/**

* EdDSA-Java by str4d
*
* To the extent possible under law, the person who associated CC0 with
* EdDSA-Java has waived all copyright and related or neighboring rights
* to EdDSA-Java.
*
* You should have received a copy of the CC0 legalcode along with this
* work. If not, see <https://creativecommons.org/publicdomain/zero/1.0/>.
*
*/

package net.i2p.crypto.eddsa.math;

import net.i2p.crypto.eddsa.Utils;

import java.io.Serializable; import java.util.Arrays;

/**

* A point $(x,y)$ on an EdDSA curve.
* <p>
* Reviewed/commented by Bloody Rookie (nemproject@gmx.de)
* <p>
* Literature:<br>
* [1] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe and Bo-Yin Yang : High-speed high-security signatures<br>
* [2] Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, Ed Dawson: Twisted Edwards Curves Revisited<br>
* [3] Daniel J. Bernsteina, Tanja Lange: A complete set of addition laws for incomplete Edwards curves<br>
* [4] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange and Christiane Peters: Twisted Edwards Curves<br>
* [5] Christiane Pascale Peters: Curves, Codes, and Cryptography (PhD thesis)<br>
* [6] Daniel J. Bernstein, Peter Birkner, Tanja Lange and Christiane Peters: Optimizing double-base elliptic-curve single-scalar multiplication<br>
*
* @author str4d
*/

public class GroupElement implements Serializable {

private static final long serialVersionUID = 2395879087349587L;

/**
 * Available representations for a group element.
 * <ul>
 * <li>P2: Projective representation $(X:Y:Z)$ satisfying $x=X/Z, y=Y/Z$.
 * <li>P3: Extended projective representation $(X:Y:Z:T)$ satisfying $x=X/Z, y=Y/Z, XY=ZT$.
 * <li>P1P1: Completed representation $((X:Z), (Y:T))$ satisfying $x=X/Z, y=Y/T$.
 * <li>PRECOMP: Precomputed representation $(y+x, y-x, 2dxy)$.
 * <li>CACHED: Cached representation $(Y+X, Y-X, Z, 2dT)$
 * </ul>
 */
public enum Representation {
    /** Projective ($P^2$): $(X:Y:Z)$ satisfying $x=X/Z, y=Y/Z$ */
    P2,
    /** Extended ($P^3$): $(X:Y:Z:T)$ satisfying $x=X/Z, y=Y/Z, XY=ZT$ */
    P3,
    /** Completed ($P \times P$): $((X:Z),(Y:T))$ satisfying $x=X/Z, y=Y/T$ */
    P1P1,
    /** Precomputed (Duif): $(y+x,y-x,2dxy)$ */
    PRECOMP,
    /** Cached: $(Y+X,Y-X,Z,2dT)$ */
    CACHED
}

/**
 * Creates a new group element in P2 representation.
 *
 * @param curve The curve.
 * @param X The $X$ coordinate.
 * @param Y The $Y$ coordinate.
 * @param Z The $Z$ coordinate.
 * @return The group element in P2 representation.
 */
public static GroupElement p2(
        final Curve curve,
        final FieldElement X,
        final FieldElement Y,
        final FieldElement Z) {
    return new GroupElement(curve, Representation.P2, X, Y, Z, null);
}

/**
 * Creates a new group element in P3 representation.
 *
 * @param curve The curve.
 * @param X The $X$ coordinate.
 * @param Y The $Y$ coordinate.
 * @param Z The $Z$ coordinate.
 * @param T The $T$ coordinate.
 * @return The group element in P3 representation.
 */
public static GroupElement p3(
        final Curve curve,
        final FieldElement X,
        final FieldElement Y,
        final FieldElement Z,
        final FieldElement T) {
    return new GroupElement(curve, Representation.P3, X, Y, Z, T);
}

/**
 * Creates a new group element in P1P1 representation.
 *
 * @param curve The curve.
 * @param X The $X$ coordinate.
 * @param Y The $Y$ coordinate.
 * @param Z The $Z$ coordinate.
 * @param T The $T$ coordinate.
 * @return The group element in P1P1 representation.
 */
public static GroupElement p1p1(
        final Curve curve,
        final FieldElement X,
        final FieldElement Y,
        final FieldElement Z,
        final FieldElement T) {
    return new GroupElement(curve, Representation.P1P1, X, Y, Z, T);
}

/**
 * Creates a new group element in PRECOMP representation.
 *
 * @param curve The curve.
 * @param ypx The $y + x$ value.
 * @param ymx The $y - x$ value.
 * @param xy2d The $2 * d * x * y$ value.
 * @return The group element in PRECOMP representation.
 */
public static GroupElement precomp(
        final Curve curve,
        final FieldElement ypx,
        final FieldElement ymx,
        final FieldElement xy2d) {
    return new GroupElement(curve, Representation.PRECOMP, ypx, ymx, xy2d, null);
}

/**
 * Creates a new group element in CACHED representation.
 *
 * @param curve The curve.
 * @param YpX The $Y + X$ value.
 * @param YmX The $Y - X$ value.
 * @param Z The $Z$ coordinate.
 * @param T2d The $2 * d * T$ value.
 * @return The group element in CACHED representation.
 */
public static GroupElement cached(
        final Curve curve,
        final FieldElement YpX,
        final FieldElement YmX,
        final FieldElement Z,
        final FieldElement T2d) {
    return new GroupElement(curve, Representation.CACHED, YpX, YmX, Z, T2d);
}

/**
 * Variable is package private only so that tests run.
 */
final Curve curve;

/**
 * Variable is package private only so that tests run.
 */
final Representation repr;

/**
 * Variable is package private only so that tests run.
 */
final FieldElement X;

/**
 * Variable is package private only so that tests run.
 */
final FieldElement Y;

/**
 * Variable is package private only so that tests run.
 */
final FieldElement Z;

/**
 * Variable is package private only so that tests run.
 */
final FieldElement T;

/**
 * Precomputed table for {@link #scalarMultiply(byte[])},
 * filled if necessary.
 * <p>
 * Variable is package private only so that tests run.
 */
GroupElement[][] precmp;

/**
 * Precomputed table for {@link #doubleScalarMultiplyVariableTime(GroupElement, byte[], byte[])},
 * filled if necessary.
 * <p>
 * Variable is package private only so that tests run.
 */
GroupElement[] dblPrecmp;

/**
 * Creates a group element for a curve.
 *
 * @param curve The curve.
 * @param repr The representation used to represent the group element.
 * @param X The $X$ coordinate.
 * @param Y The $Y$ coordinate.
 * @param Z The $Z$ coordinate.
 * @param T The $T$ coordinate.
 */
public GroupElement(
        final Curve curve,
        final Representation repr,
        final FieldElement X,
        final FieldElement Y,
        final FieldElement Z,
        final FieldElement T) {
    this.curve = curve;
    this.repr = repr;
    this.X = X;
    this.Y = Y;
    this.Z = Z;
    this.T = T;
}

/**
 * Creates a group element for a curve from a given encoded point.
 * <p>
 * A point $(x,y)$ is encoded by storing $y$ in bit 0 to bit 254 and the sign of $x$ in bit 255.
 * $x$ is recovered in the following way:
 * </p><ul>
 * <li>$x = sign(x) * \sqrt{(y^2 - 1) / (d * y^2 + 1)} = sign(x) * \sqrt{u / v}$ with $u = y^2 - 1$ and $v = d * y^2 + 1$.
 * <li>Setting $β = (u * v^3) * (u * v^7)^{((q - 5) / 8)}$ one has $β^2 = \pm(u / v)$.
 * <li>If $v * β = -u$ multiply $β$ with $i=\sqrt{-1}$.
 * <li>Set $x := β$.
 * <li>If $sign(x) \ne$ bit 255 of $s$ then negate $x$.
 * </ul>
 *
 * @param curve The curve.
 * @param s The encoded point.
 */
public GroupElement(final Curve curve, final byte[] s) {
    FieldElement x, y, yy, u, v, v3, vxx, check;
    y = curve.getField().fromByteArray(s);
    yy = y.square();

    // u = y^2-1
    u = yy.subtractOne();

    // v = dy^2+1
    v = yy.multiply(curve.getD()).addOne();

    // v3 = v^3
    v3 = v.square().multiply(v);

    // x = (v3^2)vu, aka x = uv^7
    x = v3.square().multiply(v).multiply(u);

    //  x = (uv^7)^((q-5)/8)
    x = x.pow22523();

    // x = uv^3(uv^7)^((q-5)/8)
    x = v3.multiply(u).multiply(x);

    vxx = x.square().multiply(v);
    check = vxx.subtract(u);            // vx^2-u
    if (check.isNonZero()) {
        check = vxx.add(u);             // vx^2+u

        if (check.isNonZero())
            throw new IllegalArgumentException("not a valid GroupElement");
        x = x.multiply(curve.getI());
    }

    if ((x.isNegative() ? 1 : 0) != Utils.bit(s, curve.getField().getb()-1)) {
        x = x.negate();
    }

    this.curve = curve;
    this.repr = Representation.P3;
    this.X = x;
    this.Y = y;
    this.Z = curve.getField().ONE;
    this.T = this.X.multiply(this.Y);
}

/**
 * Gets the curve of the group element.
 *
 * @return The curve.
 */
public Curve getCurve() {
    return this.curve;
}

/**
 * Gets the representation of the group element.
 *
 * @return The representation.
 */
public Representation getRepresentation() {
    return this.repr;
}

/**
 * Gets the $X$ value of the group element.
 * This is for most representation the projective $X$ coordinate.
 *
 * @return The $X$ value.
 */
public FieldElement getX() {
    return this.X;
}

/**
 * Gets the $Y$ value of the group element.
 * This is for most representation the projective $Y$ coordinate.
 *
 * @return The $Y$ value.
 */
public FieldElement getY() {
    return this.Y;
}

/**
 * Gets the $Z$ value of the group element.
 * This is for most representation the projective $Z$ coordinate.
 *
 * @return The $Z$ value.
 */
public FieldElement getZ() {
    return this.Z;
}

/**
 * Gets the $T$ value of the group element.
 * This is for most representation the projective $T$ coordinate.
 *
 * @return The $T$ value.
 */
public FieldElement getT() {
    return this.T;
}

/**
 * Converts the group element to an encoded point on the curve.
 *
 * @return The encoded point as byte array.
 */
public byte[] toByteArray() {
    switch (this.repr) {
        case P2:
        case P3:
            FieldElement recip = Z.invert();
            FieldElement x = X.multiply(recip);
            FieldElement y = Y.multiply(recip);
            byte[] s = y.toByteArray();
            s[s.length-1] |= (x.isNegative() ? (byte) 0x80 : 0);
            return s;
        default:
            return toP2().toByteArray();
    }
}

/**
 * Converts the group element to the P2 representation.
 *
 * @return The group element in the P2 representation.
 */
public GroupElement toP2() {
    return toRep(Representation.P2);
}

/**
 * Converts the group element to the P3 representation.
 *
 * @return The group element in the P3 representation.
 */
public GroupElement toP3() {
    return toRep(Representation.P3);
}

/**
 * Converts the group element to the CACHED representation.
 *
 * @return The group element in the CACHED representation.
 */
public GroupElement toCached() {
    return toRep(Representation.CACHED);
}

/**
 * Convert a GroupElement from one Representation to another.
 * TODO-CR: Add additional conversion?
 * $r = p$
 * <p>
 * Supported conversions:
 * <p><ul>
 * <li>P3 $\rightarrow$ P2
 * <li>P3 $\rightarrow$ CACHED (1 multiply, 1 add, 1 subtract)
 * <li>P1P1 $\rightarrow$ P2 (3 multiply)
 * <li>P1P1 $\rightarrow$ P3 (4 multiply)
 *
 * @param repr The representation to convert to.
 * @return A new group element in the given representation.
 */
private GroupElement toRep(final Representation repr) {
    switch (this.repr) {
        case P2:
            switch (repr) {
                case P2:
                    return p2(this.curve, this.X, this.Y, this.Z);
                default:
                    throw new IllegalArgumentException();
            }
        case P3:
            switch (repr) {
                case P2:
                    return p2(this.curve, this.X, this.Y, this.Z);
                case P3:
                    return p3(this.curve, this.X, this.Y, this.Z, this.T);
                case CACHED:
                    return cached(this.curve, this.Y.add(this.X), this.Y.subtract(this.X), this.Z, this.T.multiply(this.curve.get2D()));
                default:
                    throw new IllegalArgumentException();
            }
        case P1P1:
            switch (repr) {
                case P2:
                    return p2(this.curve, this.X.multiply(this.T), Y.multiply(this.Z), this.Z.multiply(this.T));
                case P3:
                    return p3(this.curve, this.X.multiply(this.T), Y.multiply(this.Z), this.Z.multiply(this.T), this.X.multiply(this.Y));
                case P1P1:
                    return p1p1(this.curve, this.X, this.Y, this.Z, this.T);
                default:
                    throw new IllegalArgumentException();
            }
        case PRECOMP:
            switch (repr) {
                case PRECOMP:
                    return precomp(this.curve, this.X, this.Y, this.Z);
                default:
                    throw new IllegalArgumentException();
            }
        case CACHED:
            switch (repr) {
                case CACHED:
                    return cached(this.curve, this.X, this.Y, this.Z, this.T);
                default:
                    throw new IllegalArgumentException();
            }
        default:
            throw new UnsupportedOperationException();
    }
}

/**
 * Precomputes several tables.
 * <p>
 * The precomputed tables are used for {@link #scalarMultiply(byte[])}
 * and {@link #doubleScalarMultiplyVariableTime(GroupElement, byte[], byte[])}.
 *
 * @param precomputeSingle should the matrix for scalarMultiply() be precomputed?
 */
public synchronized void precompute(final boolean precomputeSingle) {
    GroupElement Bi;

    if (precomputeSingle && this.precmp == null) {
        // Precomputation for single scalar multiplication.
        this.precmp = new GroupElement[32][8];
        // TODO-CR BR: check that this == base point when the method is called.
        Bi = this;
        for (int i = 0; i < 32; i++) {
            GroupElement Bij = Bi;
            for (int j = 0; j < 8; j++) {
                final FieldElement recip = Bij.Z.invert();
                final FieldElement x = Bij.X.multiply(recip);
                final FieldElement y = Bij.Y.multiply(recip);
                this.precmp[i][j] = precomp(this.curve, y.add(x), y.subtract(x), x.multiply(y).multiply(this.curve.get2D()));
                Bij = Bij.add(Bi.toCached()).toP3();
            }
            // Only every second summand is precomputed (16^2 = 256)
            for (int k = 0; k < 8; k++) {
                Bi = Bi.add(Bi.toCached()).toP3();
            }
        }
    }

    // Precomputation for double scalar multiplication.
    // P,3P,5P,7P,9P,11P,13P,15P
    if (this.dblPrecmp != null)
        return;
    this.dblPrecmp = new GroupElement[8];
    Bi = this;
    for (int i = 0; i < 8; i++) {
        final FieldElement recip = Bi.Z.invert();
        final FieldElement x = Bi.X.multiply(recip);
        final FieldElement y = Bi.Y.multiply(recip);
        this.dblPrecmp[i] = precomp(this.curve, y.add(x), y.subtract(x), x.multiply(y).multiply(this.curve.get2D()));
        // Bi = edwards(B,edwards(B,Bi))
        Bi = this.add(this.add(Bi.toCached()).toP3().toCached()).toP3();
    }
}

/**
 * Doubles a given group element $p$ in $P^2$ or $P^3$ representation and returns the result in $P \times P$ representation.
 * $r = 2 * p$ where $p = (X : Y : Z)$ or $p = (X : Y : Z : T)$
 * <p>
 * $r$ in $P \times P$ representation:
 * <p>
 * $r = ((X' : Z'), (Y' : T'))$ where
 * </p><ul>
 * <li>$X' = (X + Y)^2 - (Y^2 + X^2)$
 * <li>$Y' = Y^2 + X^2$
 * <li>$Z' = y^2 - X^2$
 * <li>$T' = 2 * Z^2 - (y^2 - X^2)$
 * </ul><p>
 * $r$ converted from $P \times P$ to $P^2$ representation:
 * <p>
 * $r = (X'' : Y'' : Z'')$ where
 * </p><ul>
 * <li>$X'' = X' * Z' = ((X + Y)^2 - Y^2 - X^2) * (2 * Z^2 - (y^2 - X^2))$
 * <li>$Y'' = Y' * T' = (Y^2 + X^2) * (2 * Z^2 - (y^2 - X^2))$
 * <li>$Z'' = Z' * T' = (y^2 - X^2) * (2 * Z^2 - (y^2 - X^2))$
 * </ul><p>
 * Formula for the $P^2$ representation is in agreement with the formula given in [4] page 12 (with $a = -1$)
 * up to a common factor -1 which does not matter:
 * <p>
 * $$
 * B = (X + Y)^2; C = X^2; D = Y^2; E = -C = -X^2; F := E + D = Y^2 - X^2; H = Z^2; J = F − 2 * H; \\
 * X3 = (B − C − D) · J = X' * (-T'); \\
 * Y3 = F · (E − D) = Z' * (-Y'); \\
 * Z3 = F · J = Z' * (-T').
 * $$
 *
 * @return The P1P1 representation
 */
public GroupElement dbl() {
    switch (this.repr) {
    case P2:
    case P3: // Ignore T for P3 representation
        FieldElement XX, YY, B, A, AA, Yn, Zn;
        XX = this.X.square();
        YY = this.Y.square();
        B = this.Z.squareAndDouble();
        A = this.X.add(this.Y);
        AA = A.square();
        Yn = YY.add(XX);
        Zn = YY.subtract(XX);
        return p1p1(this.curve, AA.subtract(Yn), Yn, Zn, B.subtract(Zn));
    default:
        throw new UnsupportedOperationException();
    }
}

/**
 * GroupElement addition using the twisted Edwards addition law with
 * extended coordinates (Hisil2008).
 * <p>
 * this must be in $P^3$ representation and $q$ in PRECOMP representation.
 * $r = p + q$ where $p = this = (X1 : Y1 : Z1 : T1), q = (q.X, q.Y, q.Z) = (Y2/Z2 + X2/Z2, Y2/Z2 - X2/Z2, 2 * d * X2/Z2 * Y2/Z2)$
 * <p>
 * $r$ in $P \times P$ representation:
 * <p>
 * $r = ((X' : Z'), (Y' : T'))$ where
 * <p><ul>
 * <li>$X' = (Y1 + X1) * q.X - (Y1 - X1) * q.Y = ((Y1 + X1) * (Y2 + X2) - (Y1 - X1) * (Y2 - X2)) * 1/Z2$
 * <li>$Y' = (Y1 + X1) * q.X + (Y1 - X1) * q.Y = ((Y1 + X1) * (Y2 + X2) + (Y1 - X1) * (Y2 - X2)) * 1/Z2$
 * <li>$Z' = 2 * Z1 + T1 * q.Z = 2 * Z1 + T1 * 2 * d * X2 * Y2 * 1/Z2^2 = (2 * Z1 * Z2 + 2 * d * T1 * T2) * 1/Z2$
 * <li>$T' = 2 * Z1 - T1 * q.Z = 2 * Z1 - T1 * 2 * d * X2 * Y2 * 1/Z2^2 = (2 * Z1 * Z2 - 2 * d * T1 * T2) * 1/Z2$
 * </ul><p>
 * Setting $A = (Y1 - X1) * (Y2 - X2), B = (Y1 + X1) * (Y2 + X2), C = 2 * d * T1 * T2, D = 2 * Z1 * Z2$ we get
 * <p><ul>
 * <li>$X' = (B - A) * 1/Z2$
 * <li>$Y' = (B + A) * 1/Z2$
 * <li>$Z' = (D + C) * 1/Z2$
 * <li>$T' = (D - C) * 1/Z2$
 * </ul><p>
 * $r$ converted from $P \times P$ to $P^2$ representation:
 * <p>
 * $r = (X'' : Y'' : Z'' : T'')$ where
 * <p><ul>
 * <li>$X'' = X' * Z' = (B - A) * (D + C) * 1/Z2^2$
 * <li>$Y'' = Y' * T' = (B + A) * (D - C) * 1/Z2^2$
 * <li>$Z'' = Z' * T' = (D + C) * (D - C) * 1/Z2^2$
 * <li>$T'' = X' * Y' = (B - A) * (B + A) * 1/Z2^2$
 * </ul><p>
 * TODO-CR BR: Formula for the $P^2$ representation is not in agreement with the formula given in [2] page 6<br>
 * TODO-CR BR: (the common factor $1/Z2^2$ does not matter):<br>
 * $$
 * E = B - A, F = D - C, G = D + C, H = B + A \\
 * X3 = E * F = (B - A) * (D - C); \\
 * Y3 = G * H = (D + C) * (B + A); \\
 * Z3 = F * G = (D - C) * (D + C); \\
 * T3 = E * H = (B - A) * (B + A);
 * $$
 *
 * @param q the PRECOMP representation of the GroupElement to add.
 * @return the P1P1 representation of the result.
 */
private GroupElement madd(GroupElement q) {
    if (this.repr != Representation.P3)
        throw new UnsupportedOperationException();
    if (q.repr != Representation.PRECOMP)
        throw new IllegalArgumentException();

    FieldElement YpX, YmX, A, B, C, D;
    YpX = this.Y.add(this.X);
    YmX = this.Y.subtract(this.X);
    A = YpX.multiply(q.X); // q->y+x
    B = YmX.multiply(q.Y); // q->y-x
    C = q.Z.multiply(this.T); // q->2dxy
    D = this.Z.add(this.Z);
    return p1p1(this.curve, A.subtract(B), A.add(B), D.add(C), D.subtract(C));
}

/**
 * GroupElement subtraction using the twisted Edwards addition law with
 * extended coordinates (Hisil2008).
 * <p>
 * this must be in $P^3$ representation and $q$ in PRECOMP representation.
 * $r = p - q$ where $p = this = (X1 : Y1 : Z1 : T1), q = (q.X, q.Y, q.Z) = (Y2/Z2 + X2/Z2, Y2/Z2 - X2/Z2, 2 * d * X2/Z2 * Y2/Z2)$
 * <p>
 * Negating $q$ means negating the value of $X2$ and $T2$ (the latter is irrelevant here).
 * The formula is in accordance to {@link #madd the above addition}.
 *
 * @param q the PRECOMP representation of the GroupElement to subtract.
 * @return the P1P1 representation of the result.
 */
private GroupElement msub(GroupElement q) {
    if (this.repr != Representation.P3)
        throw new UnsupportedOperationException();
    if (q.repr != Representation.PRECOMP)
        throw new IllegalArgumentException();

    FieldElement YpX, YmX, A, B, C, D;
    YpX = this.Y.add(this.X);
    YmX = this.Y.subtract(this.X);
    A = YpX.multiply(q.Y); // q->y-x
    B = YmX.multiply(q.X); // q->y+x
    C = q.Z.multiply(this.T); // q->2dxy
    D = this.Z.add(this.Z);
    return p1p1(this.curve, A.subtract(B), A.add(B), D.subtract(C), D.add(C));
}

/**
 * GroupElement addition using the twisted Edwards addition law with
 * extended coordinates (Hisil2008).
 * <p>
 * this must be in $P^3$ representation and $q$ in CACHED representation.
 * $r = p + q$ where $p = this = (X1 : Y1 : Z1 : T1), q = (q.X, q.Y, q.Z, q.T) = (Y2 + X2, Y2 - X2, Z2, 2 * d * T2)$
 * <p>
 * $r$ in $P \times P$ representation:
 * </p><ul>
 * <li>$X' = (Y1 + X1) * (Y2 + X2) - (Y1 - X1) * (Y2 - X2)$
 * <li>$Y' = (Y1 + X1) * (Y2 + X2) + (Y1 - X1) * (Y2 - X2)$
 * <li>$Z' = 2 * Z1 * Z2 + 2 * d * T1 * T2$
 * <li>$T' = 2 * Z1 * T2 - 2 * d * T1 * T2$
 * </ul><p>
 * Setting $A = (Y1 - X1) * (Y2 - X2), B = (Y1 + X1) * (Y2 + X2), C = 2 * d * T1 * T2, D = 2 * Z1 * Z2$ we get
 * </p><ul>
 * <li>$X' = (B - A)$
 * <li>$Y' = (B + A)$
 * <li>$Z' = (D + C)$
 * <li>$T' = (D - C)$
 * </ul><p>
 * Same result as in {@link #madd} (up to a common factor which does not matter).
 *
 * @param q the CACHED representation of the GroupElement to add.
 * @return the P1P1 representation of the result.
 */
public GroupElement add(GroupElement q) {
    if (this.repr != Representation.P3)
        throw new UnsupportedOperationException();
    if (q.repr != Representation.CACHED)
        throw new IllegalArgumentException();

    FieldElement YpX, YmX, A, B, C, ZZ, D;
    YpX = this.Y.add(this.X);
    YmX = this.Y.subtract(this.X);
    A = YpX.multiply(q.X); // q->Y+X
    B = YmX.multiply(q.Y); // q->Y-X
    C = q.T.multiply(this.T); // q->2dT
    ZZ = this.Z.multiply(q.Z);
    D = ZZ.add(ZZ);
    return p1p1(this.curve, A.subtract(B), A.add(B), D.add(C), D.subtract(C));
}

/**
 * GroupElement subtraction using the twisted Edwards addition law with
 * extended coordinates (Hisil2008).
 * <p>
 * $r = p - q$
 * <p>
 * Negating $q$ means negating the value of the coordinate $X2$ and $T2$.
 * The formula is in accordance to {@link #add the above addition}.
 *
 * @param q the PRECOMP representation of the GroupElement to subtract.
 * @return the P1P1 representation of the result.
 */
public GroupElement sub(GroupElement q) {
    if (this.repr != Representation.P3)
        throw new UnsupportedOperationException();
    if (q.repr != Representation.CACHED)
        throw new IllegalArgumentException();

    FieldElement YpX, YmX, A, B, C, ZZ, D;
    YpX = Y.add(X);
    YmX = Y.subtract(X);
    A = YpX.multiply(q.Y); // q->Y-X
    B = YmX.multiply(q.X); // q->Y+X
    C = q.T.multiply(T); // q->2dT
    ZZ = Z.multiply(q.Z);
    D = ZZ.add(ZZ);
    return p1p1(curve, A.subtract(B), A.add(B), D.subtract(C), D.add(C));
}

/**
 * Negates this group element by subtracting it from the neutral group element.
 * <p>
 * TODO-CR BR: why not simply negate the coordinates $X$ and $T$?
 *
 * @return The negative of this group element.
 */
public GroupElement negate() {
    if (this.repr != Representation.P3)
        throw new UnsupportedOperationException();
    return this.curve.getZero(Representation.P3).sub(toCached()).toP3();
}

@Override
public int hashCode() {
    return Arrays.hashCode(this.toByteArray());
}

@Override
public boolean equals(Object obj) {
    if (obj == this)
        return true;
    if (!(obj instanceof GroupElement))
        return false;
    GroupElement ge = (GroupElement) obj;
    if (!this.repr.equals(ge.repr)) {
        try {
            ge = ge.toRep(this.repr);
        } catch (RuntimeException e) {
            return false;
        }
    }
    switch (this.repr) {
        case P2:
        case P3:
            // Try easy way first
            if (this.Z.equals(ge.Z))
                return this.X.equals(ge.X) && this.Y.equals(ge.Y);
            // X1/Z1 = X2/Z2 --> X1*Z2 = X2*Z1
            final FieldElement x1 = this.X.multiply(ge.Z);
            final FieldElement y1 = this.Y.multiply(ge.Z);
            final FieldElement x2 = ge.X.multiply(this.Z);
            final FieldElement y2 = ge.Y.multiply(this.Z);
            return x1.equals(x2) && y1.equals(y2);
        case P1P1:
            return toP2().equals(ge);
        case PRECOMP:
            // Compare directly, PRECOMP is derived directly from x and y
            return this.X.equals(ge.X) && this.Y.equals(ge.Y) && this.Z.equals(ge.Z);
        case CACHED:
            // Try easy way first
            if (this.Z.equals(ge.Z))
                return this.X.equals(ge.X) && this.Y.equals(ge.Y) && this.T.equals(ge.T);
            // (Y+X)/Z = y+x etc.
            final FieldElement x3 = this.X.multiply(ge.Z);
            final FieldElement y3 = this.Y.multiply(ge.Z);
            final FieldElement t3 = this.T.multiply(ge.Z);
            final FieldElement x4 = ge.X.multiply(this.Z);
            final FieldElement y4 = ge.Y.multiply(this.Z);
            final FieldElement t4 = ge.T.multiply(this.Z);
            return x3.equals(x4) && y3.equals(y4) && t3.equals(t4);
        default:
            return false;
    }
}

/**
 * Convert a to radix 16.
 * <p>
 * Method is package private only so that tests run.
 *
 * @param a $= a[0]+256*a[1]+...+256^{31} a[31]$
 * @return 64 bytes, each between -8 and 7
 */
static byte[] toRadix16(final byte[] a) {
    final byte[] e = new byte[64];
    int i;
    // Radix 16 notation
    for (i = 0; i < 32; i++) {
        e[2*i+0] = (byte) (a[i] & 15);
        e[2*i+1] = (byte) ((a[i] >> 4) & 15);
    }
    /* each e[i] is between 0 and 15 */
    /* e[63] is between 0 and 7 */
    int carry = 0;
    for (i = 0; i < 63; i++) {
        e[i] += carry;
        carry = e[i] + 8;
        carry >>= 4;
        e[i] -= carry << 4;
    }
    e[63] += carry;
    /* each e[i] is between -8 and 7 */
    return e;
}

/**
 * Constant-time conditional move.
 * <p>
 * Replaces this with $u$ if $b == 1$.<br>
 * Replaces this with this if $b == 0$.
 * <p>
 * Method is package private only so that tests run.
 *
 * @param u The group element to return if $b == 1$.
 * @param b in $\{0, 1\}$
 * @return $u$ if $b == 1$; this if $b == 0$. Results undefined if $b$ is not in $\{0, 1\}$.
 */
GroupElement cmov(final GroupElement u, final int b) {
    return precomp(curve, X.cmov(u.X, b), Y.cmov(u.Y, b), Z.cmov(u.Z, b));
}

/**
 * Look up $16^i r_i B$ in the precomputed table.
 * <p>
 * No secret array indices, no secret branching.
 * Constant time.
 * <p>
 * Must have previously precomputed.
 * <p>
 * Method is package private only so that tests run.
 *
 * @param pos $= i/2$ for $i$ in $\{0, 2, 4,..., 62\}$
 * @param b $= r_i$
 * @return the GroupElement
 */
GroupElement select(final int pos, final int b) {
    // Is r_i negative?
    final int bnegative = Utils.negative(b);
    // |r_i|
    final int babs = b - (((-bnegative) & b) << 1);

    // 16^i |r_i| B
    final GroupElement t = this.curve.getZero(Representation.PRECOMP)
            .cmov(this.precmp[pos][0], Utils.equal(babs, 1))
            .cmov(this.precmp[pos][1], Utils.equal(babs, 2))
            .cmov(this.precmp[pos][2], Utils.equal(babs, 3))
            .cmov(this.precmp[pos][3], Utils.equal(babs, 4))
            .cmov(this.precmp[pos][4], Utils.equal(babs, 5))
            .cmov(this.precmp[pos][5], Utils.equal(babs, 6))
            .cmov(this.precmp[pos][6], Utils.equal(babs, 7))
            .cmov(this.precmp[pos][7], Utils.equal(babs, 8));
    // -16^i |r_i| B
    final GroupElement tminus = precomp(curve, t.Y, t.X, t.Z.negate());
    // 16^i r_i B
    return t.cmov(tminus, bnegative);
}

/**
 * $h = a * B$ where $a = a[0]+256*a[1]+\dots+256^{31} a[31]$ and
 * $B$ is this point. If its lookup table has not been precomputed, it
 * will be at the start of the method (and cached for later calls).
 * Constant time.
 * <p>
 * Preconditions: (TODO: Check this applies here)
 *   $a[31] \le 127$
 * @param a $= a[0]+256*a[1]+\dots+256^{31} a[31]$
 * @return the GroupElement
 */
public GroupElement scalarMultiply(final byte[] a) {
    GroupElement t;
    int i;

    final byte[] e = toRadix16(a);

    GroupElement h = this.curve.getZero(Representation.P3);
    synchronized(this) {
        // TODO: Get opinion from a crypto professional.
        // This should in practice never be necessary, the only point that
        // this should get called on is EdDSA's B.
        //precompute();
        for (i = 1; i < 64; i += 2) {
            t = select(i/2, e[i]);
            h = h.madd(t).toP3();
        }

        h = h.dbl().toP2().dbl().toP2().dbl().toP2().dbl().toP3();

        for (i = 0; i < 64; i += 2) {
            t = select(i/2, e[i]);
            h = h.madd(t).toP3();
        }
    }

    return h;
}

/**
 * Calculates a sliding-windows base 2 representation for a given value $a$.
 * To learn more about it see [6] page 8.
 * <p>
 * Output: $r$ which satisfies
 * $a = r0 * 2^0 + r1 * 2^1 + \dots + r255 * 2^{255}$ with $ri$ in $\{-15, -13, -11, -9, -7, -5, -3, -1, 0, 1, 3, 5, 7, 9, 11, 13, 15\}$
 * <p>
 * Method is package private only so that tests run.
 *
 * @param a $= a[0]+256*a[1]+\dots+256^{31} a[31]$.
 * @return The byte array $r$ in the above described form.
 */
static byte[] slide(final byte[] a) {
    byte[] r = new byte[256];

    // Put each bit of 'a' into a separate byte, 0 or 1
    for (int i = 0; i < 256; ++i) {
        r[i] = (byte) (1 & (a[i >> 3] >> (i & 7)));
    }

    // Note: r[i] will always be odd.
    for (int i = 0; i < 256; ++i) {
        if (r[i] != 0) {
            for (int b = 1; b <= 6 && i + b < 256; ++b) {
                // Accumulate bits if possible
                if (r[i + b] != 0) {
                    if (r[i] + (r[i + b] << b) <= 15) {
                        r[i] += r[i + b] << b;
                        r[i + b] = 0;
                    } else if (r[i] - (r[i + b] << b) >= -15) {
                        r[i] -= r[i + b] << b;
                        for (int k = i + b; k < 256; ++k) {
                            if (r[k] == 0) {
                                r[k] = 1;
                                break;
                            }
                            r[k] = 0;
                        }
                    } else
                        break;
                }
            }
        }
    }

    return r;
}

/**
 * $r = a * A + b * B$ where $a = a[0]+256*a[1]+\dots+256^{31} a[31]$,
 * $b = b[0]+256*b[1]+\dots+256^{31} b[31]$ and $B$ is this point.
 * <p>
 * $A$ must have been previously precomputed.
 *
 * @param A in P3 representation.
 * @param a $= a[0]+256*a[1]+\dots+256^{31} a[31]$
 * @param b $= b[0]+256*b[1]+\dots+256^{31} b[31]$
 * @return the GroupElement
 */
public GroupElement doubleScalarMultiplyVariableTime(final GroupElement A, final byte[] a, final byte[] b) {
    // TODO-CR BR: A check that this is the base point is needed.
    final byte[] aslide = slide(a);
    final byte[] bslide = slide(b);

    GroupElement r = this.curve.getZero(Representation.P2);

    int i;
    for (i = 255; i >= 0; --i) {
        if (aslide[i] != 0 || bslide[i] != 0) break;
    }

    synchronized(this) {
        // TODO-CR BR strange comment below.
        // TODO: Get opinion from a crypto professional.
        // This should in practice never be necessary, the only point that
        // this should get called on is EdDSA's B.
        //precompute();
        for (; i >= 0; --i) {
            GroupElement t = r.dbl();

            if (aslide[i] > 0) {
                t = t.toP3().madd(A.dblPrecmp[aslide[i]/2]);
            } else if(aslide[i] < 0) {
                t = t.toP3().msub(A.dblPrecmp[(-aslide[i])/2]);
            }

            if (bslide[i] > 0) {
                t = t.toP3().madd(this.dblPrecmp[bslide[i]/2]);
            } else if(bslide[i] < 0) {
                t = t.toP3().msub(this.dblPrecmp[(-bslide[i])/2]);
            }

            r = t.toP2();
        }
    }

    return r;
}

/**
 * Verify that a point is on its curve.
 * @return true if the point lies on its curve.
 */
public boolean isOnCurve() {
    return isOnCurve(curve);
}

/**
 * Verify that a point is on the curve.
 * @param curve The curve to check.
 * @return true if the point lies on the curve.
 */
public boolean isOnCurve(Curve curve) {
    switch (repr) {
    case P2:
    case P3:
        FieldElement recip = Z.invert();
        FieldElement x = X.multiply(recip);
        FieldElement y = Y.multiply(recip);
        FieldElement xx = x.square();
        FieldElement yy = y.square();
        FieldElement dxxyy = curve.getD().multiply(xx).multiply(yy);
        return curve.getField().ONE.add(dxxyy).add(xx).equals(yy);

    default:
        return toP2().isOnCurve(curve);
    }
}

@Override
public String toString() {
    return "[GroupElement\nX="+X+"\nY="+Y+"\nZ="+Z+"\nT="+T+"\n]";
}

}