We compute nonminimal resolution F of the carpet of type (a,b) over a finite prime field, Lift this to a resolution over ZZ, introduce the fine grading, grep the various blocks of the crucial map in the a-th strand, compute their determinants and return their product.
i1 : a=4,b=4 o1 = (4, 4) o1 : Sequence |
i2 : d=carpetDet(a,b) -- 0.00562398 seconds elapsed -- 0.012421 seconds elapsed -- 0.000182353 seconds elapsed -- 0.000119285 seconds elapsed -- 0.000107031 seconds elapsed -- 0.000126357 seconds elapsed -- 0.000106291 seconds elapsed -- 0.000114807 seconds elapsed -- 0.000134784 seconds elapsed -- 0.000150352 seconds elapsed -- 0.000121017 seconds elapsed -- 0.000117771 seconds elapsed -- 0.00011202 seconds elapsed -- 0.000131236 seconds elapsed -- 0.000113883 seconds elapsed -- 0.000107893 seconds elapsed -- 0.000114475 seconds elapsed -- 0.000112232 seconds elapsed -- 0.000126848 seconds elapsed -- 0.000124795 seconds elapsed -- 0.000126729 seconds elapsed -- 0.000123532 seconds elapsed -- 0.000136556 seconds elapsed -- 0.000114014 seconds elapsed -- 0.000106931 seconds elapsed -- 0.000108084 seconds elapsed -- 0.000110958 seconds elapsed -- 0.000108874 seconds elapsed (number Of blocks, 26) 1 1 1 1 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 2 2 2 1 1 1 1 o2 = 3131031158784 |
i3 : factor d 32 6 o3 = 2 3 o3 : Expression of class Product |
The object carpetDet is a method function.