My Project
ipshell.cc
Go to the documentation of this file.
1/****************************************
2* Computer Algebra System SINGULAR *
3****************************************/
4/*
5* ABSTRACT:
6*/
7
8#include "kernel/mod2.h"
9
10#include "factory/factory.h"
11
12#include "misc/options.h"
13#include "misc/mylimits.h"
14#include "misc/intvec.h"
15#include "misc/prime.h"
16
17#include "coeffs/numbers.h"
18#include "coeffs/coeffs.h"
19
20#include "coeffs/rmodulon.h"
21#include "coeffs/longrat.h"
22
26
27#include "polys/prCopy.h"
28#include "polys/matpol.h"
29
30#include "polys/shiftop.h"
31#include "polys/weight.h"
32#include "polys/clapsing.h"
33
34
37
38#include "kernel/polys.h"
39#include "kernel/ideals.h"
40
43
44#include "kernel/GBEngine/syz.h"
46#include "kernel/GBEngine/kutil.h" // denominator_list
47
50
54
56
57#include "Singular/lists.h"
58#include "Singular/attrib.h"
59#include "Singular/ipconv.h"
61#include "Singular/ipshell.h"
62#include "Singular/maps_ip.h"
63#include "Singular/tok.h"
64#include "Singular/ipid.h"
65#include "Singular/subexpr.h"
66#include "Singular/fevoices.h"
67#include "Singular/sdb.h"
68
69#include <cmath>
70#include <ctype.h>
71
73
74#include "polys/clapsing.h"
75
76#ifdef SINGULAR_4_2
77#include "Singular/number2.h"
78#include "coeffs/bigintmat.h"
79#endif
82const char *lastreserved=NULL;
83
85
86/*0 implementation*/
87
88const char * iiTwoOps(int t)
89{
90 if (t<127)
91 {
92 STATIC_VAR char ch[2];
93 switch (t)
94 {
95 case '&':
96 return "and";
97 case '|':
98 return "or";
99 default:
100 ch[0]=t;
101 ch[1]='\0';
102 return ch;
103 }
104 }
105 switch (t)
106 {
107 case COLONCOLON: return "::";
108 case DOTDOT: return "..";
109 //case PLUSEQUAL: return "+=";
110 //case MINUSEQUAL: return "-=";
111 case MINUSMINUS: return "--";
112 case PLUSPLUS: return "++";
113 case EQUAL_EQUAL: return "==";
114 case LE: return "<=";
115 case GE: return ">=";
116 case NOTEQUAL: return "<>";
117 default: return Tok2Cmdname(t);
118 }
119}
120
121int iiOpsTwoChar(const char *s)
122{
123/* not handling: &&, ||, ** */
124 if (s[1]=='\0') return s[0];
125 else if (s[2]!='\0') return 0;
126 switch(s[0])
127 {
128 case '.': if (s[1]=='.') return DOTDOT;
129 else return 0;
130 case ':': if (s[1]==':') return COLONCOLON;
131 else return 0;
132 case '-': if (s[1]=='-') return MINUSMINUS;
133 else return 0;
134 case '+': if (s[1]=='+') return PLUSPLUS;
135 else return 0;
136 case '=': if (s[1]=='=') return EQUAL_EQUAL;
137 else return 0;
138 case '<': if (s[1]=='=') return LE;
139 else if (s[1]=='>') return NOTEQUAL;
140 else return 0;
141 case '>': if (s[1]=='=') return GE;
142 else return 0;
143 case '!': if (s[1]=='=') return NOTEQUAL;
144 else return 0;
145 }
146 return 0;
147}
148
149static void list1(const char* s, idhdl h,BOOLEAN c, BOOLEAN fullname)
150{
151 char buffer[22];
152 int l;
153 char buf2[128];
154
155 if(fullname) sprintf(buf2, "%s::%s", "", IDID(h));
156 else sprintf(buf2, "%s", IDID(h));
157
158 Print("%s%-30.30s [%d] ",s,buf2,IDLEV(h));
159 if (h == currRingHdl) PrintS("*");
160 PrintS(Tok2Cmdname((int)IDTYP(h)));
161
162 ipListFlag(h);
163 switch(IDTYP(h))
164 {
165 case ALIAS_CMD: Print(" for %s",IDID((idhdl)IDDATA(h))); break;
166 case INT_CMD: Print(" %d",IDINT(h)); break;
167 case INTVEC_CMD:Print(" (%d)",IDINTVEC(h)->length()); break;
168 case INTMAT_CMD:Print(" %d x %d",IDINTVEC(h)->rows(),IDINTVEC(h)->cols());
169 break;
170 case POLY_CMD:
171 case VECTOR_CMD:if (c)
172 {
173 PrintS(" ");wrp(IDPOLY(h));
174 if(IDPOLY(h) != NULL)
175 {
176 Print(", %d monomial(s)",pLength(IDPOLY(h)));
177 }
178 }
179 break;
180 case MODUL_CMD: Print(", rk %d", (int)(IDIDEAL(h)->rank));// and continue
181 case IDEAL_CMD: Print(", %u generator(s)",
182 IDELEMS(IDIDEAL(h))); break;
183 case MAP_CMD:
184 Print(" from %s",IDMAP(h)->preimage); break;
185 case MATRIX_CMD:Print(" %u x %u"
188 );
189 break;
190 case SMATRIX_CMD:Print(" %u x %u"
191 ,(int)(IDIDEAL(h)->rank)
192 ,IDELEMS(IDIDEAL(h))
193 );
194 break;
195 case PACKAGE_CMD:
197 break;
198 case PROC_CMD: if((IDPROC(h)->libname!=NULL)
199 && (strlen(IDPROC(h)->libname)>0))
200 Print(" from %s",IDPROC(h)->libname);
201 if(IDPROC(h)->language==LANG_C)
202 PrintS(" (C)");
203 if(IDPROC(h)->is_static)
204 PrintS(" (static)");
205 break;
206 case STRING_CMD:
207 {
208 char *s;
209 l=strlen(IDSTRING(h));
210 memset(buffer,0,sizeof(buffer));
211 strncpy(buffer,IDSTRING(h),si_min(l,20));
212 if ((s=strchr(buffer,'\n'))!=NULL)
213 {
214 *s='\0';
215 }
216 PrintS(" ");
217 PrintS(buffer);
218 if((s!=NULL) ||(l>20))
219 {
220 Print("..., %d char(s)",l);
221 }
222 break;
223 }
224 case LIST_CMD: Print(", size: %d",IDLIST(h)->nr+1);
225 break;
226 case RING_CMD:
227 if ((IDRING(h)==currRing) && (currRingHdl!=h))
228 PrintS("(*)"); /* this is an alias to currRing */
229 //Print(" ref:%d",IDRING(h)->ref);
230#ifdef RDEBUG
232 Print(" <%lx>",(long)(IDRING(h)));
233#endif
234 break;
235#ifdef SINGULAR_4_2
236 case CNUMBER_CMD:
237 { number2 n=(number2)IDDATA(h);
238 Print(" (%s)",nCoeffName(n->cf));
239 break;
240 }
241 case CMATRIX_CMD:
243 Print(" %d x %d (%s)",
244 b->rows(),b->cols(),
245 nCoeffName(b->basecoeffs()));
246 break;
247 }
248#endif
249 /*default: break;*/
250 }
251 PrintLn();
252}
253
255{
256 BOOLEAN oldShortOut = FALSE;
257
258 if (currRing != NULL)
259 {
260 oldShortOut = currRing->ShortOut;
261 currRing->ShortOut = 1;
262 }
263 int t=v->Typ();
264 Print("// %s %s ",v->Name(),Tok2Cmdname(t));
265 switch (t)
266 {
267 case MAP_CMD:Print(" from %s\n",((map)(v->Data()))->preimage); break;
268 case INTMAT_CMD: Print(" %d x %d\n",((intvec*)(v->Data()))->rows(),
269 ((intvec*)(v->Data()))->cols()); break;
270 case MATRIX_CMD:Print(" %u x %u\n" ,
271 MATROWS((matrix)(v->Data())),
272 MATCOLS((matrix)(v->Data())));break;
273 case MODUL_CMD: Print(", rk %d\n", (int)(((ideal)(v->Data()))->rank));break;
274 case LIST_CMD: Print(", size %d\n",((lists)(v->Data()))->nr+1); break;
275
276 case PROC_CMD:
277 case RING_CMD:
278 case IDEAL_CMD: PrintLn(); break;
279
280 //case INT_CMD:
281 //case STRING_CMD:
282 //case INTVEC_CMD:
283 //case POLY_CMD:
284 //case VECTOR_CMD:
285 //case PACKAGE_CMD:
286
287 default:
288 break;
289 }
290 v->Print();
291 if (currRing != NULL)
292 currRing->ShortOut = oldShortOut;
293}
294
295static void killlocals0(int v, idhdl * localhdl, const ring r)
296{
297 idhdl h = *localhdl;
298 while (h!=NULL)
299 {
300 int vv;
301 //Print("consider %s, lev: %d:",IDID(h),IDLEV(h));
302 if ((vv=IDLEV(h))>0)
303 {
304 if (vv < v)
305 {
306 if (iiNoKeepRing)
307 {
308 //PrintS(" break\n");
309 return;
310 }
311 h = IDNEXT(h);
312 //PrintLn();
313 }
314 else //if (vv >= v)
315 {
316 idhdl nexth = IDNEXT(h);
317 killhdl2(h,localhdl,r);
318 h = nexth;
319 //PrintS("kill\n");
320 }
321 }
322 else
323 {
324 h = IDNEXT(h);
325 //PrintLn();
326 }
327 }
328}
329
330void killlocals_rec(idhdl *root,int v, ring r)
331{
332 idhdl h=*root;
333 while (h!=NULL)
334 {
335 if (IDLEV(h)>=v)
336 {
337// Print("kill %s, lev %d for lev %d\n",IDID(h),IDLEV(h),v);
338 idhdl n=IDNEXT(h);
339 killhdl2(h,root,r);
340 h=n;
341 }
342 else if (IDTYP(h)==PACKAGE_CMD)
343 {
344 // Print("into pack %s, lev %d for lev %d\n",IDID(h),IDLEV(h),v);
345 if (IDPACKAGE(h)!=basePack)
346 killlocals_rec(&(IDRING(h)->idroot),v,r);
347 h=IDNEXT(h);
348 }
349 else if (IDTYP(h)==RING_CMD)
350 {
351 if ((IDRING(h)!=NULL) && (IDRING(h)->idroot!=NULL))
352 // we have to test IDRING(h)!=NULL: qring Q=groebner(...): killlocals
353 {
354 // Print("into ring %s, lev %d for lev %d\n",IDID(h),IDLEV(h),v);
355 killlocals_rec(&(IDRING(h)->idroot),v,IDRING(h));
356 }
357 h=IDNEXT(h);
358 }
359 else
360 {
361// Print("skip %s lev %d for lev %d\n",IDID(h),IDLEV(h),v);
362 h=IDNEXT(h);
363 }
364 }
365}
367{
368 if (L==NULL) return FALSE;
369 BOOLEAN changed=FALSE;
370 int n=L->nr;
371 for(;n>=0;n--)
372 {
373 leftv h=&(L->m[n]);
374 void *d=h->data;
375 if ((h->rtyp==RING_CMD)
376 && (((ring)d)->idroot!=NULL))
377 {
378 if (d!=currRing) {changed=TRUE;rChangeCurrRing((ring)d);}
379 killlocals0(v,&(((ring)h->data)->idroot),(ring)h->data);
380 }
381 else if (h->rtyp==LIST_CMD)
382 changed|=killlocals_list(v,(lists)d);
383 }
384 return changed;
385}
386void killlocals(int v)
387{
388 BOOLEAN changed=FALSE;
390 ring cr=currRing;
391 if (sh!=NULL) changed=((IDLEV(sh)<v) || (IDRING(sh)->ref>0));
392 //if (changed) Print("currRing=%s(%x), lev=%d,ref=%d\n",IDID(sh),IDRING(sh),IDLEV(sh),IDRING(sh)->ref);
393
394 killlocals_rec(&(basePack->idroot),v,currRing);
395
397 {
398 int t=iiRETURNEXPR.Typ();
399 if (/*iiRETURNEXPR.Typ()*/ t==RING_CMD)
400 {
402 if (((ring)h->data)->idroot!=NULL)
403 killlocals0(v,&(((ring)h->data)->idroot),(ring)h->data);
404 }
405 else if (/*iiRETURNEXPR.Typ()*/ t==LIST_CMD)
406 {
408 changed |=killlocals_list(v,(lists)h->data);
409 }
410 }
411 if (changed)
412 {
414 if (currRingHdl==NULL)
416 else if(cr!=currRing)
417 rChangeCurrRing(cr);
418 }
419
420 if (myynest<=1) iiNoKeepRing=TRUE;
421 //Print("end killlocals >= %d\n",v);
422 //listall();
423}
424
425void list_cmd(int typ, const char* what, const char *prefix,BOOLEAN iterate, BOOLEAN fullname)
426{
427 package savePack=currPack;
428 idhdl h,start;
429 BOOLEAN all = typ<0;
430 BOOLEAN really_all=FALSE;
431
432 if ( typ==0 )
433 {
434 if (strcmp(what,"all")==0)
435 {
436 if (currPack!=basePack)
437 list_cmd(-1,NULL,prefix,iterate,fullname); // list current package
438 really_all=TRUE;
439 h=basePack->idroot;
440 }
441 else
442 {
443 h = ggetid(what);
444 if (h!=NULL)
445 {
446 if (iterate) list1(prefix,h,TRUE,fullname);
447 if (IDTYP(h)==ALIAS_CMD) PrintS("A");
448 if ((IDTYP(h)==RING_CMD)
449 //|| (IDTYP(h)==PACKAGE_CMD)
450 )
451 {
452 h=IDRING(h)->idroot;
453 }
454 else if(IDTYP(h)==PACKAGE_CMD)
455 {
457 //Print("list_cmd:package\n");
458 all=TRUE;typ=PROC_CMD;fullname=TRUE;really_all=TRUE;
459 h=IDPACKAGE(h)->idroot;
460 }
461 else
462 {
463 currPack=savePack;
464 return;
465 }
466 }
467 else
468 {
469 Werror("%s is undefined",what);
470 currPack=savePack;
471 return;
472 }
473 }
474 all=TRUE;
475 }
476 else if (RingDependend(typ))
477 {
478 h = currRing->idroot;
479 }
480 else
481 h = IDROOT;
482 start=h;
483 while (h!=NULL)
484 {
485 if ((all
486 && (IDTYP(h)!=PROC_CMD)
487 &&(IDTYP(h)!=PACKAGE_CMD)
488 &&(IDTYP(h)!=CRING_CMD)
489 )
490 || (typ == IDTYP(h))
491 || ((IDTYP(h)==CRING_CMD) && (typ==RING_CMD))
492 )
493 {
494 list1(prefix,h,start==currRingHdl, fullname);
495 if ((IDTYP(h)==RING_CMD)
496 && (really_all || (all && (h==currRingHdl)))
497 && ((IDLEV(h)==0)||(IDLEV(h)==myynest)))
498 {
499 list_cmd(0,IDID(h),"// ",FALSE);
500 }
501 if (IDTYP(h)==PACKAGE_CMD && really_all)
502 {
503 package save_p=currPack;
505 list_cmd(0,IDID(h),"// ",FALSE);
506 currPack=save_p;
507 }
508 }
509 h = IDNEXT(h);
510 }
511 currPack=savePack;
512}
513
514void test_cmd(int i)
515{
516 int ii;
517
518 if (i<0)
519 {
520 ii= -i;
521 if (ii < 32)
522 {
523 si_opt_1 &= ~Sy_bit(ii);
524 }
525 else if (ii < 64)
526 {
527 si_opt_2 &= ~Sy_bit(ii-32);
528 }
529 else
530 WerrorS("out of bounds\n");
531 }
532 else if (i<32)
533 {
534 ii=i;
535 if (Sy_bit(ii) & kOptions)
536 {
537 WarnS("Gerhard, use the option command");
538 si_opt_1 |= Sy_bit(ii);
539 }
540 else if (Sy_bit(ii) & validOpts)
541 si_opt_1 |= Sy_bit(ii);
542 }
543 else if (i<64)
544 {
545 ii=i-32;
546 si_opt_2 |= Sy_bit(ii);
547 }
548 else
549 WerrorS("out of bounds\n");
550}
551
553{
554 int rc = 0;
555 while (v!=NULL)
556 {
557 switch (v->Typ())
558 {
559 case INT_CMD:
560 case POLY_CMD:
561 case VECTOR_CMD:
562 case NUMBER_CMD:
563 rc++;
564 break;
565 case INTVEC_CMD:
566 case INTMAT_CMD:
567 rc += ((intvec *)(v->Data()))->length();
568 break;
569 case MATRIX_CMD:
570 case IDEAL_CMD:
571 case MODUL_CMD:
572 {
573 matrix mm = (matrix)(v->Data());
574 rc += mm->rows() * mm->cols();
575 }
576 break;
577 case LIST_CMD:
578 rc+=((lists)v->Data())->nr+1;
579 break;
580 default:
581 rc++;
582 }
583 v = v->next;
584 }
585 return rc;
586}
587
589{
590 sleftv vf;
591 if (iiConvert(v->Typ(),LINK_CMD,iiTestConvert(v->Typ(),LINK_CMD),v,&vf))
592 {
593 WerrorS("link expected");
594 return TRUE;
595 }
596 si_link l=(si_link)vf.Data();
597 if (vf.next == NULL)
598 {
599 WerrorS("write: need at least two arguments");
600 return TRUE;
601 }
602
603 BOOLEAN b=slWrite(l,vf.next); /* iiConvert preserves next */
604 if (b)
605 {
606 const char *s;
607 if ((l!=NULL)&&(l->name!=NULL)) s=l->name;
608 else s=sNoName_fe;
609 Werror("cannot write to %s",s);
610 }
611 vf.CleanUp();
612 return b;
613}
614
615leftv iiMap(map theMap, const char * what)
616{
617 idhdl w,r;
618 leftv v;
619 int i;
620 nMapFunc nMap;
621
622 r=IDROOT->get(theMap->preimage,myynest);
623 if ((currPack!=basePack)
624 &&((r==NULL) || ((r->typ != RING_CMD) )))
625 r=basePack->idroot->get(theMap->preimage,myynest);
626 if ((r==NULL) && (currRingHdl!=NULL)
627 && (strcmp(theMap->preimage,IDID(currRingHdl))==0))
628 {
629 r=currRingHdl;
630 }
631 if ((r!=NULL) && (r->typ == RING_CMD))
632 {
633 ring src_ring=IDRING(r);
634 if ((nMap=n_SetMap(src_ring->cf, currRing->cf))==NULL)
635 {
636 Werror("can not map from ground field of %s to current ground field",
637 theMap->preimage);
638 return NULL;
639 }
640 if (IDELEMS(theMap)<src_ring->N)
641 {
642 theMap->m=(polyset)omReallocSize((ADDRESS)theMap->m,
643 IDELEMS(theMap)*sizeof(poly),
644 (src_ring->N)*sizeof(poly));
645#ifdef HAVE_SHIFTBBA
646 if (rIsLPRing(src_ring))
647 {
648 // src_ring [x,y,z,...]
649 // curr_ring [a,b,c,...]
650 //
651 // map=[a,b,c,d] -> [a,b,c,...]
652 // map=[a,b] -> [a,b,0,...]
653
654 short src_lV = src_ring->isLPring;
655 short src_ncGenCount = src_ring->LPncGenCount;
656 short src_nVars = src_lV - src_ncGenCount;
657 int src_nblocks = src_ring->N / src_lV;
658
659 short dest_nVars = currRing->isLPring - currRing->LPncGenCount;
660 short dest_ncGenCount = currRing->LPncGenCount;
661
662 // add missing NULL generators
663 for(i=IDELEMS(theMap); i < src_lV - src_ncGenCount; i++)
664 {
665 theMap->m[i]=NULL;
666 }
667
668 // remove superfluous generators
669 for(i = src_nVars; i < IDELEMS(theMap); i++)
670 {
671 if (theMap->m[i] != NULL)
672 {
673 p_Delete(&(theMap->m[i]), currRing);
674 theMap->m[i] = NULL;
675 }
676 }
677
678 // add ncgen mappings
679 for(i = src_nVars; i < src_lV; i++)
680 {
681 short ncGenIndex = i - src_nVars;
682 if (ncGenIndex < dest_ncGenCount)
683 {
684 poly p = p_One(currRing);
685 p_SetExp(p, dest_nVars + ncGenIndex + 1, 1, currRing);
686 p_Setm(p, currRing);
687 theMap->m[i] = p;
688 }
689 else
690 {
691 theMap->m[i] = NULL;
692 }
693 }
694
695 // copy the first block to all other blocks
696 for(i = 1; i < src_nblocks; i++)
697 {
698 for(int j = 0; j < src_lV; j++)
699 {
700 theMap->m[(i * src_lV) + j] = p_Copy(theMap->m[j], currRing);
701 }
702 }
703 }
704 else
705 {
706#endif
707 for(i=IDELEMS(theMap);i<src_ring->N;i++)
708 theMap->m[i]=NULL;
709#ifdef HAVE_SHIFTBBA
710 }
711#endif
712 IDELEMS(theMap)=src_ring->N;
713 }
714 if (what==NULL)
715 {
716 WerrorS("argument of a map must have a name");
717 }
718 else if ((w=src_ring->idroot->get(what,myynest))!=NULL)
719 {
720 char *save_r=NULL;
722 sleftv tmpW;
723 tmpW.Init();
724 tmpW.rtyp=IDTYP(w);
725 if (tmpW.rtyp==MAP_CMD)
726 {
727 tmpW.rtyp=IDEAL_CMD;
728 save_r=IDMAP(w)->preimage;
729 IDMAP(w)->preimage=0;
730 }
731 tmpW.data=IDDATA(w);
732 // check overflow
733 BOOLEAN overflow=FALSE;
734 if ((tmpW.rtyp==IDEAL_CMD)
735 || (tmpW.rtyp==MODUL_CMD)
736 || (tmpW.rtyp==MAP_CMD))
737 {
738 ideal id=(ideal)tmpW.data;
739 long *degs=(long*)omAlloc(IDELEMS(id)*sizeof(long));
740 for(int i=IDELEMS(id)-1;i>=0;i--)
741 {
742 poly p=id->m[i];
743 if (p!=NULL) degs[i]=p_Totaldegree(p,src_ring);
744 else degs[i]=0;
745 }
746 for(int j=IDELEMS(theMap)-1;j>=0 && !overflow;j--)
747 {
748 if (theMap->m[j]!=NULL)
749 {
750 long deg_monexp=pTotaldegree(theMap->m[j]);
751
752 for(int i=IDELEMS(id)-1;i>=0;i--)
753 {
754 poly p=id->m[i];
755 if ((p!=NULL) && (degs[i]!=0) &&
756 ((unsigned long)deg_monexp > (currRing->bitmask / ((unsigned long)degs[i])/2)))
757 {
758 overflow=TRUE;
759 break;
760 }
761 }
762 }
763 }
764 omFreeSize(degs,IDELEMS(id)*sizeof(long));
765 }
766 else if (tmpW.rtyp==POLY_CMD)
767 {
768 for(int j=IDELEMS(theMap)-1;j>=0 && !overflow;j--)
769 {
770 if (theMap->m[j]!=NULL)
771 {
772 long deg_monexp=pTotaldegree(theMap->m[j]);
773 poly p=(poly)tmpW.data;
774 long deg=0;
775 if ((p!=NULL) && ((deg=p_Totaldegree(p,src_ring))!=0) &&
776 ((unsigned long)deg_monexp > (currRing->bitmask / ((unsigned long)deg)/2)))
777 {
778 overflow=TRUE;
779 break;
780 }
781 }
782 }
783 }
784 if (overflow)
785#ifdef HAVE_SHIFTBBA
786 // in Letterplace rings the exponent is always 0 or 1! ignore this warning.
787 if (!rIsLPRing(currRing))
788 {
789#endif
790 Warn("possible OVERFLOW in map, max exponent is %ld",currRing->bitmask/2);
791#ifdef HAVE_SHIFTBBA
792 }
793#endif
794#if 0
795 if (((tmpW.rtyp==IDEAL_CMD)||(tmpW.rtyp==MODUL_CMD)) && idIs0(IDIDEAL(w)))
796 {
797 v->rtyp=tmpW.rtyp;
798 v->data=idInit(IDELEMS(IDIDEAL(w)),IDIDEAL(w)->rank);
799 }
800 else
801#endif
802 {
803 if ((tmpW.rtyp==IDEAL_CMD)
804 ||(tmpW.rtyp==MODUL_CMD)
805 ||(tmpW.rtyp==MATRIX_CMD)
806 ||(tmpW.rtyp==MAP_CMD))
807 {
808 v->rtyp=tmpW.rtyp;
809 char *tmp = theMap->preimage;
810 theMap->preimage=(char*)1L;
811 // map gets 1 as its rank (as an ideal)
812 v->data=maMapIdeal(IDIDEAL(w), src_ring, (ideal)theMap, currRing,nMap);
813 theMap->preimage=tmp; // map gets its preimage back
814 }
815 if (v->data==NULL) /*i.e. not IDEAL_CMD/MODUL_CMD/MATRIX_CMD/MAP */
816 {
817 if (maApplyFetch(MAP_CMD,theMap,v,&tmpW,src_ring,NULL,NULL,0,nMap))
818 {
819 Werror("cannot map %s(%d)",Tok2Cmdname(w->typ),w->typ);
821 if (save_r!=NULL) IDMAP(w)->preimage=save_r;
822 return NULL;
823 }
824 }
825 }
826 if (save_r!=NULL)
827 {
828 IDMAP(w)->preimage=save_r;
829 IDMAP((idhdl)v)->preimage=omStrDup(save_r);
830 v->rtyp=MAP_CMD;
831 }
832 return v;
833 }
834 else
835 {
836 Werror("%s undefined in %s",what,theMap->preimage);
837 }
838 }
839 else
840 {
841 Werror("cannot find preimage %s",theMap->preimage);
842 }
843 return NULL;
844}
845
846#ifdef OLD_RES
847void iiMakeResolv(resolvente r, int length, int rlen, char * name, int typ0,
848 intvec ** weights)
849{
850 lists L=liMakeResolv(r,length,rlen,typ0,weights);
851 int i=0;
852 idhdl h;
853 char * s=(char *)omAlloc(strlen(name)+5);
854
855 while (i<=L->nr)
856 {
857 sprintf(s,"%s(%d)",name,i+1);
858 if (i==0)
859 h=enterid(s,myynest,typ0,&(currRing->idroot), FALSE);
860 else
862 if (h!=NULL)
863 {
864 h->data.uideal=(ideal)L->m[i].data;
865 h->attribute=L->m[i].attribute;
867 Print("//defining: %s as %d-th syzygy module\n",s,i+1);
868 }
869 else
870 {
871 idDelete((ideal *)&(L->m[i].data));
872 Warn("cannot define %s",s);
873 }
874 //L->m[i].data=NULL;
875 //L->m[i].rtyp=0;
876 //L->m[i].attribute=NULL;
877 i++;
878 }
879 omFreeSize((ADDRESS)L->m,(L->nr+1)*sizeof(sleftv));
881 omFreeSize((ADDRESS)s,strlen(name)+5);
882}
883#endif
884
885//resolvente iiFindRes(char * name, int * len, int *typ0)
886//{
887// char *s=(char *)omAlloc(strlen(name)+5);
888// int i=-1;
889// resolvente r;
890// idhdl h;
891//
892// do
893// {
894// i++;
895// sprintf(s,"%s(%d)",name,i+1);
896// h=currRing->idroot->get(s,myynest);
897// } while (h!=NULL);
898// *len=i-1;
899// if (*len<=0)
900// {
901// Werror("no objects %s(1),.. found",name);
902// omFreeSize((ADDRESS)s,strlen(name)+5);
903// return NULL;
904// }
905// r=(ideal *)omAlloc(/*(len+1)*/ i*sizeof(ideal));
906// memset(r,0,(*len)*sizeof(ideal));
907// i=-1;
908// *typ0=MODUL_CMD;
909// while (i<(*len))
910// {
911// i++;
912// sprintf(s,"%s(%d)",name,i+1);
913// h=currRing->idroot->get(s,myynest);
914// if (h->typ != MODUL_CMD)
915// {
916// if ((i!=0) || (h->typ!=IDEAL_CMD))
917// {
918// Werror("%s is not of type module",s);
919// omFreeSize((ADDRESS)r,(*len)*sizeof(ideal));
920// omFreeSize((ADDRESS)s,strlen(name)+5);
921// return NULL;
922// }
923// *typ0=IDEAL_CMD;
924// }
925// if ((i>0) && (idIs0(r[i-1])))
926// {
927// *len=i-1;
928// break;
929// }
930// r[i]=IDIDEAL(h);
931// }
932// omFreeSize((ADDRESS)s,strlen(name)+5);
933// return r;
934//}
935
937{
938 int i;
939 resolvente res=(ideal *)omAlloc0((l+1)*sizeof(ideal));
940
941 for (i=0; i<l; i++)
942 if (r[i]!=NULL) res[i]=idCopy(r[i]);
943 return res;
944}
945
947{
948 int len=0;
949 int typ0;
950 lists L=(lists)v->Data();
951 intvec *weights=(intvec*)atGet(v,"isHomog",INTVEC_CMD);
952 int add_row_shift = 0;
953 if (weights==NULL)
954 weights=(intvec*)atGet(&(L->m[0]),"isHomog",INTVEC_CMD);
955 if (weights!=NULL) add_row_shift=weights->min_in();
956 resolvente rr=liFindRes(L,&len,&typ0);
957 if (rr==NULL) return TRUE;
958 resolvente r=iiCopyRes(rr,len);
959
960 syMinimizeResolvente(r,len,0);
961 omFreeSize((ADDRESS)rr,len*sizeof(ideal));
962 len++;
963 res->data=(char *)liMakeResolv(r,len,-1,typ0,NULL,add_row_shift);
964 return FALSE;
965}
966
968{
969 sleftv tmp;
970 tmp.Init();
971 tmp.rtyp=INT_CMD;
972 tmp.data=(void *)1;
973 if ((u->Typ()==IDEAL_CMD)
974 || (u->Typ()==MODUL_CMD))
975 return jjBETTI2_ID(res,u,&tmp);
976 else
977 return jjBETTI2(res,u,&tmp);
978}
979
981{
983 l->Init(1);
984 l->m[0].rtyp=u->Typ();
985 l->m[0].data=u->Data();
986 attr *a=u->Attribute();
987 if (a!=NULL)
988 l->m[0].attribute=*a;
989 sleftv tmp2;
990 tmp2.Init();
991 tmp2.rtyp=LIST_CMD;
992 tmp2.data=(void *)l;
994 l->m[0].data=NULL;
995 l->m[0].attribute=NULL;
996 l->m[0].rtyp=DEF_CMD;
997 l->Clean();
998 return r;
999}
1000
1002{
1003 resolvente r;
1004 int len;
1005 int reg,typ0;
1006 lists l=(lists)u->Data();
1007
1008 intvec *weights=NULL;
1009 int add_row_shift=0;
1010 intvec *ww=NULL;
1011 if (l->nr>=0) ww=(intvec *)atGet(&(l->m[0]),"isHomog",INTVEC_CMD);
1012 if (ww!=NULL)
1013 {
1014 weights=ivCopy(ww);
1015 add_row_shift = ww->min_in();
1016 (*weights) -= add_row_shift;
1017 }
1018 //Print("attr:%x\n",weights);
1019
1020 r=liFindRes(l,&len,&typ0);
1021 if (r==NULL) return TRUE;
1022 intvec* res_im=syBetti(r,len,&reg,weights,(int)(long)v->Data());
1023 res->data=(void*)res_im;
1024 omFreeSize((ADDRESS)r,(len)*sizeof(ideal));
1025 //Print("rowShift: %d ",add_row_shift);
1026 for(int i=1;i<=res_im->rows();i++)
1027 {
1028 if (IMATELEM(*res_im,1,i)==0) { add_row_shift--; }
1029 else break;
1030 }
1031 //Print(" %d\n",add_row_shift);
1032 atSet(res,omStrDup("rowShift"),(void*)(long)add_row_shift,INT_CMD);
1033 if (weights!=NULL) delete weights;
1034 return FALSE;
1035}
1036
1038{
1039 int len,reg,typ0;
1040
1041 resolvente r=liFindRes(L,&len,&typ0);
1042
1043 if (r==NULL)
1044 return -2;
1045 intvec *weights=NULL;
1046 int add_row_shift=0;
1047 intvec *ww=(intvec *)atGet(&(L->m[0]),"isHomog",INTVEC_CMD);
1048 if (ww!=NULL)
1049 {
1050 weights=ivCopy(ww);
1051 add_row_shift = ww->min_in();
1052 (*weights) -= add_row_shift;
1053 }
1054 //Print("attr:%x\n",weights);
1055
1056 intvec *dummy=syBetti(r,len,&reg,weights);
1057 if (weights!=NULL) delete weights;
1058 delete dummy;
1059 omFreeSize((ADDRESS)r,len*sizeof(ideal));
1060 return reg+1+add_row_shift;
1061}
1062
1064#define BREAK_LINE_LENGTH 80
1066{
1067#ifdef HAVE_SDB
1068 sdb_flags=1;
1069#endif
1070 Print("\n-- break point in %s --\n",VoiceName());
1072 char * s;
1074 s = (char *)omAlloc(BREAK_LINE_LENGTH+4);
1075 loop
1076 {
1077 memset(s,0,BREAK_LINE_LENGTH+4);
1079 if (s[BREAK_LINE_LENGTH-1]!='\0')
1080 {
1081 Print("line too long, max is %d chars\n",BREAK_LINE_LENGTH);
1082 }
1083 else
1084 break;
1085 }
1086 if (*s=='\n')
1087 {
1089 }
1090#if MDEBUG
1091 else if(strncmp(s,"cont;",5)==0)
1092 {
1094 }
1095#endif /* MDEBUG */
1096 else
1097 {
1098 strcat( s, "\n;~\n");
1100 }
1101}
1102
1103lists scIndIndset(ideal S, BOOLEAN all, ideal Q)
1104{
1105 int i;
1106 indset save;
1108
1109 hexist = hInit(S, Q, &hNexist, currRing);
1110 if (hNexist == 0)
1111 {
1112 intvec *iv=new intvec(rVar(currRing));
1113 for(i=0; i<rVar(currRing); i++) (*iv)[i]=1;
1114 res->Init(1);
1115 res->m[0].rtyp=INTVEC_CMD;
1116 res->m[0].data=(intvec*)iv;
1117 return res;
1118 }
1119 else if (hisModule!=0)
1120 {
1121 res->Init(0);
1122 return res;
1123 }
1125 hMu = 0;
1126 hwork = (scfmon)omAlloc(hNexist * sizeof(scmon));
1127 hvar = (varset)omAlloc((rVar(currRing) + 1) * sizeof(int));
1128 hpure = (scmon)omAlloc0((1 + (rVar(currRing) * rVar(currRing))) * sizeof(long));
1129 hrad = hexist;
1130 hNrad = hNexist;
1131 radmem = hCreate(rVar(currRing) - 1);
1132 hCo = rVar(currRing) + 1;
1133 hNvar = rVar(currRing);
1135 hSupp(hrad, hNrad, hvar, &hNvar);
1136 if (hNvar)
1137 {
1138 hCo = hNvar;
1139 hPure(hrad, 0, &hNrad, hvar, hNvar, hpure, &hNpure);
1142 }
1143 if (hCo && (hCo < rVar(currRing)))
1144 {
1146 }
1147 if (hMu!=0)
1148 {
1149 ISet = save;
1150 hMu2 = 0;
1151 if (all && (hCo+1 < rVar(currRing)))
1152 {
1155 i=hMu+hMu2;
1156 res->Init(i);
1157 if (hMu2 == 0)
1158 {
1160 }
1161 }
1162 else
1163 {
1164 res->Init(hMu);
1165 }
1166 for (i=0;i<hMu;i++)
1167 {
1168 res->m[i].data = (void *)save->set;
1169 res->m[i].rtyp = INTVEC_CMD;
1170 ISet = save;
1171 save = save->nx;
1173 }
1175 if (hMu2 != 0)
1176 {
1177 save = JSet;
1178 for (i=hMu;i<hMu+hMu2;i++)
1179 {
1180 res->m[i].data = (void *)save->set;
1181 res->m[i].rtyp = INTVEC_CMD;
1182 JSet = save;
1183 save = save->nx;
1185 }
1187 }
1188 }
1189 else
1190 {
1191 res->Init(0);
1193 }
1194 hKill(radmem, rVar(currRing) - 1);
1195 omFreeSize((ADDRESS)hpure, (1 + (rVar(currRing) * rVar(currRing))) * sizeof(long));
1196 omFreeSize((ADDRESS)hvar, (rVar(currRing) + 1) * sizeof(int));
1197 omFreeSize((ADDRESS)hwork, hNexist * sizeof(scmon));
1199 return res;
1200}
1201
1202int iiDeclCommand(leftv sy, leftv name, int lev,int t, idhdl* root,BOOLEAN isring, BOOLEAN init_b)
1203{
1205 BOOLEAN is_qring=FALSE;
1206 const char *id = name->name;
1207
1208 sy->Init();
1209 if ((name->name==NULL)||(isdigit(name->name[0])))
1210 {
1211 WerrorS("object to declare is not a name");
1212 res=TRUE;
1213 }
1214 else
1215 {
1216 if (root==NULL) return TRUE;
1217 if (*root!=IDROOT)
1218 {
1219 if ((currRing==NULL) || (*root!=currRing->idroot))
1220 {
1221 Werror("can not define `%s` in other package",name->name);
1222 return TRUE;
1223 }
1224 }
1225 if (t==QRING_CMD)
1226 {
1227 t=RING_CMD; // qring is always RING_CMD
1228 is_qring=TRUE;
1229 }
1230
1231 if (TEST_V_ALLWARN
1232 && (name->rtyp!=0)
1233 && (name->rtyp!=IDHDL)
1235 {
1236 Warn("`%s` is %s in %s:%d:%s",name->name,Tok2Cmdname(name->rtyp),
1238 }
1239 {
1240 sy->data = (char *)enterid(id,lev,t,root,init_b);
1241 }
1242 if (sy->data!=NULL)
1243 {
1244 sy->rtyp=IDHDL;
1245 currid=sy->name=IDID((idhdl)sy->data);
1246 if (is_qring)
1247 {
1249 }
1250 // name->name=NULL; /* used in enterid */
1251 //sy->e = NULL;
1252 if (name->next!=NULL)
1253 {
1255 res=iiDeclCommand(sy->next,name->next,lev,t,root, isring);
1256 }
1257 }
1258 else res=TRUE;
1259 }
1260 name->CleanUp();
1261 return res;
1262}
1263
1265{
1266 attr at=NULL;
1267 if (iiCurrProc!=NULL)
1268 at=iiCurrProc->attribute->get("default_arg");
1269 if (at==NULL)
1270 return FALSE;
1271 sleftv tmp;
1272 tmp.Init();
1273 tmp.rtyp=at->atyp;
1274 tmp.data=at->CopyA();
1275 return iiAssign(p,&tmp);
1276}
1278{
1279 // must be inside a proc, as we simultae an proc_end at the end
1280 if (myynest==0)
1281 {
1282 WerrorS("branchTo can only occur in a proc");
1283 return TRUE;
1284 }
1285 // <string1...stringN>,<proc>
1286 // known: args!=NULL, l>=1
1287 int l=args->listLength();
1288 int ll=0;
1290 if (ll!=(l-1)) return FALSE;
1291 leftv h=args;
1292 // set up the table for type test:
1293 short *t=(short*)omAlloc(l*sizeof(short));
1294 t[0]=l-1;
1295 int b;
1296 int i;
1297 for(i=1;i<l;i++,h=h->next)
1298 {
1299 if (h->Typ()!=STRING_CMD)
1300 {
1301 omFree(t);
1302 Werror("arg %d is not a string",i);
1303 return TRUE;
1304 }
1305 int tt;
1306 b=IsCmd((char *)h->Data(),tt);
1307 if(b) t[i]=tt;
1308 else
1309 {
1310 omFree(t);
1311 Werror("arg %d is not a type name",i);
1312 return TRUE;
1313 }
1314 }
1315 if (h->Typ()!=PROC_CMD)
1316 {
1317 omFree(t);
1318 Werror("last(%d.) arg.(%s) is not a proc(but %s(%d)), nesting=%d",
1319 i,h->name,Tok2Cmdname(h->Typ()),h->Typ(),myynest);
1320 return TRUE;
1321 }
1323 omFree(t);
1324 if (b && (h->rtyp==IDHDL) && (h->e==NULL))
1325 {
1326 // get the proc:
1327 iiCurrProc=(idhdl)h->data;
1328 idhdl currProc=iiCurrProc; /*iiCurrProc may be changed after yyparse*/
1329 procinfo * pi=IDPROC(currProc);
1330 // already loaded ?
1331 if( pi->data.s.body==NULL )
1332 {
1334 if (pi->data.s.body==NULL) return TRUE;
1335 }
1336 // set currPackHdl/currPack
1337 if ((pi->pack!=NULL)&&(currPack!=pi->pack))
1338 {
1339 currPack=pi->pack;
1342 //Print("set pack=%s\n",IDID(currPackHdl));
1343 }
1344 // see iiAllStart:
1345 BITSET save1=si_opt_1;
1346 BITSET save2=si_opt_2;
1347 newBuffer( omStrDup(pi->data.s.body), BT_proc,
1348 pi, pi->data.s.body_lineno-(iiCurrArgs==NULL) );
1349 BOOLEAN err=yyparse();
1351 si_opt_1=save1;
1352 si_opt_2=save2;
1353 // now save the return-expr.
1355 memcpy(&sLastPrinted,&iiRETURNEXPR,sizeof(sleftv));
1357 // warning about args.:
1358 if (iiCurrArgs!=NULL)
1359 {
1360 if (err==0) Warn("too many arguments for %s",IDID(currProc));
1364 }
1365 // similate proc_end:
1366 // - leave input
1367 void myychangebuffer();
1369 // - set the current buffer to its end (this is a pointer in a buffer,
1370 // not a file ptr) "branchTo" is only valid in proc)
1372 // - kill local vars
1374 // - return
1375 newBuffer(omStrDup("\n;return(_);\n"),BT_execute);
1376 return (err!=0);
1377 }
1378 return FALSE;
1379}
1381{
1382 if (iiCurrArgs==NULL)
1383 {
1384 if (strcmp(p->name,"#")==0)
1385 return iiDefaultParameter(p);
1386 Werror("not enough arguments for proc %s",VoiceName());
1387 p->CleanUp();
1388 return TRUE;
1389 }
1391 leftv rest=h->next; /*iiCurrArgs is not NULL here*/
1392 BOOLEAN is_default_list=FALSE;
1393 if (strcmp(p->name,"#")==0)
1394 {
1395 is_default_list=TRUE;
1396 rest=NULL;
1397 }
1398 else
1399 {
1400 h->next=NULL;
1401 }
1403 if (is_default_list)
1404 {
1406 }
1407 else
1408 {
1409 iiCurrArgs=rest;
1410 }
1411 h->CleanUp();
1413 return res;
1414}
1415
1416static BOOLEAN iiInternalExport (leftv v, int toLev)
1417{
1418 idhdl h=(idhdl)v->data;
1419 //Print("iiInternalExport('%s',%d)%s\n", v->name, toLev,"");
1420 if (IDLEV(h)==0)
1421 {
1422 if ((myynest>0) && (BVERBOSE(V_REDEFINE))) Warn("`%s` is already global",IDID(h));
1423 }
1424 else
1425 {
1426 h=IDROOT->get(v->name,toLev);
1427 idhdl *root=&IDROOT;
1428 if ((h==NULL)&&(currRing!=NULL))
1429 {
1430 h=currRing->idroot->get(v->name,toLev);
1431 root=&currRing->idroot;
1432 }
1433 BOOLEAN keepring=FALSE;
1434 if ((h!=NULL)&&(IDLEV(h)==toLev))
1435 {
1436 if (IDTYP(h)==v->Typ())
1437 {
1438 if ((IDTYP(h)==RING_CMD)
1439 && (v->Data()==IDDATA(h)))
1440 {
1442 keepring=TRUE;
1443 IDLEV(h)=toLev;
1444 //WarnS("keepring");
1445 return FALSE;
1446 }
1447 if (BVERBOSE(V_REDEFINE))
1448 {
1449 Warn("redefining %s (%s)",IDID(h),my_yylinebuf);
1450 }
1451 if (iiLocalRing[0]==IDRING(h) && (!keepring)) iiLocalRing[0]=NULL;
1452 killhdl2(h,root,currRing);
1453 }
1454 else
1455 {
1456 return TRUE;
1457 }
1458 }
1459 h=(idhdl)v->data;
1460 IDLEV(h)=toLev;
1461 if (keepring) rDecRefCnt(IDRING(h));
1463 //Print("export %s\n",IDID(h));
1464 }
1465 return FALSE;
1466}
1467
1469{
1470 idhdl h=(idhdl)v->data;
1471 if(h==NULL)
1472 {
1473 Warn("'%s': no such identifier\n", v->name);
1474 return FALSE;
1475 }
1476 package frompack=v->req_packhdl;
1477 if (frompack==NULL) frompack=currPack;
1478 if ((RingDependend(IDTYP(h)))
1479 || ((IDTYP(h)==LIST_CMD)
1480 && (lRingDependend(IDLIST(h)))
1481 )
1482 )
1483 {
1484 //Print("// ==> Ringdependent set nesting to 0\n");
1485 return (iiInternalExport(v, toLev));
1486 }
1487 else
1488 {
1489 IDLEV(h)=toLev;
1490 v->req_packhdl=rootpack;
1491 if (h==frompack->idroot)
1492 {
1493 frompack->idroot=h->next;
1494 }
1495 else
1496 {
1497 idhdl hh=frompack->idroot;
1498 while ((hh!=NULL) && (hh->next!=h))
1499 hh=hh->next;
1500 if ((hh!=NULL) && (hh->next==h))
1501 hh->next=h->next;
1502 else
1503 {
1504 Werror("`%s` not found",v->Name());
1505 return TRUE;
1506 }
1507 }
1508 h->next=rootpack->idroot;
1509 rootpack->idroot=h;
1510 }
1511 return FALSE;
1512}
1513
1515{
1516 BOOLEAN nok=FALSE;
1517 leftv r=v;
1518 while (v!=NULL)
1519 {
1520 if ((v->name==NULL)||(v->rtyp==0)||(v->e!=NULL))
1521 {
1522 Werror("cannot export:%s of internal type %d",v->name,v->rtyp);
1523 nok=TRUE;
1524 }
1525 else
1526 {
1527 if(iiInternalExport(v, toLev))
1528 {
1529 r->CleanUp();
1530 return TRUE;
1531 }
1532 }
1533 v=v->next;
1534 }
1535 r->CleanUp();
1536 return nok;
1537}
1538
1539/*assume root!=idroot*/
1540BOOLEAN iiExport (leftv v, int toLev, package pack)
1541{
1542// if ((pack==basePack)&&(pack!=currPack))
1543// { Warn("'exportto' to Top is depreciated in >>%s<<",my_yylinebuf);}
1544 BOOLEAN nok=FALSE;
1545 leftv rv=v;
1546 while (v!=NULL)
1547 {
1548 if ((v->name==NULL)||(v->rtyp==0)||(v->e!=NULL)
1549 )
1550 {
1551 Werror("cannot export:%s of internal type %d",v->name,v->rtyp);
1552 nok=TRUE;
1553 }
1554 else
1555 {
1556 idhdl old=pack->idroot->get( v->name,toLev);
1557 if (old!=NULL)
1558 {
1559 if ((pack==currPack) && (old==(idhdl)v->data))
1560 {
1561 if (BVERBOSE(V_REDEFINE)) Warn("`%s` is already global",IDID(old));
1562 break;
1563 }
1564 else if (IDTYP(old)==v->Typ())
1565 {
1566 if (BVERBOSE(V_REDEFINE))
1567 {
1568 Warn("redefining %s (%s)",IDID(old),my_yylinebuf);
1569 }
1570 v->name=omStrDup(v->name);
1571 killhdl2(old,&(pack->idroot),currRing);
1572 }
1573 else
1574 {
1575 rv->CleanUp();
1576 return TRUE;
1577 }
1578 }
1579 //Print("iiExport: pack=%s\n",IDID(root));
1580 if(iiInternalExport(v, toLev, pack))
1581 {
1582 rv->CleanUp();
1583 return TRUE;
1584 }
1585 }
1586 v=v->next;
1587 }
1588 rv->CleanUp();
1589 return nok;
1590}
1591
1593{
1594 if (currRing==NULL)
1595 {
1596 #ifdef SIQ
1597 if (siq<=0)
1598 {
1599 #endif
1600 if (RingDependend(i))
1601 {
1602 WerrorS("no ring active (9)");
1603 return TRUE;
1604 }
1605 #ifdef SIQ
1606 }
1607 #endif
1608 }
1609 return FALSE;
1610}
1611
1612poly iiHighCorner(ideal I, int ak)
1613{
1614 int i;
1615 if(!idIsZeroDim(I)) return NULL; // not zero-dim.
1616 poly po=NULL;
1618 {
1619 scComputeHC(I,currRing->qideal,ak,po);
1620 if (po!=NULL)
1621 {
1622 pGetCoeff(po)=nInit(1);
1623 for (i=rVar(currRing); i>0; i--)
1624 {
1625 if (pGetExp(po, i) > 0) pDecrExp(po,i);
1626 }
1627 pSetComp(po,ak);
1628 pSetm(po);
1629 }
1630 }
1631 else
1632 po=pOne();
1633 return po;
1634}
1635
1637{
1638 if (p!=basePack)
1639 {
1640 idhdl t=basePack->idroot;
1641 while ((t!=NULL) && (IDTYP(t)!=PACKAGE_CMD) && (IDPACKAGE(t)!=p)) t=t->next;
1642 if (t==NULL)
1643 {
1644 WarnS("package not found\n");
1645 p=basePack;
1646 }
1647 }
1648}
1649
1650idhdl rDefault(const char *s)
1651{
1652 idhdl tmp=NULL;
1653
1654 if (s!=NULL) tmp = enterid(s, myynest, RING_CMD, &IDROOT);
1655 if (tmp==NULL) return NULL;
1656
1657// if ((currRing->ppNoether)!=NULL) pDelete(&(currRing->ppNoether));
1659 {
1661 }
1662
1663 ring r = IDRING(tmp) = (ring) omAlloc0Bin(sip_sring_bin);
1664
1665 #ifndef TEST_ZN_AS_ZP
1666 r->cf = nInitChar(n_Zp, (void*)32003); // r->cf->ch = 32003;
1667 #else
1668 mpz_t modBase;
1669 mpz_init_set_ui(modBase, (long)32003);
1670 ZnmInfo info;
1671 info.base= modBase;
1672 info.exp= 1;
1673 r->cf=nInitChar(n_Zn,(void*) &info);
1674 r->cf->is_field=1;
1675 r->cf->is_domain=1;
1676 r->cf->has_simple_Inverse=1;
1677 #endif
1678 r->N = 3;
1679 /*r->P = 0; Alloc0 in idhdl::set, ipid.cc*/
1680 /*names*/
1681 r->names = (char **) omAlloc0(3 * sizeof(char_ptr));
1682 r->names[0] = omStrDup("x");
1683 r->names[1] = omStrDup("y");
1684 r->names[2] = omStrDup("z");
1685 /*weights: entries for 3 blocks: NULL*/
1686 r->wvhdl = (int **)omAlloc0(3 * sizeof(int_ptr));
1687 /*order: dp,C,0*/
1688 r->order = (rRingOrder_t *) omAlloc(3 * sizeof(rRingOrder_t *));
1689 r->block0 = (int *)omAlloc0(3 * sizeof(int *));
1690 r->block1 = (int *)omAlloc0(3 * sizeof(int *));
1691 /* ringorder dp for the first block: var 1..3 */
1692 r->order[0] = ringorder_dp;
1693 r->block0[0] = 1;
1694 r->block1[0] = 3;
1695 /* ringorder C for the second block: no vars */
1696 r->order[1] = ringorder_C;
1697 /* the last block: everything is 0 */
1698 r->order[2] = (rRingOrder_t)0;
1699
1700 /* complete ring intializations */
1701 rComplete(r);
1702 rSetHdl(tmp);
1703 return currRingHdl;
1704}
1705
1706static idhdl rSimpleFindHdl(const ring r, const idhdl root, const idhdl n);
1708{
1709 if ((r==NULL)||(r->VarOffset==NULL))
1710 return NULL;
1712 if (h!=NULL) return h;
1713 if (IDROOT!=basePack->idroot) h=rSimpleFindHdl(r,basePack->idroot,n);
1714 if (h!=NULL) return h;
1716 while(p!=NULL)
1717 {
1718 if ((p->cPack!=basePack)
1719 && (p->cPack!=currPack))
1720 h=rSimpleFindHdl(r,p->cPack->idroot,n);
1721 if (h!=NULL) return h;
1722 p=p->next;
1723 }
1724 idhdl tmp=basePack->idroot;
1725 while (tmp!=NULL)
1726 {
1727 if (IDTYP(tmp)==PACKAGE_CMD)
1728 h=rSimpleFindHdl(r,IDPACKAGE(tmp)->idroot,n);
1729 if (h!=NULL) return h;
1730 tmp=IDNEXT(tmp);
1731 }
1732 return NULL;
1733}
1734
1735void rDecomposeCF(leftv h,const ring r,const ring R)
1736{
1738 L->Init(4);
1739 h->rtyp=LIST_CMD;
1740 h->data=(void *)L;
1741 // 0: char/ cf - ring
1742 // 1: list (var)
1743 // 2: list (ord)
1744 // 3: qideal
1745 // ----------------------------------------
1746 // 0: char/ cf - ring
1747 L->m[0].rtyp=INT_CMD;
1748 L->m[0].data=(void *)(long)r->cf->ch;
1749 // ----------------------------------------
1750 // 1: list (var)
1752 LL->Init(r->N);
1753 int i;
1754 for(i=0; i<r->N; i++)
1755 {
1756 LL->m[i].rtyp=STRING_CMD;
1757 LL->m[i].data=(void *)omStrDup(r->names[i]);
1758 }
1759 L->m[1].rtyp=LIST_CMD;
1760 L->m[1].data=(void *)LL;
1761 // ----------------------------------------
1762 // 2: list (ord)
1764 i=rBlocks(r)-1;
1765 LL->Init(i);
1766 i--;
1767 lists LLL;
1768 for(; i>=0; i--)
1769 {
1770 intvec *iv;
1771 int j;
1772 LL->m[i].rtyp=LIST_CMD;
1774 LLL->Init(2);
1775 LLL->m[0].rtyp=STRING_CMD;
1776 LLL->m[0].data=(void *)omStrDup(rSimpleOrdStr(r->order[i]));
1777 if (r->block1[i]-r->block0[i] >=0 )
1778 {
1779 j=r->block1[i]-r->block0[i];
1780 if(r->order[i]==ringorder_M) j=(j+1)*(j+1)-1;
1781 iv=new intvec(j+1);
1782 if ((r->wvhdl!=NULL) && (r->wvhdl[i]!=NULL))
1783 {
1784 for(;j>=0; j--) (*iv)[j]=r->wvhdl[i][j];
1785 }
1786 else switch (r->order[i])
1787 {
1788 case ringorder_dp:
1789 case ringorder_Dp:
1790 case ringorder_ds:
1791 case ringorder_Ds:
1792 case ringorder_lp:
1793 case ringorder_rp:
1794 case ringorder_ls:
1795 for(;j>=0; j--) (*iv)[j]=1;
1796 break;
1797 default: /* do nothing */;
1798 }
1799 }
1800 else
1801 {
1802 iv=new intvec(1);
1803 }
1804 LLL->m[1].rtyp=INTVEC_CMD;
1805 LLL->m[1].data=(void *)iv;
1806 LL->m[i].data=(void *)LLL;
1807 }
1808 L->m[2].rtyp=LIST_CMD;
1809 L->m[2].data=(void *)LL;
1810 // ----------------------------------------
1811 // 3: qideal
1812 L->m[3].rtyp=IDEAL_CMD;
1813 if (nCoeff_is_transExt(R->cf))
1814 L->m[3].data=(void *)idInit(1,1);
1815 else
1816 {
1817 ideal q=idInit(IDELEMS(r->qideal));
1818 q->m[0]=p_Init(R);
1819 pSetCoeff0(q->m[0],(number)(r->qideal->m[0]));
1820 L->m[3].data=(void *)q;
1821// I->m[0] = pNSet(R->minpoly);
1822 }
1823 // ----------------------------------------
1824}
1825static void rDecomposeC_41(leftv h,const coeffs C)
1826/* field is R or C */
1827{
1829 if (nCoeff_is_long_C(C)) L->Init(3);
1830 else L->Init(2);
1831 h->rtyp=LIST_CMD;
1832 h->data=(void *)L;
1833 // 0: char/ cf - ring
1834 // 1: list (var)
1835 // 2: list (ord)
1836 // ----------------------------------------
1837 // 0: char/ cf - ring
1838 L->m[0].rtyp=INT_CMD;
1839 L->m[0].data=(void *)0;
1840 // ----------------------------------------
1841 // 1:
1843 LL->Init(2);
1844 LL->m[0].rtyp=INT_CMD;
1845 LL->m[0].data=(void *)(long)si_max(C->float_len,SHORT_REAL_LENGTH/2);
1846 LL->m[1].rtyp=INT_CMD;
1847 LL->m[1].data=(void *)(long)si_max(C->float_len2,SHORT_REAL_LENGTH);
1848 L->m[1].rtyp=LIST_CMD;
1849 L->m[1].data=(void *)LL;
1850 // ----------------------------------------
1851 // 2: list (par)
1852 if (nCoeff_is_long_C(C))
1853 {
1854 L->m[2].rtyp=STRING_CMD;
1855 L->m[2].data=(void *)omStrDup(*n_ParameterNames(C));
1856 }
1857 // ----------------------------------------
1858}
1859static void rDecomposeC(leftv h,const ring R)
1860/* field is R or C */
1861{
1863 if (rField_is_long_C(R)) L->Init(3);
1864 else L->Init(2);
1865 h->rtyp=LIST_CMD;
1866 h->data=(void *)L;
1867 // 0: char/ cf - ring
1868 // 1: list (var)
1869 // 2: list (ord)
1870 // ----------------------------------------
1871 // 0: char/ cf - ring
1872 L->m[0].rtyp=INT_CMD;
1873 L->m[0].data=(void *)0;
1874 // ----------------------------------------
1875 // 1:
1877 LL->Init(2);
1878 LL->m[0].rtyp=INT_CMD;
1879 LL->m[0].data=(void *)(long)si_max(R->cf->float_len,SHORT_REAL_LENGTH/2);
1880 LL->m[1].rtyp=INT_CMD;
1881 LL->m[1].data=(void *)(long)si_max(R->cf->float_len2,SHORT_REAL_LENGTH);
1882 L->m[1].rtyp=LIST_CMD;
1883 L->m[1].data=(void *)LL;
1884 // ----------------------------------------
1885 // 2: list (par)
1886 if (rField_is_long_C(R))
1887 {
1888 L->m[2].rtyp=STRING_CMD;
1889 L->m[2].data=(void *)omStrDup(*rParameter(R));
1890 }
1891 // ----------------------------------------
1892}
1893
1894#ifdef HAVE_RINGS
1896/* field is R or C */
1897{
1899 if (nCoeff_is_Ring(C)) L->Init(1);
1900 else L->Init(2);
1901 h->rtyp=LIST_CMD;
1902 h->data=(void *)L;
1903 // 0: char/ cf - ring
1904 // 1: list (module)
1905 // ----------------------------------------
1906 // 0: char/ cf - ring
1907 L->m[0].rtyp=STRING_CMD;
1908 L->m[0].data=(void *)omStrDup("integer");
1909 // ----------------------------------------
1910 // 1: modulo
1911 if (nCoeff_is_Z(C)) return;
1913 LL->Init(2);
1914 LL->m[0].rtyp=BIGINT_CMD;
1915 LL->m[0].data=n_InitMPZ( C->modBase, coeffs_BIGINT);
1916 LL->m[1].rtyp=INT_CMD;
1917 LL->m[1].data=(void *) C->modExponent;
1918 L->m[1].rtyp=LIST_CMD;
1919 L->m[1].data=(void *)LL;
1920}
1921#endif
1922
1923void rDecomposeRing(leftv h,const ring R)
1924/* field is R or C */
1925{
1926#ifdef HAVE_RINGS
1928 if (rField_is_Z(R)) L->Init(1);
1929 else L->Init(2);
1930 h->rtyp=LIST_CMD;
1931 h->data=(void *)L;
1932 // 0: char/ cf - ring
1933 // 1: list (module)
1934 // ----------------------------------------
1935 // 0: char/ cf - ring
1936 L->m[0].rtyp=STRING_CMD;
1937 L->m[0].data=(void *)omStrDup("integer");
1938 // ----------------------------------------
1939 // 1: module
1940 if (rField_is_Z(R)) return;
1942 LL->Init(2);
1943 LL->m[0].rtyp=BIGINT_CMD;
1944 LL->m[0].data=n_InitMPZ( R->cf->modBase, coeffs_BIGINT);
1945 LL->m[1].rtyp=INT_CMD;
1946 LL->m[1].data=(void *) R->cf->modExponent;
1947 L->m[1].rtyp=LIST_CMD;
1948 L->m[1].data=(void *)LL;
1949#else
1950 WerrorS("rDecomposeRing");
1951#endif
1952}
1953
1954
1956{
1957 assume( C != NULL );
1958
1959 // sanity check: require currRing==r for rings with polynomial data
1960 if ( nCoeff_is_algExt(C) && (C != currRing->cf))
1961 {
1962 WerrorS("ring with polynomial data must be the base ring or compatible");
1963 return TRUE;
1964 }
1965 if (nCoeff_is_numeric(C))
1966 {
1968 }
1969#ifdef HAVE_RINGS
1970 else if (nCoeff_is_Ring(C))
1971 {
1973 }
1974#endif
1975 else if ( C->extRing!=NULL )// nCoeff_is_algExt(r->cf))
1976 {
1977 rDecomposeCF(res, C->extRing, currRing);
1978 }
1979 else if(nCoeff_is_GF(C))
1980 {
1982 Lc->Init(4);
1983 // char:
1984 Lc->m[0].rtyp=INT_CMD;
1985 Lc->m[0].data=(void*)(long)C->m_nfCharQ;
1986 // var:
1988 Lv->Init(1);
1989 Lv->m[0].rtyp=STRING_CMD;
1990 Lv->m[0].data=(void *)omStrDup(*n_ParameterNames(C));
1991 Lc->m[1].rtyp=LIST_CMD;
1992 Lc->m[1].data=(void*)Lv;
1993 // ord:
1995 Lo->Init(1);
1997 Loo->Init(2);
1998 Loo->m[0].rtyp=STRING_CMD;
1999 Loo->m[0].data=(void *)omStrDup(rSimpleOrdStr(ringorder_lp));
2000
2001 intvec *iv=new intvec(1); (*iv)[0]=1;
2002 Loo->m[1].rtyp=INTVEC_CMD;
2003 Loo->m[1].data=(void *)iv;
2004
2005 Lo->m[0].rtyp=LIST_CMD;
2006 Lo->m[0].data=(void*)Loo;
2007
2008 Lc->m[2].rtyp=LIST_CMD;
2009 Lc->m[2].data=(void*)Lo;
2010 // q-ideal:
2011 Lc->m[3].rtyp=IDEAL_CMD;
2012 Lc->m[3].data=(void *)idInit(1,1);
2013 // ----------------------
2014 res->rtyp=LIST_CMD;
2015 res->data=(void*)Lc;
2016 }
2017 else
2018 {
2019 res->rtyp=INT_CMD;
2020 res->data=(void *)(long)C->ch;
2021 }
2022 // ----------------------------------------
2023 return FALSE;
2024}
2025
2027{
2028 assume( r != NULL );
2029 const coeffs C = r->cf;
2030 assume( C != NULL );
2031
2032 // sanity check: require currRing==r for rings with polynomial data
2033 if ( (r!=currRing) && (
2034 (r->qideal != NULL)
2035#ifdef HAVE_PLURAL
2036 || (rIsPluralRing(r))
2037#endif
2038 )
2039 )
2040 {
2041 WerrorS("ring with polynomial data must be the base ring or compatible");
2042 return NULL;
2043 }
2044 // 0: char/ cf - ring
2045 // 1: list (var)
2046 // 2: list (ord)
2047 // 3: qideal
2048 // possibly:
2049 // 4: C
2050 // 5: D
2052 if (rIsPluralRing(r))
2053 L->Init(6);
2054 else
2055 L->Init(4);
2056 // ----------------------------------------
2057 // 0: char/ cf - ring
2058 L->m[0].rtyp=CRING_CMD;
2059 L->m[0].data=(char*)r->cf; r->cf->ref++;
2060 // ----------------------------------------
2061 // 1: list (var)
2063 LL->Init(r->N);
2064 int i;
2065 for(i=0; i<r->N; i++)
2066 {
2067 LL->m[i].rtyp=STRING_CMD;
2068 LL->m[i].data=(void *)omStrDup(r->names[i]);
2069 }
2070 L->m[1].rtyp=LIST_CMD;
2071 L->m[1].data=(void *)LL;
2072 // ----------------------------------------
2073 // 2: list (ord)
2075 i=rBlocks(r)-1;
2076 LL->Init(i);
2077 i--;
2078 lists LLL;
2079 for(; i>=0; i--)
2080 {
2081 intvec *iv;
2082 int j;
2083 LL->m[i].rtyp=LIST_CMD;
2085 LLL->Init(2);
2086 LLL->m[0].rtyp=STRING_CMD;
2087 LLL->m[0].data=(void *)omStrDup(rSimpleOrdStr(r->order[i]));
2088
2089 if(r->order[i] == ringorder_IS) // || r->order[i] == ringorder_s || r->order[i] == ringorder_S)
2090 {
2091 assume( r->block0[i] == r->block1[i] );
2092 const int s = r->block0[i];
2093 assume( -2 < s && s < 2);
2094
2095 iv=new intvec(1);
2096 (*iv)[0] = s;
2097 }
2098 else if (r->block1[i]-r->block0[i] >=0 )
2099 {
2100 int bl=j=r->block1[i]-r->block0[i];
2101 if (r->order[i]==ringorder_M)
2102 {
2103 j=(j+1)*(j+1)-1;
2104 bl=j+1;
2105 }
2106 else if (r->order[i]==ringorder_am)
2107 {
2108 j+=r->wvhdl[i][bl+1];
2109 }
2110 iv=new intvec(j+1);
2111 if ((r->wvhdl!=NULL) && (r->wvhdl[i]!=NULL))
2112 {
2113 for(;j>=0; j--) (*iv)[j]=r->wvhdl[i][j+(j>bl)];
2114 }
2115 else switch (r->order[i])
2116 {
2117 case ringorder_dp:
2118 case ringorder_Dp:
2119 case ringorder_ds:
2120 case ringorder_Ds:
2121 case ringorder_lp:
2122 for(;j>=0; j--) (*iv)[j]=1;
2123 break;
2124 default: /* do nothing */;
2125 }
2126 }
2127 else
2128 {
2129 iv=new intvec(1);
2130 }
2131 LLL->m[1].rtyp=INTVEC_CMD;
2132 LLL->m[1].data=(void *)iv;
2133 LL->m[i].data=(void *)LLL;
2134 }
2135 L->m[2].rtyp=LIST_CMD;
2136 L->m[2].data=(void *)LL;
2137 // ----------------------------------------
2138 // 3: qideal
2139 L->m[3].rtyp=IDEAL_CMD;
2140 if (r->qideal==NULL)
2141 L->m[3].data=(void *)idInit(1,1);
2142 else
2143 L->m[3].data=(void *)idCopy(r->qideal);
2144 // ----------------------------------------
2145#ifdef HAVE_PLURAL // NC! in rDecompose
2146 if (rIsPluralRing(r))
2147 {
2148 L->m[4].rtyp=MATRIX_CMD;
2149 L->m[4].data=(void *)mp_Copy(r->GetNC()->C, r, r);
2150 L->m[5].rtyp=MATRIX_CMD;
2151 L->m[5].data=(void *)mp_Copy(r->GetNC()->D, r, r);
2152 }
2153#endif
2154 return L;
2155}
2156
2157lists rDecompose(const ring r)
2158{
2159 assume( r != NULL );
2160 const coeffs C = r->cf;
2161 assume( C != NULL );
2162
2163 // sanity check: require currRing==r for rings with polynomial data
2164 if ( (r!=currRing) && (
2165 (nCoeff_is_algExt(C) && (C != currRing->cf))
2166 || (r->qideal != NULL)
2167#ifdef HAVE_PLURAL
2168 || (rIsPluralRing(r))
2169#endif
2170 )
2171 )
2172 {
2173 WerrorS("ring with polynomial data must be the base ring or compatible");
2174 return NULL;
2175 }
2176 // 0: char/ cf - ring
2177 // 1: list (var)
2178 // 2: list (ord)
2179 // 3: qideal
2180 // possibly:
2181 // 4: C
2182 // 5: D
2184 if (rIsPluralRing(r))
2185 L->Init(6);
2186 else
2187 L->Init(4);
2188 // ----------------------------------------
2189 // 0: char/ cf - ring
2190 if (rField_is_numeric(r))
2191 {
2192 rDecomposeC(&(L->m[0]),r);
2193 }
2194 else if (rField_is_Ring(r))
2195 {
2196 rDecomposeRing(&(L->m[0]),r);
2197 }
2198 else if ( r->cf->extRing!=NULL )// nCoeff_is_algExt(r->cf))
2199 {
2200 rDecomposeCF(&(L->m[0]), r->cf->extRing, r);
2201 }
2202 else if(rField_is_GF(r))
2203 {
2205 Lc->Init(4);
2206 // char:
2207 Lc->m[0].rtyp=INT_CMD;
2208 Lc->m[0].data=(void*)(long)r->cf->m_nfCharQ;
2209 // var:
2211 Lv->Init(1);
2212 Lv->m[0].rtyp=STRING_CMD;
2213 Lv->m[0].data=(void *)omStrDup(*rParameter(r));
2214 Lc->m[1].rtyp=LIST_CMD;
2215 Lc->m[1].data=(void*)Lv;
2216 // ord:
2218 Lo->Init(1);
2220 Loo->Init(2);
2221 Loo->m[0].rtyp=STRING_CMD;
2222 Loo->m[0].data=(void *)omStrDup(rSimpleOrdStr(ringorder_lp));
2223
2224 intvec *iv=new intvec(1); (*iv)[0]=1;
2225 Loo->m[1].rtyp=INTVEC_CMD;
2226 Loo->m[1].data=(void *)iv;
2227
2228 Lo->m[0].rtyp=LIST_CMD;
2229 Lo->m[0].data=(void*)Loo;
2230
2231 Lc->m[2].rtyp=LIST_CMD;
2232 Lc->m[2].data=(void*)Lo;
2233 // q-ideal:
2234 Lc->m[3].rtyp=IDEAL_CMD;
2235 Lc->m[3].data=(void *)idInit(1,1);
2236 // ----------------------
2237 L->m[0].rtyp=LIST_CMD;
2238 L->m[0].data=(void*)Lc;
2239 }
2240 else
2241 {
2242 L->m[0].rtyp=INT_CMD;
2243 L->m[0].data=(void *)(long)r->cf->ch;
2244 }
2245 // ----------------------------------------
2246 // 1: list (var)
2248 LL->Init(r->N);
2249 int i;
2250 for(i=0; i<r->N; i++)
2251 {
2252 LL->m[i].rtyp=STRING_CMD;
2253 LL->m[i].data=(void *)omStrDup(r->names[i]);
2254 }
2255 L->m[1].rtyp=LIST_CMD;
2256 L->m[1].data=(void *)LL;
2257 // ----------------------------------------
2258 // 2: list (ord)
2260 i=rBlocks(r)-1;
2261 LL->Init(i);
2262 i--;
2263 lists LLL;
2264 for(; i>=0; i--)
2265 {
2266 intvec *iv;
2267 int j;
2268 LL->m[i].rtyp=LIST_CMD;
2270 LLL->Init(2);
2271 LLL->m[0].rtyp=STRING_CMD;
2272 LLL->m[0].data=(void *)omStrDup(rSimpleOrdStr(r->order[i]));
2273
2274 if((r->order[i] == ringorder_IS)
2275 || (r->order[i] == ringorder_s)) //|| r->order[i] == ringorder_S)
2276 {
2277 assume( r->block0[i] == r->block1[i] );
2278 const int s = r->block0[i];
2279 assume( (-2 < s && s < 2)||(r->order[i] != ringorder_IS));
2280
2281 iv=new intvec(1);
2282 (*iv)[0] = s;
2283 }
2284 else if (r->block1[i]-r->block0[i] >=0 )
2285 {
2286 int bl=j=r->block1[i]-r->block0[i];
2287 if (r->order[i]==ringorder_M)
2288 {
2289 j=(j+1)*(j+1)-1;
2290 bl=j+1;
2291 }
2292 else if (r->order[i]==ringorder_am)
2293 {
2294 j+=r->wvhdl[i][bl+1];
2295 }
2296 iv=new intvec(j+1);
2297 if ((r->wvhdl!=NULL) && (r->wvhdl[i]!=NULL))
2298 {
2299 for(;j>=0; j--) (*iv)[j]=r->wvhdl[i][j+(j>bl)];
2300 }
2301 else switch (r->order[i])
2302 {
2303 case ringorder_dp:
2304 case ringorder_Dp:
2305 case ringorder_ds:
2306 case ringorder_Ds:
2307 case ringorder_lp:
2308 case ringorder_ls:
2309 case ringorder_rp:
2310 for(;j>=0; j--) (*iv)[j]=1;
2311 break;
2312 default: /* do nothing */;
2313 }
2314 }
2315 else
2316 {
2317 iv=new intvec(1);
2318 }
2319 LLL->m[1].rtyp=INTVEC_CMD;
2320 LLL->m[1].data=(void *)iv;
2321 LL->m[i].data=(void *)LLL;
2322 }
2323 L->m[2].rtyp=LIST_CMD;
2324 L->m[2].data=(void *)LL;
2325 // ----------------------------------------
2326 // 3: qideal
2327 L->m[3].rtyp=IDEAL_CMD;
2328 if (r->qideal==NULL)
2329 L->m[3].data=(void *)idInit(1,1);
2330 else
2331 L->m[3].data=(void *)idCopy(r->qideal);
2332 // ----------------------------------------
2333#ifdef HAVE_PLURAL // NC! in rDecompose
2334 if (rIsPluralRing(r))
2335 {
2336 L->m[4].rtyp=MATRIX_CMD;
2337 L->m[4].data=(void *)mp_Copy(r->GetNC()->C, r, r);
2338 L->m[5].rtyp=MATRIX_CMD;
2339 L->m[5].data=(void *)mp_Copy(r->GetNC()->D, r, r);
2340 }
2341#endif
2342 return L;
2343}
2344
2345void rComposeC(lists L, ring R)
2346/* field is R or C */
2347{
2348 // ----------------------------------------
2349 // 0: char/ cf - ring
2350 if ((L->m[0].rtyp!=INT_CMD) || (L->m[0].data!=(char *)0))
2351 {
2352 WerrorS("invalid coeff. field description, expecting 0");
2353 return;
2354 }
2355// R->cf->ch=0;
2356 // ----------------------------------------
2357 // 0, (r1,r2) [, "i" ]
2358 if (L->m[1].rtyp!=LIST_CMD)
2359 {
2360 WerrorS("invalid coeff. field description, expecting precision list");
2361 return;
2362 }
2363 lists LL=(lists)L->m[1].data;
2364 if ((LL->nr!=1)
2365 || (LL->m[0].rtyp!=INT_CMD)
2366 || (LL->m[1].rtyp!=INT_CMD))
2367 {
2368 WerrorS("invalid coeff. field description list, expected list(`int`,`int`)");
2369 return;
2370 }
2371 int r1=(int)(long)LL->m[0].data;
2372 int r2=(int)(long)LL->m[1].data;
2373 r1=si_min(r1,32767);
2374 r2=si_min(r2,32767);
2375 LongComplexInfo par; memset(&par, 0, sizeof(par));
2376 par.float_len=r1;
2377 par.float_len2=r2;
2378 if (L->nr==2) // complex
2379 {
2380 if (L->m[2].rtyp!=STRING_CMD)
2381 {
2382 WerrorS("invalid coeff. field description, expecting parameter name");
2383 return;
2384 }
2385 par.par_name=(char*)L->m[2].data;
2386 R->cf = nInitChar(n_long_C, &par);
2387 }
2388 else if ((r1<=SHORT_REAL_LENGTH) && (r2<=SHORT_REAL_LENGTH)) /* && L->nr==1*/
2389 R->cf = nInitChar(n_R, NULL);
2390 else /* && L->nr==1*/
2391 {
2392 R->cf = nInitChar(n_long_R, &par);
2393 }
2394}
2395
2396#ifdef HAVE_RINGS
2397void rComposeRing(lists L, ring R)
2398/* field is R or C */
2399{
2400 // ----------------------------------------
2401 // 0: string: integer
2402 // no further entries --> Z
2403 mpz_t modBase;
2404 unsigned int modExponent = 1;
2405
2406 if (L->nr == 0)
2407 {
2408 mpz_init_set_ui(modBase,0);
2409 modExponent = 1;
2410 }
2411 // ----------------------------------------
2412 // 1:
2413 else
2414 {
2415 if (L->m[1].rtyp!=LIST_CMD) WerrorS("invalid data, expecting list of numbers");
2416 lists LL=(lists)L->m[1].data;
2417 if ((LL->nr >= 0) && LL->m[0].rtyp == BIGINT_CMD)
2418 {
2419 number tmp= (number) LL->m[0].data; // never use CopyD() on list elements
2420 // assume that tmp is integer, not rational
2421 mpz_init(modBase);
2422 n_MPZ (modBase, tmp, coeffs_BIGINT);
2423 }
2424 else if (LL->nr >= 0 && LL->m[0].rtyp == INT_CMD)
2425 {
2426 mpz_init_set_ui(modBase,(unsigned long) LL->m[0].data);
2427 }
2428 else
2429 {
2430 mpz_init_set_ui(modBase,0);
2431 }
2432 if (LL->nr >= 1)
2433 {
2434 modExponent = (unsigned long) LL->m[1].data;
2435 }
2436 else
2437 {
2438 modExponent = 1;
2439 }
2440 }
2441 // ----------------------------------------
2442 if ((mpz_cmp_ui(modBase, 1) == 0) && (mpz_sgn1(modBase) < 0))
2443 {
2444 WerrorS("Wrong ground ring specification (module is 1)");
2445 return;
2446 }
2447 if (modExponent < 1)
2448 {
2449 WerrorS("Wrong ground ring specification (exponent smaller than 1)");
2450 return;
2451 }
2452 // module is 0 ---> integers
2453 if (mpz_sgn1(modBase) == 0)
2454 {
2455 R->cf=nInitChar(n_Z,NULL);
2456 }
2457 // we have an exponent
2458 else if (modExponent > 1)
2459 {
2460 //R->cf->ch = R->cf->modExponent;
2461 if ((mpz_cmp_ui(modBase, 2) == 0) && (modExponent <= 8*sizeof(unsigned long)))
2462 {
2463 /* this branch should be active for modExponent = 2..32 resp. 2..64,
2464 depending on the size of a long on the respective platform */
2465 R->cf=nInitChar(n_Z2m,(void*)(long)modExponent); // Use Z/2^ch
2466 }
2467 else
2468 {
2469 //ringtype 3
2470 ZnmInfo info;
2471 info.base= modBase;
2472 info.exp= modExponent;
2473 R->cf=nInitChar(n_Znm,(void*) &info);
2474 }
2475 }
2476 // just a module m > 1
2477 else
2478 {
2479 //ringtype = 2;
2480 //const int ch = mpz_get_ui(modBase);
2481 ZnmInfo info;
2482 info.base= modBase;
2483 info.exp= modExponent;
2484 R->cf=nInitChar(n_Zn,(void*) &info);
2485 }
2486 mpz_clear(modBase);
2487}
2488#endif
2489
2490static void rRenameVars(ring R)
2491{
2492 int i,j;
2493 BOOLEAN ch;
2494 do
2495 {
2496 ch=0;
2497 for(i=0;i<R->N-1;i++)
2498 {
2499 for(j=i+1;j<R->N;j++)
2500 {
2501 if (strcmp(R->names[i],R->names[j])==0)
2502 {
2503 ch=TRUE;
2504 Warn("name conflict var(%d) and var(%d): `%s`, rename to `@%s`in >>%s<<\nin %s:%d",i+1,j+1,R->names[i],R->names[i],my_yylinebuf,currentVoice->filename,yylineno);
2505 omFree(R->names[j]);
2506 R->names[j]=(char *)omAlloc(2+strlen(R->names[i]));
2507 sprintf(R->names[j],"@%s",R->names[i]);
2508 }
2509 }
2510 }
2511 }
2512 while (ch);
2513 for(i=0;i<rPar(R); i++)
2514 {
2515 for(j=0;j<R->N;j++)
2516 {
2517 if (strcmp(rParameter(R)[i],R->names[j])==0)
2518 {
2519 Warn("name conflict par(%d) and var(%d): `%s`, rename the VARIABLE to `@@(%d)`in >>%s<<\nin %s:%d",i+1,j+1,R->names[j],i+1,my_yylinebuf,currentVoice->filename,yylineno);
2520// omFree(rParameter(R)[i]);
2521// rParameter(R)[i]=(char *)omAlloc(10);
2522// sprintf(rParameter(R)[i],"@@(%d)",i+1);
2523 omFree(R->names[j]);
2524 R->names[j]=(char *)omAlloc(10);
2525 sprintf(R->names[j],"@@(%d)",i+1);
2526 }
2527 }
2528 }
2529}
2530
2531static inline BOOLEAN rComposeVar(const lists L, ring R)
2532{
2533 assume(R!=NULL);
2534 if (L->m[1].Typ()==LIST_CMD)
2535 {
2536 lists v=(lists)L->m[1].Data();
2537 R->N = v->nr+1;
2538 if (R->N<=0)
2539 {
2540 WerrorS("no ring variables");
2541 return TRUE;
2542 }
2543 R->names = (char **)omAlloc0(R->N * sizeof(char_ptr));
2544 int i;
2545 for(i=0;i<R->N;i++)
2546 {
2547 if (v->m[i].Typ()==STRING_CMD)
2548 R->names[i]=omStrDup((char *)v->m[i].Data());
2549 else if (v->m[i].Typ()==POLY_CMD)
2550 {
2551 poly p=(poly)v->m[i].Data();
2552 int nr=pIsPurePower(p);
2553 if (nr>0)
2554 R->names[i]=omStrDup(currRing->names[nr-1]);
2555 else
2556 {
2557 Werror("var name %d must be a string or a ring variable",i+1);
2558 return TRUE;
2559 }
2560 }
2561 else
2562 {
2563 Werror("var name %d must be `string` (not %d)",i+1, v->m[i].Typ());
2564 return TRUE;
2565 }
2566 }
2567 }
2568 else
2569 {
2570 WerrorS("variable must be given as `list`");
2571 return TRUE;
2572 }
2573 return FALSE;
2574}
2575
2576static inline BOOLEAN rComposeOrder(const lists L, const BOOLEAN check_comp, ring R)
2577{
2578 assume(R!=NULL);
2579 long bitmask=0L;
2580 if (L->m[2].Typ()==LIST_CMD)
2581 {
2582 lists v=(lists)L->m[2].Data();
2583 int n= v->nr+2;
2584 int j_in_R,j_in_L;
2585 // do we have an entry "L",... ?: set bitmask
2586 for (int j=0; j < n-1; j++)
2587 {
2588 if (v->m[j].Typ()==LIST_CMD)
2589 {
2590 lists vv=(lists)v->m[j].Data();
2591 if ((vv->nr==1)
2592 &&(vv->m[0].Typ()==STRING_CMD)
2593 &&(strcmp((char*)vv->m[0].Data(),"L")==0))
2594 {
2595 number nn=(number)vv->m[1].Data();
2596 if (vv->m[1].Typ()==BIGINT_CMD)
2597 bitmask=n_Int(nn,coeffs_BIGINT);
2598 else if (vv->m[1].Typ()==INT_CMD)
2599 bitmask=(long)nn;
2600 else
2601 {
2602 Werror("illegal argument for pseudo ordering L: %d",vv->m[1].Typ());
2603 return TRUE;
2604 }
2605 break;
2606 }
2607 }
2608 }
2609 if (bitmask!=0) n--;
2610
2611 // initialize fields of R
2612 R->order=(rRingOrder_t *)omAlloc0((n+1)*sizeof(rRingOrder_t));
2613 R->block0=(int *)omAlloc0((n+1)*sizeof(int));
2614 R->block1=(int *)omAlloc0((n+1)*sizeof(int));
2615 R->wvhdl=(int**)omAlloc0((n+1)*sizeof(int_ptr));
2616 // init order, so that rBlocks works correctly
2617 for (j_in_R= n-2; j_in_R>=0; j_in_R--)
2618 R->order[j_in_R] = ringorder_unspec;
2619 // orderings
2620 for(j_in_R=0,j_in_L=0;j_in_R<n-1;j_in_R++,j_in_L++)
2621 {
2622 // todo: a(..), M
2623 if (v->m[j_in_L].Typ()!=LIST_CMD)
2624 {
2625 WerrorS("ordering must be list of lists");
2626 return TRUE;
2627 }
2628 lists vv=(lists)v->m[j_in_L].Data();
2629 if ((vv->nr==1)
2630 && (vv->m[0].Typ()==STRING_CMD))
2631 {
2632 if (strcmp((char*)vv->m[0].Data(),"L")==0)
2633 {
2634 j_in_R--;
2635 continue;
2636 }
2637 if ((vv->m[1].Typ()!=INTVEC_CMD) && (vv->m[1].Typ()!=INT_CMD)
2638 && (vv->m[1].Typ()!=INTMAT_CMD))
2639 {
2640 PrintS(lString(vv));
2641 Werror("ordering name must be a (string,intvec), not (string,%s)",Tok2Cmdname(vv->m[1].Typ()));
2642 return TRUE;
2643 }
2644 R->order[j_in_R]=rOrderName(omStrDup((char*)vv->m[0].Data())); // assume STRING
2645
2646 if (j_in_R==0) R->block0[0]=1;
2647 else
2648 {
2649 int jj=j_in_R-1;
2650 while((jj>=0)
2651 && ((R->order[jj]== ringorder_a)
2652 || (R->order[jj]== ringorder_aa)
2653 || (R->order[jj]== ringorder_am)
2654 || (R->order[jj]== ringorder_c)
2655 || (R->order[jj]== ringorder_C)
2656 || (R->order[jj]== ringorder_s)
2657 || (R->order[jj]== ringorder_S)
2658 ))
2659 {
2660 //Print("jj=%, skip %s\n",rSimpleOrdStr(R->order[jj]));
2661 jj--;
2662 }
2663 if (jj<0) R->block0[j_in_R]=1;
2664 else R->block0[j_in_R]=R->block1[jj]+1;
2665 }
2666 intvec *iv;
2667 if (vv->m[1].Typ()==INT_CMD)
2668 {
2669 int l=si_max(1,(int)(long)vv->m[1].Data());
2670 iv=new intvec(l);
2671 for(int i=0;i<l;i++) (*iv)[i]=1;
2672 }
2673 else
2674 iv=ivCopy((intvec*)vv->m[1].Data()); //assume INTVEC/INTMAT
2675 int iv_len=iv->length();
2676 if (iv_len==0)
2677 {
2678 Werror("empty intvec for ordering %d (%s)",j_in_R+1,rSimpleOrdStr(R->order[j_in_R]));
2679 return TRUE;
2680 }
2681 if (R->order[j_in_R]==ringorder_M)
2682 {
2683 if (vv->m[1].rtyp==INTMAT_CMD) iv->makeVector();
2684 iv_len=iv->length();
2685 }
2686 if ((R->order[j_in_R]!=ringorder_s)
2687 &&(R->order[j_in_R]!=ringorder_c)
2688 &&(R->order[j_in_R]!=ringorder_C))
2689 {
2690 R->block1[j_in_R]=si_max(R->block0[j_in_R],R->block0[j_in_R]+iv_len-1);
2691 if (R->block1[j_in_R]>R->N)
2692 {
2693 if (R->block0[j_in_R]>R->N)
2694 {
2695 Werror("not enough variables for ordering %d (%s)",j_in_R,rSimpleOrdStr(R->order[j_in_R]));
2696 return TRUE;
2697 }
2698 R->block1[j_in_R]=R->N;
2699 iv_len=R->block1[j_in_R]-R->block0[j_in_R]+1;
2700 }
2701 //Print("block %d from %d to %d\n",j,R->block0[j], R->block1[j]);
2702 }
2703 int i;
2704 switch (R->order[j_in_R])
2705 {
2706 case ringorder_ws:
2707 case ringorder_Ws:
2708 R->OrdSgn=-1; // and continue
2709 case ringorder_aa:
2710 case ringorder_a:
2711 case ringorder_wp:
2712 case ringorder_Wp:
2713 R->wvhdl[j_in_R] =( int *)omAlloc(iv_len*sizeof(int));
2714 for (i=0; i<iv_len;i++)
2715 {
2716 R->wvhdl[j_in_R][i]=(*iv)[i];
2717 }
2718 break;
2719 case ringorder_am:
2720 R->wvhdl[j_in_R] =( int *)omAlloc((iv->length()+1)*sizeof(int));
2721 for (i=0; i<iv_len;i++)
2722 {
2723 R->wvhdl[j_in_R][i]=(*iv)[i];
2724 }
2725 R->wvhdl[j_in_R][i]=iv->length() - iv_len;
2726 //printf("ivlen:%d,iv->len:%d,mod:%d\n",iv_len,iv->length(),R->wvhdl[j][i]);
2727 for (; i<iv->length(); i++)
2728 {
2729 R->wvhdl[j_in_R][i+1]=(*iv)[i];
2730 }
2731 break;
2732 case ringorder_M:
2733 R->wvhdl[j_in_R] =( int *)omAlloc((iv->length())*sizeof(int));
2734 for (i=0; i<iv->length();i++) R->wvhdl[j_in_R][i]=(*iv)[i];
2735 R->block1[j_in_R]=si_max(R->block0[j_in_R],R->block0[j_in_R]+(int)sqrt((double)(iv->length())));
2736 if (R->block1[j_in_R]>R->N)
2737 {
2738 R->block1[j_in_R]=R->N;
2739 }
2740 break;
2741 case ringorder_ls:
2742 case ringorder_ds:
2743 case ringorder_Ds:
2744 case ringorder_rs:
2745 R->OrdSgn=-1;
2746 case ringorder_lp:
2747 case ringorder_dp:
2748 case ringorder_Dp:
2749 case ringorder_rp:
2750 #if 0
2751 for (i=0; i<iv_len;i++)
2752 {
2753 if (((*iv)[i]!=1)&&(iv_len!=1))
2754 {
2755 iv->show(1);
2756 Warn("ignore weight %d for ord %d (%s) at pos %d\n>>%s<<",
2757 (*iv)[i],j_in_R+1,rSimpleOrdStr(R->order[j_in_R]),i+1,my_yylinebuf);
2758 break;
2759 }
2760 }
2761 #endif // break absfact.tst
2762 break;
2763 case ringorder_S:
2764 break;
2765 case ringorder_c:
2766 case ringorder_C:
2767 R->block1[j_in_R]=R->block0[j_in_R]=0;
2768 break;
2769
2770 case ringorder_s:
2771 R->block1[j_in_R]=R->block0[j_in_R]=(*iv)[0];
2772 rSetSyzComp(R->block0[j_in_R],R);
2773 break;
2774
2775 case ringorder_IS:
2776 {
2777 R->block1[j_in_R] = R->block0[j_in_R] = 0;
2778 if( iv->length() > 0 )
2779 {
2780 const int s = (*iv)[0];
2781 assume( -2 < s && s < 2 );
2782 R->block1[j_in_R] = R->block0[j_in_R] = s;
2783 }
2784 break;
2785 }
2786 case 0:
2787 case ringorder_unspec:
2788 break;
2789 case ringorder_L: /* cannot happen */
2790 case ringorder_a64: /*not implemented */
2791 WerrorS("ring order not implemented");
2792 return TRUE;
2793 }
2794 delete iv;
2795 }
2796 else
2797 {
2798 PrintS(lString(vv));
2799 WerrorS("ordering name must be a (string,intvec)");
2800 return TRUE;
2801 }
2802 }
2803 // sanity check
2804 j_in_R=n-2;
2805 if ((R->order[j_in_R]==ringorder_c)
2806 || (R->order[j_in_R]==ringorder_C)
2807 || (R->order[j_in_R]==ringorder_unspec)) j_in_R--;
2808 if (R->block1[j_in_R] != R->N)
2809 {
2810 if (((R->order[j_in_R]==ringorder_dp) ||
2811 (R->order[j_in_R]==ringorder_ds) ||
2812 (R->order[j_in_R]==ringorder_Dp) ||
2813 (R->order[j_in_R]==ringorder_Ds) ||
2814 (R->order[j_in_R]==ringorder_rp) ||
2815 (R->order[j_in_R]==ringorder_rs) ||
2816 (R->order[j_in_R]==ringorder_lp) ||
2817 (R->order[j_in_R]==ringorder_ls))
2818 &&
2819 R->block0[j_in_R] <= R->N)
2820 {
2821 R->block1[j_in_R] = R->N;
2822 }
2823 else
2824 {
2825 Werror("ordering incomplete: size (%d) should be %d",R->block1[j_in_R],R->N);
2826 return TRUE;
2827 }
2828 }
2829 if (R->block0[j_in_R]>R->N)
2830 {
2831 Werror("not enough variables (%d) for ordering block %d, scanned so far:",R->N,j_in_R+1);
2832 for(int ii=0;ii<=j_in_R;ii++)
2833 Werror("ord[%d]: %s from v%d to v%d",ii+1,rSimpleOrdStr(R->order[ii]),R->block0[ii],R->block1[ii]);
2834 return TRUE;
2835 }
2836 if (check_comp)
2837 {
2838 BOOLEAN comp_order=FALSE;
2839 int jj;
2840 for(jj=0;jj<n;jj++)
2841 {
2842 if ((R->order[jj]==ringorder_c) ||
2843 (R->order[jj]==ringorder_C)) { comp_order=TRUE; break; }
2844 }
2845 if (!comp_order)
2846 {
2847 R->order=(rRingOrder_t*)omRealloc0Size(R->order,n*sizeof(rRingOrder_t),(n+1)*sizeof(rRingOrder_t));
2848 R->block0=(int*)omRealloc0Size(R->block0,n*sizeof(int),(n+1)*sizeof(int));
2849 R->block1=(int*)omRealloc0Size(R->block1,n*sizeof(int),(n+1)*sizeof(int));
2850 R->wvhdl=(int**)omRealloc0Size(R->wvhdl,n*sizeof(int_ptr),(n+1)*sizeof(int_ptr));
2851 R->order[n-1]=ringorder_C;
2852 R->block0[n-1]=0;
2853 R->block1[n-1]=0;
2854 R->wvhdl[n-1]=NULL;
2855 n++;
2856 }
2857 }
2858 }
2859 else
2860 {
2861 WerrorS("ordering must be given as `list`");
2862 return TRUE;
2863 }
2864 if (bitmask!=0) { R->bitmask=bitmask; R->wanted_maxExp=bitmask; }
2865 return FALSE;
2866}
2867
2868ring rCompose(const lists L, const BOOLEAN check_comp, const long bitmask,const int isLetterplace)
2869{
2870 if ((L->nr!=3)
2871#ifdef HAVE_PLURAL
2872 &&(L->nr!=5)
2873#endif
2874 )
2875 return NULL;
2876 int is_gf_char=0;
2877 // 0: char/ cf - ring
2878 // 1: list (var)
2879 // 2: list (ord)
2880 // 3: qideal
2881 // possibly:
2882 // 4: C
2883 // 5: D
2884
2885 ring R = (ring) omAlloc0Bin(sip_sring_bin);
2886
2887 // ------------------------------------------------------------------
2888 // 0: char:
2889 if (L->m[0].Typ()==CRING_CMD)
2890 {
2891 R->cf=(coeffs)L->m[0].Data();
2892 R->cf->ref++;
2893 }
2894 else if (L->m[0].Typ()==INT_CMD)
2895 {
2896 int ch = (int)(long)L->m[0].Data();
2897 assume( ch >= 0 );
2898
2899 if (ch == 0) // Q?
2900 R->cf = nInitChar(n_Q, NULL);
2901 else
2902 {
2903 int l = IsPrime(ch); // Zp?
2904 if( l != ch )
2905 {
2906 Warn("%d is invalid characteristic of ground field. %d is used.", ch, l);
2907 ch = l;
2908 }
2909 #ifndef TEST_ZN_AS_ZP
2910 R->cf = nInitChar(n_Zp, (void*)(long)ch);
2911 #else
2912 mpz_t modBase;
2913 mpz_init_set_ui(modBase,(long) ch);
2914 ZnmInfo info;
2915 info.base= modBase;
2916 info.exp= 1;
2917 R->cf=nInitChar(n_Zn,(void*) &info); //exponent is missing
2918 R->cf->is_field=1;
2919 R->cf->is_domain=1;
2920 R->cf->has_simple_Inverse=1;
2921 #endif
2922 }
2923 }
2924 else if (L->m[0].Typ()==LIST_CMD) // something complicated...
2925 {
2926 lists LL=(lists)L->m[0].Data();
2927
2928#ifdef HAVE_RINGS
2929 if (LL->m[0].Typ() == STRING_CMD) // 1st comes a string?
2930 {
2931 rComposeRing(LL, R); // Ring!?
2932 }
2933 else
2934#endif
2935 if (LL->nr < 3)
2936 rComposeC(LL,R); // R, long_R, long_C
2937 else
2938 {
2939 if (LL->m[0].Typ()==INT_CMD)
2940 {
2941 int ch = (int)(long)LL->m[0].Data();
2942 while ((ch!=fftable[is_gf_char]) && (fftable[is_gf_char])) is_gf_char++;
2943 if (fftable[is_gf_char]==0) is_gf_char=-1;
2944
2945 if(is_gf_char!= -1)
2946 {
2947 GFInfo param;
2948
2949 param.GFChar = ch;
2950 param.GFDegree = 1;
2951 param.GFPar_name = (const char*)(((lists)(LL->m[1].Data()))->m[0].Data());
2952
2953 // nfInitChar should be able to handle the case when ch is in fftables!
2954 R->cf = nInitChar(n_GF, (void*)&param);
2955 }
2956 }
2957
2958 if( R->cf == NULL )
2959 {
2960 ring extRing = rCompose((lists)L->m[0].Data(),FALSE,0x7fff);
2961
2962 if (extRing==NULL)
2963 {
2964 WerrorS("could not create the specified coefficient field");
2965 goto rCompose_err;
2966 }
2967
2968 if( extRing->qideal != NULL ) // Algebraic extension
2969 {
2970 AlgExtInfo extParam;
2971
2972 extParam.r = extRing;
2973
2974 R->cf = nInitChar(n_algExt, (void*)&extParam);
2975 }
2976 else // Transcendental extension
2977 {
2978 TransExtInfo extParam;
2979 extParam.r = extRing;
2980 assume( extRing->qideal == NULL );
2981
2982 R->cf = nInitChar(n_transExt, &extParam);
2983 }
2984 }
2985 }
2986 }
2987 else
2988 {
2989 WerrorS("coefficient field must be described by `int` or `list`");
2990 goto rCompose_err;
2991 }
2992
2993 if( R->cf == NULL )
2994 {
2995 WerrorS("could not create coefficient field described by the input!");
2996 goto rCompose_err;
2997 }
2998
2999 // ------------------------- VARS ---------------------------
3000 if (rComposeVar(L,R)) goto rCompose_err;
3001 // ------------------------ ORDER ------------------------------
3002 if (rComposeOrder(L,check_comp,R)) goto rCompose_err;
3003
3004 // ------------------------ ??????? --------------------
3005
3006 if (!isLetterplace) rRenameVars(R);
3007 #ifdef HAVE_SHIFTBBA
3008 else
3009 {
3010 R->isLPring=isLetterplace;
3011 R->ShortOut=FALSE;
3012 R->CanShortOut=FALSE;
3013 }
3014 #endif
3015 if ((bitmask!=0)&&(R->wanted_maxExp==0)) R->wanted_maxExp=bitmask;
3016 rComplete(R);
3017
3018 // ------------------------ Q-IDEAL ------------------------
3019
3020 if (L->m[3].Typ()==IDEAL_CMD)
3021 {
3022 ideal q=(ideal)L->m[3].Data();
3023 if (q->m[0]!=NULL)
3024 {
3025 if (R->cf != currRing->cf) //->cf->ch!=currRing->cf->ch)
3026 {
3027 #if 0
3028 WerrorS("coefficient fields must be equal if q-ideal !=0");
3029 goto rCompose_err;
3030 #else
3031 ring orig_ring=currRing;
3033 int *perm=NULL;
3034 int *par_perm=NULL;
3035 int par_perm_size=0;
3036 nMapFunc nMap;
3037
3038 if ((nMap=nSetMap(orig_ring->cf))==NULL)
3039 {
3040 if (rEqual(orig_ring,currRing))
3041 {
3042 nMap=n_SetMap(currRing->cf, currRing->cf);
3043 }
3044 else
3045 // Allow imap/fetch to be make an exception only for:
3046 if ( (rField_is_Q_a(orig_ring) && // Q(a..) -> Q(a..) || Q || Zp || Zp(a)
3050 ||
3051 (rField_is_Zp_a(orig_ring) && // Zp(a..) -> Zp(a..) || Zp
3052 (rField_is_Zp(currRing, rInternalChar(orig_ring)) ||
3053 rField_is_Zp_a(currRing, rInternalChar(orig_ring)))) )
3054 {
3055 par_perm_size=rPar(orig_ring);
3056
3057// if ((orig_ring->minpoly != NULL) || (orig_ring->qideal != NULL))
3058// naSetChar(rInternalChar(orig_ring),orig_ring);
3059// else ntSetChar(rInternalChar(orig_ring),orig_ring);
3060
3061 nSetChar(currRing->cf);
3062 }
3063 else
3064 {
3065 WerrorS("coefficient fields must be equal if q-ideal !=0");
3066 goto rCompose_err;
3067 }
3068 }
3069 perm=(int *)omAlloc0((orig_ring->N+1)*sizeof(int));
3070 if (par_perm_size!=0)
3071 par_perm=(int *)omAlloc0(par_perm_size*sizeof(int));
3072 int i;
3073 #if 0
3074 // use imap:
3075 maFindPerm(orig_ring->names,orig_ring->N,orig_ring->parameter,orig_ring->P,
3076 currRing->names,currRing->N,currRing->parameter, currRing->P,
3077 perm,par_perm, currRing->ch);
3078 #else
3079 // use fetch
3080 if ((rPar(orig_ring)>0) && (rPar(currRing)==0))
3081 {
3082 for(i=si_min(rPar(orig_ring),rVar(currRing))-1;i>=0;i--) par_perm[i]=i+1;
3083 }
3084 else if (par_perm_size!=0)
3085 for(i=si_min(rPar(orig_ring),rPar(currRing))-1;i>=0;i--) par_perm[i]=-(i+1);
3086 for(i=si_min(orig_ring->N,rVar(currRing));i>0;i--) perm[i]=i;
3087 #endif
3088 ideal dest_id=idInit(IDELEMS(q),1);
3089 for(i=IDELEMS(q)-1; i>=0; i--)
3090 {
3091 dest_id->m[i]=p_PermPoly(q->m[i],perm,orig_ring, currRing,nMap,
3092 par_perm,par_perm_size);
3093 // PrintS("map:");pWrite(dest_id->m[i]);PrintLn();
3094 pTest(dest_id->m[i]);
3095 }
3096 R->qideal=dest_id;
3097 if (perm!=NULL)
3098 omFreeSize((ADDRESS)perm,(orig_ring->N+1)*sizeof(int));
3099 if (par_perm!=NULL)
3100 omFreeSize((ADDRESS)par_perm,par_perm_size*sizeof(int));
3101 rChangeCurrRing(orig_ring);
3102 #endif
3103 }
3104 else
3105 R->qideal=idrCopyR(q,currRing,R);
3106 }
3107 }
3108 else
3109 {
3110 WerrorS("q-ideal must be given as `ideal`");
3111 goto rCompose_err;
3112 }
3113
3114
3115 // ---------------------------------------------------------------
3116 #ifdef HAVE_PLURAL
3117 if (L->nr==5)
3118 {
3119 if (nc_CallPlural((matrix)L->m[4].Data(),
3120 (matrix)L->m[5].Data(),
3121 NULL,NULL,
3122 R,
3123 true, // !!!
3124 true, false,
3125 currRing, FALSE)) goto rCompose_err;
3126 // takes care about non-comm. quotient! i.e. calls "nc_SetupQuotient" due to last true
3127 }
3128 #endif
3129 return R;
3130
3131rCompose_err:
3132 if (R->N>0)
3133 {
3134 int i;
3135 if (R->names!=NULL)
3136 {
3137 i=R->N-1;
3138 while (i>=0) { omfree(R->names[i]); i--; }
3139 omFree(R->names);
3140 }
3141 }
3142 omfree(R->order);
3143 omfree(R->block0);
3144 omfree(R->block1);
3145 omfree(R->wvhdl);
3146 omFree(R);
3147 return NULL;
3148}
3149
3150// from matpol.cc
3151
3152/*2
3153* compute the jacobi matrix of an ideal
3154*/
3156{
3157 int i,j;
3158 matrix result;
3159 ideal id=(ideal)a->Data();
3160
3162 for (i=1; i<=IDELEMS(id); i++)
3163 {
3164 for (j=1; j<=rVar(currRing); j++)
3165 {
3166 MATELEM(result,i,j) = pDiff(id->m[i-1],j);
3167 }
3168 }
3169 res->data=(char *)result;
3170 return FALSE;
3171}
3172
3173/*2
3174* returns the Koszul-matrix of degree d of a vectorspace with dimension n
3175* uses the first n entrees of id, if id <> NULL
3176*/
3178{
3179 int n=(int)(long)b->Data();
3180 int d=(int)(long)c->Data();
3181 int k,l,sign,row,col;
3182 matrix result;
3183 ideal temp;
3184 BOOLEAN bo;
3185 poly p;
3186
3187 if ((d>n) || (d<1) || (n<1))
3188 {
3189 res->data=(char *)mpNew(1,1);
3190 return FALSE;
3191 }
3192 int *choise = (int*)omAlloc(d*sizeof(int));
3193 if (id==NULL)
3194 temp=idMaxIdeal(1);
3195 else
3196 temp=(ideal)id->Data();
3197
3198 k = binom(n,d);
3199 l = k*d;
3200 l /= n-d+1;
3201 result =mpNew(l,k);
3202 col = 1;
3203 idInitChoise(d,1,n,&bo,choise);
3204 while (!bo)
3205 {
3206 sign = 1;
3207 for (l=1;l<=d;l++)
3208 {
3209 if (choise[l-1]<=IDELEMS(temp))
3210 {
3211 p = pCopy(temp->m[choise[l-1]-1]);
3212 if (sign == -1) p = pNeg(p);
3213 sign *= -1;
3214 row = idGetNumberOfChoise(l-1,d,1,n,choise);
3215 MATELEM(result,row,col) = p;
3216 }
3217 }
3218 col++;
3219 idGetNextChoise(d,n,&bo,choise);
3220 }
3221 omFreeSize(choise,d*sizeof(int));
3222 if (id==NULL) idDelete(&temp);
3223
3224 res->data=(char *)result;
3225 return FALSE;
3226}
3227
3228// from syz1.cc
3229/*2
3230* read out the Betti numbers from resolution
3231* (interpreter interface)
3232*/
3234{
3235 syStrategy syzstr=(syStrategy)u->Data();
3236
3237 BOOLEAN minim=(int)(long)w->Data();
3238 int row_shift=0;
3239 int add_row_shift=0;
3240 intvec *weights=NULL;
3241 intvec *ww=(intvec *)atGet(u,"isHomog",INTVEC_CMD);
3242 if (ww!=NULL)
3243 {
3244 weights=ivCopy(ww);
3245 add_row_shift = ww->min_in();
3246 (*weights) -= add_row_shift;
3247 }
3248
3249 res->data=(void *)syBettiOfComputation(syzstr,minim,&row_shift,weights);
3250 //row_shift += add_row_shift;
3251 //Print("row_shift=%d, add_row_shift=%d\n",row_shift,add_row_shift);
3252 atSet(res,omStrDup("rowShift"),(void*)(long)add_row_shift,INT_CMD);
3253
3254 return FALSE;
3255}
3257{
3258 sleftv tmp;
3259 tmp.Init();
3260 tmp.rtyp=INT_CMD;
3261 tmp.data=(void *)1;
3262 return syBetti2(res,u,&tmp);
3263}
3264
3265/*3
3266* converts a resolution into a list of modules
3267*/
3268lists syConvRes(syStrategy syzstr,BOOLEAN toDel,int add_row_shift)
3269{
3270 resolvente fullres = syzstr->fullres;
3271 resolvente minres = syzstr->minres;
3272
3273 const int length = syzstr->length;
3274
3275 if ((fullres==NULL) && (minres==NULL))
3276 {
3277 if (syzstr->hilb_coeffs==NULL)
3278 { // La Scala
3279 fullres = syReorder(syzstr->res, length, syzstr);
3280 }
3281 else
3282 { // HRES
3283 minres = syReorder(syzstr->orderedRes, length, syzstr);
3284 syKillEmptyEntres(minres, length);
3285 }
3286 }
3287
3288 resolvente tr;
3289 int typ0=IDEAL_CMD;
3290
3291 if (minres!=NULL)
3292 tr = minres;
3293 else
3294 tr = fullres;
3295
3296 resolvente trueres=NULL;
3297 intvec ** w=NULL;
3298
3299 if (length>0)
3300 {
3301 trueres = (resolvente)omAlloc0((length)*sizeof(ideal));
3302 for (int i=length-1;i>=0;i--)
3303 {
3304 if (tr[i]!=NULL)
3305 {
3306 trueres[i] = idCopy(tr[i]);
3307 }
3308 }
3309 if ( id_RankFreeModule(trueres[0], currRing) > 0)
3310 typ0 = MODUL_CMD;
3311 if (syzstr->weights!=NULL)
3312 {
3313 w = (intvec**)omAlloc0(length*sizeof(intvec*));
3314 for (int i=length-1;i>=0;i--)
3315 {
3316 if (syzstr->weights[i]!=NULL) w[i] = ivCopy(syzstr->weights[i]);
3317 }
3318 }
3319 }
3320
3321 lists li = liMakeResolv(trueres, length, syzstr->list_length,typ0,
3322 w, add_row_shift);
3323
3324 if (toDel)
3325 syKillComputation(syzstr);
3326 else
3327 {
3328 if( fullres != NULL && syzstr->fullres == NULL )
3329 syzstr->fullres = fullres;
3330
3331 if( minres != NULL && syzstr->minres == NULL )
3332 syzstr->minres = minres;
3333 }
3334 return li;
3335}
3336
3337/*3
3338* converts a list of modules into a resolution
3339*/
3341{
3342 int typ0;
3344
3345 resolvente fr = liFindRes(li,&(result->length),&typ0,&(result->weights));
3346 if (fr != NULL)
3347 {
3348
3349 result->fullres = (resolvente)omAlloc0((result->length+1)*sizeof(ideal));
3350 for (int i=result->length-1;i>=0;i--)
3351 {
3352 if (fr[i]!=NULL)
3353 result->fullres[i] = idCopy(fr[i]);
3354 }
3355 result->list_length=result->length;
3356 omFreeSize((ADDRESS)fr,(result->length)*sizeof(ideal));
3357 }
3358 else
3359 {
3360 omFreeSize(result, sizeof(ssyStrategy));
3361 result = NULL;
3362 }
3363 return result;
3364}
3365
3366/*3
3367* converts a list of modules into a minimal resolution
3368*/
3370{
3371 int typ0;
3373
3374 resolvente fr = liFindRes(li,&(result->length),&typ0);
3375 result->minres = (resolvente)omAlloc0((result->length+1)*sizeof(ideal));
3376 for (int i=result->length-1;i>=0;i--)
3377 {
3378 if (fr[i]!=NULL)
3379 result->minres[i] = idCopy(fr[i]);
3380 }
3381 omFreeSize((ADDRESS)fr,(result->length)*sizeof(ideal));
3382 return result;
3383}
3384// from weight.cc
3386{
3387 ideal F=(ideal)id->Data();
3388 intvec * iv = new intvec(rVar(currRing));
3389 polyset s;
3390 int sl, n, i;
3391 int *x;
3392
3393 res->data=(char *)iv;
3394 s = F->m;
3395 sl = IDELEMS(F) - 1;
3396 n = rVar(currRing);
3397 double wNsqr = (double)2.0 / (double)n;
3399 x = (int * )omAlloc(2 * (n + 1) * sizeof(int));
3400 wCall(s, sl, x, wNsqr, currRing);
3401 for (i = n; i!=0; i--)
3402 (*iv)[i-1] = x[i + n + 1];
3403 omFreeSize((ADDRESS)x, 2 * (n + 1) * sizeof(int));
3404 return FALSE;
3405}
3406
3408{
3409 res->data=(char *)id_QHomWeight((ideal)v->Data(), currRing);
3410 if (res->data==NULL)
3411 res->data=(char *)new intvec(rVar(currRing));
3412 return FALSE;
3413}
3414/*==============================================================*/
3415// from clapsing.cc
3416#if 0
3417BOOLEAN jjIS_SQR_FREE(leftv res, leftv u)
3418{
3419 BOOLEAN b=singclap_factorize((poly)(u->CopyD()), &v, 0);
3420 res->data=(void *)b;
3421}
3422#endif
3423
3425{
3426 res->data=singclap_resultant((poly)u->CopyD(),(poly)v->CopyD(),
3427 (poly)w->CopyD(), currRing);
3428 return errorreported;
3429}
3430
3432{
3433 res->data=singclap_irrCharSeries((ideal)u->Data(), currRing);
3434 return (res->data==NULL);
3435}
3436
3437// from semic.cc
3438#ifdef HAVE_SPECTRUM
3439
3440// ----------------------------------------------------------------------------
3441// Initialize a spectrum deep from a singular lists
3442// ----------------------------------------------------------------------------
3443
3445{
3446 spec.mu = (int)(long)(l->m[0].Data( ));
3447 spec.pg = (int)(long)(l->m[1].Data( ));
3448 spec.n = (int)(long)(l->m[2].Data( ));
3449
3450 spec.copy_new( spec.n );
3451
3452 intvec *num = (intvec*)l->m[3].Data( );
3453 intvec *den = (intvec*)l->m[4].Data( );
3454 intvec *mul = (intvec*)l->m[5].Data( );
3455
3456 for( int i=0; i<spec.n; i++ )
3457 {
3458 spec.s[i] = (Rational)((*num)[i])/(Rational)((*den)[i]);
3459 spec.w[i] = (*mul)[i];
3460 }
3461}
3462
3463// ----------------------------------------------------------------------------
3464// singular lists constructor for spectrum
3465// ----------------------------------------------------------------------------
3466
3467spectrum /*former spectrum::spectrum ( lists l )*/
3469{
3471 copy_deep( result, l );
3472 return result;
3473}
3474
3475// ----------------------------------------------------------------------------
3476// generate a Singular lists from a spectrum
3477// ----------------------------------------------------------------------------
3478
3479/* former spectrum::thelist ( void )*/
3481{
3483
3484 L->Init( 6 );
3485
3486 intvec *num = new intvec( spec.n );
3487 intvec *den = new intvec( spec.n );
3488 intvec *mult = new intvec( spec.n );
3489
3490 for( int i=0; i<spec.n; i++ )
3491 {
3492 (*num) [i] = spec.s[i].get_num_si( );
3493 (*den) [i] = spec.s[i].get_den_si( );
3494 (*mult)[i] = spec.w[i];
3495 }
3496
3497 L->m[0].rtyp = INT_CMD; // milnor number
3498 L->m[1].rtyp = INT_CMD; // geometrical genus
3499 L->m[2].rtyp = INT_CMD; // # of spectrum numbers
3500 L->m[3].rtyp = INTVEC_CMD; // numerators
3501 L->m[4].rtyp = INTVEC_CMD; // denomiantors
3502 L->m[5].rtyp = INTVEC_CMD; // multiplicities
3503
3504 L->m[0].data = (void*)(long)spec.mu;
3505 L->m[1].data = (void*)(long)spec.pg;
3506 L->m[2].data = (void*)(long)spec.n;
3507 L->m[3].data = (void*)num;
3508 L->m[4].data = (void*)den;
3509 L->m[5].data = (void*)mult;
3510
3511 return L;
3512}
3513// from spectrum.cc
3514// ----------------------------------------------------------------------------
3515// print out an error message for a spectrum list
3516// ----------------------------------------------------------------------------
3517
3518typedef enum
3519{
3522
3525
3532
3537
3543
3546
3549
3551
3553{
3554 switch( state )
3555 {
3556 case semicListTooShort:
3557 WerrorS( "the list is too short" );
3558 break;
3559 case semicListTooLong:
3560 WerrorS( "the list is too long" );
3561 break;
3562
3564 WerrorS( "first element of the list should be int" );
3565 break;
3567 WerrorS( "second element of the list should be int" );
3568 break;
3570 WerrorS( "third element of the list should be int" );
3571 break;
3573 WerrorS( "fourth element of the list should be intvec" );
3574 break;
3576 WerrorS( "fifth element of the list should be intvec" );
3577 break;
3579 WerrorS( "sixth element of the list should be intvec" );
3580 break;
3581
3582 case semicListNNegative:
3583 WerrorS( "first element of the list should be positive" );
3584 break;
3586 WerrorS( "wrong number of numerators" );
3587 break;
3589 WerrorS( "wrong number of denominators" );
3590 break;
3592 WerrorS( "wrong number of multiplicities" );
3593 break;
3594
3596 WerrorS( "the Milnor number should be positive" );
3597 break;
3599 WerrorS( "the geometrical genus should be nonnegative" );
3600 break;
3602 WerrorS( "all numerators should be positive" );
3603 break;
3605 WerrorS( "all denominators should be positive" );
3606 break;
3608 WerrorS( "all multiplicities should be positive" );
3609 break;
3610
3612 WerrorS( "it is not symmetric" );
3613 break;
3615 WerrorS( "it is not monotonous" );
3616 break;
3617
3619 WerrorS( "the Milnor number is wrong" );
3620 break;
3621 case semicListPGWrong:
3622 WerrorS( "the geometrical genus is wrong" );
3623 break;
3624
3625 default:
3626 WerrorS( "unspecific error" );
3627 break;
3628 }
3629}
3630// ----------------------------------------------------------------------------
3631// this is the main spectrum computation function
3632// ----------------------------------------------------------------------------
3633
3635{
3646
3647// from splist.cc
3648// ----------------------------------------------------------------------------
3649// Compute the spectrum of a spectrumPolyList
3650// ----------------------------------------------------------------------------
3651
3652/* former spectrumPolyList::spectrum ( lists*, int) */
3654{
3655 spectrumPolyNode **node = &speclist.root;
3657
3658 poly f,tmp;
3659 int found,cmp;
3660
3661 Rational smax( ( fast==0 ? 0 : rVar(currRing) ),
3662 ( fast==2 ? 2 : 1 ) );
3663
3664 Rational weight_prev( 0,1 );
3665
3666 int mu = 0; // the milnor number
3667 int pg = 0; // the geometrical genus
3668 int n = 0; // number of different spectral numbers
3669 int z = 0; // number of spectral number equal to smax
3670
3671 while( (*node)!=(spectrumPolyNode*)NULL &&
3672 ( fast==0 || (*node)->weight<=smax ) )
3673 {
3674 // ---------------------------------------
3675 // determine the first normal form which
3676 // contains the monomial node->mon
3677 // ---------------------------------------
3678
3679 found = FALSE;
3680 search = *node;
3681
3682 while( search!=(spectrumPolyNode*)NULL && found==FALSE )
3683 {
3684 if( search->nf!=(poly)NULL )
3685 {
3686 f = search->nf;
3687
3688 do
3689 {
3690 // --------------------------------
3691 // look for (*node)->mon in f
3692 // --------------------------------
3693
3694 cmp = pCmp( (*node)->mon,f );
3695
3696 if( cmp<0 )
3697 {
3698 f = pNext( f );
3699 }
3700 else if( cmp==0 )
3701 {
3702 // -----------------------------
3703 // we have found a normal form
3704 // -----------------------------
3705
3706 found = TRUE;
3707
3708 // normalize coefficient
3709
3710 number inv = nInvers( pGetCoeff( f ) );
3711 search->nf=__p_Mult_nn( search->nf,inv,currRing );
3712 nDelete( &inv );
3713
3714 // exchange normal forms
3715
3716 tmp = (*node)->nf;
3717 (*node)->nf = search->nf;
3718 search->nf = tmp;
3719 }
3720 }
3721 while( cmp<0 && f!=(poly)NULL );
3722 }
3723 search = search->next;
3724 }
3725
3726 if( found==FALSE )
3727 {
3728 // ------------------------------------------------
3729 // the weight of node->mon is a spectrum number
3730 // ------------------------------------------------
3731
3732 mu++;
3733
3734 if( (*node)->weight<=(Rational)1 ) pg++;
3735 if( (*node)->weight==smax ) z++;
3736 if( (*node)->weight>weight_prev ) n++;
3737
3738 weight_prev = (*node)->weight;
3739 node = &((*node)->next);
3740 }
3741 else
3742 {
3743 // -----------------------------------------------
3744 // determine all other normal form which contain
3745 // the monomial node->mon
3746 // replace for node->mon its normal form
3747 // -----------------------------------------------
3748
3749 while( search!=(spectrumPolyNode*)NULL )
3750 {
3751 if( search->nf!=(poly)NULL )
3752 {
3753 f = search->nf;
3754
3755 do
3756 {
3757 // --------------------------------
3758 // look for (*node)->mon in f
3759 // --------------------------------
3760
3761 cmp = pCmp( (*node)->mon,f );
3762
3763 if( cmp<0 )
3764 {
3765 f = pNext( f );
3766 }
3767 else if( cmp==0 )
3768 {
3769 search->nf = pSub( search->nf,
3770 __pp_Mult_nn( (*node)->nf,pGetCoeff( f ),currRing ) );
3771 pNorm( search->nf );
3772 }
3773 }
3774 while( cmp<0 && f!=(poly)NULL );
3775 }
3776 search = search->next;
3777 }
3778 speclist.delete_node( node );
3779 }
3780
3781 }
3782
3783 // --------------------------------------------------------
3784 // fast computation exploits the symmetry of the spectrum
3785 // --------------------------------------------------------
3786
3787 if( fast==2 )
3788 {
3789 mu = 2*mu - z;
3790 n = ( z > 0 ? 2*n - 1 : 2*n );
3791 }
3792
3793 // --------------------------------------------------------
3794 // compute the spectrum numbers with their multiplicities
3795 // --------------------------------------------------------
3796
3797 intvec *nom = new intvec( n );
3798 intvec *den = new intvec( n );
3799 intvec *mult = new intvec( n );
3800
3801 int count = 0;
3802 int multiplicity = 1;
3803
3804 for( search=speclist.root; search!=(spectrumPolyNode*)NULL &&
3805 ( fast==0 || search->weight<=smax );
3806 search=search->next )
3807 {
3808 if( search->next==(spectrumPolyNode*)NULL ||
3809 search->weight<search->next->weight )
3810 {
3811 (*nom) [count] = search->weight.get_num_si( );
3812 (*den) [count] = search->weight.get_den_si( );
3813 (*mult)[count] = multiplicity;
3814
3815 multiplicity=1;
3816 count++;
3817 }
3818 else
3819 {
3820 multiplicity++;
3821 }
3822 }
3823
3824 // --------------------------------------------------------
3825 // fast computation exploits the symmetry of the spectrum
3826 // --------------------------------------------------------
3827
3828 if( fast==2 )
3829 {
3830 int n1,n2;
3831 for( n1=0, n2=n-1; n1<n2; n1++, n2-- )
3832 {
3833 (*nom) [n2] = rVar(currRing)*(*den)[n1]-(*nom)[n1];
3834 (*den) [n2] = (*den)[n1];
3835 (*mult)[n2] = (*mult)[n1];
3836 }
3837 }
3838
3839 // -----------------------------------
3840 // test if the spectrum is symmetric
3841 // -----------------------------------
3842
3843 if( fast==0 || fast==1 )
3844 {
3845 int symmetric=TRUE;
3846
3847 for( int n1=0, n2=n-1 ; n1<n2 && symmetric==TRUE; n1++, n2-- )
3848 {
3849 if( (*mult)[n1]!=(*mult)[n2] ||
3850 (*den) [n1]!= (*den)[n2] ||
3851 (*nom)[n1]+(*nom)[n2]!=rVar(currRing)*(*den) [n1] )
3852 {
3853 symmetric = FALSE;
3854 }
3855 }
3856
3857 if( symmetric==FALSE )
3858 {
3859 // ---------------------------------------------
3860 // the spectrum is not symmetric => degenerate
3861 // principal part
3862 // ---------------------------------------------
3863
3864 *L = (lists)omAllocBin( slists_bin);
3865 (*L)->Init( 1 );
3866 (*L)->m[0].rtyp = INT_CMD; // milnor number
3867 (*L)->m[0].data = (void*)(long)mu;
3868
3869 return spectrumDegenerate;
3870 }
3871 }
3872
3873 *L = (lists)omAllocBin( slists_bin);
3874
3875 (*L)->Init( 6 );
3876
3877 (*L)->m[0].rtyp = INT_CMD; // milnor number
3878 (*L)->m[1].rtyp = INT_CMD; // geometrical genus
3879 (*L)->m[2].rtyp = INT_CMD; // number of spectrum values
3880 (*L)->m[3].rtyp = INTVEC_CMD; // nominators
3881 (*L)->m[4].rtyp = INTVEC_CMD; // denomiantors
3882 (*L)->m[5].rtyp = INTVEC_CMD; // multiplicities
3883
3884 (*L)->m[0].data = (void*)(long)mu;
3885 (*L)->m[1].data = (void*)(long)pg;
3886 (*L)->m[2].data = (void*)(long)n;
3887 (*L)->m[3].data = (void*)nom;
3888 (*L)->m[4].data = (void*)den;
3889 (*L)->m[5].data = (void*)mult;
3890
3891 return spectrumOK;
3892}
3893
3895{
3896 int i;
3897
3898 #ifdef SPECTRUM_DEBUG
3899 #ifdef SPECTRUM_PRINT
3900 #ifdef SPECTRUM_IOSTREAM
3901 cout << "spectrumCompute\n";
3902 if( fast==0 ) cout << " no optimization" << endl;
3903 if( fast==1 ) cout << " weight optimization" << endl;
3904 if( fast==2 ) cout << " symmetry optimization" << endl;
3905 #else
3906 fputs( "spectrumCompute\n",stdout );
3907 if( fast==0 ) fputs( " no optimization\n", stdout );
3908 if( fast==1 ) fputs( " weight optimization\n", stdout );
3909 if( fast==2 ) fputs( " symmetry optimization\n", stdout );
3910 #endif
3911 #endif
3912 #endif
3913
3914 // ----------------------
3915 // check if h is zero
3916 // ----------------------
3917
3918 if( h==(poly)NULL )
3919 {
3920 return spectrumZero;
3921 }
3922
3923 // ----------------------------------
3924 // check if h has a constant term
3925 // ----------------------------------
3926
3927 if( hasConstTerm( h, currRing ) )
3928 {
3929 return spectrumBadPoly;
3930 }
3931
3932 // --------------------------------
3933 // check if h has a linear term
3934 // --------------------------------
3935
3936 if( hasLinearTerm( h, currRing ) )
3937 {
3938 *L = (lists)omAllocBin( slists_bin);
3939 (*L)->Init( 1 );
3940 (*L)->m[0].rtyp = INT_CMD; // milnor number
3941 /* (*L)->m[0].data = (void*)0;a -- done by Init */
3942
3943 return spectrumNoSingularity;
3944 }
3945
3946 // ----------------------------------
3947 // compute the jacobi ideal of (h)
3948 // ----------------------------------
3949
3950 ideal J = NULL;
3951 J = idInit( rVar(currRing),1 );
3952
3953 #ifdef SPECTRUM_DEBUG
3954 #ifdef SPECTRUM_PRINT
3955 #ifdef SPECTRUM_IOSTREAM
3956 cout << "\n computing the Jacobi ideal...\n";
3957 #else
3958 fputs( "\n computing the Jacobi ideal...\n",stdout );
3959 #endif
3960 #endif
3961 #endif
3962
3963 for( i=0; i<rVar(currRing); i++ )
3964 {
3965 J->m[i] = pDiff( h,i+1); //j );
3966
3967 #ifdef SPECTRUM_DEBUG
3968 #ifdef SPECTRUM_PRINT
3969 #ifdef SPECTRUM_IOSTREAM
3970 cout << " ";
3971 #else
3972 fputs(" ", stdout );
3973 #endif
3974 pWrite( J->m[i] );
3975 #endif
3976 #endif
3977 }
3978
3979 // --------------------------------------------
3980 // compute a standard basis stdJ of jac(h)
3981 // --------------------------------------------
3982
3983 #ifdef SPECTRUM_DEBUG
3984 #ifdef SPECTRUM_PRINT
3985 #ifdef SPECTRUM_IOSTREAM
3986 cout << endl;
3987 cout << " computing a standard basis..." << endl;
3988 #else
3989 fputs( "\n", stdout );
3990 fputs( " computing a standard basis...\n", stdout );
3991 #endif
3992 #endif
3993 #endif
3994
3995 ideal stdJ = kStd(J,currRing->qideal,isNotHomog,NULL);
3996 idSkipZeroes( stdJ );
3997
3998 #ifdef SPECTRUM_DEBUG
3999 #ifdef SPECTRUM_PRINT
4000 for( i=0; i<IDELEMS(stdJ); i++ )
4001 {
4002 #ifdef SPECTRUM_IOSTREAM
4003 cout << " ";
4004 #else
4005 fputs( " ",stdout );
4006 #endif
4007
4008 pWrite( stdJ->m[i] );
4009 }
4010 #endif
4011 #endif
4012
4013 idDelete( &J );
4014
4015 // ------------------------------------------
4016 // check if the h has a singularity
4017 // ------------------------------------------
4018
4019 if( hasOne( stdJ, currRing ) )
4020 {
4021 // -------------------------------
4022 // h is smooth in the origin
4023 // return only the Milnor number
4024 // -------------------------------
4025
4026 *L = (lists)omAllocBin( slists_bin);
4027 (*L)->Init( 1 );
4028 (*L)->m[0].rtyp = INT_CMD; // milnor number
4029 /* (*L)->m[0].data = (void*)0;a -- done by Init */
4030
4031 return spectrumNoSingularity;
4032 }
4033
4034 // ------------------------------------------
4035 // check if the singularity h is isolated
4036 // ------------------------------------------
4037
4038 for( i=rVar(currRing); i>0; i-- )
4039 {
4040 if( hasAxis( stdJ,i, currRing )==FALSE )
4041 {
4042 return spectrumNotIsolated;
4043 }
4044 }
4045
4046 // ------------------------------------------
4047 // compute the highest corner hc of stdJ
4048 // ------------------------------------------
4049
4050 #ifdef SPECTRUM_DEBUG
4051 #ifdef SPECTRUM_PRINT
4052 #ifdef SPECTRUM_IOSTREAM
4053 cout << "\n computing the highest corner...\n";
4054 #else
4055 fputs( "\n computing the highest corner...\n", stdout );
4056 #endif
4057 #endif
4058 #endif
4059
4060 poly hc = (poly)NULL;
4061
4062 scComputeHC( stdJ,currRing->qideal, 0,hc );
4063
4064 if( hc!=(poly)NULL )
4065 {
4066 pGetCoeff(hc) = nInit(1);
4067
4068 for( i=rVar(currRing); i>0; i-- )
4069 {
4070 if( pGetExp( hc,i )>0 ) pDecrExp( hc,i );
4071 }
4072 pSetm( hc );
4073 }
4074 else
4075 {
4076 return spectrumNoHC;
4077 }
4078
4079 #ifdef SPECTRUM_DEBUG
4080 #ifdef SPECTRUM_PRINT
4081 #ifdef SPECTRUM_IOSTREAM
4082 cout << " ";
4083 #else
4084 fputs( " ", stdout );
4085 #endif
4086 pWrite( hc );
4087 #endif
4088 #endif
4089
4090 // ----------------------------------------
4091 // compute the Newton polygon nph of h
4092 // ----------------------------------------
4093
4094 #ifdef SPECTRUM_DEBUG
4095 #ifdef SPECTRUM_PRINT
4096 #ifdef SPECTRUM_IOSTREAM
4097 cout << "\n computing the newton polygon...\n";
4098 #else
4099 fputs( "\n computing the newton polygon...\n", stdout );
4100 #endif
4101 #endif
4102 #endif
4103
4104 newtonPolygon nph( h, currRing );
4105
4106 #ifdef SPECTRUM_DEBUG
4107 #ifdef SPECTRUM_PRINT
4108 cout << nph;
4109 #endif
4110 #endif
4111
4112 // -----------------------------------------------
4113 // compute the weight corner wc of (stdj,nph)
4114 // -----------------------------------------------
4115
4116 #ifdef SPECTRUM_DEBUG
4117 #ifdef SPECTRUM_PRINT
4118 #ifdef SPECTRUM_IOSTREAM
4119 cout << "\n computing the weight corner...\n";
4120 #else
4121 fputs( "\n computing the weight corner...\n", stdout );
4122 #endif
4123 #endif
4124 #endif
4125
4126 poly wc = ( fast==0 ? pCopy( hc ) :
4127 ( fast==1 ? computeWC( nph,(Rational)rVar(currRing), currRing ) :
4128 /* fast==2 */computeWC( nph,
4129 ((Rational)rVar(currRing))/(Rational)2, currRing ) ) );
4130
4131 #ifdef SPECTRUM_DEBUG
4132 #ifdef SPECTRUM_PRINT
4133 #ifdef SPECTRUM_IOSTREAM
4134 cout << " ";
4135 #else
4136 fputs( " ", stdout );
4137 #endif
4138 pWrite( wc );
4139 #endif
4140 #endif
4141
4142 // -------------
4143 // compute NF
4144 // -------------
4145
4146 #ifdef SPECTRUM_DEBUG
4147 #ifdef SPECTRUM_PRINT
4148 #ifdef SPECTRUM_IOSTREAM
4149 cout << "\n computing NF...\n" << endl;
4150 #else
4151 fputs( "\n computing NF...\n", stdout );
4152 #endif
4153 #endif
4154 #endif
4155
4156 spectrumPolyList NF( &nph );
4157
4158 computeNF( stdJ,hc,wc,&NF, currRing );
4159
4160 #ifdef SPECTRUM_DEBUG
4161 #ifdef SPECTRUM_PRINT
4162 cout << NF;
4163 #ifdef SPECTRUM_IOSTREAM
4164 cout << endl;
4165 #else
4166 fputs( "\n", stdout );
4167 #endif
4168 #endif
4169 #endif
4170
4171 // ----------------------------
4172 // compute the spectrum of h
4173 // ----------------------------
4174// spectrumState spectrumStateFromList( spectrumPolyList& speclist, lists *L, int fast );
4175
4176 return spectrumStateFromList(NF, L, fast );
4177}
4178
4179// ----------------------------------------------------------------------------
4180// this procedure is called from the interpreter
4181// ----------------------------------------------------------------------------
4182// first = polynomial
4183// result = list of spectrum numbers
4184// ----------------------------------------------------------------------------
4185
4187{
4188 switch( state )
4189 {
4190 case spectrumZero:
4191 WerrorS( "polynomial is zero" );
4192 break;
4193 case spectrumBadPoly:
4194 WerrorS( "polynomial has constant term" );
4195 break;
4197 WerrorS( "not a singularity" );
4198 break;
4200 WerrorS( "the singularity is not isolated" );
4201 break;
4202 case spectrumNoHC:
4203 WerrorS( "highest corner cannot be computed" );
4204 break;
4205 case spectrumDegenerate:
4206 WerrorS( "principal part is degenerate" );
4207 break;
4208 case spectrumOK:
4209 break;
4210
4211 default:
4212 WerrorS( "unknown error occurred" );
4213 break;
4214 }
4215}
4216
4218{
4219 spectrumState state = spectrumOK;
4220
4221 // -------------------
4222 // check consistency
4223 // -------------------
4224
4225 // check for a local ring
4226
4227 if( !ringIsLocal(currRing ) )
4228 {
4229 WerrorS( "only works for local orderings" );
4230 state = spectrumWrongRing;
4231 }
4232
4233 // no quotient rings are allowed
4234
4235 else if( currRing->qideal != NULL )
4236 {
4237 WerrorS( "does not work in quotient rings" );
4238 state = spectrumWrongRing;
4239 }
4240 else
4241 {
4242 lists L = (lists)NULL;
4243 int flag = 1; // weight corner optimization is safe
4244
4245 state = spectrumCompute( (poly)first->Data( ),&L,flag );
4246
4247 if( state==spectrumOK )
4248 {
4249 result->rtyp = LIST_CMD;
4250 result->data = (char*)L;
4251 }
4252 else
4253 {
4254 spectrumPrintError(state);
4255 }
4256 }
4257
4258 return (state!=spectrumOK);
4259}
4260
4261// ----------------------------------------------------------------------------
4262// this procedure is called from the interpreter
4263// ----------------------------------------------------------------------------
4264// first = polynomial
4265// result = list of spectrum numbers
4266// ----------------------------------------------------------------------------
4267
4269{
4270 spectrumState state = spectrumOK;
4271
4272 // -------------------
4273 // check consistency
4274 // -------------------
4275
4276 // check for a local polynomial ring
4277
4278 if( currRing->OrdSgn != -1 )
4279 // ?? HS: the test above is also true for k[x][[y]], k[[x]][y]
4280 // or should we use:
4281 //if( !ringIsLocal( ) )
4282 {
4283 WerrorS( "only works for local orderings" );
4284 state = spectrumWrongRing;
4285 }
4286 else if( currRing->qideal != NULL )
4287 {
4288 WerrorS( "does not work in quotient rings" );
4289 state = spectrumWrongRing;
4290 }
4291 else
4292 {
4293 lists L = (lists)NULL;
4294 int flag = 2; // symmetric optimization
4295
4296 state = spectrumCompute( (poly)first->Data( ),&L,flag );
4297
4298 if( state==spectrumOK )
4299 {
4300 result->rtyp = LIST_CMD;
4301 result->data = (char*)L;
4302 }
4303 else
4304 {
4305 spectrumPrintError(state);
4306 }
4307 }
4308
4309 return (state!=spectrumOK);
4310}
4311
4312// ----------------------------------------------------------------------------
4313// check if a list is a spectrum
4314// check for:
4315// list has 6 elements
4316// 1st element is int (mu=Milnor number)
4317// 2nd element is int (pg=geometrical genus)
4318// 3rd element is int (n =number of different spectrum numbers)
4319// 4th element is intvec (num=numerators)
4320// 5th element is intvec (den=denomiantors)
4321// 6th element is intvec (mul=multiplicities)
4322// exactly n numerators
4323// exactly n denominators
4324// exactly n multiplicities
4325// mu>0
4326// pg>=0
4327// n>0
4328// num>0
4329// den>0
4330// mul>0
4331// symmetriy with respect to numberofvariables/2
4332// monotony
4333// mu = sum of all multiplicities
4334// pg = sum of all multiplicities where num/den<=1
4335// ----------------------------------------------------------------------------
4336
4338{
4339 // -------------------
4340 // check list length
4341 // -------------------
4342
4343 if( l->nr < 5 )
4344 {
4345 return semicListTooShort;
4346 }
4347 else if( l->nr > 5 )
4348 {
4349 return semicListTooLong;
4350 }
4351
4352 // -------------
4353 // check types
4354 // -------------
4355
4356 if( l->m[0].rtyp != INT_CMD )
4357 {
4359 }
4360 else if( l->m[1].rtyp != INT_CMD )
4361 {
4363 }
4364 else if( l->m[2].rtyp != INT_CMD )
4365 {
4367 }
4368 else if( l->m[3].rtyp != INTVEC_CMD )
4369 {
4371 }
4372 else if( l->m[4].rtyp != INTVEC_CMD )
4373 {
4375 }
4376 else if( l->m[5].rtyp != INTVEC_CMD )
4377 {
4379 }
4380
4381 // -------------------------
4382 // check number of entries
4383 // -------------------------
4384
4385 int mu = (int)(long)(l->m[0].Data( ));
4386 int pg = (int)(long)(l->m[1].Data( ));
4387 int n = (int)(long)(l->m[2].Data( ));
4388
4389 if( n <= 0 )
4390 {
4391 return semicListNNegative;
4392 }
4393
4394 intvec *num = (intvec*)l->m[3].Data( );
4395 intvec *den = (intvec*)l->m[4].Data( );
4396 intvec *mul = (intvec*)l->m[5].Data( );
4397
4398 if( n != num->length( ) )
4399 {
4401 }
4402 else if( n != den->length( ) )
4403 {
4405 }
4406 else if( n != mul->length( ) )
4407 {
4409 }
4410
4411 // --------
4412 // values
4413 // --------
4414
4415 if( mu <= 0 )
4416 {
4417 return semicListMuNegative;
4418 }
4419 if( pg < 0 )
4420 {
4421 return semicListPgNegative;
4422 }
4423
4424 int i;
4425
4426 for( i=0; i<n; i++ )
4427 {
4428 if( (*num)[i] <= 0 )
4429 {
4430 return semicListNumNegative;
4431 }
4432 if( (*den)[i] <= 0 )
4433 {
4434 return semicListDenNegative;
4435 }
4436 if( (*mul)[i] <= 0 )
4437 {
4438 return semicListMulNegative;
4439 }
4440 }
4441
4442 // ----------------
4443 // check symmetry
4444 // ----------------
4445
4446 int j;
4447
4448 for( i=0, j=n-1; i<=j; i++,j-- )
4449 {
4450 if( (*num)[i] != rVar(currRing)*((*den)[i]) - (*num)[j] ||
4451 (*den)[i] != (*den)[j] ||
4452 (*mul)[i] != (*mul)[j] )
4453 {
4454 return semicListNotSymmetric;
4455 }
4456 }
4457
4458 // ----------------
4459 // check monotony
4460 // ----------------
4461
4462 for( i=0, j=1; i<n/2; i++,j++ )
4463 {
4464 if( (*num)[i]*(*den)[j] >= (*num)[j]*(*den)[i] )
4465 {
4467 }
4468 }
4469
4470 // ---------------------
4471 // check Milnor number
4472 // ---------------------
4473
4474 for( mu=0, i=0; i<n; i++ )
4475 {
4476 mu += (*mul)[i];
4477 }
4478
4479 if( mu != (int)(long)(l->m[0].Data( )) )
4480 {
4481 return semicListMilnorWrong;
4482 }
4483
4484 // -------------------------
4485 // check geometrical genus
4486 // -------------------------
4487
4488 for( pg=0, i=0; i<n; i++ )
4489 {
4490 if( (*num)[i]<=(*den)[i] )
4491 {
4492 pg += (*mul)[i];
4493 }
4494 }
4495
4496 if( pg != (int)(long)(l->m[1].Data( )) )
4497 {
4498 return semicListPGWrong;
4499 }
4500
4501 return semicOK;
4502}
4503
4504// ----------------------------------------------------------------------------
4505// this procedure is called from the interpreter
4506// ----------------------------------------------------------------------------
4507// first = list of spectrum numbers
4508// second = list of spectrum numbers
4509// result = sum of the two lists
4510// ----------------------------------------------------------------------------
4511
4513{
4514 semicState state;
4515
4516 // -----------------
4517 // check arguments
4518 // -----------------
4519
4520 lists l1 = (lists)first->Data( );
4521 lists l2 = (lists)second->Data( );
4522
4523 if( (state=list_is_spectrum( l1 )) != semicOK )
4524 {
4525 WerrorS( "first argument is not a spectrum:" );
4526 list_error( state );
4527 }
4528 else if( (state=list_is_spectrum( l2 )) != semicOK )
4529 {
4530 WerrorS( "second argument is not a spectrum:" );
4531 list_error( state );
4532 }
4533 else
4534 {
4535 spectrum s1= spectrumFromList ( l1 );
4536 spectrum s2= spectrumFromList ( l2 );
4537 spectrum sum( s1+s2 );
4538
4539 result->rtyp = LIST_CMD;
4540 result->data = (char*)(getList(sum));
4541 }
4542
4543 return (state!=semicOK);
4544}
4545
4546// ----------------------------------------------------------------------------
4547// this procedure is called from the interpreter
4548// ----------------------------------------------------------------------------
4549// first = list of spectrum numbers
4550// second = integer
4551// result = the multiple of the first list by the second factor
4552// ----------------------------------------------------------------------------
4553
4555{
4556 semicState state;
4557
4558 // -----------------
4559 // check arguments
4560 // -----------------
4561
4562 lists l = (lists)first->Data( );
4563 int k = (int)(long)second->Data( );
4564
4565 if( (state=list_is_spectrum( l ))!=semicOK )
4566 {
4567 WerrorS( "first argument is not a spectrum" );
4568 list_error( state );
4569 }
4570 else if( k < 0 )
4571 {
4572 WerrorS( "second argument should be positive" );
4573 state = semicMulNegative;
4574 }
4575 else
4576 {
4578 spectrum product( k*s );
4579
4580 result->rtyp = LIST_CMD;
4581 result->data = (char*)getList(product);
4582 }
4583
4584 return (state!=semicOK);
4585}
4586
4587// ----------------------------------------------------------------------------
4588// this procedure is called from the interpreter
4589// ----------------------------------------------------------------------------
4590// first = list of spectrum numbers
4591// second = list of spectrum numbers
4592// result = semicontinuity index
4593// ----------------------------------------------------------------------------
4594
4596{
4597 semicState state;
4598 BOOLEAN qh=(((int)(long)w->Data())==1);
4599
4600 // -----------------
4601 // check arguments
4602 // -----------------
4603
4604 lists l1 = (lists)u->Data( );
4605 lists l2 = (lists)v->Data( );
4606
4607 if( (state=list_is_spectrum( l1 ))!=semicOK )
4608 {
4609 WerrorS( "first argument is not a spectrum" );
4610 list_error( state );
4611 }
4612 else if( (state=list_is_spectrum( l2 ))!=semicOK )
4613 {
4614 WerrorS( "second argument is not a spectrum" );
4615 list_error( state );
4616 }
4617 else
4618 {
4619 spectrum s1= spectrumFromList( l1 );
4620 spectrum s2= spectrumFromList( l2 );
4621
4622 res->rtyp = INT_CMD;
4623 if (qh)
4624 res->data = (void*)(long)(s1.mult_spectrumh( s2 ));
4625 else
4626 res->data = (void*)(long)(s1.mult_spectrum( s2 ));
4627 }
4628
4629 // -----------------
4630 // check status
4631 // -----------------
4632
4633 return (state!=semicOK);
4634}
4636{
4637 sleftv tmp;
4638 tmp.Init();
4639 tmp.rtyp=INT_CMD;
4640 /* tmp.data = (void *)0; -- done by Init */
4641
4642 return semicProc3(res,u,v,&tmp);
4643}
4644
4645#endif
4646
4648{
4649 res->data= (void*)loNewtonPolytope( (ideal)arg1->Data() );
4650 return FALSE;
4651}
4652
4654{
4655 if ( !(rField_is_long_R(currRing)) )
4656 {
4657 WerrorS("Ground field not implemented!");
4658 return TRUE;
4659 }
4660
4661 simplex * LP;
4662 matrix m;
4663
4664 leftv v= args;
4665 if ( v->Typ() != MATRIX_CMD ) // 1: matrix
4666 return TRUE;
4667 else
4668 m= (matrix)(v->CopyD());
4669
4670 LP = new simplex(MATROWS(m),MATCOLS(m));
4671 LP->mapFromMatrix(m);
4672
4673 v= v->next;
4674 if ( v->Typ() != INT_CMD ) // 2: m = number of constraints
4675 return TRUE;
4676 else
4677 LP->m= (int)(long)(v->Data());
4678
4679 v= v->next;
4680 if ( v->Typ() != INT_CMD ) // 3: n = number of variables
4681 return TRUE;
4682 else
4683 LP->n= (int)(long)(v->Data());
4684
4685 v= v->next;
4686 if ( v->Typ() != INT_CMD ) // 4: m1 = number of <= constraints
4687 return TRUE;
4688 else
4689 LP->m1= (int)(long)(v->Data());
4690
4691 v= v->next;
4692 if ( v->Typ() != INT_CMD ) // 5: m2 = number of >= constraints
4693 return TRUE;
4694 else
4695 LP->m2= (int)(long)(v->Data());
4696
4697 v= v->next;
4698 if ( v->Typ() != INT_CMD ) // 6: m3 = number of == constraints
4699 return TRUE;
4700 else
4701 LP->m3= (int)(long)(v->Data());
4702
4703#ifdef mprDEBUG_PROT
4704 Print("m (constraints) %d\n",LP->m);
4705 Print("n (columns) %d\n",LP->n);
4706 Print("m1 (<=) %d\n",LP->m1);
4707 Print("m2 (>=) %d\n",LP->m2);
4708 Print("m3 (==) %d\n",LP->m3);
4709#endif
4710
4711 LP->compute();
4712
4713 lists lres= (lists)omAlloc( sizeof(slists) );
4714 lres->Init( 6 );
4715
4716 lres->m[0].rtyp= MATRIX_CMD; // output matrix
4717 lres->m[0].data=(void*)LP->mapToMatrix(m);
4718
4719 lres->m[1].rtyp= INT_CMD; // found a solution?
4720 lres->m[1].data=(void*)(long)LP->icase;
4721
4722 lres->m[2].rtyp= INTVEC_CMD;
4723 lres->m[2].data=(void*)LP->posvToIV();
4724
4725 lres->m[3].rtyp= INTVEC_CMD;
4726 lres->m[3].data=(void*)LP->zrovToIV();
4727
4728 lres->m[4].rtyp= INT_CMD;
4729 lres->m[4].data=(void*)(long)LP->m;
4730
4731 lres->m[5].rtyp= INT_CMD;
4732 lres->m[5].data=(void*)(long)LP->n;
4733
4734 res->data= (void*)lres;
4735
4736 return FALSE;
4737}
4738
4740{
4741 ideal gls = (ideal)(arg1->Data());
4742 int imtype= (int)(long)arg2->Data();
4743
4744 uResultant::resMatType mtype= determineMType( imtype );
4745
4746 // check input ideal ( = polynomial system )
4747 if ( mprIdealCheck( gls, arg1->Name(), mtype, true ) != mprOk )
4748 {
4749 return TRUE;
4750 }
4751
4752 uResultant *resMat= new uResultant( gls, mtype, false );
4753 if (resMat!=NULL)
4754 {
4755 res->rtyp = MODUL_CMD;
4756 res->data= (void*)resMat->accessResMat()->getMatrix();
4757 if (!errorreported) delete resMat;
4758 }
4759 return errorreported;
4760}
4761
4763{
4764 poly gls;
4765 gls= (poly)(arg1->Data());
4766 int howclean= (int)(long)arg3->Data();
4767
4768 if ( gls == NULL || pIsConstant( gls ) )
4769 {
4770 WerrorS("Input polynomial is constant!");
4771 return TRUE;
4772 }
4773
4775 {
4776 int* r=Zp_roots(gls, currRing);
4777 lists rlist;
4778 rlist= (lists)omAlloc( sizeof(slists) );
4779 rlist->Init( r[0] );
4780 for(int i=r[0];i>0;i--)
4781 {
4782 rlist->m[i-1].data=n_Init(r[i],currRing);
4783 rlist->m[i-1].rtyp=NUMBER_CMD;
4784 }
4785 omFree(r);
4786 res->data=rlist;
4787 res->rtyp= LIST_CMD;
4788 return FALSE;
4789 }
4790 if ( !(rField_is_R(currRing) ||
4794 {
4795 WerrorS("Ground field not implemented!");
4796 return TRUE;
4797 }
4798
4801 {
4802 unsigned long int ii = (unsigned long int)arg2->Data();
4803 setGMPFloatDigits( ii, ii );
4804 }
4805
4806 int ldummy;
4807 int deg= currRing->pLDeg( gls, &ldummy, currRing );
4808 int i,vpos=0;
4809 poly piter;
4810 lists elist;
4811
4812 elist= (lists)omAlloc( sizeof(slists) );
4813 elist->Init( 0 );
4814
4815 if ( rVar(currRing) > 1 )
4816 {
4817 piter= gls;
4818 for ( i= 1; i <= rVar(currRing); i++ )
4819 if ( pGetExp( piter, i ) )
4820 {
4821 vpos= i;
4822 break;
4823 }
4824 while ( piter )
4825 {
4826 for ( i= 1; i <= rVar(currRing); i++ )
4827 if ( (vpos != i) && (pGetExp( piter, i ) != 0) )
4828 {
4829 WerrorS("The input polynomial must be univariate!");
4830 return TRUE;
4831 }
4832 pIter( piter );
4833 }
4834 }
4835
4836 rootContainer * roots= new rootContainer();
4837 number * pcoeffs= (number *)omAlloc( (deg+1) * sizeof( number ) );
4838 piter= gls;
4839 for ( i= deg; i >= 0; i-- )
4840 {
4841 if ( piter && pTotaldegree(piter) == i )
4842 {
4843 pcoeffs[i]= nCopy( pGetCoeff( piter ) );
4844 //nPrint( pcoeffs[i] );PrintS(" ");
4845 pIter( piter );
4846 }
4847 else
4848 {
4849 pcoeffs[i]= nInit(0);
4850 }
4851 }
4852
4853#ifdef mprDEBUG_PROT
4854 for (i=deg; i >= 0; i--)
4855 {
4856 nPrint( pcoeffs[i] );PrintS(" ");
4857 }
4858 PrintLn();
4859#endif
4860
4861 roots->fillContainer( pcoeffs, NULL, 1, deg, rootContainer::onepoly, 1 );
4862 roots->solver( howclean );
4863
4864 int elem= roots->getAnzRoots();
4865 char *dummy;
4866 int j;
4867
4868 lists rlist;
4869 rlist= (lists)omAlloc( sizeof(slists) );
4870 rlist->Init( elem );
4871
4873 {
4874 for ( j= 0; j < elem; j++ )
4875 {
4876 rlist->m[j].rtyp=NUMBER_CMD;
4877 rlist->m[j].data=(void *)nCopy((number)(roots->getRoot(j)));
4878 //rlist->m[j].data=(void *)(number)(roots->getRoot(j));
4879 }
4880 }
4881 else
4882 {
4883 for ( j= 0; j < elem; j++ )
4884 {
4885 dummy = complexToStr( (*roots)[j], gmp_output_digits, currRing->cf );
4886 rlist->m[j].rtyp=STRING_CMD;
4887 rlist->m[j].data=(void *)dummy;
4888 }
4889 }
4890
4891 elist->Clean();
4892 //omFreeSize( (ADDRESS) elist, sizeof(slists) );
4893
4894 // this is (via fillContainer) the same data as in root
4895 //for ( i= deg; i >= 0; i-- ) nDelete( &pcoeffs[i] );
4896 //omFreeSize( (ADDRESS) pcoeffs, (deg+1) * sizeof( number ) );
4897
4898 delete roots;
4899
4900 res->data= (void*)rlist;
4901
4902 return FALSE;
4903}
4904
4906{
4907 int i;
4908 ideal p,w;
4909 p= (ideal)arg1->Data();
4910 w= (ideal)arg2->Data();
4911
4912 // w[0] = f(p^0)
4913 // w[1] = f(p^1)
4914 // ...
4915 // p can be a vector of numbers (multivariate polynom)
4916 // or one number (univariate polynom)
4917 // tdg = deg(f)
4918
4919 int n= IDELEMS( p );
4920 int m= IDELEMS( w );
4921 int tdg= (int)(long)arg3->Data();
4922
4923 res->data= (void*)NULL;
4924
4925 // check the input
4926 if ( tdg < 1 )
4927 {
4928 WerrorS("Last input parameter must be > 0!");
4929 return TRUE;
4930 }
4931 if ( n != rVar(currRing) )
4932 {
4933 Werror("Size of first input ideal must be equal to %d!",rVar(currRing));
4934 return TRUE;
4935 }
4936 if ( m != (int)pow((double)tdg+1,(double)n) )
4937 {
4938 Werror("Size of second input ideal must be equal to %d!",
4939 (int)pow((double)tdg+1,(double)n));
4940 return TRUE;
4941 }
4942 if ( !(rField_is_Q(currRing) /* ||
4943 rField_is_R() || rField_is_long_R() ||
4944 rField_is_long_C()*/ ) )
4945 {
4946 WerrorS("Ground field not implemented!");
4947 return TRUE;
4948 }
4949
4950 number tmp;
4951 number *pevpoint= (number *)omAlloc( n * sizeof( number ) );
4952 for ( i= 0; i < n; i++ )
4953 {
4954 pevpoint[i]=nInit(0);
4955 if ( (p->m)[i] )
4956 {
4957 tmp = pGetCoeff( (p->m)[i] );
4958 if ( nIsZero(tmp) || nIsOne(tmp) || nIsMOne(tmp) )
4959 {
4960 omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
4961 WerrorS("Elements of first input ideal must not be equal to -1, 0, 1!");
4962 return TRUE;
4963 }
4964 } else tmp= NULL;
4965 if ( !nIsZero(tmp) )
4966 {
4967 if ( !pIsConstant((p->m)[i]))
4968 {
4969 omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
4970 WerrorS("Elements of first input ideal must be numbers!");
4971 return TRUE;
4972 }
4973 pevpoint[i]= nCopy( tmp );
4974 }
4975 }
4976
4977 number *wresults= (number *)omAlloc( m * sizeof( number ) );
4978 for ( i= 0; i < m; i++ )
4979 {
4980 wresults[i]= nInit(0);
4981 if ( (w->m)[i] && !nIsZero(pGetCoeff((w->m)[i])) )
4982 {
4983 if ( !pIsConstant((w->m)[i]))
4984 {
4985 omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
4986 omFreeSize( (ADDRESS)wresults, m * sizeof( number ) );
4987 WerrorS("Elements of second input ideal must be numbers!");
4988 return TRUE;
4989 }
4990 wresults[i]= nCopy(pGetCoeff((w->m)[i]));
4991 }
4992 }
4993
4994 vandermonde vm( m, n, tdg, pevpoint, FALSE );
4995 number *ncpoly= vm.interpolateDense( wresults );
4996 // do not free ncpoly[]!!
4997 poly rpoly= vm.numvec2poly( ncpoly );
4998
4999 omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
5000 omFreeSize( (ADDRESS)wresults, m * sizeof( number ) );
5001
5002 res->data= (void*)rpoly;
5003 return FALSE;
5004}
5005
5007{
5008 leftv v= args;
5009
5010 ideal gls;
5011 int imtype;
5012 int howclean;
5013
5014 // get ideal
5015 if ( v->Typ() != IDEAL_CMD )
5016 return TRUE;
5017 else gls= (ideal)(v->Data());
5018 v= v->next;
5019
5020 // get resultant matrix type to use (0,1)
5021 if ( v->Typ() != INT_CMD )
5022 return TRUE;
5023 else imtype= (int)(long)v->Data();
5024 v= v->next;
5025
5026 if (imtype==0)
5027 {
5028 ideal test_id=idInit(1,1);
5029 int j;
5030 for(j=IDELEMS(gls)-1;j>=0;j--)
5031 {
5032 if (gls->m[j]!=NULL)
5033 {
5034 test_id->m[0]=gls->m[j];
5035 intvec *dummy_w=id_QHomWeight(test_id, currRing);
5036 if (dummy_w!=NULL)
5037 {
5038 WerrorS("Newton polytope not of expected dimension");
5039 delete dummy_w;
5040 return TRUE;
5041 }
5042 }
5043 }
5044 }
5045
5046 // get and set precision in digits ( > 0 )
5047 if ( v->Typ() != INT_CMD )
5048 return TRUE;
5049 else if ( !(rField_is_R(currRing) || rField_is_long_R(currRing) || \
5051 {
5052 unsigned long int ii=(unsigned long int)v->Data();
5053 setGMPFloatDigits( ii, ii );
5054 }
5055 v= v->next;
5056
5057 // get interpolation steps (0,1,2)
5058 if ( v->Typ() != INT_CMD )
5059 return TRUE;
5060 else howclean= (int)(long)v->Data();
5061
5062 uResultant::resMatType mtype= determineMType( imtype );
5063 int i,count;
5064 lists listofroots= NULL;
5065 number smv= NULL;
5066 BOOLEAN interpolate_det= (mtype==uResultant::denseResMat)?TRUE:FALSE;
5067
5068 //emptylist= (lists)omAlloc( sizeof(slists) );
5069 //emptylist->Init( 0 );
5070
5071 //res->rtyp = LIST_CMD;
5072 //res->data= (void *)emptylist;
5073
5074 // check input ideal ( = polynomial system )
5075 if ( mprIdealCheck( gls, args->Name(), mtype ) != mprOk )
5076 {
5077 return TRUE;
5078 }
5079
5080 uResultant * ures;
5081 rootContainer ** iproots;
5082 rootContainer ** muiproots;
5083 rootArranger * arranger;
5084
5085 // main task 1: setup of resultant matrix
5086 ures= new uResultant( gls, mtype );
5087 if ( ures->accessResMat()->initState() != resMatrixBase::ready )
5088 {
5089 WerrorS("Error occurred during matrix setup!");
5090 return TRUE;
5091 }
5092
5093 // if dense resultant, check if minor nonsingular
5094 if ( mtype == uResultant::denseResMat )
5095 {
5096 smv= ures->accessResMat()->getSubDet();
5097#ifdef mprDEBUG_PROT
5098 PrintS("// Determinant of submatrix: ");nPrint(smv);PrintLn();
5099#endif
5100 if ( nIsZero(smv) )
5101 {
5102 WerrorS("Unsuitable input ideal: Minor of resultant matrix is singular!");
5103 return TRUE;
5104 }
5105 }
5106
5107 // main task 2: Interpolate specialized resultant polynomials
5108 if ( interpolate_det )
5109 iproots= ures->interpolateDenseSP( false, smv );
5110 else
5111 iproots= ures->specializeInU( false, smv );
5112
5113 // main task 3: Interpolate specialized resultant polynomials
5114 if ( interpolate_det )
5115 muiproots= ures->interpolateDenseSP( true, smv );
5116 else
5117 muiproots= ures->specializeInU( true, smv );
5118
5119#ifdef mprDEBUG_PROT
5120 int c= iproots[0]->getAnzElems();
5121 for (i=0; i < c; i++) pWrite(iproots[i]->getPoly());
5122 c= muiproots[0]->getAnzElems();
5123 for (i=0; i < c; i++) pWrite(muiproots[i]->getPoly());
5124#endif
5125
5126 // main task 4: Compute roots of specialized polys and match them up
5127 arranger= new rootArranger( iproots, muiproots, howclean );
5128 arranger->solve_all();
5129
5130 // get list of roots
5131 if ( arranger->success() )
5132 {
5133 arranger->arrange();
5134 listofroots= listOfRoots(arranger, gmp_output_digits );
5135 }
5136 else
5137 {
5138 WerrorS("Solver was unable to find any roots!");
5139 return TRUE;
5140 }
5141
5142 // free everything
5143 count= iproots[0]->getAnzElems();
5144 for (i=0; i < count; i++) delete iproots[i];
5145 omFreeSize( (ADDRESS) iproots, count * sizeof(rootContainer*) );
5146 count= muiproots[0]->getAnzElems();
5147 for (i=0; i < count; i++) delete muiproots[i];
5148 omFreeSize( (ADDRESS) muiproots, count * sizeof(rootContainer*) );
5149
5150 delete ures;
5151 delete arranger;
5152 nDelete( &smv );
5153
5154 res->data= (void *)listofroots;
5155
5156 //emptylist->Clean();
5157 // omFreeSize( (ADDRESS) emptylist, sizeof(slists) );
5158
5159 return FALSE;
5160}
5161
5162// from mpr_numeric.cc
5163lists listOfRoots( rootArranger* self, const unsigned int oprec )
5164{
5165 int i,j;
5166 int count= self->roots[0]->getAnzRoots(); // number of roots
5167 int elem= self->roots[0]->getAnzElems(); // number of koordinates per root
5168
5169 lists listofroots= (lists)omAlloc( sizeof(slists) ); // must be done this way!
5170
5171 if ( self->found_roots )
5172 {
5173 listofroots->Init( count );
5174
5175 for (i=0; i < count; i++)
5176 {
5177 lists onepoint= (lists)omAlloc(sizeof(slists)); // must be done this way!
5178 onepoint->Init(elem);
5179 for ( j= 0; j < elem; j++ )
5180 {
5181 if ( !rField_is_long_C(currRing) )
5182 {
5183 onepoint->m[j].rtyp=STRING_CMD;
5184 onepoint->m[j].data=(void *)complexToStr((*self->roots[j])[i],oprec, currRing->cf);
5185 }
5186 else
5187 {
5188 onepoint->m[j].rtyp=NUMBER_CMD;
5189 onepoint->m[j].data=(void *)n_Copy((number)(self->roots[j]->getRoot(i)), currRing->cf);
5190 }
5191 onepoint->m[j].next= NULL;
5192 onepoint->m[j].name= NULL;
5193 }
5194 listofroots->m[i].rtyp=LIST_CMD;
5195 listofroots->m[i].data=(void *)onepoint;
5196 listofroots->m[j].next= NULL;
5197 listofroots->m[j].name= NULL;
5198 }
5199
5200 }
5201 else
5202 {
5203 listofroots->Init( 0 );
5204 }
5205
5206 return listofroots;
5207}
5208
5209// from ring.cc
5211{
5212 ring rg = NULL;
5213 if (h!=NULL)
5214 {
5215// Print(" new ring:%s (l:%d)\n",IDID(h),IDLEV(h));
5216 rg = IDRING(h);
5217 if (rg==NULL) return; //id <>NULL, ring==NULL
5218 omCheckAddrSize((ADDRESS)h,sizeof(idrec));
5219 if (IDID(h)) // OB: ????
5221 rTest(rg);
5222 }
5223 else return;
5224
5225 // clean up history
5226 if (currRing!=NULL)
5227 {
5229 {
5231 }
5232
5233 if (rg!=currRing)/*&&(currRing!=NULL)*/
5234 {
5235 if (rg->cf!=currRing->cf)
5236 {
5239 {
5240 if (TEST_V_ALLWARN)
5241 Warn("deleting denom_list for ring change to %s",IDID(h));
5242 do
5243 {
5244 n_Delete(&(dd->n),currRing->cf);
5245 dd=dd->next;
5248 } while(DENOMINATOR_LIST!=NULL);
5249 }
5250 }
5251 }
5252 }
5253
5254 // test for valid "currRing":
5255 if ((rg!=NULL) && (rg->idroot==NULL))
5256 {
5257 ring old=rg;
5258 rg=rAssure_HasComp(rg);
5259 if (old!=rg)
5260 {
5261 rKill(old);
5262 IDRING(h)=rg;
5263 }
5264 }
5265 /*------------ change the global ring -----------------------*/
5266 rChangeCurrRing(rg);
5267 currRingHdl = h;
5268}
5269
5271{
5272 // change some bad orderings/combination into better ones
5273 leftv h=ord;
5274 while(h!=NULL)
5275 {
5276 BOOLEAN change=FALSE;
5277 intvec *iv = (intvec *)(h->data);
5278 // ws(-i) -> wp(i)
5279 if ((*iv)[1]==ringorder_ws)
5280 {
5281 BOOLEAN neg=TRUE;
5282 for(int i=2;i<iv->length();i++)
5283 if((*iv)[i]>=0) { neg=FALSE; break; }
5284 if (neg)
5285 {
5286 (*iv)[1]=ringorder_wp;
5287 for(int i=2;i<iv->length();i++)
5288 (*iv)[i]= - (*iv)[i];
5289 change=TRUE;
5290 }
5291 }
5292 // Ws(-i) -> Wp(i)
5293 if ((*iv)[1]==ringorder_Ws)
5294 {
5295 BOOLEAN neg=TRUE;
5296 for(int i=2;i<iv->length();i++)
5297 if((*iv)[i]>=0) { neg=FALSE; break; }
5298 if (neg)
5299 {
5300 (*iv)[1]=ringorder_Wp;
5301 for(int i=2;i<iv->length();i++)
5302 (*iv)[i]= -(*iv)[i];
5303 change=TRUE;
5304 }
5305 }
5306 // wp(1) -> dp
5307 if ((*iv)[1]==ringorder_wp)
5308 {
5309 BOOLEAN all_one=TRUE;
5310 for(int i=2;i<iv->length();i++)
5311 if((*iv)[i]!=1) { all_one=FALSE; break; }
5312 if (all_one)
5313 {
5314 intvec *iv2=new intvec(3);
5315 (*iv2)[0]=1;
5316 (*iv2)[1]=ringorder_dp;
5317 (*iv2)[2]=iv->length()-2;
5318 delete iv;
5319 iv=iv2;
5320 h->data=iv2;
5321 change=TRUE;
5322 }
5323 }
5324 // Wp(1) -> Dp
5325 if ((*iv)[1]==ringorder_Wp)
5326 {
5327 BOOLEAN all_one=TRUE;
5328 for(int i=2;i<iv->length();i++)
5329 if((*iv)[i]!=1) { all_one=FALSE; break; }
5330 if (all_one)
5331 {
5332 intvec *iv2=new intvec(3);
5333 (*iv2)[0]=1;
5334 (*iv2)[1]=ringorder_Dp;
5335 (*iv2)[2]=iv->length()-2;
5336 delete iv;
5337 iv=iv2;
5338 h->data=iv2;
5339 change=TRUE;
5340 }
5341 }
5342 // dp(1)/Dp(1)/rp(1) -> lp(1)
5343 if (((*iv)[1]==ringorder_dp)
5344 || ((*iv)[1]==ringorder_Dp)
5345 || ((*iv)[1]==ringorder_rp))
5346 {
5347 if (iv->length()==3)
5348 {
5349 if ((*iv)[2]==1)
5350 {
5351 if(h->next!=NULL)
5352 {
5353 intvec *iv2 = (intvec *)(h->next->data);
5354 if ((*iv2)[1]==ringorder_lp)
5355 {
5356 (*iv)[1]=ringorder_lp;
5357 change=TRUE;
5358 }
5359 }
5360 }
5361 }
5362 }
5363 // lp(i),lp(j) -> lp(i+j)
5364 if(((*iv)[1]==ringorder_lp)
5365 && (h->next!=NULL))
5366 {
5367 intvec *iv2 = (intvec *)(h->next->data);
5368 if ((*iv2)[1]==ringorder_lp)
5369 {
5370 leftv hh=h->next;
5371 h->next=hh->next;
5372 hh->next=NULL;
5373 if ((*iv2)[0]==1)
5374 (*iv)[2] += 1; // last block unspecified, at least 1
5375 else
5376 (*iv)[2] += (*iv2)[2];
5377 hh->CleanUp();
5378 omFree(hh);
5379 change=TRUE;
5380 }
5381 }
5382 // -------------------
5383 if (!change) h=h->next;
5384 }
5385 return ord;
5386}
5387
5388
5390{
5391 int last = 0, o=0, n = 1, i=0, typ = 1, j;
5392 ord=rOptimizeOrdAsSleftv(ord);
5393 sleftv *sl = ord;
5394
5395 // determine nBlocks
5396 while (sl!=NULL)
5397 {
5398 intvec *iv = (intvec *)(sl->data);
5399 if (((*iv)[1]==ringorder_c)||((*iv)[1]==ringorder_C))
5400 i++;
5401 else if ((*iv)[1]==ringorder_L)
5402 {
5403 R->wanted_maxExp=(*iv)[2]*2+1;
5404 n--;
5405 }
5406 else if (((*iv)[1]!=ringorder_a)
5407 && ((*iv)[1]!=ringorder_a64)
5408 && ((*iv)[1]!=ringorder_am))
5409 o++;
5410 n++;
5411 sl=sl->next;
5412 }
5413 // check whether at least one real ordering
5414 if (o==0)
5415 {
5416 WerrorS("invalid combination of orderings");
5417 return TRUE;
5418 }
5419 // if no c/C ordering is given, increment n
5420 if (i==0) n++;
5421 else if (i != 1)
5422 {
5423 // throw error if more than one is given
5424 WerrorS("more than one ordering c/C specified");
5425 return TRUE;
5426 }
5427
5428 // initialize fields of R
5429 R->order=(rRingOrder_t *)omAlloc0(n*sizeof(rRingOrder_t));
5430 R->block0=(int *)omAlloc0(n*sizeof(int));
5431 R->block1=(int *)omAlloc0(n*sizeof(int));
5432 R->wvhdl=(int**)omAlloc0(n*sizeof(int_ptr));
5433
5434 int *weights=(int*)omAlloc0((R->N+1)*sizeof(int));
5435
5436 // init order, so that rBlocks works correctly
5437 for (j=0; j < n-1; j++)
5438 R->order[j] = ringorder_unspec;
5439 // set last _C order, if no c/C order was given
5440 if (i == 0) R->order[n-2] = ringorder_C;
5441
5442 /* init orders */
5443 sl=ord;
5444 n=-1;
5445 while (sl!=NULL)
5446 {
5447 intvec *iv;
5448 iv = (intvec *)(sl->data);
5449 if ((*iv)[1]!=ringorder_L)
5450 {
5451 n++;
5452
5453 /* the format of an ordering:
5454 * iv[0]: factor
5455 * iv[1]: ordering
5456 * iv[2..end]: weights
5457 */
5458 R->order[n] = (rRingOrder_t)((*iv)[1]);
5459 typ=1;
5460 switch ((*iv)[1])
5461 {
5462 case ringorder_ws:
5463 case ringorder_Ws:
5464 typ=-1; // and continue
5465 case ringorder_wp:
5466 case ringorder_Wp:
5467 R->wvhdl[n]=(int*)omAlloc((iv->length()-1)*sizeof(int));
5468 R->block0[n] = last+1;
5469 for (i=2; i<iv->length(); i++)
5470 {
5471 R->wvhdl[n][i-2] = (*iv)[i];
5472 last++;
5473 if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5474 }
5475 R->block1[n] = si_min(last,R->N);
5476 break;
5477 case ringorder_ls:
5478 case ringorder_ds:
5479 case ringorder_Ds:
5480 case ringorder_rs:
5481 typ=-1; // and continue
5482 case ringorder_lp:
5483 case ringorder_dp:
5484 case ringorder_Dp:
5485 case ringorder_rp:
5486 R->block0[n] = last+1;
5487 if (iv->length() == 3) last+=(*iv)[2];
5488 else last += (*iv)[0];
5489 R->block1[n] = si_min(last,R->N);
5490 if (rCheckIV(iv)) return TRUE;
5491 for(i=si_min(rVar(R),R->block1[n]);i>=R->block0[n];i--)
5492 {
5493 if (weights[i]==0) weights[i]=typ;
5494 }
5495 break;
5496
5497 case ringorder_s: // no 'rank' params!
5498 {
5499
5500 if(iv->length() > 3)
5501 return TRUE;
5502
5503 if(iv->length() == 3)
5504 {
5505 const int s = (*iv)[2];
5506 R->block0[n] = s;
5507 R->block1[n] = s;
5508 }
5509 break;
5510 }
5511 case ringorder_IS:
5512 {
5513 if(iv->length() != 3) return TRUE;
5514
5515 const int s = (*iv)[2];
5516
5517 if( 1 < s || s < -1 ) return TRUE;
5518
5519 R->block0[n] = s;
5520 R->block1[n] = s;
5521 break;
5522 }
5523 case ringorder_S:
5524 case ringorder_c:
5525 case ringorder_C:
5526 {
5527 if (rCheckIV(iv)) return TRUE;
5528 break;
5529 }
5530 case ringorder_aa:
5531 case ringorder_a:
5532 {
5533 R->block0[n] = last+1;
5534 R->block1[n] = si_min(last+iv->length()-2 , R->N);
5535 R->wvhdl[n] = (int*)omAlloc((iv->length()-1)*sizeof(int));
5536 for (i=2; i<iv->length(); i++)
5537 {
5538 R->wvhdl[n][i-2]=(*iv)[i];
5539 last++;
5540 if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5541 }
5542 last=R->block0[n]-1;
5543 break;
5544 }
5545 case ringorder_am:
5546 {
5547 R->block0[n] = last+1;
5548 R->block1[n] = si_min(last+iv->length()-2 , R->N);
5549 R->wvhdl[n] = (int*)omAlloc(iv->length()*sizeof(int));
5550 if (R->block1[n]- R->block0[n]+2>=iv->length())
5551 WarnS("missing module weights");
5552 for (i=2; i<=(R->block1[n]-R->block0[n]+2); i++)
5553 {
5554 R->wvhdl[n][i-2]=(*iv)[i];
5555 last++;
5556 if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5557 }
5558 R->wvhdl[n][i-2]=iv->length() -3 -(R->block1[n]- R->block0[n]);
5559 for (; i<iv->length(); i++)
5560 {
5561 R->wvhdl[n][i-1]=(*iv)[i];
5562 }
5563 last=R->block0[n]-1;
5564 break;
5565 }
5566 case ringorder_a64:
5567 {
5568 R->block0[n] = last+1;
5569 R->block1[n] = si_min(last+iv->length()-2 , R->N);
5570 R->wvhdl[n] = (int*)omAlloc((iv->length()-1)*sizeof(int64));
5571 int64 *w=(int64 *)R->wvhdl[n];
5572 for (i=2; i<iv->length(); i++)
5573 {
5574 w[i-2]=(*iv)[i];
5575 last++;
5576 if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5577 }
5578 last=R->block0[n]-1;
5579 break;
5580 }
5581 case ringorder_M:
5582 {
5583 int Mtyp=rTypeOfMatrixOrder(iv);
5584 if (Mtyp==0) return TRUE;
5585 if (Mtyp==-1) typ = -1;
5586
5587 R->wvhdl[n] =( int *)omAlloc((iv->length()-1)*sizeof(int));
5588 for (i=2; i<iv->length();i++)
5589 R->wvhdl[n][i-2]=(*iv)[i];
5590
5591 R->block0[n] = last+1;
5592 last += (int)sqrt((double)(iv->length()-2));
5593 R->block1[n] = si_min(last,R->N);
5594 for(i=R->block1[n];i>=R->block0[n];i--)
5595 {
5596 if (weights[i]==0) weights[i]=typ;
5597 }
5598 break;
5599 }
5600
5601 case ringorder_no:
5602 R->order[n] = ringorder_unspec;
5603 return TRUE;
5604
5605 default:
5606 Werror("Internal Error: Unknown ordering %d", (*iv)[1]);
5607 R->order[n] = ringorder_unspec;
5608 return TRUE;
5609 }
5610 }
5611 if (last>R->N)
5612 {
5613 Werror("mismatch of number of vars (%d) and ordering (>=%d vars)",
5614 R->N,last);
5615 return TRUE;
5616 }
5617 sl=sl->next;
5618 }
5619 // find OrdSgn:
5620 R->OrdSgn = 1;
5621 for(i=1;i<=R->N;i++)
5622 { if (weights[i]<0) { R->OrdSgn=-1;break; }}
5623 omFree(weights);
5624
5625 // check for complete coverage
5626 while ( n >= 0 && (
5627 (R->order[n]==ringorder_c)
5628 || (R->order[n]==ringorder_C)
5629 || (R->order[n]==ringorder_s)
5630 || (R->order[n]==ringorder_S)
5631 || (R->order[n]==ringorder_IS)
5632 )) n--;
5633
5634 assume( n >= 0 );
5635
5636 if (R->block1[n] != R->N)
5637 {
5638 if (((R->order[n]==ringorder_dp) ||
5639 (R->order[n]==ringorder_ds) ||
5640 (R->order[n]==ringorder_Dp) ||
5641 (R->order[n]==ringorder_Ds) ||
5642 (R->order[n]==ringorder_rp) ||
5643 (R->order[n]==ringorder_rs) ||
5644 (R->order[n]==ringorder_lp) ||
5645 (R->order[n]==ringorder_ls))
5646 &&
5647 R->block0[n] <= R->N)
5648 {
5649 R->block1[n] = R->N;
5650 }
5651 else
5652 {
5653 Werror("mismatch of number of vars (%d) and ordering (%d vars)",
5654 R->N,R->block1[n]);
5655 return TRUE;
5656 }
5657 }
5658 return FALSE;
5659}
5660
5662{
5663
5664 while(sl!=NULL)
5665 {
5666 if ((sl->rtyp == IDHDL)||(sl->rtyp==ALIAS_CMD))
5667 {
5668 *p = omStrDup(sl->Name());
5669 }
5670 else if (sl->name!=NULL)
5671 {
5672 *p = (char*)sl->name;
5673 sl->name=NULL;
5674 }
5675 else if (sl->rtyp==POLY_CMD)
5676 {
5677 sleftv s_sl;
5678 iiConvert(POLY_CMD,ANY_TYPE,-1,sl,&s_sl);
5679 if (s_sl.name != NULL)
5680 {
5681 *p = (char*)s_sl.name; s_sl.name=NULL;
5682 }
5683 else
5684 *p = NULL;
5685 sl->next = s_sl.next;
5686 s_sl.next = NULL;
5687 s_sl.CleanUp();
5688 if (*p == NULL) return TRUE;
5689 }
5690 else return TRUE;
5691 p++;
5692 sl=sl->next;
5693 }
5694 return FALSE;
5695}
5696
5697const short MAX_SHORT = 32767; // (1 << (sizeof(short)*8)) - 1;
5698
5699////////////////////
5700//
5701// rInit itself:
5702//
5703// INPUT: pn: ch & parameter (names), rv: variable (names)
5704// ord: ordering (all !=NULL)
5705// RETURN: currRingHdl on success
5706// NULL on error
5707// NOTE: * makes new ring to current ring, on success
5708// * considers input sleftv's as read-only
5709ring rInit(leftv pn, leftv rv, leftv ord)
5710{
5711 int float_len=0;
5712 int float_len2=0;
5713 ring R = NULL;
5714 //BOOLEAN ffChar=FALSE;
5715
5716 /* ch -------------------------------------------------------*/
5717 // get ch of ground field
5718
5719 // allocated ring
5720 R = (ring) omAlloc0Bin(sip_sring_bin);
5721
5722 coeffs cf = NULL;
5723
5724 assume( pn != NULL );
5725 const int P = pn->listLength();
5726
5727 if (pn->Typ()==CRING_CMD)
5728 {
5729 cf=(coeffs)pn->CopyD();
5730 leftv pnn=pn;
5731 if(P>1) /*parameter*/
5732 {
5733 pnn = pnn->next;
5734 const int pars = pnn->listLength();
5735 assume( pars > 0 );
5736 char ** names = (char**)omAlloc0(pars * sizeof(char_ptr));
5737
5738 if (rSleftvList2StringArray(pnn, names))
5739 {
5740 WerrorS("parameter expected");
5741 goto rInitError;
5742 }
5743
5744 TransExtInfo extParam;
5745
5746 extParam.r = rDefault( cf, pars, names); // Q/Zp [ p_1, ... p_pars ]
5747 for(int i=pars-1; i>=0;i--)
5748 {
5749 omFree(names[i]);
5750 }
5751 omFree(names);
5752
5753 cf = nInitChar(n_transExt, &extParam);
5754 }
5755 assume( cf != NULL );
5756 }
5757 else if (pn->Typ()==INT_CMD)
5758 {
5759 int ch = (int)(long)pn->Data();
5760 leftv pnn=pn;
5761
5762 /* parameter? -------------------------------------------------------*/
5763 pnn = pnn->next;
5764
5765 if (pnn == NULL) // no params!?
5766 {
5767 if (ch!=0)
5768 {
5769 int ch2=IsPrime(ch);
5770 if ((ch<2)||(ch!=ch2))
5771 {
5772 Warn("%d is invalid as characteristic of the ground field. 32003 is used.", ch);
5773 ch=32003;
5774 }
5775 #ifndef TEST_ZN_AS_ZP
5776 cf = nInitChar(n_Zp, (void*)(long)ch);
5777 #else
5778 mpz_t modBase;
5779 mpz_init_set_ui(modBase, (long)ch);
5780 ZnmInfo info;
5781 info.base= modBase;
5782 info.exp= 1;
5783 cf=nInitChar(n_Zn,(void*) &info);
5784 cf->is_field=1;
5785 cf->is_domain=1;
5786 cf->has_simple_Inverse=1;
5787 #endif
5788 }
5789 else
5790 cf = nInitChar(n_Q, (void*)(long)ch);
5791 }
5792 else
5793 {
5794 const int pars = pnn->listLength();
5795
5796 assume( pars > 0 );
5797
5798 // predefined finite field: (p^k, a)
5799 if ((ch!=0) && (ch!=IsPrime(ch)) && (pars == 1))
5800 {
5801 GFInfo param;
5802
5803 param.GFChar = ch;
5804 param.GFDegree = 1;
5805 param.GFPar_name = pnn->name;
5806
5807 cf = nInitChar(n_GF, &param);
5808 }
5809 else // (0/p, a, b, ..., z)
5810 {
5811 if ((ch!=0) && (ch!=IsPrime(ch)))
5812 {
5813 WerrorS("too many parameters");
5814 goto rInitError;
5815 }
5816
5817 char ** names = (char**)omAlloc0(pars * sizeof(char_ptr));
5818
5819 if (rSleftvList2StringArray(pnn, names))
5820 {
5821 WerrorS("parameter expected");
5822 goto rInitError;
5823 }
5824
5825 TransExtInfo extParam;
5826
5827 extParam.r = rDefault( ch, pars, names); // Q/Zp [ p_1, ... p_pars ]
5828 for(int i=pars-1; i>=0;i--)
5829 {
5830 omFree(names[i]);
5831 }
5832 omFree(names);
5833
5834 cf = nInitChar(n_transExt, &extParam);
5835 }
5836 }
5837
5838 //if (cf==NULL) ->Error: Invalid ground field specification
5839 }
5840 else if ((pn->name != NULL)
5841 && ((strcmp(pn->name,"real")==0) || (strcmp(pn->name,"complex")==0)))
5842 {
5843 leftv pnn=pn->next;
5844 BOOLEAN complex_flag=(strcmp(pn->name,"complex")==0);
5845 if ((pnn!=NULL) && (pnn->Typ()==INT_CMD))
5846 {
5847 float_len=(int)(long)pnn->Data();
5848 float_len2=float_len;
5849 pnn=pnn->next;
5850 if ((pnn!=NULL) && (pnn->Typ()==INT_CMD))
5851 {
5852 float_len2=(int)(long)pnn->Data();
5853 pnn=pnn->next;
5854 }
5855 }
5856
5857 if (!complex_flag)
5858 complex_flag= (pnn!=NULL) && (pnn->name!=NULL);
5859 if( !complex_flag && (float_len2 <= (short)SHORT_REAL_LENGTH))
5860 cf=nInitChar(n_R, NULL);
5861 else // longR or longC?
5862 {
5863 LongComplexInfo param;
5864
5865 param.float_len = si_min (float_len, 32767);
5866 param.float_len2 = si_min (float_len2, 32767);
5867
5868 // set the parameter name
5869 if (complex_flag)
5870 {
5871 if (param.float_len < SHORT_REAL_LENGTH)
5872 {
5875 }
5876 if ((pnn == NULL) || (pnn->name == NULL))
5877 param.par_name=(const char*)"i"; //default to i
5878 else
5879 param.par_name = (const char*)pnn->name;
5880 }
5881
5882 cf = nInitChar(complex_flag ? n_long_C: n_long_R, (void*)&param);
5883 }
5884 assume( cf != NULL );
5885 }
5886#ifdef HAVE_RINGS
5887 else if ((pn->name != NULL) && (strcmp(pn->name, "integer") == 0))
5888 {
5889 // TODO: change to use coeffs_BIGINT!?
5890 mpz_t modBase;
5891 unsigned int modExponent = 1;
5892 mpz_init_set_si(modBase, 0);
5893 if (pn->next!=NULL)
5894 {
5895 leftv pnn=pn;
5896 if (pnn->next->Typ()==INT_CMD)
5897 {
5898 pnn=pnn->next;
5899 mpz_set_ui(modBase, (long) pnn->Data());
5900 if ((pnn->next!=NULL) && (pnn->next->Typ()==INT_CMD))
5901 {
5902 pnn=pnn->next;
5903 modExponent = (long) pnn->Data();
5904 }
5905 while ((pnn->next!=NULL) && (pnn->next->Typ()==INT_CMD))
5906 {
5907 pnn=pnn->next;
5908 mpz_mul_ui(modBase, modBase, (int)(long) pnn->Data());
5909 }
5910 }
5911 else if (pnn->next->Typ()==BIGINT_CMD)
5912 {
5913 number p=(number)pnn->next->CopyD();
5914 n_MPZ(modBase,p,coeffs_BIGINT);
5916 }
5917 }
5918 else
5920
5921 if ((mpz_cmp_ui(modBase, 1) == 0) && (mpz_sgn1(modBase) < 0))
5922 {
5923 WerrorS("Wrong ground ring specification (module is 1)");
5924 goto rInitError;
5925 }
5926 if (modExponent < 1)
5927 {
5928 WerrorS("Wrong ground ring specification (exponent smaller than 1");
5929 goto rInitError;
5930 }
5931 // module is 0 ---> integers ringtype = 4;
5932 // we have an exponent
5933 if (modExponent > 1 && cf == NULL)
5934 {
5935 if ((mpz_cmp_ui(modBase, 2) == 0) && (modExponent <= 8*sizeof(unsigned long)))
5936 {
5937 /* this branch should be active for modExponent = 2..32 resp. 2..64,
5938 depending on the size of a long on the respective platform */
5939 //ringtype = 1; // Use Z/2^ch
5940 cf=nInitChar(n_Z2m,(void*)(long)modExponent);
5941 }
5942 else
5943 {
5944 if (mpz_sgn1(modBase)==0)
5945 {
5946 WerrorS("modulus must not be 0 or parameter not allowed");
5947 goto rInitError;
5948 }
5949 //ringtype = 3;
5950 ZnmInfo info;
5951 info.base= modBase;
5952 info.exp= modExponent;
5953 cf=nInitChar(n_Znm,(void*) &info); //exponent is missing
5954 }
5955 }
5956 // just a module m > 1
5957 else if (cf == NULL)
5958 {
5959 if (mpz_sgn1(modBase)==0)
5960 {
5961 WerrorS("modulus must not be 0 or parameter not allowed");
5962 goto rInitError;
5963 }
5964 //ringtype = 2;
5965 ZnmInfo info;
5966 info.base= modBase;
5967 info.exp= modExponent;
5968 cf=nInitChar(n_Zn,(void*) &info);
5969 }
5970 assume( cf != NULL );
5971 mpz_clear(modBase);
5972 }
5973#endif
5974 // ring NEW = OLD, (), (); where OLD is a polynomial ring...
5975 else if ((pn->Typ()==RING_CMD) && (P == 1))
5976 {
5977 TransExtInfo extParam;
5978 extParam.r = (ring)pn->Data();
5979 extParam.r->ref++;
5980 cf = nInitChar(n_transExt, &extParam);
5981 }
5982 //else if ((pn->Typ()==QRING_CMD) && (P == 1)) // same for qrings - which should be fields!?
5983 //{
5984 // AlgExtInfo extParam;
5985 // extParam.r = (ring)pn->Data();
5986
5987 // cf = nInitChar(n_algExt, &extParam); // Q[a]/<minideal>
5988 //}
5989 else
5990 {
5991 WerrorS("Wrong or unknown ground field specification");
5992#if 0
5993// debug stuff for unknown cf descriptions:
5994 sleftv* p = pn;
5995 while (p != NULL)
5996 {
5997 Print( "pn[%p]: type: %d [%s]: %p, name: %s", (void*)p, p->Typ(), Tok2Cmdname(p->Typ()), p->Data(), (p->name == NULL? "NULL" : p->name) );
5998 PrintLn();
5999 p = p->next;
6000 }
6001#endif
6002 goto rInitError;
6003 }
6004
6005 /*every entry in the new ring is initialized to 0*/
6006
6007 /* characteristic -----------------------------------------------*/
6008 /* input: 0 ch=0 : Q parameter=NULL ffChar=FALSE float_len
6009 * 0 1 : Q(a,...) *names FALSE
6010 * 0 -1 : R NULL FALSE 0
6011 * 0 -1 : R NULL FALSE prec. >6
6012 * 0 -1 : C *names FALSE prec. 0..?
6013 * p p : Fp NULL FALSE
6014 * p -p : Fp(a) *names FALSE
6015 * q q : GF(q=p^n) *names TRUE
6016 */
6017 if (cf==NULL)
6018 {
6019 WerrorS("Invalid ground field specification");
6020 goto rInitError;
6021// const int ch=32003;
6022// cf=nInitChar(n_Zp, (void*)(long)ch);
6023 }
6024
6025 assume( R != NULL );
6026
6027 R->cf = cf;
6028
6029 /* names and number of variables-------------------------------------*/
6030 {
6031 int l=rv->listLength();
6032
6033 if (l>MAX_SHORT)
6034 {
6035 Werror("too many ring variables(%d), max is %d",l,MAX_SHORT);
6036 goto rInitError;
6037 }
6038 R->N = l; /*rv->listLength();*/
6039 }
6040 R->names = (char **)omAlloc0(R->N * sizeof(char_ptr));
6041 if (rSleftvList2StringArray(rv, R->names))
6042 {
6043 WerrorS("name of ring variable expected");
6044 goto rInitError;
6045 }
6046
6047 /* check names and parameters for conflicts ------------------------- */
6048 rRenameVars(R); // conflicting variables will be renamed
6049 /* ordering -------------------------------------------------------------*/
6050 if (rSleftvOrdering2Ordering(ord, R))
6051 goto rInitError;
6052
6053 // Complete the initialization
6054 if (rComplete(R,1))
6055 goto rInitError;
6056
6057/*#ifdef HAVE_RINGS
6058// currently, coefficients which are ring elements require a global ordering:
6059 if (rField_is_Ring(R) && (R->OrdSgn==-1))
6060 {
6061 WerrorS("global ordering required for these coefficients");
6062 goto rInitError;
6063 }
6064#endif*/
6065
6066 rTest(R);
6067
6068 // try to enter the ring into the name list
6069 // need to clean up sleftv here, before this ring can be set to
6070 // new currRing or currRing can be killed beacuse new ring has
6071 // same name
6072 pn->CleanUp();
6073 rv->CleanUp();
6074 ord->CleanUp();
6075 //if ((tmp = enterid(s, myynest, RING_CMD, &IDROOT))==NULL)
6076 // goto rInitError;
6077
6078 //memcpy(IDRING(tmp),R,sizeof(*R));
6079 // set current ring
6080 //omFreeBin(R, ip_sring_bin);
6081 //return tmp;
6082 return R;
6083
6084 // error case:
6085 rInitError:
6086 if ((R != NULL)&&(R->cf!=NULL)) rDelete(R);
6087 pn->CleanUp();
6088 rv->CleanUp();
6089 ord->CleanUp();
6090 return NULL;
6091}
6092
6093ring rSubring(ring org_ring, sleftv* rv)
6094{
6095 ring R = rCopy0(org_ring);
6096 int *perm=(int *)omAlloc0((org_ring->N+1)*sizeof(int));
6097 int n = rBlocks(org_ring), i=0, j;
6098
6099 /* names and number of variables-------------------------------------*/
6100 {
6101 int l=rv->listLength();
6102 if (l>MAX_SHORT)
6103 {
6104 Werror("too many ring variables(%d), max is %d",l,MAX_SHORT);
6105 goto rInitError;
6106 }
6107 R->N = l; /*rv->listLength();*/
6108 }
6109 omFree(R->names);
6110 R->names = (char **)omAlloc0(R->N * sizeof(char_ptr));
6111 if (rSleftvList2StringArray(rv, R->names))
6112 {
6113 WerrorS("name of ring variable expected");
6114 goto rInitError;
6115 }
6116
6117 /* check names for subring in org_ring ------------------------- */
6118 {
6119 i=0;
6120
6121 for(j=0;j<R->N;j++)
6122 {
6123 for(;i<org_ring->N;i++)
6124 {
6125 if (strcmp(org_ring->names[i],R->names[j])==0)
6126 {
6127 perm[i+1]=j+1;
6128 break;
6129 }
6130 }
6131 if (i>org_ring->N)
6132 {
6133 Werror("variable %d (%s) not in basering",j+1,R->names[j]);
6134 break;
6135 }
6136 }
6137 }
6138 //Print("perm=");
6139 //for(i=1;i<org_ring->N;i++) Print("v%d -> v%d\n",i,perm[i]);
6140 /* ordering -------------------------------------------------------------*/
6141
6142 for(i=0;i<n;i++)
6143 {
6144 int min_var=-1;
6145 int max_var=-1;
6146 for(j=R->block0[i];j<=R->block1[i];j++)
6147 {
6148 if (perm[j]>0)
6149 {
6150 if (min_var==-1) min_var=perm[j];
6151 max_var=perm[j];
6152 }
6153 }
6154 if (min_var!=-1)
6155 {
6156 //Print("block %d: old %d..%d, now:%d..%d\n",
6157 // i,R->block0[i],R->block1[i],min_var,max_var);
6158 R->block0[i]=min_var;
6159 R->block1[i]=max_var;
6160 if (R->wvhdl[i]!=NULL)
6161 {
6162 omFree(R->wvhdl[i]);
6163 R->wvhdl[i]=(int*)omAlloc0((max_var-min_var+1)*sizeof(int));
6164 for(j=org_ring->block0[i];j<=org_ring->block1[i];j++)
6165 {
6166 if (perm[j]>0)
6167 {
6168 R->wvhdl[i][perm[j]-R->block0[i]]=
6169 org_ring->wvhdl[i][j-org_ring->block0[i]];
6170 //Print("w%d=%d (orig_w%d)\n",perm[j],R->wvhdl[i][perm[j]-R->block0[i]],j);
6171 }
6172 }
6173 }
6174 }
6175 else
6176 {
6177 if(R->block0[i]>0)
6178 {
6179 //Print("skip block %d\n",i);
6180 R->order[i]=ringorder_unspec;
6181 if (R->wvhdl[i] !=NULL) omFree(R->wvhdl[i]);
6182 R->wvhdl[i]=NULL;
6183 }
6184 //else Print("keep block %d\n",i);
6185 }
6186 }
6187 i=n-1;
6188 while(i>0)
6189 {
6190 // removed unneded blocks
6191 if(R->order[i-1]==ringorder_unspec)
6192 {
6193 for(j=i;j<=n;j++)
6194 {
6195 R->order[j-1]=R->order[j];
6196 R->block0[j-1]=R->block0[j];
6197 R->block1[j-1]=R->block1[j];
6198 if (R->wvhdl[j-1] !=NULL) omFree(R->wvhdl[j-1]);
6199 R->wvhdl[j-1]=R->wvhdl[j];
6200 }
6201 R->order[n]=ringorder_unspec;
6202 n--;
6203 }
6204 i--;
6205 }
6206 n=rBlocks(org_ring)-1;
6207 while (R->order[n]==0) n--;
6208 while (R->order[n]==ringorder_unspec) n--;
6209 if ((R->order[n]==ringorder_c) || (R->order[n]==ringorder_C)) n--;
6210 if (R->block1[n] != R->N)
6211 {
6212 if (((R->order[n]==ringorder_dp) ||
6213 (R->order[n]==ringorder_ds) ||
6214 (R->order[n]==ringorder_Dp) ||
6215 (R->order[n]==ringorder_Ds) ||
6216 (R->order[n]==ringorder_rp) ||
6217 (R->order[n]==ringorder_rs) ||
6218 (R->order[n]==ringorder_lp) ||
6219 (R->order[n]==ringorder_ls))
6220 &&
6221 R->block0[n] <= R->N)
6222 {
6223 R->block1[n] = R->N;
6224 }
6225 else
6226 {
6227 Werror("mismatch of number of vars (%d) and ordering (%d vars) in block %d",
6228 R->N,R->block1[n],n);
6229 return NULL;
6230 }
6231 }
6232 omFree(perm);
6233 // find OrdSgn:
6234 R->OrdSgn = org_ring->OrdSgn; // IMPROVE!
6235 //for(i=1;i<=R->N;i++)
6236 //{ if (weights[i]<0) { R->OrdSgn=-1;break; }}
6237 //omFree(weights);
6238 // Complete the initialization
6239 if (rComplete(R,1))
6240 goto rInitError;
6241
6242 rTest(R);
6243
6244 if (rv != NULL) rv->CleanUp();
6245
6246 return R;
6247
6248 // error case:
6249 rInitError:
6250 if (R != NULL) rDelete(R);
6251 if (rv != NULL) rv->CleanUp();
6252 return NULL;
6253}
6254
6255void rKill(ring r)
6256{
6257 if ((r->ref<=0)&&(r->order!=NULL))
6258 {
6259#ifdef RDEBUG
6260 if (traceit &TRACE_SHOW_RINGS) Print("kill ring %lx\n",(long)r);
6261#endif
6262 int j;
6263 for (j=0;j<myynest;j++)
6264 {
6265 if (iiLocalRing[j]==r)
6266 {
6267 if (j==0) WarnS("killing the basering for level 0");
6269 }
6270 }
6271// any variables depending on r ?
6272 while (r->idroot!=NULL)
6273 {
6274 r->idroot->lev=myynest; // avoid warning about kill global objects
6275 killhdl2(r->idroot,&(r->idroot),r);
6276 }
6277 if (r==currRing)
6278 {
6279 // all dependend stuff is done, clean global vars:
6280 if ((currRing->ppNoether)!=NULL) pDelete(&(currRing->ppNoether));
6282 {
6284 }
6285 //if ((myynest>0) && (iiRETURNEXPR.RingDependend()))
6286 //{
6287 // WerrorS("return value depends on local ring variable (export missing ?)");
6288 // iiRETURNEXPR.CleanUp();
6289 //}
6290 currRing=NULL;
6292 }
6293
6294 /* nKillChar(r); will be called from inside of rDelete */
6295 rDelete(r);
6296 return;
6297 }
6298 rDecRefCnt(r);
6299}
6300
6302{
6303 ring r = IDRING(h);
6304 int ref=0;
6305 if (r!=NULL)
6306 {
6307 // avoid, that sLastPrinted is the last reference to the base ring:
6308 // clean up before killing the last "named" refrence:
6310 && (sLastPrinted.data==(void*)r))
6311 {
6313 }
6314 ref=r->ref;
6315 if ((ref<=0)&&(r==currRing))
6316 {
6317 // cleanup DENOMINATOR_LIST
6319 {
6321 if (TEST_V_ALLWARN)
6322 Warn("deleting denom_list for ring change from %s",IDID(h));
6323 do
6324 {
6325 n_Delete(&(dd->n),currRing->cf);
6326 dd=dd->next;
6329 } while(DENOMINATOR_LIST!=NULL);
6330 }
6331 }
6332 rKill(r);
6333 }
6334 if (h==currRingHdl)
6335 {
6336 if (ref<=0) { currRing=NULL; currRingHdl=NULL;}
6337 else
6338 {
6340 }
6341 }
6342}
6343
6344static idhdl rSimpleFindHdl(const ring r, const idhdl root, const idhdl n)
6345{
6346 idhdl h=root;
6347 while (h!=NULL)
6348 {
6349 if ((IDTYP(h)==RING_CMD)
6350 && (h!=n)
6351 && (IDRING(h)==r)
6352 )
6353 {
6354 return h;
6355 }
6356 h=IDNEXT(h);
6357 }
6358 return NULL;
6359}
6360
6361extern BOOLEAN jjPROC(leftv res, leftv u, leftv v);
6362
6363static void jjINT_S_TO_ID(int n,int *e, leftv res)
6364{
6365 if (n==0) n=1;
6366 ideal l=idInit(n,1);
6367 int i;
6368 poly p;
6369 for(i=rVar(currRing);i>0;i--)
6370 {
6371 if (e[i]>0)
6372 {
6373 n--;
6374 p=pOne();
6375 pSetExp(p,i,1);
6376 pSetm(p);
6377 l->m[n]=p;
6378 if (n==0) break;
6379 }
6380 }
6381 res->data=(char*)l;
6383 omFreeSize((ADDRESS)e,(rVar(currRing)+1)*sizeof(int));
6384}
6386{
6387 int *e=(int *)omAlloc0((rVar(currRing)+1)*sizeof(int));
6388 int n=pGetVariables((poly)u->Data(),e);
6389 jjINT_S_TO_ID(n,e,res);
6390 return FALSE;
6391}
6392
6394{
6395 int *e=(int *)omAlloc0((rVar(currRing)+1)*sizeof(int));
6396 ideal I=(ideal)u->Data();
6397 int i;
6398 int n=0;
6399 for(i=I->nrows*I->ncols-1;i>=0;i--)
6400 {
6401 int n0=pGetVariables(I->m[i],e);
6402 if (n0>n) n=n0;
6403 }
6404 jjINT_S_TO_ID(n,e,res);
6405 return FALSE;
6406}
6407
6408void paPrint(const char *n,package p)
6409{
6410 Print(" %s (",n);
6411 switch (p->language)
6412 {
6413 case LANG_SINGULAR: PrintS("S"); break;
6414 case LANG_C: PrintS("C"); break;
6415 case LANG_TOP: PrintS("T"); break;
6416 case LANG_MAX: PrintS("M"); break;
6417 case LANG_NONE: PrintS("N"); break;
6418 default: PrintS("U");
6419 }
6420 if(p->libname!=NULL)
6421 Print(",%s", p->libname);
6422 PrintS(")");
6423}
6424
6426{
6427 intvec *aa=(intvec*)a->Data();
6428 sleftv tmp_out;
6429 sleftv tmp_in;
6430 leftv curr=res;
6431 BOOLEAN bo=FALSE;
6432 for(int i=0;i<aa->length(); i++)
6433 {
6434 tmp_in.Init();
6435 tmp_in.rtyp=INT_CMD;
6436 tmp_in.data=(void*)(long)(*aa)[i];
6437 if (proc==NULL)
6438 bo=iiExprArith1(&tmp_out,&tmp_in,op);
6439 else
6440 bo=jjPROC(&tmp_out,proc,&tmp_in);
6441 if (bo)
6442 {
6443 res->CleanUp(currRing);
6444 Werror("apply fails at index %d",i+1);
6445 return TRUE;
6446 }
6447 if (i==0) { memcpy(res,&tmp_out,sizeof(tmp_out)); }
6448 else
6449 {
6451 curr=curr->next;
6452 memcpy(curr,&tmp_out,sizeof(tmp_out));
6453 }
6454 }
6455 return FALSE;
6456}
6458{
6459 WerrorS("not implemented");
6460 return TRUE;
6461}
6463{
6464 WerrorS("not implemented");
6465 return TRUE;
6466}
6468{
6469 lists aa=(lists)a->Data();
6470 sleftv tmp_out;
6471 sleftv tmp_in;
6472 leftv curr=res;
6473 BOOLEAN bo=FALSE;
6474 for(int i=0;i<=aa->nr; i++)
6475 {
6476 tmp_in.Init();
6477 tmp_in.Copy(&(aa->m[i]));
6478 if (proc==NULL)
6479 bo=iiExprArith1(&tmp_out,&tmp_in,op);
6480 else
6481 bo=jjPROC(&tmp_out,proc,&tmp_in);
6482 tmp_in.CleanUp();
6483 if (bo)
6484 {
6485 res->CleanUp(currRing);
6486 Werror("apply fails at index %d",i+1);
6487 return TRUE;
6488 }
6489 if (i==0) { memcpy(res,&tmp_out,sizeof(tmp_out)); }
6490 else
6491 {
6493 curr=curr->next;
6494 memcpy(curr,&tmp_out,sizeof(tmp_out));
6495 }
6496 }
6497 return FALSE;
6498}
6500{
6501 res->Init();
6502 res->rtyp=a->Typ();
6503 switch (res->rtyp /*a->Typ()*/)
6504 {
6505 case INTVEC_CMD:
6506 case INTMAT_CMD:
6507 return iiApplyINTVEC(res,a,op,proc);
6508 case BIGINTMAT_CMD:
6509 return iiApplyBIGINTMAT(res,a,op,proc);
6510 case IDEAL_CMD:
6511 case MODUL_CMD:
6512 case MATRIX_CMD:
6513 return iiApplyIDEAL(res,a,op,proc);
6514 case LIST_CMD:
6515 return iiApplyLIST(res,a,op,proc);
6516 }
6517 WerrorS("first argument to `apply` must allow an index");
6518 return TRUE;
6519}
6520
6522{
6523 // assume a: level
6524 if ((a->Typ()==INT_CMD)&&((long)a->Data()>=0))
6525 {
6526 if ((TEST_V_ALLWARN) && (myynest==0)) WarnS("ASSUME at top level is of no use: see documentation");
6527 char assume_yylinebuf[80];
6528 strncpy(assume_yylinebuf,my_yylinebuf,79);
6529 int lev=(long)a->Data();
6530 int startlev=0;
6531 idhdl h=ggetid("assumeLevel");
6532 if ((h!=NULL)&&(IDTYP(h)==INT_CMD)) startlev=(long)IDINT(h);
6533 if(lev <=startlev)
6534 {
6535 BOOLEAN bo=b->Eval();
6536 if (bo) { WerrorS("syntax error in ASSUME");return TRUE;}
6537 if (b->Typ()!=INT_CMD) { WerrorS("ASUMME(<level>,<int expr>)");return TRUE; }
6538 if (b->Data()==NULL) { Werror("ASSUME failed:%s",assume_yylinebuf);return TRUE;}
6539 }
6540 }
6541 b->CleanUp();
6542 a->CleanUp();
6543 return FALSE;
6544}
6545
6546#include "libparse.h"
6547
6548BOOLEAN iiARROW(leftv r, char* a, char *s)
6549{
6550 char *ss=(char*)omAlloc(strlen(a)+strlen(s)+30); /* max. 27 currently */
6551 // find end of s:
6552 int end_s=strlen(s);
6553 while ((end_s>0) && ((s[end_s]<=' ')||(s[end_s]==';'))) end_s--;
6554 s[end_s+1]='\0';
6555 char *name=(char *)omAlloc(strlen(a)+strlen(s)+30);
6556 sprintf(name,"%s->%s",a,s);
6557 // find start of last expression
6558 int start_s=end_s-1;
6559 while ((start_s>=0) && (s[start_s]!=';')) start_s--;
6560 if (start_s<0) // ';' not found
6561 {
6562 sprintf(ss,"parameter def %s;return(%s);\n",a,s);
6563 }
6564 else // s[start_s] is ';'
6565 {
6566 s[start_s]='\0';
6567 sprintf(ss,"parameter def %s;%s;return(%s);\n",a,s,s+start_s+1);
6568 }
6569 r->Init();
6570 // now produce procinfo for PROC_CMD:
6571 r->data = (void *)omAlloc0Bin(procinfo_bin);
6572 ((procinfo *)(r->data))->language=LANG_NONE;
6574 ((procinfo *)r->data)->data.s.body=ss;
6575 omFree(name);
6576 r->rtyp=PROC_CMD;
6577 //r->rtyp=STRING_CMD;
6578 //r->data=ss;
6579 return FALSE;
6580}
6581
6583{
6584 char* ring_name=omStrDup((char*)r->Name());
6585 int t=arg->Typ();
6586 if (t==RING_CMD)
6587 {
6588 sleftv tmp;
6589 tmp.Init();
6590 tmp.rtyp=IDHDL;
6591 idhdl h=rDefault(ring_name);
6592 tmp.data=(char*)h;
6593 if (h!=NULL)
6594 {
6595 tmp.name=h->id;
6596 BOOLEAN b=iiAssign(&tmp,arg);
6597 if (b) return TRUE;
6598 rSetHdl(ggetid(ring_name));
6599 omFree(ring_name);
6600 return FALSE;
6601 }
6602 else
6603 return TRUE;
6604 }
6605 else if (t==CRING_CMD)
6606 {
6607 sleftv tmp;
6608 sleftv n;
6609 n.Init();
6610 n.name=ring_name;
6611 if (iiDeclCommand(&tmp,&n,myynest,CRING_CMD,&IDROOT)) return TRUE;
6612 if (iiAssign(&tmp,arg)) return TRUE;
6613 //Print("create %s\n",r->Name());
6614 //Print("from %s(%d)\n",Tok2Cmdname(arg->Typ()),arg->Typ());
6615 return FALSE;
6616 }
6617 //Print("create %s\n",r->Name());
6618 //Print("from %s(%d)\n",Tok2Cmdname(arg->Typ()),arg->Typ());
6619 return TRUE;// not handled -> error for now
6620}
6621
6622static void iiReportTypes(int nr,int t,const short *T)
6623{
6624 char buf[250];
6625 buf[0]='\0';
6626 if (nr==0)
6627 sprintf(buf,"wrong length of parameters(%d), expected ",t);
6628 else
6629 sprintf(buf,"par. %d is of type `%s`, expected ",nr,Tok2Cmdname(t));
6630 for(int i=1;i<=T[0];i++)
6631 {
6632 strcat(buf,"`");
6633 strcat(buf,Tok2Cmdname(T[i]));
6634 strcat(buf,"`");
6635 if (i<T[0]) strcat(buf,",");
6636 }
6637 WerrorS(buf);
6638}
6639
6640BOOLEAN iiCheckTypes(leftv args, const short *type_list, int report)
6641{
6642 int l=0;
6643 if (args==NULL)
6644 {
6645 if (type_list[0]==0) return TRUE;
6646 }
6647 else l=args->listLength();
6648 if (l!=(int)type_list[0])
6649 {
6650 if (report) iiReportTypes(0,l,type_list);
6651 return FALSE;
6652 }
6653 for(int i=1;i<=l;i++,args=args->next)
6654 {
6655 short t=type_list[i];
6656 if (t!=ANY_TYPE)
6657 {
6658 if (((t==IDHDL)&&(args->rtyp!=IDHDL))
6659 || (t!=args->Typ()))
6660 {
6661 if (report) iiReportTypes(i,args->Typ(),type_list);
6662 return FALSE;
6663 }
6664 }
6665 }
6666 return TRUE;
6667}
6668
6669void iiSetReturn(const leftv source)
6670{
6671 if ((source->next==NULL)&&(source->e==NULL))
6672 {
6673 if ((source->rtyp!=IDHDL)&&(source->rtyp!=ALIAS_CMD))
6674 {
6675 memcpy(&iiRETURNEXPR,source,sizeof(sleftv));
6676 source->Init();
6677 return;
6678 }
6679 if (source->rtyp==IDHDL)
6680 {
6681 if ((IDLEV((idhdl)source->data)==myynest)
6682 &&(IDTYP((idhdl)source->data)!=RING_CMD))
6683 {
6685 iiRETURNEXPR.rtyp=IDTYP((idhdl)source->data);
6686 iiRETURNEXPR.data=IDDATA((idhdl)source->data);
6687 iiRETURNEXPR.flag=IDFLAG((idhdl)source->data);
6689 IDATTR((idhdl)source->data)=NULL;
6690 IDDATA((idhdl)source->data)=NULL;
6691 source->name=NULL;
6692 source->attribute=NULL;
6693 return;
6694 }
6695 }
6696 }
6697 iiRETURNEXPR.Copy(source);
6698}
Rational pow(const Rational &a, int e)
Definition: GMPrat.cc:411
ring r
Definition: algext.h:37
struct for passing initialization parameters to naInitChar
Definition: algext.h:37
void atSet(idhdl root, char *name, void *data, int typ)
Definition: attrib.cc:153
void * atGet(idhdl root, const char *name, int t, void *defaultReturnValue)
Definition: attrib.cc:132
#define NULL
Definition: auxiliary.h:104
long int64
Definition: auxiliary.h:68
static int si_max(const int a, const int b)
Definition: auxiliary.h:124
int BOOLEAN
Definition: auxiliary.h:87
#define TRUE
Definition: auxiliary.h:100
#define FALSE
Definition: auxiliary.h:96
void * ADDRESS
Definition: auxiliary.h:119
static int si_min(const int a, const int b)
Definition: auxiliary.h:125
int sign(const CanonicalForm &a)
CanonicalForm num(const CanonicalForm &f)
CanonicalForm den(const CanonicalForm &f)
CanonicalForm sqrt(const CanonicalForm &a)
CanonicalForm Lc(const CanonicalForm &f)
if(both_non_zero==0)
Definition: cfEzgcd.cc:91
int l
Definition: cfEzgcd.cc:100
int m
Definition: cfEzgcd.cc:128
for(int i=0;i<=n;i++) degsf[i]
Definition: cfEzgcd.cc:72
int i
Definition: cfEzgcd.cc:132
int k
Definition: cfEzgcd.cc:99
void mult(CFList &L1, const CFList &L2)
multiply two lists componentwise
Definition: cfModGcd.cc:2178
Variable x
Definition: cfModGcd.cc:4084
int p
Definition: cfModGcd.cc:4080
f
Definition: cfModGcd.cc:4083
CanonicalForm cf
Definition: cfModGcd.cc:4085
CanonicalForm b
Definition: cfModGcd.cc:4105
void mu(int **points, int sizePoints)
CanonicalForm map(const CanonicalForm &primElem, const Variable &alpha, const CanonicalForm &F, const Variable &beta)
map from to such that is mapped onto
Definition: cf_map_ext.cc:504
int * Zp_roots(const CanonicalForm f)
Definition: cf_roots.cc:25
unsigned char * proc[NUM_PROC]
Definition: checklibs.c:16
poly singclap_resultant(poly f, poly g, poly x, const ring r)
Definition: clapsing.cc:311
ideal singclap_factorize(poly f, intvec **v, int with_exps, const ring r)
Definition: clapsing.cc:914
matrix singclap_irrCharSeries(ideal I, const ring r)
Definition: clapsing.cc:1537
int get_num_si()
Definition: GMPrat.cc:138
int get_den_si()
Definition: GMPrat.cc:152
char name() const
Definition: variable.cc:122
Variable next() const
Definition: factory.h:153
char * buffer
Definition: fevoices.h:69
char * filename
Definition: fevoices.h:63
long fptr
Definition: fevoices.h:70
Matrices of numbers.
Definition: bigintmat.h:51
Definition: idrec.h:35
idhdl get(const char *s, int lev)
Definition: ipid.cc:72
int typ
Definition: idrec.h:43
idhdl next
Definition: idrec.h:38
attr attribute
Definition: idrec.h:41
Definition: intvec.h:23
void makeVector()
Definition: intvec.h:102
void show(int mat=0, int spaces=0) const
Definition: intvec.cc:149
int min_in()
Definition: intvec.h:121
int length() const
Definition: intvec.h:94
int rows() const
Definition: intvec.h:96
int & cols()
Definition: matpol.h:24
int & rows()
Definition: matpol.h:23
Definition: ipid.h:56
virtual number getSubDet()
Definition: mpr_base.h:37
virtual ideal getMatrix()
Definition: mpr_base.h:31
virtual IStateType initState() const
Definition: mpr_base.h:41
void solve_all()
Definition: mpr_numeric.cc:857
bool success()
Definition: mpr_numeric.h:162
void arrange()
Definition: mpr_numeric.cc:882
complex root finder for univariate polynomials based on laguers algorithm
Definition: mpr_numeric.h:66
gmp_complex * getRoot(const int i)
Definition: mpr_numeric.h:88
void fillContainer(number *_coeffs, number *_ievpoint, const int _var, const int _tdg, const rootType _rt, const int _anz)
Definition: mpr_numeric.cc:299
int getAnzRoots()
Definition: mpr_numeric.h:97
bool solver(const int polishmode=PM_NONE)
Definition: mpr_numeric.cc:436
int getAnzElems()
Definition: mpr_numeric.h:95
Definition: attrib.h:21
attr get(const char *s)
Definition: attrib.cc:93
void * CopyA()
Definition: subexpr.cc:2100
int atyp
Definition: attrib.h:27
Linear Programming / Linear Optimization using Simplex - Algorithm.
Definition: mpr_numeric.h:195
intvec * zrovToIV()
BOOLEAN mapFromMatrix(matrix m)
int icase
Definition: mpr_numeric.h:201
void compute()
matrix mapToMatrix(matrix m)
intvec * posvToIV()
Class used for (list of) interpreter objects.
Definition: subexpr.h:83
void * CopyD(int t)
Definition: subexpr.cc:710
int Typ()
Definition: subexpr.cc:1011
const char * name
Definition: subexpr.h:87
int rtyp
Definition: subexpr.h:91
void * Data()
Definition: subexpr.cc:1154
void Init()
Definition: subexpr.h:107
BOOLEAN RingDependend()
Definition: subexpr.cc:418
leftv next
Definition: subexpr.h:86
const char * Name()
Definition: subexpr.h:120
int listLength()
Definition: subexpr.cc:51
void Copy(leftv e)
Definition: subexpr.cc:685
void * data
Definition: subexpr.h:88
void CleanUp(ring r=currRing)
Definition: subexpr.cc:348
attr * Attribute()
Definition: subexpr.cc:1454
BITSET flag
Definition: subexpr.h:90
Subexpr e
Definition: subexpr.h:105
attr attribute
Definition: subexpr.h:89
Definition: lists.h:24
sleftv * m
Definition: lists.h:46
void Clean(ring r=currRing)
Definition: lists.h:26
INLINE_THIS void Init(int l=0)
int nr
Definition: lists.h:44
spectrumPolyNode * root
Definition: splist.h:60
void delete_node(spectrumPolyNode **)
Definition: splist.cc:256
Definition: semic.h:64
int mu
Definition: semic.h:67
void copy_new(int)
Definition: semic.cc:54
Rational * s
Definition: semic.h:70
int mult_spectrum(spectrum &)
Definition: semic.cc:396
int n
Definition: semic.h:69
int pg
Definition: semic.h:68
int mult_spectrumh(spectrum &)
Definition: semic.cc:425
int * w
Definition: semic.h:71
Base class for solving 0-dim poly systems using u-resultant.
Definition: mpr_base.h:63
rootContainer ** specializeInU(BOOLEAN matchUp=false, const number subDetVal=NULL)
Definition: mpr_base.cc:3059
rootContainer ** interpolateDenseSP(BOOLEAN matchUp=false, const number subDetVal=NULL)
Definition: mpr_base.cc:2921
@ denseResMat
Definition: mpr_base.h:65
resMatrixBase * accessResMat()
Definition: mpr_base.h:78
vandermonde system solver for interpolating polynomials from their values
Definition: mpr_numeric.h:29
poly numvec2poly(const number *q)
Definition: mpr_numeric.cc:93
number * interpolateDense(const number *q)
Solves the Vandermode linear system \sum_{i=1}^{n} x_i^k-1 w_i = q_k, k=1,..,n.
Definition: mpr_numeric.cc:146
Coefficient rings, fields and other domains suitable for Singular polynomials.
static FORCE_INLINE long n_Int(number &n, const coeffs r)
conversion of n to an int; 0 if not possible in Z/pZ: the representing int lying in (-p/2 ....
Definition: coeffs.h:548
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of 'n'
Definition: coeffs.h:452
static FORCE_INLINE BOOLEAN nCoeff_is_GF(const coeffs r)
Definition: coeffs.h:863
static FORCE_INLINE BOOLEAN nCoeff_is_Z(const coeffs r)
Definition: coeffs.h:840
int GFDegree
Definition: coeffs.h:96
@ n_R
single prescision (6,6) real numbers
Definition: coeffs.h:32
@ n_GF
\GF{p^n < 2^16}
Definition: coeffs.h:33
@ n_Q
rational (GMP) numbers
Definition: coeffs.h:31
@ n_Znm
only used if HAVE_RINGS is defined
Definition: coeffs.h:46
@ n_algExt
used for all algebraic extensions, i.e., the top-most extension in an extension tower is algebraic
Definition: coeffs.h:36
@ n_Zn
only used if HAVE_RINGS is defined
Definition: coeffs.h:45
@ n_long_R
real floating point (GMP) numbers
Definition: coeffs.h:34
@ n_Z2m
only used if HAVE_RINGS is defined
Definition: coeffs.h:47
@ n_Zp
\F{p < 2^31}
Definition: coeffs.h:30
@ n_transExt
used for all transcendental extensions, i.e., the top-most extension in an extension tower is transce...
Definition: coeffs.h:39
@ n_Z
only used if HAVE_RINGS is defined
Definition: coeffs.h:44
@ n_long_C
complex floating point (GMP) numbers
Definition: coeffs.h:42
short float_len2
additional char-flags, rInit
Definition: coeffs.h:103
static FORCE_INLINE BOOLEAN nCoeff_is_numeric(const coeffs r)
Definition: coeffs.h:856
static FORCE_INLINE void n_MPZ(mpz_t result, number &n, const coeffs r)
conversion of n to a GMP integer; 0 if not possible
Definition: coeffs.h:552
static FORCE_INLINE nMapFunc n_SetMap(const coeffs src, const coeffs dst)
set the mapping function pointers for translating numbers from src to dst
Definition: coeffs.h:723
const char * par_name
parameter name
Definition: coeffs.h:104
static FORCE_INLINE char const ** n_ParameterNames(const coeffs r)
Returns a (const!) pointer to (const char*) names of parameters.
Definition: coeffs.h:802
coeffs nInitChar(n_coeffType t, void *parameter)
one-time initialisations for new coeffs in case of an error return NULL
Definition: numbers.cc:358
const unsigned short fftable[]
Definition: ffields.cc:31
static FORCE_INLINE void nSetChar(const coeffs r)
initialisations after each ring change
Definition: coeffs.h:437
static FORCE_INLINE BOOLEAN nCoeff_is_Ring(const coeffs r)
Definition: coeffs.h:754
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete 'p'
Definition: coeffs.h:456
static FORCE_INLINE char * nCoeffName(const coeffs cf)
Definition: coeffs.h:987
static FORCE_INLINE number n_InitMPZ(mpz_t n, const coeffs r)
conversion of a GMP integer to number
Definition: coeffs.h:543
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
Definition: coeffs.h:539
static FORCE_INLINE BOOLEAN nCoeff_is_algExt(const coeffs r)
TRUE iff r represents an algebraic extension field.
Definition: coeffs.h:934
short float_len
additional char-flags, rInit
Definition: coeffs.h:102
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
Definition: coeffs.h:74
const char * GFPar_name
Definition: coeffs.h:97
static FORCE_INLINE BOOLEAN nCoeff_is_long_C(const coeffs r)
Definition: coeffs.h:918
int GFChar
Definition: coeffs.h:95
static FORCE_INLINE BOOLEAN nCoeff_is_transExt(const coeffs r)
TRUE iff r represents a transcendental extension field.
Definition: coeffs.h:942
Creation data needed for finite fields.
Definition: coeffs.h:94
#define Print
Definition: emacs.cc:80
#define Warn
Definition: emacs.cc:77
#define WarnS
Definition: emacs.cc:78
return result
Definition: facAbsBiFact.cc:75
const CanonicalForm int s
Definition: facAbsFact.cc:51
CanonicalForm res
Definition: facAbsFact.cc:60
const CanonicalForm & w
Definition: facAbsFact.cc:51
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:39
bool found
Definition: facFactorize.cc:55
CanonicalForm buf2
Definition: facFqBivar.cc:73
CFList tmp2
Definition: facFqBivar.cc:72
const ExtensionInfo & info
< [in] sqrfree poly
int j
Definition: facHensel.cc:110
fq_nmod_t buf
Definition: facHensel.cc:101
int search(const CFArray &A, const CanonicalForm &F, int i, int j)
search for F in A between index i and j
char name(const Variable &v)
Definition: factory.h:196
VAR short errorreported
Definition: feFopen.cc:23
void WerrorS(const char *s)
Definition: feFopen.cc:24
VAR int yylineno
Definition: febase.cc:40
VAR char my_yylinebuf[80]
Definition: febase.cc:44
VAR int myynest
Definition: febase.cc:41
char *(* fe_fgets_stdin)(const char *pr, char *s, int size)
Definition: feread.cc:30
void newBuffer(char *s, feBufferTypes t, procinfo *pi, int lineno)
Definition: fevoices.cc:164
VAR Voice * currentVoice
Definition: fevoices.cc:47
const char * VoiceName()
Definition: fevoices.cc:56
const char sNoName_fe[]
Definition: fevoices.cc:55
void VoiceBackTrack()
Definition: fevoices.cc:75
@ BT_execute
Definition: fevoices.h:23
@ BT_proc
Definition: fevoices.h:20
ideal maMapIdeal(const ideal map_id, const ring preimage_r, const ideal image_id, const ring image_r, const nMapFunc nMap)
polynomial map for ideals/module/matrix map_id: the ideal to map map_r: the base ring for map_id imag...
Definition: gen_maps.cc:87
int iiTestConvert(int inputType, int outputType)
Definition: gentable.cc:301
const char * Tok2Cmdname(int tok)
Definition: gentable.cc:140
#define STATIC_VAR
Definition: globaldefs.h:7
#define VAR
Definition: globaldefs.h:5
@ PLUSPLUS
Definition: grammar.cc:274
@ MINUSMINUS
Definition: grammar.cc:271
@ IDEAL_CMD
Definition: grammar.cc:284
@ MATRIX_CMD
Definition: grammar.cc:286
@ BIGINTMAT_CMD
Definition: grammar.cc:278
@ GE
Definition: grammar.cc:269
@ EQUAL_EQUAL
Definition: grammar.cc:268
@ MAP_CMD
Definition: grammar.cc:285
@ PROC_CMD
Definition: grammar.cc:280
@ LE
Definition: grammar.cc:270
@ INTMAT_CMD
Definition: grammar.cc:279
@ MODUL_CMD
Definition: grammar.cc:287
@ SMATRIX_CMD
Definition: grammar.cc:291
@ VECTOR_CMD
Definition: grammar.cc:292
@ NOTEQUAL
Definition: grammar.cc:273
@ DOTDOT
Definition: grammar.cc:267
@ COLONCOLON
Definition: grammar.cc:275
@ NUMBER_CMD
Definition: grammar.cc:288
@ POLY_CMD
Definition: grammar.cc:289
@ RING_CMD
Definition: grammar.cc:281
const char * currid
Definition: grammar.cc:171
void hIndMult(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
Definition: hdegree.cc:386
STATIC_VAR poly last
Definition: hdegree.cc:1150
void scComputeHC(ideal S, ideal Q, int ak, poly &hEdge, ring tailRing)
Definition: hdegree.cc:1078
VAR int hMu
Definition: hdegree.cc:27
VAR omBin indlist_bin
Definition: hdegree.cc:28
VAR int hMu2
Definition: hdegree.cc:27
VAR int hCo
Definition: hdegree.cc:27
VAR indset ISet
Definition: hdegree.cc:352
VAR indset JSet
Definition: hdegree.cc:352
void hDimSolve(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
Definition: hdegree.cc:34
void hIndAllMult(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
Definition: hdegree.cc:569
monf hCreate(int Nvar)
Definition: hutil.cc:999
scfmon hInit(ideal S, ideal Q, int *Nexist, ring tailRing)
Definition: hutil.cc:31
VAR varset hvar
Definition: hutil.cc:18
void hKill(monf xmem, int Nvar)
Definition: hutil.cc:1013
VAR int hNexist
Definition: hutil.cc:19
void hDelete(scfmon ev, int ev_length)
Definition: hutil.cc:143
void hPure(scfmon stc, int a, int *Nstc, varset var, int Nvar, scmon pure, int *Npure)
Definition: hutil.cc:624
VAR scfmon hwork
Definition: hutil.cc:16
void hSupp(scfmon stc, int Nstc, varset var, int *Nvar)
Definition: hutil.cc:177
void hLexR(scfmon rad, int Nrad, varset var, int Nvar)
Definition: hutil.cc:568
VAR scmon hpure
Definition: hutil.cc:17
VAR scfmon hrad
Definition: hutil.cc:16
VAR int hisModule
Definition: hutil.cc:20
VAR monf radmem
Definition: hutil.cc:21
VAR int hNpure
Definition: hutil.cc:19
VAR int hNrad
Definition: hutil.cc:19
VAR scfmon hexist
Definition: hutil.cc:16
void hRadical(scfmon rad, int *Nrad, int Nvar)
Definition: hutil.cc:414
VAR int hNvar
Definition: hutil.cc:19
scmon * scfmon
Definition: hutil.h:15
indlist * indset
Definition: hutil.h:28
int * varset
Definition: hutil.h:16
int * scmon
Definition: hutil.h:14
int binom(int n, int r)
#define idDelete(H)
delete an ideal
Definition: ideals.h:29
void idGetNextChoise(int r, int end, BOOLEAN *endch, int *choise)
static BOOLEAN idIsZeroDim(ideal i)
Definition: ideals.h:176
BOOLEAN idIs0(ideal h)
returns true if h is the zero ideal
ideal idCopy(ideal A)
Definition: ideals.h:60
#define idMaxIdeal(D)
initialise the maximal ideal (at 0)
Definition: ideals.h:33
ideal * resolvente
Definition: ideals.h:18
int idGetNumberOfChoise(int t, int d, int begin, int end, int *choise)
void idInitChoise(int r, int beg, int end, BOOLEAN *endch, int *choise)
STATIC_VAR int * multiplicity
static BOOLEAN length(leftv result, leftv arg)
Definition: interval.cc:257
intvec * ivCopy(const intvec *o)
Definition: intvec.h:135
#define IMATELEM(M, I, J)
Definition: intvec.h:85
int IsCmd(const char *n, int &tok)
Definition: iparith.cc:9461
BOOLEAN iiExprArith1(leftv res, leftv a, int op)
Definition: iparith.cc:9049
BOOLEAN iiAssign(leftv l, leftv r, BOOLEAN toplevel)
Definition: ipassign.cc:1964
BOOLEAN iiConvert(int inputType, int outputType, int index, leftv input, leftv output, const struct sConvertTypes *dConvertTypes)
Definition: ipconv.cc:435
idhdl ggetid(const char *n)
Definition: ipid.cc:571
void killhdl2(idhdl h, idhdl *ih, ring r)
Definition: ipid.cc:437
idhdl enterid(const char *s, int lev, int t, idhdl *root, BOOLEAN init, BOOLEAN search)
Definition: ipid.cc:278
VAR package basePack
Definition: ipid.cc:58
void ipListFlag(idhdl h)
Definition: ipid.cc:609
VAR proclevel * procstack
Definition: ipid.cc:52
VAR idhdl currRingHdl
Definition: ipid.cc:59
VAR package currPack
Definition: ipid.cc:57
VAR idhdl currPackHdl
Definition: ipid.cc:55
idhdl packFindHdl(package r)
Definition: ipid.cc:821
VAR coeffs coeffs_BIGINT
Definition: ipid.cc:50
#define IDMAP(a)
Definition: ipid.h:135
#define IDMATRIX(a)
Definition: ipid.h:134
#define IDSTRING(a)
Definition: ipid.h:136
#define IDNEXT(a)
Definition: ipid.h:118
EXTERN_VAR omBin sleftv_bin
Definition: ipid.h:145
#define IDDATA(a)
Definition: ipid.h:126
#define IDPROC(a)
Definition: ipid.h:140
#define setFlag(A, F)
Definition: ipid.h:113
#define IDINTVEC(a)
Definition: ipid.h:128
#define IDIDEAL(a)
Definition: ipid.h:133
#define IDFLAG(a)
Definition: ipid.h:120
#define IDPOLY(a)
Definition: ipid.h:130
#define IDID(a)
Definition: ipid.h:122
#define IDROOT
Definition: ipid.h:19
#define IDINT(a)
Definition: ipid.h:125
#define FLAG_QRING_DEF
Definition: ipid.h:109
#define IDPACKAGE(a)
Definition: ipid.h:139
#define IDLEV(a)
Definition: ipid.h:121
#define IDRING(a)
Definition: ipid.h:127
#define IDTYP(a)
Definition: ipid.h:119
#define FLAG_STD
Definition: ipid.h:106
#define IDLIST(a)
Definition: ipid.h:137
#define IDATTR(a)
Definition: ipid.h:123
VAR int iiRETURNEXPR_len
Definition: iplib.cc:471
INST_VAR sleftv iiRETURNEXPR
Definition: iplib.cc:470
VAR ring * iiLocalRing
Definition: iplib.cc:469
char * iiGetLibProcBuffer(procinfo *pi, int part)
Definition: iplib.cc:193
procinfo * iiInitSingularProcinfo(procinfov pi, const char *libname, const char *procname, int, long pos, BOOLEAN pstatic)
Definition: iplib.cc:1045
lists rDecompose(const ring r)
Definition: ipshell.cc:2157
semicState
Definition: ipshell.cc:3519
@ semicListWrongNumberOfNumerators
Definition: ipshell.cc:3534
@ semicListPGWrong
Definition: ipshell.cc:3548
@ semicListFirstElementWrongType
Definition: ipshell.cc:3526
@ semicListPgNegative
Definition: ipshell.cc:3539
@ semicListSecondElementWrongType
Definition: ipshell.cc:3527
@ semicListMilnorWrong
Definition: ipshell.cc:3547
@ semicListMulNegative
Definition: ipshell.cc:3542
@ semicListFourthElementWrongType
Definition: ipshell.cc:3529
@ semicListWrongNumberOfDenominators
Definition: ipshell.cc:3535
@ semicListNotMonotonous
Definition: ipshell.cc:3545
@ semicListNotSymmetric
Definition: ipshell.cc:3544
@ semicListNNegative
Definition: ipshell.cc:3533
@ semicListDenNegative
Definition: ipshell.cc:3541
@ semicListTooShort
Definition: ipshell.cc:3523
@ semicListTooLong
Definition: ipshell.cc:3524
@ semicListThirdElementWrongType
Definition: ipshell.cc:3528
@ semicListMuNegative
Definition: ipshell.cc:3538
@ semicListNumNegative
Definition: ipshell.cc:3540
@ semicMulNegative
Definition: ipshell.cc:3521
@ semicListWrongNumberOfMultiplicities
Definition: ipshell.cc:3536
@ semicOK
Definition: ipshell.cc:3520
@ semicListFifthElementWrongType
Definition: ipshell.cc:3530
@ semicListSixthElementWrongType
Definition: ipshell.cc:3531
BOOLEAN iiApplyINTVEC(leftv res, leftv a, int op, leftv proc)
Definition: ipshell.cc:6425
BOOLEAN jjVARIABLES_P(leftv res, leftv u)
Definition: ipshell.cc:6385
lists rDecompose_list_cf(const ring r)
Definition: ipshell.cc:2026
int iiOpsTwoChar(const char *s)
Definition: ipshell.cc:121
BOOLEAN spaddProc(leftv result, leftv first, leftv second)
Definition: ipshell.cc:4512
VAR idhdl iiCurrProc
Definition: ipshell.cc:81
BOOLEAN jjMINRES(leftv res, leftv v)
Definition: ipshell.cc:946
BOOLEAN killlocals_list(int v, lists L)
Definition: ipshell.cc:366
BOOLEAN iiParameter(leftv p)
Definition: ipshell.cc:1380
STATIC_VAR BOOLEAN iiNoKeepRing
Definition: ipshell.cc:84
int iiDeclCommand(leftv sy, leftv name, int lev, int t, idhdl *root, BOOLEAN isring, BOOLEAN init_b)
Definition: ipshell.cc:1202
static void rRenameVars(ring R)
Definition: ipshell.cc:2490
void iiCheckPack(package &p)
Definition: ipshell.cc:1636
void rKill(ring r)
Definition: ipshell.cc:6255
BOOLEAN iiCheckTypes(leftv args, const short *type_list, int report)
check a list of arguemys against a given field of types return TRUE if the types match return FALSE (...
Definition: ipshell.cc:6640
BOOLEAN iiApply(leftv res, leftv a, int op, leftv proc)
Definition: ipshell.cc:6499
void list_cmd(int typ, const char *what, const char *prefix, BOOLEAN iterate, BOOLEAN fullname)
Definition: ipshell.cc:425
VAR BOOLEAN iiDebugMarker
Definition: ipshell.cc:1063
ring rInit(leftv pn, leftv rv, leftv ord)
Definition: ipshell.cc:5709
leftv iiMap(map theMap, const char *what)
Definition: ipshell.cc:615
int iiRegularity(lists L)
Definition: ipshell.cc:1037
BOOLEAN nuLagSolve(leftv res, leftv arg1, leftv arg2, leftv arg3)
find the (complex) roots an univariate polynomial Determines the roots of an univariate polynomial us...
Definition: ipshell.cc:4762
BOOLEAN rDecompose_CF(leftv res, const coeffs C)
Definition: ipshell.cc:1955
static void rDecomposeC_41(leftv h, const coeffs C)
Definition: ipshell.cc:1825
void iiMakeResolv(resolvente r, int length, int rlen, char *name, int typ0, intvec **weights)
Definition: ipshell.cc:847
BOOLEAN iiARROW(leftv r, char *a, char *s)
Definition: ipshell.cc:6548
BOOLEAN semicProc3(leftv res, leftv u, leftv v, leftv w)
Definition: ipshell.cc:4595
BOOLEAN syBetti1(leftv res, leftv u)
Definition: ipshell.cc:3256
void killlocals(int v)
Definition: ipshell.cc:386
BOOLEAN iiApplyLIST(leftv res, leftv a, int op, leftv proc)
Definition: ipshell.cc:6467
idhdl rDefault(const char *s)
Definition: ipshell.cc:1650
static void rDecomposeC(leftv h, const ring R)
Definition: ipshell.cc:1859
int exprlist_length(leftv v)
Definition: ipshell.cc:552
BOOLEAN mpKoszul(leftv res, leftv c, leftv b, leftv id)
Definition: ipshell.cc:3177
poly iiHighCorner(ideal I, int ak)
Definition: ipshell.cc:1612
BOOLEAN spectrumfProc(leftv result, leftv first)
Definition: ipshell.cc:4268
lists listOfRoots(rootArranger *self, const unsigned int oprec)
Definition: ipshell.cc:5163
static void jjINT_S_TO_ID(int n, int *e, leftv res)
Definition: ipshell.cc:6363
lists scIndIndset(ideal S, BOOLEAN all, ideal Q)
Definition: ipshell.cc:1103
VAR leftv iiCurrArgs
Definition: ipshell.cc:80
BOOLEAN nuVanderSys(leftv res, leftv arg1, leftv arg2, leftv arg3)
COMPUTE: polynomial p with values given by v at points p1,..,pN derived from p; more precisely: consi...
Definition: ipshell.cc:4905
BOOLEAN jjCHARSERIES(leftv res, leftv u)
Definition: ipshell.cc:3431
void rDecomposeCF(leftv h, const ring r, const ring R)
Definition: ipshell.cc:1735
BOOLEAN iiApplyIDEAL(leftv, leftv, int, leftv)
Definition: ipshell.cc:6462
static void list1(const char *s, idhdl h, BOOLEAN c, BOOLEAN fullname)
Definition: ipshell.cc:149
void list_error(semicState state)
Definition: ipshell.cc:3552
BOOLEAN mpJacobi(leftv res, leftv a)
Definition: ipshell.cc:3155
const char * iiTwoOps(int t)
Definition: ipshell.cc:88
BOOLEAN iiBranchTo(leftv, leftv args)
Definition: ipshell.cc:1277
BOOLEAN jjBETTI2_ID(leftv res, leftv u, leftv v)
Definition: ipshell.cc:980
spectrumState
Definition: ipshell.cc:3635
@ spectrumWrongRing
Definition: ipshell.cc:3642
@ spectrumOK
Definition: ipshell.cc:3636
@ spectrumDegenerate
Definition: ipshell.cc:3641
@ spectrumUnspecErr
Definition: ipshell.cc:3644
@ spectrumNotIsolated
Definition: ipshell.cc:3640
@ spectrumBadPoly
Definition: ipshell.cc:3638
@ spectrumNoSingularity
Definition: ipshell.cc:3639
@ spectrumZero
Definition: ipshell.cc:3637
@ spectrumNoHC
Definition: ipshell.cc:3643
BOOLEAN iiTestAssume(leftv a, leftv b)
Definition: ipshell.cc:6521
void iiSetReturn(const leftv source)
Definition: ipshell.cc:6669
BOOLEAN iiAssignCR(leftv r, leftv arg)
Definition: ipshell.cc:6582
BOOLEAN spmulProc(leftv result, leftv first, leftv second)
Definition: ipshell.cc:4554
spectrumState spectrumCompute(poly h, lists *L, int fast)
Definition: ipshell.cc:3894
idhdl rFindHdl(ring r, idhdl n)
Definition: ipshell.cc:1707
void iiDebug()
Definition: ipshell.cc:1065
syStrategy syConvList(lists li)
Definition: ipshell.cc:3340
BOOLEAN spectrumProc(leftv result, leftv first)
Definition: ipshell.cc:4217
BOOLEAN iiDefaultParameter(leftv p)
Definition: ipshell.cc:1264
void rComposeC(lists L, ring R)
Definition: ipshell.cc:2345
BOOLEAN iiCheckRing(int i)
Definition: ipshell.cc:1592
#define BREAK_LINE_LENGTH
Definition: ipshell.cc:1064
spectrumState spectrumStateFromList(spectrumPolyList &speclist, lists *L, int fast)
Definition: ipshell.cc:3653
const short MAX_SHORT
Definition: ipshell.cc:5697
BOOLEAN syBetti2(leftv res, leftv u, leftv w)
Definition: ipshell.cc:3233
ring rSubring(ring org_ring, sleftv *rv)
Definition: ipshell.cc:6093
BOOLEAN kWeight(leftv res, leftv id)
Definition: ipshell.cc:3385
static leftv rOptimizeOrdAsSleftv(leftv ord)
Definition: ipshell.cc:5270
BOOLEAN rSleftvOrdering2Ordering(sleftv *ord, ring R)
Definition: ipshell.cc:5389
static BOOLEAN rComposeOrder(const lists L, const BOOLEAN check_comp, ring R)
Definition: ipshell.cc:2576
spectrum spectrumFromList(lists l)
Definition: ipshell.cc:3468
static idhdl rSimpleFindHdl(const ring r, const idhdl root, const idhdl n)
Definition: ipshell.cc:6344
void test_cmd(int i)
Definition: ipshell.cc:514
syStrategy syForceMin(lists li)
Definition: ipshell.cc:3369
static void iiReportTypes(int nr, int t, const short *T)
Definition: ipshell.cc:6622
void rDecomposeRing(leftv h, const ring R)
Definition: ipshell.cc:1923
BOOLEAN jjRESULTANT(leftv res, leftv u, leftv v, leftv w)
Definition: ipshell.cc:3424
static BOOLEAN iiInternalExport(leftv v, int toLev)
Definition: ipshell.cc:1416
void copy_deep(spectrum &spec, lists l)
Definition: ipshell.cc:3444
void killlocals_rec(idhdl *root, int v, ring r)
Definition: ipshell.cc:330
BOOLEAN nuMPResMat(leftv res, leftv arg1, leftv arg2)
returns module representing the multipolynomial resultant matrix Arguments 2: ideal i,...
Definition: ipshell.cc:4739
semicState list_is_spectrum(lists l)
Definition: ipshell.cc:4337
static void killlocals0(int v, idhdl *localhdl, const ring r)
Definition: ipshell.cc:295
BOOLEAN semicProc(leftv res, leftv u, leftv v)
Definition: ipshell.cc:4635
BOOLEAN loSimplex(leftv res, leftv args)
Implementation of the Simplex Algorithm.
Definition: ipshell.cc:4653
BOOLEAN jjPROC(leftv res, leftv u, leftv v)
Definition: iparith.cc:1607
ring rCompose(const lists L, const BOOLEAN check_comp, const long bitmask, const int isLetterplace)
Definition: ipshell.cc:2868
BOOLEAN loNewtonP(leftv res, leftv arg1)
compute Newton Polytopes of input polynomials
Definition: ipshell.cc:4647
BOOLEAN iiApplyBIGINTMAT(leftv, leftv, int, leftv)
Definition: ipshell.cc:6457
BOOLEAN jjBETTI2(leftv res, leftv u, leftv v)
Definition: ipshell.cc:1001
const char * lastreserved
Definition: ipshell.cc:82
static BOOLEAN rSleftvList2StringArray(leftv sl, char **p)
Definition: ipshell.cc:5661
lists syConvRes(syStrategy syzstr, BOOLEAN toDel, int add_row_shift)
Definition: ipshell.cc:3268
void type_cmd(leftv v)
Definition: ipshell.cc:254
BOOLEAN iiWRITE(leftv, leftv v)
Definition: ipshell.cc:588
void paPrint(const char *n, package p)
Definition: ipshell.cc:6408
static resolvente iiCopyRes(resolvente r, int l)
Definition: ipshell.cc:936
void rSetHdl(idhdl h)
Definition: ipshell.cc:5210
BOOLEAN kQHWeight(leftv res, leftv v)
Definition: ipshell.cc:3407
void rComposeRing(lists L, ring R)
Definition: ipshell.cc:2397
BOOLEAN iiExport(leftv v, int toLev)
Definition: ipshell.cc:1514
BOOLEAN jjBETTI(leftv res, leftv u)
Definition: ipshell.cc:967
void spectrumPrintError(spectrumState state)
Definition: ipshell.cc:4186
lists getList(spectrum &spec)
Definition: ipshell.cc:3480
BOOLEAN nuUResSolve(leftv res, leftv args)
solve a multipolynomial system using the u-resultant Input ideal must be 0-dimensional and (currRing-...
Definition: ipshell.cc:5006
BOOLEAN jjVARIABLES_ID(leftv res, leftv u)
Definition: ipshell.cc:6393
void rDecomposeRing_41(leftv h, const coeffs C)
Definition: ipshell.cc:1895
static BOOLEAN rComposeVar(const lists L, ring R)
Definition: ipshell.cc:2531
STATIC_VAR jList * T
Definition: janet.cc:30
STATIC_VAR Poly * h
Definition: janet.cc:971
STATIC_VAR jList * Q
Definition: janet.cc:30
VAR BITSET validOpts
Definition: kstd1.cc:60
VAR BITSET kOptions
Definition: kstd1.cc:45
ideal kStd(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, s_poly_proc_t sp)
Definition: kstd1.cc:2430
VAR denominator_list DENOMINATOR_LIST
Definition: kutil.cc:84
denominator_list next
Definition: kutil.h:65
#define pi
Definition: libparse.cc:1145
BOOLEAN nc_CallPlural(matrix cc, matrix dd, poly cn, poly dn, ring r, bool bSetupQuotient, bool bCopyInput, bool bBeQuiet, ring curr, bool dummy_ring=false)
returns TRUE if there were errors analyze inputs, check them for consistency detects nc_type,...
Definition: old.gring.cc:2682
char * lString(lists l, BOOLEAN typed, int dim)
Definition: lists.cc:380
VAR omBin slists_bin
Definition: lists.cc:23
BOOLEAN lRingDependend(lists L)
Definition: lists.cc:199
resolvente liFindRes(lists L, int *len, int *typ0, intvec ***weights)
Definition: lists.cc:315
lists liMakeResolv(resolvente r, int length, int reallen, int typ0, intvec **weights, int add_row_shift)
Definition: lists.cc:216
void maFindPerm(char const *const *const preim_names, int preim_n, char const *const *const preim_par, int preim_p, char const *const *const names, int n, char const *const *const par, int nop, int *perm, int *par_perm, n_coeffType ch)
Definition: maps.cc:163
BOOLEAN maApplyFetch(int what, map theMap, leftv res, leftv w, ring preimage_r, int *perm, int *par_perm, int P, nMapFunc nMap)
Definition: maps_ip.cc:45
matrix mpNew(int r, int c)
create a r x c zero-matrix
Definition: matpol.cc:37
matrix mp_Copy(matrix a, const ring r)
copies matrix a (from ring r to r)
Definition: matpol.cc:64
#define MATELEM(mat, i, j)
1-based access to matrix
Definition: matpol.h:29
ip_smatrix * matrix
Definition: matpol.h:43
#define MATROWS(i)
Definition: matpol.h:26
#define MATCOLS(i)
Definition: matpol.h:27
#define assume(x)
Definition: mod2.h:387
#define pIter(p)
Definition: monomials.h:37
#define pNext(p)
Definition: monomials.h:36
#define pSetCoeff0(p, n)
Definition: monomials.h:59
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
Definition: monomials.h:44
ideal loNewtonPolytope(const ideal id)
Definition: mpr_base.cc:3190
@ mprOk
Definition: mpr_base.h:98
EXTERN_VAR size_t gmp_output_digits
Definition: mpr_base.h:115
uResultant::resMatType determineMType(int imtype)
mprState mprIdealCheck(const ideal theIdeal, const char *name, uResultant::resMatType mtype, BOOLEAN rmatrix=false)
char * complexToStr(gmp_complex &c, const unsigned int oprec, const coeffs src)
Definition: mpr_complex.cc:704
void setGMPFloatDigits(size_t digits, size_t rest)
Set size of mantissa digits - the number of output digits (basis 10) the size of mantissa consists of...
Definition: mpr_complex.cc:60
slists * lists
Definition: mpr_numeric.h:146
void report(const char *fmt, const char *name)
Definition: shared.cc:666
The main handler for Singular numbers which are suitable for Singular polynomials.
#define nDelete(n)
Definition: numbers.h:16
#define nIsZero(n)
Definition: numbers.h:19
#define nSetMap(R)
Definition: numbers.h:43
#define nIsMOne(n)
Definition: numbers.h:26
#define nCopy(n)
Definition: numbers.h:15
#define nPrint(a)
only for debug, over any initalized currRing
Definition: numbers.h:46
#define nInvers(a)
Definition: numbers.h:33
#define SHORT_REAL_LENGTH
Definition: numbers.h:57
#define nIsOne(n)
Definition: numbers.h:25
#define nInit(i)
Definition: numbers.h:24
#define omStrDup(s)
Definition: omAllocDecl.h:263
#define omfree(addr)
Definition: omAllocDecl.h:237
#define omFreeSize(addr, size)
Definition: omAllocDecl.h:260
#define omCheckAddr(addr)
Definition: omAllocDecl.h:328
#define omAlloc(size)
Definition: omAllocDecl.h:210
#define omReallocSize(addr, o_size, size)
Definition: omAllocDecl.h:220
#define omAllocBin(bin)
Definition: omAllocDecl.h:205
#define omCheckAddrSize(addr, size)
Definition: omAllocDecl.h:327
#define omAlloc0Bin(bin)
Definition: omAllocDecl.h:206
#define omFree(addr)
Definition: omAllocDecl.h:261
#define omAlloc0(size)
Definition: omAllocDecl.h:211
#define omFreeBin(addr, bin)
Definition: omAllocDecl.h:259
#define omRealloc0Size(addr, o_size, size)
Definition: omAllocDecl.h:221
VAR unsigned si_opt_2
Definition: options.c:6
VAR unsigned si_opt_1
Definition: options.c:5
#define V_DEF_RES
Definition: options.h:49
#define BVERBOSE(a)
Definition: options.h:34
#define TEST_V_ALLWARN
Definition: options.h:143
#define Sy_bit(x)
Definition: options.h:31
#define V_REDEFINE
Definition: options.h:44
poly p_PermPoly(poly p, const int *perm, const ring oldRing, const ring dst, nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
Definition: p_polys.cc:4158
poly p_One(const ring r)
Definition: p_polys.cc:1308
#define __pp_Mult_nn(p, n, r)
Definition: p_polys.h:962
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent @Note: VarOffset encodes the position in p->exp
Definition: p_polys.h:488
static void p_Setm(poly p, const ring r)
Definition: p_polys.h:233
static void p_Delete(poly *p, const ring r)
Definition: p_polys.h:861
static unsigned pLength(poly a)
Definition: p_polys.h:191
static poly p_Init(const ring r, omBin bin)
Definition: p_polys.h:1280
static poly p_Copy(poly p, const ring r)
returns a copy of p
Definition: p_polys.h:812
static long p_Totaldegree(poly p, const ring r)
Definition: p_polys.h:1467
#define __p_Mult_nn(p, n, r)
Definition: p_polys.h:931
void rChangeCurrRing(ring r)
Definition: polys.cc:15
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Definition: polys.cc:13
Compatiblity layer for legacy polynomial operations (over currRing)
static long pTotaldegree(poly p)
Definition: polys.h:282
#define pTest(p)
Definition: polys.h:415
#define pDelete(p_ptr)
Definition: polys.h:186
#define pSetm(p)
Definition: polys.h:271
#define pIsConstant(p)
like above, except that Comp must be 0
Definition: polys.h:238
#define pNeg(p)
Definition: polys.h:198
#define pDiff(a, b)
Definition: polys.h:296
#define pSub(a, b)
Definition: polys.h:287
#define pCmp(p1, p2)
pCmp: args may be NULL returns: (p2==NULL ? 1 : (p1 == NULL ? -1 : p_LmCmp(p1, p2)))
Definition: polys.h:115
#define pGetVariables(p, e)
Definition: polys.h:251
#define pSetComp(p, v)
Definition: polys.h:38
void wrp(poly p)
Definition: polys.h:310
void pWrite(poly p)
Definition: polys.h:308
#define pGetExp(p, i)
Exponent.
Definition: polys.h:41
void pNorm(poly p, const ring R=currRing)
Definition: polys.h:363
#define pIsPurePower(p)
Definition: polys.h:248
#define pSetExp(p, i, v)
Definition: polys.h:42
#define pCopy(p)
return a copy of the poly
Definition: polys.h:185
#define pOne()
Definition: polys.h:315
poly * polyset
Definition: polys.h:259
#define pDecrExp(p, i)
Definition: polys.h:44
ideal idrCopyR(ideal id, ring src_r, ring dest_r)
Definition: prCopy.cc:191
int IsPrime(int p)
Definition: prime.cc:61
int yyparse(void)
Definition: readcf.cc:945
void PrintS(const char *s)
Definition: reporter.cc:284
void PrintLn()
Definition: reporter.cc:310
void Werror(const char *fmt,...)
Definition: reporter.cc:189
EXTERN_VAR int traceit
Definition: reporter.h:24
#define TRACE_SHOW_RINGS
Definition: reporter.h:36
BOOLEAN rComplete(ring r, int force)
this needs to be called whenever a new ring is created: new fields in ring are created (like VarOffse...
Definition: ring.cc:3400
const char * rSimpleOrdStr(int ord)
Definition: ring.cc:77
int rTypeOfMatrixOrder(const intvec *order)
Definition: ring.cc:185
VAR omBin sip_sring_bin
Definition: ring.cc:43
ring rAssure_HasComp(const ring r)
Definition: ring.cc:4600
ring rCopy0(const ring r, BOOLEAN copy_qideal, BOOLEAN copy_ordering)
Definition: ring.cc:1363
BOOLEAN rCheckIV(const intvec *iv)
Definition: ring.cc:175
rRingOrder_t rOrderName(char *ordername)
Definition: ring.cc:506
void rDelete(ring r)
unconditionally deletes fields in r
Definition: ring.cc:449
BOOLEAN rEqual(ring r1, ring r2, BOOLEAN qr)
returns TRUE, if r1 equals r2 FALSE, otherwise Equality is determined componentwise,...
Definition: ring.cc:1660
void rSetSyzComp(int k, const ring r)
Definition: ring.cc:5033
static BOOLEAN rField_is_Ring(const ring r)
Definition: ring.h:486
static BOOLEAN rField_is_R(const ring r)
Definition: ring.h:520
static int rBlocks(ring r)
Definition: ring.h:570
static BOOLEAN rField_is_Zp_a(const ring r)
Definition: ring.h:531
static BOOLEAN rField_is_Z(const ring r)
Definition: ring.h:511
static BOOLEAN rField_is_Zp(const ring r)
Definition: ring.h:502
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition: ring.h:400
static BOOLEAN rField_is_long_C(const ring r)
Definition: ring.h:547
static ring rIncRefCnt(ring r)
Definition: ring.h:844
static BOOLEAN rField_is_Zn(const ring r)
Definition: ring.h:514
static int rPar(const ring r)
(r->cf->P)
Definition: ring.h:601
static int rInternalChar(const ring r)
Definition: ring.h:691
static BOOLEAN rIsLPRing(const ring r)
Definition: ring.h:411
rRingOrder_t
order stuff
Definition: ring.h:68
@ ringorder_lp
Definition: ring.h:77
@ ringorder_a
Definition: ring.h:70
@ ringorder_am
Definition: ring.h:88
@ ringorder_a64
for int64 weights
Definition: ring.h:71
@ ringorder_rs
opposite of ls
Definition: ring.h:92
@ ringorder_C
Definition: ring.h:73
@ ringorder_S
S?
Definition: ring.h:75
@ ringorder_ds
Definition: ring.h:84
@ ringorder_Dp
Definition: ring.h:80
@ ringorder_unspec
Definition: ring.h:94
@ ringorder_L
Definition: ring.h:89
@ ringorder_Ds
Definition: ring.h:85
@ ringorder_dp
Definition: ring.h:78
@ ringorder_c
Definition: ring.h:72
@ ringorder_rp
Definition: ring.h:79
@ ringorder_aa
for idElimination, like a, except pFDeg, pWeigths ignore it
Definition: ring.h:91
@ ringorder_no
Definition: ring.h:69
@ ringorder_Wp
Definition: ring.h:82
@ ringorder_ws
Definition: ring.h:86
@ ringorder_Ws
Definition: ring.h:87
@ ringorder_IS
Induced (Schreyer) ordering.
Definition: ring.h:93
@ ringorder_ls
Definition: ring.h:83
@ ringorder_s
s?
Definition: ring.h:76
@ ringorder_wp
Definition: ring.h:81
@ ringorder_M
Definition: ring.h:74
static BOOLEAN rField_is_Q_a(const ring r)
Definition: ring.h:541
static BOOLEAN rField_is_Q(const ring r)
Definition: ring.h:508
static void rDecRefCnt(ring r)
Definition: ring.h:845
static char const ** rParameter(const ring r)
(r->cf->parameter)
Definition: ring.h:627
static BOOLEAN rField_is_long_R(const ring r)
Definition: ring.h:544
static BOOLEAN rField_is_numeric(const ring r)
Definition: ring.h:517
static BOOLEAN rField_is_GF(const ring r)
Definition: ring.h:523
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:594
BOOLEAN rHasLocalOrMixedOrdering(const ring r)
Definition: ring.h:762
#define rTest(r)
Definition: ring.h:787
idrec * idhdl
Definition: ring.h:21
void myychangebuffer()
Definition: scanner.cc:2331
VAR int sdb_flags
Definition: sdb.cc:31
#define mpz_sgn1(A)
Definition: si_gmp.h:13
int status int void size_t count
Definition: si_signals.h:59
ideal idInit(int idsize, int rank)
initialise an ideal / module
Definition: simpleideals.cc:35
intvec * id_QHomWeight(ideal id, const ring r)
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size
#define IDELEMS(i)
Definition: simpleideals.h:23
#define R
Definition: sirandom.c:27
BOOLEAN hasAxis(ideal J, int k, const ring r)
Definition: spectrum.cc:81
int hasOne(ideal J, const ring r)
Definition: spectrum.cc:96
BOOLEAN ringIsLocal(const ring r)
Definition: spectrum.cc:461
poly computeWC(const newtonPolygon &np, Rational max_weight, const ring r)
Definition: spectrum.cc:142
void computeNF(ideal stdJ, poly hc, poly wc, spectrumPolyList *NF, const ring r)
Definition: spectrum.cc:309
BOOLEAN hasLinearTerm(poly h, const ring r)
Definition: spectrum.h:30
BOOLEAN hasConstTerm(poly h, const ring r)
Definition: spectrum.h:28
ip_package * package
Definition: structs.h:48
sleftv * leftv
Definition: structs.h:62
char * char_ptr
Definition: structs.h:58
@ isNotHomog
Definition: structs.h:41
#define BITSET
Definition: structs.h:20
#define loop
Definition: structs.h:80
int * int_ptr
Definition: structs.h:59
VAR omBin procinfo_bin
Definition: subexpr.cc:42
INST_VAR sleftv sLastPrinted
Definition: subexpr.cc:46
VAR BOOLEAN siq
Definition: subexpr.cc:48
@ LANG_MAX
Definition: subexpr.h:22
@ LANG_SINGULAR
Definition: subexpr.h:22
@ LANG_NONE
Definition: subexpr.h:22
@ LANG_C
Definition: subexpr.h:22
@ LANG_TOP
Definition: subexpr.h:22
BOOLEAN RingDependend(int t)
Definition: subexpr.h:142
intvec * syBetti(resolvente res, int length, int *regularity, intvec *weights, BOOLEAN tomin, int *row_shift)
Definition: syz.cc:770
void syMinimizeResolvente(resolvente res, int length, int first)
Definition: syz.cc:355
intvec ** hilb_coeffs
Definition: syz.h:46
resolvente minres
Definition: syz.h:58
void syKillComputation(syStrategy syzstr, ring r=currRing)
Definition: syz1.cc:1495
resolvente syReorder(resolvente res, int length, syStrategy syzstr, BOOLEAN toCopy=TRUE, resolvente totake=NULL)
Definition: syz1.cc:1641
intvec * syBettiOfComputation(syStrategy syzstr, BOOLEAN minim=TRUE, int *row_shift=NULL, intvec *weights=NULL)
Definition: syz1.cc:1755
void syKillEmptyEntres(resolvente res, int length)
Definition: syz1.cc:2199
short list_length
Definition: syz.h:62
resolvente res
Definition: syz.h:47
resolvente fullres
Definition: syz.h:57
intvec ** weights
Definition: syz.h:45
ssyStrategy * syStrategy
Definition: syz.h:35
resolvente orderedRes
Definition: syz.h:48
int length
Definition: syz.h:60
#define IDHDL
Definition: tok.h:31
@ ALIAS_CMD
Definition: tok.h:34
@ BIGINT_CMD
Definition: tok.h:38
@ CRING_CMD
Definition: tok.h:56
@ LIST_CMD
Definition: tok.h:118
@ INTVEC_CMD
Definition: tok.h:101
@ PACKAGE_CMD
Definition: tok.h:149
@ CMATRIX_CMD
Definition: tok.h:46
@ DEF_CMD
Definition: tok.h:58
@ CNUMBER_CMD
Definition: tok.h:47
@ LINK_CMD
Definition: tok.h:117
@ QRING_CMD
Definition: tok.h:158
@ STRING_CMD
Definition: tok.h:185
@ INT_CMD
Definition: tok.h:96
#define ANY_TYPE
Definition: tok.h:30
struct for passing initialization parameters to naInitChar
Definition: transext.h:88
THREAD_VAR double(* wFunctional)(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)
Definition: weight.cc:20
void wCall(poly *s, int sl, int *x, double wNsqr, const ring R)
Definition: weight.cc:108
double wFunctionalBuch(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)
Definition: weight0.c:78