Inputting an ideal $M$ generated by monomials returns a list of lists of tail monomialsfor each generator of $M$ (in the smae order).
i1 : R = ZZ/32003[a..d]; |
i2 : M = ideal (a^2, b^2, a*b*c); o2 : Ideal of R |
i3 : tailMonomials M 2 2 2 o3 = {{a*b, a*c, b*c, c , a*d, b*d, c*d, d }, {a*c, b*c, c , a*d, b*d, c*d, ------------------------------------------------------------------------ 2 2 2 3 2 2 2 2 3 d }, {a*c , b*c , c , a*b*d, a*c*d, b*c*d, c d, a*d , b*d , c*d , d }} o3 : List |
i4 : tailMonomials(M, AllStandard => true) 2 2 2 o4 = {{a*b, a*c, b*c, c , a*d, b*d, c*d, d }, {a*b, a*c, b*c, c , a*d, b*d, ------------------------------------------------------------------------ 2 2 2 3 2 2 2 2 c*d, d }, {a*c , b*c , c , a*b*d, a*c*d, b*c*d, c d, a*d , b*d , c*d , ------------------------------------------------------------------------ 3 d }} o4 : List |
i5 : tailMonomials(M, b^2) 2 2 o5 = {a*c, b*c, c , a*d, b*d, c*d, d } o5 : List |
i6 : tailMonomials(M, b^2, AllStandard=>true) 2 2 o6 = {a*b, a*c, b*c, c , a*d, b*d, c*d, d } o6 : List |
The object tailMonomials is a method function with options.