When the computation takes a considerable time, this function can be used to decide if it will ever finish, or to get a feel for what is happening during the computation.
i1 : R = QQ[x,y,z]/ideal(x^8-z^6-y^2*z^4-z^3); |
i2 : time R' = integralClosure(R, Verbosity => 2) [jacobian time .000376832 sec #minors 3] integral closure nvars 3 numgens 1 is S2 codim 1 codimJ 2 [step 0: radical (use minprimes) .0023279 seconds idlizer1: .0072388 seconds idlizer2: .0124811 seconds minpres: .00866323 seconds time .0425315 sec #fractions 4] [step 1: radical (use minprimes) .0024036 seconds idlizer1: .0118321 seconds idlizer2: .0223085 seconds minpres: .0136347 seconds time .0642186 sec #fractions 4] [step 2: radical (use minprimes) .00242523 seconds idlizer1: .0124642 seconds idlizer2: .0422854 seconds minpres: .0111692 seconds time .0820791 sec #fractions 5] [step 3: radical (use minprimes) .00249637 seconds idlizer1: .0130347 seconds idlizer2: .0353652 seconds minpres: .0277763 seconds time .121061 sec #fractions 5] [step 4: radical (use minprimes) .00247221 seconds idlizer1: .0133426 seconds idlizer2: .0681818 seconds minpres: .0142854 seconds time .139247 sec #fractions 5] [step 5: radical (use minprimes) .00241187 seconds idlizer1: .00919343 seconds time .0186909 sec #fractions 5] -- used 0.471374 seconds o2 = R' o2 : QuotientRing |
i3 : trim ideal R' 3 2 2 2 4 4 o3 = ideal (w z - x , w x - w , w x - y z - z - z, w x - w z, 4,0 4,0 1,1 1,1 4,0 1,1 ------------------------------------------------------------------------ 2 2 2 3 2 3 2 3 2 4 2 2 4 2 w w - x y z - x z - x , w + w x y - x*y z - x*y z - 2x*y z 4,0 1,1 4,0 4,0 ------------------------------------------------------------------------ 3 3 2 6 2 6 2 - x*z - x, w x - w + x y + x z ) 4,0 1,1 o3 : Ideal of QQ[w , w , x..z] 4,0 1,1 |
i4 : icFractions R 3 2 2 4 x y z + z + z o4 = {--, -------------, x, y, z} z x o4 : List |
The exact information displayed may change.