Go to the source code of this file.
◆ pCompareChain()
Returns TRUE if.
- LM(p) | LM(lcm)
- LC(p) | LC(lcm) only if ring
- Exists i, j:
- LE(p, i) != LE(lcm, i)
- LE(p1, i) != LE(lcm, i) ==> LCM(p1, p) != lcm
- LE(p, j) != LE(lcm, j)
- LE(p2, j) != LE(lcm, j) ==> LCM(p2, p) != lcm
Definition at line 17 of file kpolys.cc.
23 for (
j=(
R->N);
j;
j--)
26 for (
j=(
R->N);
j;
j--)
32 for (
k=(
R->N);
k>
j;
k--)
51 for (
k=(
R->N);
k>
j;
k--)
57 for (
k=
j-1;
k!=0 ;
k--)
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent @Note: the integer VarOffset encodes:
#define pGetComp(p)
Component.
◆ pCompareChainPart()
BOOLEAN pCompareChainPart |
( |
poly |
p, |
|
|
poly |
p1, |
|
|
poly |
p2, |
|
|
poly |
lcm, |
|
|
const ring |
R |
|
) |
| |
Definition at line 71 of file kpolys.cc.
77 for (
j=
R->real_var_end;
j>=
R->real_var_start;
j--)
80 for (
j=
R->real_var_end;
j>=
R->real_var_start;
j--)
86 for (
k=(
R->N);
k>
j;
k--)
87 for (
k=
R->real_var_end;
k>
j;
k--)
93 for (
k=
j-1;
k>=
R->real_var_start;
k--)
106 for (
k=
R->real_var_end;
k>
j;
k--)
112 for (
k=
j-1;
k>=
R->real_var_start;
k--)