: aom_codec.h:320
@ AOM_CODEC_INVALID_PARAM
An application-supplied parameter is not valid.
Definition: aom_codec.h:200
@ AOM_CODEC_MEM_ERROR
Memory operation failed.
Definition: aom_codec.h:163
@ AOM_CODEC_OK
Operation completed without error.
Definition: aom_codec.h:157
aom_codec_err_t aom_codec_decode(aom_codec_ctx_t *ctx, const uint8_t *data, size_t data_sz, void *user_priv)
Decode data.
#define aom_codec_dec_init(ctx, iface, cfg, flags)
Convenience macro for aom_codec_dec_init_ver()
Definition: aom_decoder.h:129
aom_codec_err_t aom_codec_encode(aom_codec_ctx_t *ctx, const aom_image_t *img, aom_codec_pts_t pts, unsigned long duration, aom_enc_frame_flags_t flags)
Encode a frame.
#define aom_codec_enc_init(ctx, iface, cfg, flags)
Convenience macro for aom_codec_enc_init_ver()
Definition: aom_encoder.h:934
aom_codec_err_t aom_codec_enc_config_default(aom_codec_iface_t *iface, aom_codec_enc_cfg_t *cfg, unsigned int usage)
Get the default configuration for a usage.
#define AOM_USAGE_REALTIME
usage parameter analogous to AV1 REALTIME mode.
Definition: aom_encoder.h:1007
const aom_codec_cx_pkt_t * aom_codec_get_cx_data(aom_codec_ctx_t *ctx, aom_codec_iter_t *iter)
Encoded data iterator.
@ AOM_CBR
Definition: aom_encoder.h:186
@ AOM_KF_AUTO
Definition: aom_encoder.h:201
@ AOM_CODEC_CX_FRAME_PKT
Definition: aom_encoder.h:109
Codec context structure.
Definition: aom_codec.h:298
aom_codec_err_t err
Definition: aom_codec.h:301
Encoder output packet.
Definition: aom_encoder.h:121
enum aom_codec_cx_pkt_kind kind
Definition: aom_encoder.h:122
union aom_codec_cx_pkt::@1 data
struct aom_codec_cx_pkt::@1::@2 frame
Encoder configuration structure.
Definition: aom_encoder.h:386
unsigned int g_input_bit_depth
Bit-depth of the input frames.
Definition: aom_encoder.h:469
unsigned int rc_dropframe_thresh
Temporal resampling configuration, if supported by the codec.
Definition: aom_encoder.h:534
struct aom_rational g_timebase
Stream timebase units.
Definition: aom_encoder.h:483
unsigned int g_usage
Algorithm specific "usage" value.
Definition: aom_encoder.h:398
unsigned int rc_buf_sz
Decoder Buffer Size.
Definition: aom_encoder.h:698
unsigned int g_h
Height of the frame.
Definition: aom_encoder.h:434
enum aom_kf_mode kf_mode
Keyframe placement mode.
Definition: aom_encoder.h:761
enum aom_rc_mode rc_end_usage
Rate control algorithm to use.
Definition: aom_encoder.h:617
unsigned int g_threads
Maximum number of threads to use.
Definition: aom_encoder.h:406
unsigned int kf_min_dist
Keyframe minimum interval.
Definition: aom_encoder.h:770
unsigned int g_lag_in_frames
Allow lagged encoding.
Definition: aom_encoder.h:512
unsigned int rc_buf_initial_sz
Decoder Buffer Initial Size.
Definition: aom_encoder.h:707
unsigned int g_profile
Bitstream profile to use.
Definition: aom_encoder.h:416
aom_bit_depth_t g_bit_depth
Bit-depth of the codec.
Definition: aom_encoder.h:461
unsigned int g_w
Width of the frame.
Definition: aom_encoder.h:425
unsigned int rc_undershoot_pct
Rate control adaptation undershoot control.
Definition: aom_encoder.h:674
unsigned int kf_max_dist
Keyframe maximum interval.
Definition: aom_encoder.h:779
aom_codec_er_flags_t g_error_resilient
Enable error resilient modes.
Definition: aom_encoder.h:491
unsigned int rc_max_quantizer
Maximum (Worst Quality) Quantizer.
Definition: aom_encoder.h:661
unsigned int rc_buf_optimal_sz
Decoder Buffer Optimal Size.
Definition: aom_encoder.h:716
unsigned int rc_min_quantizer
Minimum (Best Quality) Quantizer.
Definition: aom_encoder.h:651
unsigned int rc_target_bitrate
Target data rate.
Definition: aom_encoder.h:637
unsigned int rc_resize_mode
Mode for spatial resampling, if supported by the codec.
Definition: aom_encoder.h:543
unsigned int rc_overshoot_pct
Rate control adaptation overshoot control.
Definition: aom_encoder.h:683
Image Descriptor.
Definition: aom_image.h:180
aom_img_fmt_t fmt
Definition: aom_image.h:181
unsigned int d_w
Definition: aom_image.h:195
unsigned int d_h
Definition: aom_image.h:196
int num
Definition: aom_encoder.h:164
int den
Definition: aom_encoder.h:165
aom image scaling mode
Definition: aomcx.h:1513
Definition: aomcx.h:1571
int temporal_layer_id
Definition: aomcx.h:1573
int spatial_layer_id
Definition: aomcx.h:1572
Definition: aomcx.h:1577
int max_quantizers[32]
Definition: aomcx.h:1580
int number_spatial_layers
Definition: aomcx.h:1578
int layer_target_bitrate[32]
Definition: aomcx.h:1585
int framerate_factor[8]
Definition: aomcx.h:1587
int min_quantizers[32]
Definition: aomcx.h:1581
int scaling_factor_den[4]
Definition: aomcx.h:1583
int number_temporal_layers
Definition: aomcx.h:1579
int scaling_factor_num[4]
Definition: aomcx.h:1582
Definition: aomcx.h:1601
int use_comp_pred[3]
Definition: aomcx.h:1604
Definition: aomcx.h:1591
int reference[7]
Definition: aomcx.h:1594
int refresh[8]
Definition: aomcx.h:1597
int ref_idx[7]
Definition: aomcx.h:1596