We compute nonminimal resolution F of the carpet of type (a,b) over a finite prime field, Lift this to a resolution over ZZ, introduce the fine grading, grep the various blocks of the crucial map in the a-th strand, compute their determinants and return their product.
i1 : a=4,b=4 o1 = (4, 4) o1 : Sequence |
i2 : d=carpetDet(a,b) -- 0.00549487 seconds elapsed -- 0.0118357 seconds elapsed -- 0.000195909 seconds elapsed -- 0.000128202 seconds elapsed -- 0.000109276 seconds elapsed -- 0.000113535 seconds elapsed -- 0.000107943 seconds elapsed -- 0.000112081 seconds elapsed -- 0.000129975 seconds elapsed -- 0.000150434 seconds elapsed -- 0.000116058 seconds elapsed -- 0.000116399 seconds elapsed -- 0.00011104 seconds elapsed -- 0.000115597 seconds elapsed -- 0.00011136 seconds elapsed -- 0.00010599 seconds elapsed -- 0.000110659 seconds elapsed -- 0.000120287 seconds elapsed -- 0.00012229 seconds elapsed -- 0.000122501 seconds elapsed -- 0.000127892 seconds elapsed -- 0.000138371 seconds elapsed -- 0.000114375 seconds elapsed -- 0.000110739 seconds elapsed -- 0.0001064 seconds elapsed -- 0.000117232 seconds elapsed -- 0.000105629 seconds elapsed -- 0.00011671 seconds elapsed (number Of blocks, 26) 1 1 1 1 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 2 2 2 1 1 1 1 o2 = 3131031158784 |
i3 : factor d 32 6 o3 = 2 3 o3 : Expression of class Product |
The object carpetDet is a method function.