Browse

(Version 1.8.13)

November 2021

Thomas Breuer
Frank Liibeck

Thomas Breuer Email: Thomas.Breuer@ath.RWTH-Aachen.De
Homepage: http://www.math.rwth-aachen.de/ Thomas.Breuer

Frank Liibeck Email: Frank.Luebeck@Math.RWTH-Aachen.De
Homepage: http://www.math.rwth-aachen.de/ Frank.Luebeck

mailto://Thomas.Breuer@Math.RWTH-Aachen.De
http://www.math.rwth-aachen.de/~Thomas.Breuer
mailto://Frank.Luebeck@Math.RWTH-Aachen.De
http://www.math.rwth-aachen.de/~Frank.Luebeck

Browse 2

Copyright

© 2006-2021 by Thomas Breuer and Frank Liibeck
This package may be distributed under the terms and conditions of the GNU Public License Version 3 or
later, see http://www.gnu.org/licenses.

http://www.gnu.org/licenses

Contents

Introduction and Overview

1.1 Imtroduction e e
1.2 OVEIVIEW o o it e e e e e e e e e
1.3 User preferences provided by the Browse package

Interface to the ncurses Library
2.1 Thencurses Library
2.2 Thencurses GAP functions

Utilities using ncurses
3.1 ncursesutilities e
32 ADemoFunction e

Browsing Tables in GAP using ncurses —The User Interface

4.1 Features Supported by the Function NCurses.BrowseGeneric
4.2 Data Structures used by NCurses.BrowseGeneric
4.3 The Function NCurses.BrowseGeneric

Browsing Tables in GAP using ncurses —The Programming Interface

5.1 Navigation Stepsin Browse Tables
5.2 Modesin Browse Tables,
5.3 Browse Applications e
5.4 Predefined Browse Functionalities

Examples of Applications based on NCurses.BrowseGeneric

6.1 The Operation Browse i i vttt
6.2 Matrix Display e
6.3 Character Table Display
6.4 Tableof Marks Display
6.5 Tableof Contentsof AtlasRep
6.6 Access to GAP Manuals—a Variant
6.7 Overview of Bibliographies o
6.8 Profiling GAP functions—a Variant
6.9 Variables defined in GAP packages—a Variant
6.10 Configuring User preferences—a Variant
6.11 Overviewof GAPData
6.12 Navigating ina Directory Tree

AN O\ L W

=]

22
22
26

27
28
30
34

36
36
37
38
39

Browse

6.13 APuzzle.
6.14 PegSolitaire
6.15 Rubik’sCube
6.16 Changing Sides
6.17 Sudoku
6.18 Utility for GAPDemos

A Some Tools for Database Handling

A.1 GAP Objects for Database Handling
A.2 Using Database Attributes for Browse Tables
A.3 Example: Database Id Enumerators and Database Attributes . .

A4 Example: An Overview of the GAP Library of Tables of Marks
References

Index

65
66
67
69
70
74

76
76
83
84
91

94

95

Chapter 1

Introduction and Overview

1.1 Introduction

The motivation of the package Browse was to provide better functionality for displaying two-
dimensional arrays of data (e.g., character tables): moving through the data without loosing row and
column labels, searching for text, displaying extra information, hiding information, allowing interac-
tive user input, ...

We wanted to achieve this by using the capabilities of the terminal emulations in which GAP
is running, and not by some external graphical user interface. For this we have chosen to use the
widely available C-library ncurses, see [NCu]. It contains functions to find out terminal capabilities,
to change properties of terminals, to place text, to handle several windows with overlapping, ... To use
these functions the terminal is switched to a visual mode so that the display of the non-visual mode of
your terminal in which GAP is running is not clobbered.

Browse has now three levels of functionality:

A low level interface to ncurses
This may be interesting for all kinds of applications which want to display text with some
markup including colors, maybe in several windows, using the available capabilities of a termi-
nal.

A medium level interface to a generic function NCurses .BrowseGeneric (4.3.1)
This is for displaying two-dimensional arrays of data, handles labels for rows and columns,
searching, sorting, binding keys to actions, ... If you want to implement such applications
for further kinds of data, first look at the examples in Section BrowseData.IsBrowseTable
(4.2.3), then check what can be copied from the examples in Chapter 6, and consult the descrip-
tions in Chapters 4 and 5.

Applications of these interfaces
We provide some applications of the ncurses interface and of the generic
NCurses.BrowseGeneric (4.3.1) function. These may be interesting for end users, and
also as examples for programmers of further applications. This includes (of course) a method
for browsing through character tables, functions for browsing through data collections, several
games, and an interface for demos.

Users interested only in these applications should perhaps just try NCurses.Demo ().

Browse 6

1.2 Overview

1.2.1 The ncurses interface

Chapter 2 describes GAP’s interface to the ncurses C-library. The imported C-functions are shortly
explained, but for further details we refer to the documentation of that library. There are also a few
utility functions on GAP level, such as NCurses.SetTerm (2.2.2), which simplify the use of the
library.

The concept of an attribute line, see NCurses.IsAttributeLine (2.2.3), helps to deal with text
with markup for its display in a terminal window.

This chapter is for users who want to write their own applications of ncurses.

1.2.2 Applications of ncurses

In Chapter 3 we describe some interactive applications of the ncurses interface. For example, there
is NCurses.Select (3.1.2) for asking a user to choose one or several of a given list of items. There
is also a demo function NCurses.Demo (3.2.1) which we use to demonstrate features of the Browse
package, but it may be interesting for other kinds of demos as well.

1.2.3 The interface to browse two-dimensional arrays

Chapters 4 and 5 describe the interface to a generic function NCurses.BrowseGeneric (4.3.1) which
can be used for an interactive display of two-dimensional arrays of data. The first of these covers the
basic functionality which may be sufficient for many applications and the second gives more technical
details. With interactive display we mean that it is not only possible to scroll through the data, but
one can search for strings, sort by rows or columns, select entries, bind arbitrary actions to keys and
mouse events, ask for help, and more.

1.2.4 Applications of the generic function NCurses.BrowseGeneric

In Chapter 6 we describe several applications which are using the generic NCurses.BrowseGeneric
(4.3.1) interface introduced before. They are provided as prototype applications and so we include
some implementation remarks in their documentation.

Users who just want to use these applications hopefully do not need to read this Browse manual,
all applications are coming with built-in help windows.

There are different kinds of applications. First, there are methods for browsing through character
tables and tables of marks (our original motivation for this package). Then there are applications for
browsing through data collections, e.g., the data available through the AtlasRep package, the GAP
bibliography or the sections of the GAP manuals. Finally, there are several games like Sam Loyd’s
fifteen puzzle (generalized), peg solitaire, and Sudoku (including functions to create new puzzles and
to solve puzzles).

1.3 User preferences provided by the Browse package

See SetUserPreference (Reference: SetUserPreference) for GAP’s user preferences mechanism,
and BrowseUserPreferences (6.10.1) for viewing and modifying user preferences.

Browse 7

1.3.1 The user preference EnableMouseEvents

This user preference defines whether mouse events are enabled by default in visual mode (value true)
or not (value false, this is the default). During the GAP session, the value can be changed using
NCurses.UseMouse (2.2.10). Inside browse applications based on NCurses.BrowseGeneric (4.3.1)
or NCurses.Select (3.1.2), the value can be toggled usually by hitting the M key.

1.3.2 The user preference SelectHelpMatches

In the case that the GAP help system finds multiple matches, true (the default) means that the user
can choose one entry from a list that is shown via NCurses.Select (3.1.2), and false means that the
matches are just shown in a pager.

1.3.3 The user preference SelectPackageName

In the case that LoadPackage (Reference: LoadPackage) is called with a prefix of some package
names, true (the default) means that the user can choose one matching entry, and false means that
the matches are just printed.

Chapter 2

Interface to the ncurses Library

In this chapter we describe the GAP interface to the GNU curses/ncurses C-library. This library
contains routines to manipulate the contents of terminal windows. It allows one to write programs
which should work on a wide variety of terminal emulations with different sets of capabilities.

This technical chapter is intended for readers who want to program new applications using the
ncurses functionality. If you are only interested in the function NCurses.BrowseGeneric (4.3.1)
from this package or some of its applications you can skip this chapter.

Detailed documentation of the ncurses library is probably available in your operating system (try
man ncurses) and from the web (see for example [NCu]). Here, we only give short reminders about
the functions provided in the GAP interface and explain how to use the GAP functions.

2.1 The ncurses Library

In this section we list the functions from the GNU ncurses library and its panel extension which are
made available in GAP via the Browse package. See the following section 2.2 for explanations how
to use these functions from within GAP.

The basic objects to manipulate are called windows, they correspond to rectangular regions of the
terminal screen. Windows can overlap but ncurses cannot handle this for the display. Therefore
windows can be wrapped in panels, they provide a display depth for windows and it is possible to
move panels to the top and bottom of the display or to hide a panel.

We will not import all the functions of the ncurses library to GAP. For example, there are many
pairs of functions with the same name except for a leading w (like move and wmove for moving the
cursor in a window). Here, we only import the versions with w, which get a window as first argument.
The functions without w are for the ncurses standard screen window stdscr which is available as
window 0 in GAP. Similarly, there are functions with the same name except for an extra n (like
waddstr and waddnstr for placing a string into a window). Here, we only import the safer functions
with n which get the number of characters to write as argument. (More convenient functions are then
implemented on the GAP level.)

2.1.1 Setting the terminal

We first list flags for setting the basic behavior of a terminal. With savetty/resetty a setting can be
stored and recovered.

Browse 9

savetty ()
This stores the current setting of the terminal in a buffer.

resetty()
This resets the terminal to what was stored in the last call to savetty.

cbreak () /nocbreak ()
In cbreak mode each input character from a terminal is directly forwarded to the application
(but see keypad). With nocbreak this only happens after a newline or return is typed.

keypad (win, bool)
If set to true some special input like arrow or function keys can be read as single characters
from the input (such keys actually generate certain sequences of characters), see also 2.1.4. (The
win argument is irrelevant.)

echo()/noecho()
This determines if input characters are automatically echoed by the terminal at the current cursor
position.

curs_set (vis)
This determines the visibility of the cursor. The argument vis=0 makes the cursor invisible.
With vis=1 it becomes visible; some terminals allow also higher levels of visibility.

wtimeout (win, delay)
Here delay determines a timeout in milliseconds for reading characters from the input of a
window. Negative values mean infinity, that is a blocking read.

nl()/nonl ()
With nl a return on input is translated to a newline character and a newline on output is inter-
preted as return and linefeed.

intrflush(win, bool)
This flag determines if after an interrupt pending output to the terminal is flushed. (The win
argument is irrelevant.)

idlok(win, bool)
With true the library tries to use a hardware line insertion functionality (in particular for
scrolling).

scrollok(win, bool)
If set to true moving the cursor down from the last line of a window causes scrolling of the
whole window, otherwise nothing happens.

leaveok(win, bool)
If set to true a refresh of the window leaves the cursor at its current location, otherwise this is
not guaranteed.

clearok(win, bool)
If set to true the next refresh of the window will clear the screen completely and redraw every-
thing.

Browse 10

immedok (win, bool)
If set to true all changes of the window will automatically also call a wrefresh.

raw()/noraw()
Similar to cbreak, usually not needed (see the ncurses documentation for details).

2.1.2 Manipulating windows

In ncurses an arbitrary number of windows which correspond to rectangular regions (maybe overlap-
ping) of the screen can be handled. You should always delete windows which are no longer needed. To
get a proper display of overlapping windows (which may occur by recursively called functions using
this library) we suggest that you always wrap windows in panels, see 2.1.3.

For functions which involve coordinates recall that the upper left corner of the screen or internally
of any window has the coordinates (0,0).

newwin(nlines, ncols, y, x)
This creates a new window whose upper left corner has the coordinates (y,x) on the screen and
has nlines lines and ncols columns, if this is possible. The arguments nlines and ncols
can be zero, then their maximal possible values are assumed.

delwin(win)
Deletes a window.

mvwin(win, y, x)
Moves the upper left corner of the window to the given coordinates, if the window still fits on
the screen. With panels don’t use this function, but use move_panel mentioned below.

wrefresh(win)
Writing to a window only changes some internal buffers, this function copies the window con-
tent to the actual display screen. You don’t need this function if you wrap your windows in
panels, use update_panels and doupdate instead.

doupdate ()
Use this function to update the content of your display screen to the current content of all
windows. If your terminal is not yet in visual mode this function changes to visual mode.

endwin()
Use this function to leave the visual mode of your terminal. (Remark: If you use this function
while not in visual mode the cursor will be moved to the line where the visual mode was started
last time. To avoid this use isendwin first.)

isendwin()
Returns true if called while not in visual mode and false otherwise

getbegyx (win)
Get the coordinates of the upper left corner of a window on the screen.

getmaxyx (win)
Get the number of lines and columns of a window.

Browse 11

2.1.3 Manipulating panels

Wrap windows in panels to get a proper handling of overlapping windows on the display. Don’t forget
to delete a panel before deleting the corresponding window.

new_panel (win)
Create a panel for a window.

del_panel (pan)
Delete a panel.

update_panels()
Use this function to copy changes of windows and panels to a screen buffer. Then call
doupdate () to update the display screen.

move_panel (pan, y, x)
Move top left corner of a panel wrapped window to coordinates (y,x) if possible.

hide_panel(pan)/show_panel (pan)
Hide or show, respectively, the content of a panel on the display screen.

top_panel (pan)/bottom_panel (pan)
Move a panel to the top or bottom of all panels, respectively.

panel_below(pan)/panel_above (pan)
Return the panel directly below or above the given one, respectively. With argument O the top
or bottom panel are returned, respectively. If argument is the bottom or top panel, respectively,
then false is returned.

2.1.4 Getting keyboard input

If you want to read input from the user first adjust the terminal settings of cbreak, keypad, echo,
wtimeout and curs_set to your needs, see 2.1.1. The basic functions are as follows.

wgetch(win)
Reads one character from user input (returned as integer). If wtimeout was set with a positive
delay then the function returns false if there was no input for delay milliseconds. Note
that in nocbreak mode typed characters reach the application only after typing a return. If the
keypad flag is set to true some special keys can be read like single characters; the keys are
explained below. (Note that there is only one input queue for all windows.)

ungetch(char)
Puts back the character char on the input queue.

Some terminals allow one to read special keys like one character, we import some of the symbolic
names of such keys into GAP. You can check for such characters by comparing with the components
of the record NCurses .keys, these are

UP/DOWN/LEFT/RIGHT
the arrow keys

Browse 12

PPAGE/NPAGE
the page up and page down keys

HOME/END
the home and end keys

BACKSPACE/DC
the backspace and delete keys

IC the insert key

ENTER
the enter key

F1/F2/../F24
the function keys

MOUSE
a pseudo key to detect mouse events

A1/A3/B2/C1/C3
the keys around the arrow keys on a num pad

It can happen that on a specific keyboard there is no key for some of these. Also, not all terminals can
interpret all of these keys. You can check this with the function

has_key (key)
Checks if the special key key is recognized by the terminal.

2.1.5 Writing to windows

The display of text in ncurses windows has two aspects. The first is to get actual characters on the
screen. The second is to specify attributes which influence the display, for example normal or bold
fonts or colors. This subsection is for the first aspect. Possible attributes are explained below in 2.1.7.

wmove (win, y, x)
Moves the cursor to position (y,x), recall that the coordinates are zero based, (0,0) being the
top left corner.

waddnstr(win, str, len)
Writes the string str to the window starting from the current cursor position. Writes at most
len characters. At end of line the cursor moves to the beginning of next line. The behavior at
the end of the window depends on the setting of scrollok, see 2.1.1.

waddch(win, char)
Writes a character to the window at the current cursor position and moves the cursor on. The
character char is given as integer and can include attribute information.

wborder (win, charlist)
Draws a border around the window. If charlist is a plain list of eight GAP characters these
are taken for left/right/top/bottom sides and top-left/top-right/bottom-left/bottom-right corners.
Otherwise default characters are used. (See NCurses.WBorder (2.2.9) for a more user friendly
interface.)

Browse 13

wvline(win, char, len)
Writes a vertical line of length Ien (or as long as fitting into the window) starting from the
current cursor position to the bottom, using the character char. If char=0 the default character
is used.

whline(win, char, len)
Same as wvline but for horizontal lines starting from the cursor position to the right.

werase (win)
Deletes all characters in the window.

wclear (win)
Like werase, but also calls clearok.

wclrtobot (win)
Deletes all characters from cursor position to the right and bottom.

wclrtoeol (win)
Deletes all characters from cursor position to end of line.

winch(win)
Returns the character at current cursor position, as integer and including color and attribute
information.

getyx(win)
Returns the current cursor position.

waddstr(win, str)
Delegates to waddnstr (win, str, Length(str)).

2.1.6 Line drawing characters

For drawing lines and grids in a terminal window you should use some "virtual" characters which
are available as components of the record NCurses.lineDraw. On some terminals these are nicely
displayed as proper lines (on others they are simulated by ASCII characters). These are:

BLOCK
solid block

BOARD
board of squares

BTEE/LTEE/RTEE/TTEE
bottom/left/right/top tee

BULLET
bullet

CKBOARD
checker board

Browse 14

DARROW/LARROW/RARROW/UARROW
down/left/right/up arrow

DEGREE
degree symbol

DIAMOND
diamond

GEQUAL
greater than or equal

HLINE/VLINE
horizontal/vertical line

LANTERN
lantern symbol

LEQUAL
less than or equal

LLCORNER/LRCORNER/ULCORNER/URCORNER
lower left/lower right/upper left/upper right corner

NEQUAL
not equal

PI letter pi

PLMINUS
plus-minus

PLUS
crossing lines like a plus

S1/S83/87/59
scan line 1/3/7/9

STERLING
pound sterling

2.1.7 Text attributes and colors

In addition to the actual characters to be written to the screen the way they are displayed can be
changed by additional attributes. (There should be no danger to mix up this notion of attributes with
the one introduced in (Reference: Attributes).) The available attributes are stored in the record
NCurses.attrs, they are

NORMAL
normal display with no extra attributes.

STANDOUT
displays text in the best highlighting mode of the terminal.

Browse 15

UNDERLINE
underlines the text.

REVERSE
display in reverse video by exchanging the foreground and background color.

BLINK
displays the text blinking.

DIM displays the text half bright.

BOLD
displays the text in a bold font.

Note that not all of these work with all types of terminals, or some may cause the same display.
Furthermore, if NCurses.attrs.has_colors is true there is a list NCurses.attrs.ColorPairs
of attributes to set the foreground and background color. These should be accessed indirectly with
NCurses.ColorAttr (2.2.1). Attributes can be combined by adding their values (internally, they are
represented by integers). They can also be added to the integer representing a character for use with
waddch.

The library functions for setting attributes are:

wattrset(win, attr)
This sets the default (combined) attributes for a window which is added to all characters written
to it; using NCurses.attrs.NORMAL as attribute is a reset.

wattron(win, attr)/wattroff(win, attr)
This sets or unsets one or some default attributes of the window without changing the others.

wattr_get (win)
This returns the current default attribute and default color pair of a window.

wbkgdset (win, attr)
This is similar to wattrset but you can also add a character to attr which is used as default
instead of blanks.

wbkgd (win, attr)
This function changes the attributes for all characters in the window to attr, also used for
further characters written to that window.

2.1.8 Low level ncurses mouse support

Many xterm based terminals support mouse events. The recognition of mouse events by the
ncurses input queue can be switched on and off. If switched on and a mouse event occurs, then
NCurses.wgetch gets NCurses.keys.MOUSE if the keypad flag is true (see 2.1.4). If this is read
one must call NCurses. getmouse which reads further characters from the input queue and interprets
them as details on the mouse event. In most cases the function NCurses . GetMouseEvent (2.2.10) can
be used in applications (it calls NCurses . getmouse). The following low level functions are available
as components of the record NCurses.

The names of mouse events which may be possible are stored in the list NCurses.mouseEvents,
which starts ["BUTTON1_PRESSED", "BUTTON1_RELEASED", "BUTTON1_CLICKED",

Browse 16

"BUTTON1_DOUBLE_CLICKED", "BUTTON1_TRIPLE_CLICKED", ... and contains the same
for buttons number 2 to 5 and a few other events.

mousemask (intlist)
The argument intlist is a list of integers specifying mouse events. An entry i refers to the
event described in NCurses.mouseEvents[i+1]. It returns a record with components .new
(for the current setting) and . o1d (for the previous setting) which are again lists of integers with
the same meaning. Note that .new may be different from intlist, it is always the empty list
if the terminal does not support mouse events. In applications use NCurses .UseMouse (2.2.10)
instead of this low level function.

getmouse ()
This function must be called after a key NCurses.keys.MOUSE was read. It returns a list with
three entries [y, x, intlist] where y and x are the coordinates of the character cell where
the mouse event occured and intlist describes the event, it should have length one and refers
to a position in NCurses .mouseEvents.

wenclose(win, y, x)
This functions returns true if the screen position y, x is within window win and false other-
wise.

mouseinterval (t)
Sets the time to recognize a press and release of a mouse button as a click to t milliseconds.
(Note that this may have no effect because a window manager may catch this.)

2.1.9 Miscellaneous function

We also provide the ncurses function mnap (msec) which is a sleep for msec milliseconds.

Furthermore, there a two utilities which can be useful for scripts and testing, namely a
check if standard input or standard output are connected to terminals. These can be called as
NCurses.IsStdinATty() or NCurses.IsStdoutATty (), respectively.

2.2 The ncurses GAP functions

The functions of the ncurses library are used within GAP very similarly to their C equivalents. The
functions are available as components of a record NCurses with the name of the C function (e.g.,
NCurses.newwin).

In GAP the ncurses windows are accessed via integers (as returned by NCurses.newwin). The
standard screen stdscr from the ncurses library is available as window number 0. But this should
not be used; to allow recursive applications of ncurses always create a new window, wrap it in a
panel and delete both when they are no longer needed.

Each window can be wrapped in one panel which is accessed by the same integer. (Window 0
cannot be used with a panel.)

Coordinates in windows are the same zero based integers as in the corresponding C functions. The
interface of functions which return coordinates is slightly different from the C version; they just return
lists of integers and you just give the window as argument, e.g., NCurses . getmaxyx (win) returns a
list [nrows, ncols] of two integers.

Browse 17

Characters to be written to a window can be given either as GAP characters like >a’ or as integers
like INT_CHAR(’a’) = 97. If you use the integer version you can also add attributes including color
settings to it for use with NCurses.waddch.

When writing an application decide about an appropriate terminal setting for your vi-
sual mode windows, see 2.1.1 and the utility function NCurses.SetTerm (2.2.2) below. Use
NCurses.savetty() and NCurses.resetty () to save and restore the previous setting.

We also provide some higher level functionality for displaying marked up text, see
NCurses.PutLine (2.2.6) and NCurses.IsAttributeLine (2.2.3).

We now describe some utility functions for putting text on a terminal window.

2.2.1 NCurses.ColorAttr

> NCurses.ColorAttr(fgcolor, bgcolor) (function)
Returns: an attribute for setting the foreground and background color to be used on a terminal

window (it is a GAP integer).

> NCurses.attrs.has_colors (global variable)

The return value can be used like any other attribute as described in 2.1.7. The arguments
fgcolor and bgcolor can be given as strings, allowed are those in ["black", "red", "green",
"yellow", "blue", "magenta", "cyan", "white"]. These are the default foreground colors
0 to 7 on ANSI terminals. Alternatively, the numbers O to 7 can be used directly as arguments.

Note that terminals can be configured in a way such that these named colors are not the colors
which are actually displayed.

The variable NCurses.attrs.has_colors (2.2.1)is set to true or false if the terminal supports
colors or not, respectively. If a terminal does not support colors then NCurses.ColorAttr always
returns NCurses.attrs.NORMAL.

For an attribute setting the foreground color with the default background color of the terminal use
-1 as bgcolor or the same as fgcolor.

Example
gap> win := NCurses.newwin(0,0,0,0);; pan := NCurses.new_panel(win);;
gap> defc := NCurses.defaultColors;;
gap> NCurses.wmove(win, 0, 0);;
gap> for a in defc do for b in defc do
> NCurses.wattrset (win, NCurses.ColorAttr(a, b));
> NCurses.waddstr(win, Concatenation(a,"/",b,"\t"));
> od; od;
gap> if NCurses.IsStdoutATty() then
> NCurses.update_panels();; NCurses.doupdate();;
> NCurses.napms (5000) ; ; # show for 5 seconds
> NCurses.endwin() ;; NCurses.del_panel(pan);; NCurses.delwin(win);;
> fi;

2.2.2 NCurses.SetTerm

> NCurses.SetTerm([record]) (function)

This function provides a unified interface to the various terminal setting functions of ncurses
listed in 2.1.1. The optional argument is a record with components which are assigned to true or

Browse 18

false. Recognised components are: cbreak, echo, nl, intrflush, leaveok, scrollok, keypad,
raw (with the obvious meaning if set to true or false, respectively).

The default, if no argument is given, is rec(cbreak := true, echo := false, nl
:= false, intrflush := false, leaveok := true, scrollok := false, keypad :=
true). (This is a useful setting for many applications.) If there is an argument record, then the
given components overwrite the corresponding defaults.

2.2.3 NCurses.IsAttributeLine

> NCurses.IsAttributeLine(obj) (function)

Returns: true if the argument describes a string with attributes.

An attribute line describes a string with attributes. It is represented by either a string or a dense
list of strings, integers, and Booleans immediately following integers, where at least one list entry
must not be a string. (The reason is that we want to be able to distinguish between an attribute line
and a list of such lines, and that the case of plain strings is perhaps the most usual one, so we do not
want to force wrapping each string in a list.) The integers denote attribute values such as color or font
information, the Booleans denote that the attribute given by the preceding integer is set or reset.

If an integer is not followed by a Boolean then it is used as the attribute for the following characters,
that is it overwrites all previously set attributes. Note that in some applications the variant with explicit
Boolean values is preferable, because such a line can nicely be highlighted just by prepending a
NCurses.attrs.STANDOUT attribute.

For an overview of attributes, see 2.1.7.

Example
gap> NCurses.IsAttributeLine("abc");
true
gap> NCurses.IsAttributeLine(["abc", "def"]);
false

gap> NCurses.IsAttributeLine([NCurses.attrs.UNDERLINE, true, "abc"]);
true

gap> NCurses.IsAttributeLine(""); NCurses.IsAttributeLine([]);

true

false

The empty string is an attribute line whereas the empty list (which is not in IsStringRep
(Reference: IsStringRep)) is not an attribute line.

2.2.4 NCurses.ConcatenationAttributeLines

> NCurses.ConcatenationAttributelLines(lines[, keep]) (function)

Returns: an attribute line.

For a list lines of attribute lines (see NCurses.IsAttributeLine (2.2.3)),
NCurses.ConcatenationAttributeLines returns the attribute line obtained by concatenat-
ing the attribute lines in 1ines.

If the optional argument keep is true then attributes set in an entry of 1ines are valid also for
the following entries of 1ines. Otherwise (in particular if there is no second argument) the attributes

are reset to NCurses.attrs.NORMAL between the entries of 1ines.
Example

gap> plain_str:= "hello";;
gap> with_attr:= [NCurses.attrs.BOLD, "bold" 1;;

Browse 19

gap> NCurses.ConcatenationAttributeLines([plain_str, plain_str]);
"hellohello"

gap> NCurses.ConcatenationAttributeLines([plain_str, with_attr]);

["hello", 2097152, "bold"]

gap> NCurses.ConcatenationAttributeLines([with_attr, plain_str]);

[2097152, "bold", 0, "hello"]

gap> NCurses.ConcatenationAttributeLines([with_attr, with_attr]);

[2097152, "bold", 0, 2097152, "bold"]

gap> NCurses.ConcatenationAttributeLines([with_attr, with_attr], true);
[2097152, "bold", 2097152, "bold"]

2.2.5 NCurses.RepeatedAttributeLine

> NCurses.RepeatedAttributeLine(line, width) (function)

Returns: an attribute line.

For an attribute line 1ine (see NCurses.IsAttributeLine (2.2.3)) and a positive integer
width, NCurses.RepeatedAttributeLine returns an attribute line with width displayed charac-
ters (see NCurses.WidthAttributeLine (2.2.7)) that is obtained by concatenating sufficiently many
copies of 1ine and cutting off a tail if applicable.
Example
gap> NCurses.RepeatedAttributeLine("12345", 23);
"12345123451234512345123"
gap> NCurses.RepeatedAttributeLine([NCurses.attrs.BOLD, "12345"], 13);
[2097152, "12345", 0, 2097152, "12345", 0, 2097152, "123"]

2.2.6 NCurses.PutLine

> NCurses.PutLine(win, y, x, lines[, skip]) (function)

Returns: true if 1ines were written, otherwise false.

The argument 1ines can be a list of attribute lines (see NCurses.IsAttributelLine (2.2.3)) or
a single attribute line. This function writes the attribute lines to window win at and below of position
y, X.

If the argument skip is given, it must be a nonnegative integer. In that case the first skip charac-
ters of each given line are not written to the window (but the attributes are).

2.2.7 NCurses.WidthAttributeLine

> NCurses.WidthAttributeLine(line) (function)
Returns: number of displayed characters in an attribute line.
For an attribute line 1ine (see NCurses.IsAttributeLine (2.2.3)), the function returns the
number of displayed characters of 1ine.
Example
gap> NCurses.WidthAttributeLine("abcde");
5
gap> NCurses.WidthAttributelLine([NCurses.attrs.BOLD, "abc",

> NCurses.attrs.NORMAL, "de"]);
5

Browse 20

2.2.8 NCurses.Grid

> NCurses.Grid(win, trow, brow, lcol, rcol, rowinds, colinds) (function)

This function draws a grid of horizontal and vertical lines on the window win, using the line
drawing characters explained in 2.1.6. The given arguments specify the top and bottom row of the
grid, its left and right column, and lists of row and column numbers where lines should be drawn.

Example
gap> fun := function() local win, pan;
> win := NCurses.newwin(0,0,0,0);
> pan := NCurses.new_panel(win) ;
> NCurses.Grid(win, 2, 11, 5, 22, [5, 6], [13, 14]);
> NCurses.PutLine(win, 12, 0, "Press <Enter> to quit");
> NCurses.update_panels(); NCurses.doupdate();
> NCurses.wgetch(win) ;
> NCurses.endwin() ;
> NCurses.del_panel(pan); NCurses.delwin(win);
> end;;
gap> fun();

2.2.9 NCurses.WBorder

> NCurses.WBorder(win/[, chars]) (function)

This is a convenient interface to the ncurses function wborder. It draws a border around the
window win. If no second argument is given the default line drawing characters are used, see 2.1.6.
Otherwise, chars must be a list of GAP characters or integers specifying characters, possibly with
attributes. If chars has length 8 the characters are used for the left/right/top/bottom sides and top-
left/top-right/bottom-left/bottom-right corners. If chars contains 2 characters the first is used for
the sides and the second for all corners. If chars contains just one character it is used for all sides
including the corners.

2.2.10 Mouse support in ncurses applications

> NCurses.UseMouse (on) (function)
Returns: arecord
> NCurses.GetMouseEvent () (function)

Returns: a list of records

ncurses allows on some terminals (xterm and related) to catch mouse events. In principle a sub-
set of events can be caught, see mousemask in 2.1.8. But this does not seem to work well with proper
subsets of possible events (probably due to intermediate processes X, window manager, terminal ap-
plication, ...). Therefore we suggest to catch either all or no mouse events in applications.

This can be done with NCurses.UseMouse with argument true to switch on the recognition of
mouse events and false to switch it off. The function returns a record with components .new and
.0ld which are both set to the status true or false from after and before the call, respectively. (There
does not seem to be a possibility to get the current status without calling NCurses.UseMouse.) If you
call the function with argument true and the . new component of the result is false, then the terminal
does not support mouse events.

Browse 21

When the recognition of mouse events is switched on and a mouse event occurs then the key
NCurses.keys.MOUSE is found in the input queue, see wgetch in 2.1.4. If this key is read the low
level function NCurses . getmouse must be called to fetch further details about the event from the input
queue, see 2.1.8. In many cases this can be done by calling the function NCurses.GetMouseEvent
which also generates additional information. The return value is a list of records, one for each panel
over which the event occured, these panels sorted from top to bottom (so, often you will just need the
first entry if there is any). Each of these records has components .win, the corresponding window of
the panel, .y and .x, the relative coordinates in window .win where the event occured, and .event,
which is bound to one of the strings in NCurses.mouseEvents which describes the event.

Suggestion: Always make the use of the mouse optional in your application. Allow the user to
switch mouse usage on and off while your application is running. Some users may not like to give
mouse control to your application, for example the standard cut and paste functionality cannot be used
while mouse events are caught.

2.2.11 NCurses.SaveWin

> NCurses.SaveWin(win) (function)
> NCurses.StringsSaveWin(cont) (function)
> NCurses.RestoreWin(win, cont) (function)
> NCurses.ShowSaveWin(cont) (function)

Returns: a GAP object describing the contents of a window.

These functions can be used to save and restore the contents of ncurses windows.
NCurses.SaveWin returns a list [nrows, ncols, chars] giving the number of rows, number of
columns, and a list of integers describing the content of window win. The integers in the latter con-
tain the displayed characters plus the attributes for the display.

The function NCurses.StringsSaveWin translates data cont in form of the output of
NCurses.SaveWin to a list of nrows strings giving the text of the rows of the saved window, and
ignoring the attributes. You can view the result with NCurses.Pager (3.1.4).

The argument cont for NCurses.RestoreWin must be of the same format as the output of
NCurses.SaveWin. The content of the saved window is copied to the window win, starting from
the top-left corner as much as it fits.

The utility NCurses.ShowSaveWin can be used to display the output of NCurses.SaveWin (as
much of the top-left corner as fits on the screen).

Chapter 3

Utilities using ncurses

In this chapter we describe the usage of some example applications of the ncurses interface provided
by the Browse package. They may be of interest by themselves, or they may be used as utility
functions within larger applications.

3.1 ncurses utilities

If you «call the functions NCurses.Alert (3.1.1), NCurses.Select (3.1.2),
NCurses.GetLineFromUser (3.1.3), or NCurses.Pager (3.1.4) from another ncurses application in
visual mode, you should refresh the windows that are still open, by calling NCurses.update_panels
and NCurses.doupdate afterwards, see Section 2.1.3 and 2.1.2. Also, if the cursor shall be
hidden after that, you should call curs_set with argument 0, see Section 2.1.1, since the cursor is
automatically made visible in NCurses . endwin.

3.1.1 NCurses.Alert

> NCurses.Alert(messages, timeout[, attrs]) (function)

Returns: the integer corresponding to the character entered, or fail.

In visual mode, Print (Reference: Print) cannot be used for messages. An alternative is given
by NCurses.Alert.

Let messages be either an attribute line or a nonempty list of attribute lines, and timeout be a
nonnegative integer. NCurses.Alert shows messages in a bordered box in the middle of the screen.

If timeout is zero then the box is closed after any user input, and the integer corresponding to
the entered key is returned. If timeout is a positive number n, say, then the box is closed after n
milliseconds, and fail is returned.

If timeout is zero and mouse events are enabled (see NCurses.UseMouse (2.2.10)) then the box
can be moved inside the window via mouse events.

If the optional argument attrs is given, it must be an integer representing attributes such as
the components of NCurses.attrs (see Section 2.1.7) or the return value of NCurses.ColorAttr
(2.2.1); these attributes are used for the border of the box. The default is NCurses.attrs.NORMAL.

Example
gap> NCurses.Alert("Hello world!", 1000);
fail
gap> NCurses.Alert(["Hello world!",
> ["Hello ", NCurses.attrs.BOLD, "bold!" 1 1, 1500,

22

Browse 23

> NCurses.ColorAttr("red", -1) + NCurses.attrs.BOLD);
fail

3.1.2 NCurses.Select

> NCurses.Select(poss[, single[, none]l) (function)

Returns: Position or list of positions, or false.

This function allows the user to select one or several items from a given list. In the simplest case
poss is a list of attribute lines (see NCurses.IsAttributeLine (2.2.3)), each of which should fit on
one line. Then NCurses.Select displays these lines and lets the user browse through them. After
pressing the RETURN key the index of the highlighted item is returned. Note that attributes in your
lines should be switched on and off separately by true/false entries such that the lines can be nicely
highlighted.

The optional argument single must be true (default) or false. In the second case, an arbitrary
number of items can be marked and the function returns the list of their indices.

If single is true a third argument none can be given. If it is true then it is possible to leave the
selection without choosing an item, in this case false is returned.

More details can be given to the function by giving a record as argument poss. It can have the
following components:

items
The list of attribute lines as described above.

single
Boolean with the same meaning as the optional argument single.

none
Boolean with the same meaning as the optional argument none.

size
The size of the window like the first two arguments of NCurses.newwin (defaultis [0, 0], as
big as possible), or the string "fit" which means the smallest possible window.

align
A substring of "bclt", which describes the alignment of the window in the terminal. The
meaning and the default are the same as for BrowseData.IsBrowseTableCellData (4.2.1).

begin
Top-left corner of the window like the last two arguments of NCurses.newwin (default is [0,
0], top-left of the screen). This value has priority over the align component.

attribute
An attribute used for the display of the window (default is NCurses.attrs.NORMAL).

border
If the window should be displayed with a border then set to true (default is false) or to an
integer representing attributes such as the components of NCurses.attrs (see Section 2.1.7)
or the return value of NCurses.ColorAttr (2.2.1); these attributes are used for the border of
the box. The default is NCurses.attrs.NORMAL.

Browse 24

header
An attribute line used as header line (the default depends on the settings of single and none).

hint
An attribute line used as hint in the last line of the window (the default depends on the settings
of single and none).

onSubmitFunction
A function that is called when the user submits the selection; the argument for this call is the cur-
rent value of the record poss. If the function returns true then the selected entries are returned
as usual, otherwise the selection window is kept open, waiting for new inputs; if the function
returns a nonempty list of attribute lines then these messages are shown using NCurses.Alert
(3.1.1).

If mouse events are enabled (see NCurses.UseMouse (2.2.10)) then the window can be moved
on the screen via mouse events, the focus can be moved to an entry, and (if single is false) the
selection of an entry can be toggled.

Example
gap> index := NCurses.Select(["Apples", "Pears", "Oranges"]);
gap> index := NCurses.Select(rec(
> items := ["Apples", "Pears", "Oranges"],
> single := false,
> border := true,
> begin := [5, 5],
> size := [8, 60],
> header := "Choose at least two fruits",
> attribute := NCurses.ColorAttr("yellow","red"),
> onSubmitFunction:= function(r)
> if Length(r.RESULT) < 2 then
> return ["Choose at least two fruits"];
> else
> return true;
> fi;
> end));

3.1.3 NCurses.GetLineFromUser

> NCurses.GetLineFromUser (pre) (function)

Returns: User input as string.

This function can be used to get an input string from the user. It opens a one line window and
writes the given string pre into it. Then it waits for user input. After hitting the RETURN key the
typed line is returned as a string to GAP. If the user exits via hitting the ESC key instead of hitting the
RETURN key, the function returns false. (The ESC key may be recognized as input only after a delay
of about a second.)

Some simple editing is possible during user input: The LEFT, RIGHT, HOME and END keys, the
INSERT/REPLACE keys, and the BACKSPACE/DELETE keys are supported.

Instead of a string, pre can also be a record with the component pref ix, whose value is the string
described above. The following optional components of this record are supported.

Browse 25

window
The window with the input field is created relative to this window, the default is 0.

begin
This is a list with the coordinates of the upper left corner of the window with the input field,
relative to the window described by the window component; the defaultis [y-4, 2], where
y is the height of this window.

default

This string appears as result when the window is opened, the default is an empty string.
Example
gap> str := NCurses.GetLineFromUser ("Your Name: ");;
gap> Print("Hello ", str, "!\n");

3.1.4 NCurses.Pager

> NCurses.Pager(lines[, border[, ly, 1x, y, x1]) (function)

This is a simple pager utility for displaying and scrolling text. The argument 1ines can be a
list of attribute lines (see NCurses.IsAttributeLine (2.2.3)) or a string (the lines are separated by
newline characters) or a record. In case of a record the following components are recognized:

lines
The list of attribute lines or a string as described above.

start
Line number to start the display.

size
The size [1y, 1x] of the window like the first two arguments of NCurses.newwin (default is
[0, 0], as big as possible).

begin
Top-left corner [y, x] of the window like the last two arguments of NCurses .newwin (default
is [0, 0], top-left of the screen).

attribute
An attribute used for the display of the window (default is NCurses.attrs.NORMAL).

border
Either one of true/false to show the pager window with or without a standard border. Or it
can be string with eight, two or one characters, giving characters to be used for a border, see
NCurses.WBorder (2.2.9).

hint
A text for usage info in the last line of the window.

As an abbreviation the information from border, size and begin can also be specified in optional
arguments.

Example
gap> lines := List([1..100],i-> ["line " ,NCurses.attrs.BOLD,String(i)]);;
gap> NCurses.Pager(lines);

Browse 26

3.1.5 Selection of help matches

After loading the Browse package GAP’s help system behaves slightly different when a request yields
several matches. The matches are shown via NCurses.Select (3.1.2), the list can be searched and
filtered, and one can choose one match for immediate display. It is possible to not choose a match and
the 7<nr> syntax still works.

If you want the original behavior call SetUserPreference("Browse",
"SelectHelpMatches", false); in your GAP session or gap.ini file, see (Reference:
Configuring User preferences).

3.1.6 Selection of package names

The function LoadPackage (Reference: LoadPackage) shows a list of matches if only a prefix of a
package name is given. After loading the Browse package, NCurses.Select (3.1.2) is used for that,
and one can choose a match.

If you want the original behavior call SetUserPreference("Browse",
"SelectPackageName", false); in your GAP session or gap.ini file, see (Reference:
Configuring User preferences).

3.2 A Demo Function

3.2.1 NCurses.Demo

> NCurses.Demo ([inputs]) (function)

Let inputs be a list of records, each with the components title (a string), inputblocks (a list
of strings, each describing some GAP statements), and optionally footer (a string) and cleanup (a
string describing GAP statements). The default is NCurses .DemoDefaults.

NCurses .Demo lets the user choose an entry from inputs, via NCurses.Select (3.1.2), and then
executes the GAP statements in the first entry of the inputblocks list of this entry; these strings, to-
gether with the values of title and footer, are shown in a window, at the bottom of the screen.
The effects of calls to functions using ncurses are shown in the rest of the screen. After the exe-
cution of the statements (which may require user input), the user can continue with the next entry
of inputblocks, or return to the inputs selection (and thus cancel the current inputs entry), or
return to the execution of the beginning of the current inputs entry. At the end of the current entry of
inputs, the user returns to the inputs selection.

The GAP statements in the cleanup component, if available, are executed whenever the user does
not continue; this is needed for deleting panels and windows that are defined in the statements of the
current entry.

Note that the GAP statements are executed in the global scope, that is, they have the same ef-
fect as if they would be entered at the GAP prompt. Initially, NCurses.Demo sets the value of
BrowseData.defaults.work.windowParameters to the parameters that describe the part of the
screen above the window that shows the inputs; so applications of NCurses.BrowseGeneric (4.3.1)
use automatically the maximal part of the screen as their window. It is recommended to use a screen
with at least 80 columns and at least 37 rows.

Chapter 4

Browsing Tables in GAP using ncurses
—The User Interface

As stated in Section 1.1, one aim of the Browse package is to provide tools for the quite usual task to
show a two-dimensional array or certain rows and columns of it on a character screen in a formatted
way, to navigate in this array via key strokes (and mouse events), and to search for strings, to sort the
array by row or column values etc.

The idea is that one starts with an array of data, the main table. Optionally, labels for each row
of the main table are given, which are also arranged in an array (with perhaps several columns), the
row labels table; analogously, a column labels table of labels for the columns of the main table may
be given. The row labels are shown to the left of the main table, the column labels are shown above
the main table. The space above the row labels and to the left of the column labels can be used for a
fourth table, the corner table, with information about the labels or about the main table. Optionally, a
header and a footer may be shown above and below these four tables, respectively. Header and footer
are not separated into columns. So the shown window has the following structure.

header
corner | column labels

row main
labels table
footer

If not the whole tables fit into the window then only subranges of rows and columns of the main
table are shown, together with the corresponding row and column labels. Also in this case, the row
heights and column widths are computed w.r.t. the whole table not w.r.t. the shown rows and columns.
This means that the shown row labels are unchanged if the range of shown columns is changed, the
shown column labels are unchanged if the range of shown rows is changed, and the whole corner table
is always shown.

The current chapter describes the user interface for standard applications of this kind, i. e., those
applications for which one just has to collect the data to be shown in a record —which we call a browse
table— without need for additional GAP programming.

Section 4.1 gives an overview of the features available in standard browse table applications, and
Section 4.2 describes the data structures used in browse tables. Finally, Section 4.3 introduces the

27

Browse 28

function NCurses.BrowseGeneric (4.3.1), which is the generic function for showing browse table in
visual mode.

For technical details needed to extend these applications and to build other applications, see Chap-
ter 5.

Examples of browse table applications are shown in Chapter 6.

4.1 Features Supported by the Function NCurses.BrowseGeneric

Standard applications of the function NCurses .BrowseGeneric (4.3.1) have the following function-
ality. Other applications may provide only a subset, or add further functionality, see Chapters 5 and 6.

Scrolling:
The subranges of shown rows and columns of the main table can be modified, such that the
focus area is moved to the left, to the right, up, or down; depending on the context, the focus
is moved by one character, by one table cell or a part of it, by the window height/width (minus
one character or minus one table cell). If mouse events are enabled then cells can be selected
also via mouse clicks.

Selecting:
A cell, row, or column of the main table can be selected; then it is shown highlighted on the
screen (by default using the attribute NCurses.attrs.STANDOUT, see Section 2.1.7). The se-
lection can be moved inside the main table to a neighboring cell, row, or column; this causes
also scrolling of the main table when the window borders are reached.

Searching:
A search string is entered by the user, and the first matching cell becomes selected; one can
search further for the next matching cell. Global search parameters define what matching means
(case sensitive or not, search for substrings or complete words) and what the first and the next
matching cells are (search in the whole table or just in the selected row or column, search for
whole words or prefixes or suffixes, search forwards or backwards).

Sorting:
If a row or column is selected then the main table can be sorted w.r.t. the entries in this row or
column. Global sort parameters describe for example whether one wants to sort ascending or
descending, or case sensitive or not.

If a categorized table is sorted by a column then the category rows are removed and the current
sorting and filtering by rows is reset before the table is sorted by the given column. If a table is
sorted by a column/row that is already sorted by a column/row then this ordering is reset first.

Sorting can be undone globally, i. e., one can return to the unsorted table.

Sorting and Categorizing:
If a column is selected then the main table can be sorted w.r.t. the entries in this column,
and additionally these entries are turned into category rows, i. e., additional rows are added to
the main table, appearing immediately above the table rows with a fixed value in the selected
column, and showing this column value. (There should be no danger to mix up this notion of
categories with the one introduced in (Reference: Categories).) The category rows can be
collapsed (that is, the table rows that belong to this category row are not shown) or expanded

Browse 29

(that is, the corresponding table rows are shown). Some of the global search parameters affect
the category rows, for example, whether the category rows shall involve a counter showing the
number of corresponding data rows, or whether a row of the browse table appears under different
category rows.

Sorting and categorizing can be undone globally, i. e., one can return to the unsorted table
without category rows.

Filtering:
The browse table can be restricted to those rows or columns in which a given search string oc-
curs. (Also entries in collapsed rows can match; they remain collapsed then.) As a consequence,
the category rows are restricted to those under which a matching row occurs. (It is irrelevant
whether the search string occurs in category rows.)

If the search string does not occur at all then a message is printed, and the table remains as it
was before. If a browse table is restricted then this fact is indicated by the message “restricted
table” in the lower right corner of the window.

When a column or row is selected then the search is restricted to the entries in this column
or row, respectively. Besides using a search, one can also explicitly hide the selected row or
column. Filtering in an already restricted table restricts the shown rows or columns further.

Filtering can be undone globally, i. e., one can return to the unrestricted table.

Help:
Depending on the application and on the situation, different sets of user inputs may be available
and different meanings of these inputs are possible. An overview of the currently available
inputs and their meanings can be opened in each situation, by hitting the ? key.

Re-entering:
When one has called NCurses.BrowseGeneric (4.3.1) with a browse table, and returns from
visual mode to the GAP prompt after some navigation steps, calling NCurses .BrowseGeneric
again with this table will enter visual mode in the same situation where it was left. For example,
the cell in the top-left position will be the same as before, and if a cell was selected before then
this cell will be selected now. (One can avoid this behavior using the optional second argument
of NCurses.BrowseGeneric.)

Logging:
The integers corresponding to the user inputs in visual mode are collected in a list that is stored
in the component dynamic.log of the browse table. It can be used for repeating the inputs
with the replay feature. (For browse table applications that give the user no access to the browse
table itself, one can force the log to be assigned to the component log of the global variable
BrowseData, see Section 5.4.1.)

Replay:
Instead of interactively hitting keys in visual mode, one can prescribe the user inputs to a browse
table via a “replay record”; the inputs are then processed with given time intervals. The easiest
way to create a meaningful replay record is via the function BrowseData.SetReplay (5.4.2),
with argument the dynamic.log component of the browse table in question that was stored in
an interactive session.

Browse 30

The following features are not available in standard applications. They require additional pro-
gramming.

Clicking:

One possible action is to “click” a selected cell, row, or column, by hitting the ENTER key.
It depends on the application what the effect is. A typical situation is that a corresponding
GAP object is added to the list of return values of NCurses.BrowseGeneric (4.3.1). Again
it depends on the application what this GAP object is. In order to use this feature, one has to
provide a record whose components are GAP functions, see Section 5.4.1 for details. If mouse
events are enabled (see NCurses.UseMouse (2.2.10)) then also mouse clicks can be used as an
alternative to hitting the ENTER key.

Return Value:
The function NCurses.BrowseGeneric (4.3.1) may have an application dependent return
value. A typical situation is that a list of objects corresponding to those cells is returned that
were “clicked” in visual mode. In order to use this feature, one has to assign the desired value
to the component dynamic.Return of the browse table.

4.2 Data Structures used by NCurses.BrowseGeneric

4.2.1 BrowseData.IsBrowseTableCellData

> BrowseData.IsBrowseTableCellData(obj) (function)

Returns: true if the argument is a list or a record in a supported format.

A table cell data object describes the input data for the contents of a cell in a browse table. It is
represented by either an attribute line (see NCurses.IsAttributeLine (2.2.3)), for cells of height
one, or a list of attribute lines or a record with the components rows, a list of attribute lines, and
optionally align, a substring of "bclt", which describes the alignment of the attribute lines in the
table cell — bottom, horizontally centered, left, and top alignment; the default is right and vertically
centered alignment. (Note that the height of a table row and the width of a table column can be larger
than the height and width of an individual cell.)

Example
gap> BrowseData.IsBrowseTableCellData("abc");
true
gap> BrowseData.IsBrowseTableCellData(["abc", "def"]);
true
gap> BrowseData.IsBrowseTableCellData(rec(rows:= ["ab", "cd"],
> align:= "t1"));
true
gap> BrowseData.IsBrowseTableCellData("");
true
gap> BrowseData.IsBrowseTableCellData([]);
true

The empty string is a table cell data object of height one and width zero whereas the empty list
(which is not in IsStringRep (Reference: IsStringRep)) is a table cell data object of height zero
and width zero.

Browse 31

4.2.2 BrowseData.BlockEntry

> BrowseData.BlockEntry(tablecelldata, height, width) (function)

Returns: a list of attribute lines.

For a table cell data object tablecelldata (see BrowseData.IsBrowseTableCellData
(4.2.1)) and two positive integers height and width, BrowseData.BlockEntry returns a list of
height attribute lines of displayed length width each (see NCurses.WidthAttributeLine (2.2.7)),
that represents the formatted version of tablecelldata.

If the rows of tablecelldata have different numbers of displayed characters then they are
filled up to the desired numbers of rows and columns, according to the alignment prescribed by
tablecelldata; the default alignment is right and vertically centered.

Example
gap> BrowseData.BlockEntry("abc", 3, 5);

[" n , n abc n , n n]

gap> BrowseData.BlockEntry(rec(rows:= ["ab", "cd"],

> align:= "tl1"), 3, 5);
[nab ||’ "Cd u’ " n]

4.2.3 BrowseData.IsBrowseTable

> BrowseData.IsBrowseTable(obj) (function)

Returns: true if the argument record has the required components and is consistent.

A browse table is a GAP record that can be used as the first argument of the function
NCurses.BrowseGeneric (4.3.1).

The supported components of a browse table are work and dynamic, their values must be records:
The components in work describe that part of the data that are not likely to depend on user interactions,
such as the table entries and their heights and widths. The components in dynamic describe that part of
the data that is intended to change with user interactions, such as the currently shown top-left entry of
the table, or the current status w.r.t. sorting. For example, suppose you call NCurses .BrowseGeneric
(4.3.1) twice with the same browse table; the second call enters the table in the same status where it
was left after the first call if the component dynamic is kept, whereas one has to reset (which usually
simply means to unbind) the component dynamic if one wants to start in the same status as before the
first call.

The following components are the most important ones for standard browse applications. All
these components belong to the work record. For other supported components (of work as well as of
dynamic) and for the meaning of the term “mode”, see Section 5.2.

main
is the list of lists of table cell data objects that form the matrix to be shown. There is no default
for this component. (It is possible to compute the entries of the main table on demand, see the
description of the component Main in Section 5.4.1. In this situation, the value of the component
main can be an empty list.)

header
describes a header that shall be shown above the column labels. The value is either a list of
attribute lines (‘“‘static header”) or a function or a record whose component names are names of
available modes of the browse table (“dynamic header”). In the function case, the function must
take the browse table as its only argument, and return a list of attribute lines. In the record case,

Browse 32

the values of the components must be such functions. It is assumed that the number of these
lines depends at most on the mode. The default is an empty list, i. e., there is no header.

footer
describes a footer that shall be shown below the table. The value is analogous to that of footer.
The default is an empty list, i. e., there is no footer.

labelsRow
is a list of row label rows, each being a list of table cell data objects. These rows are shown to
the left of the main table. The default is an empty list, i. ., there are no row labels.

labelsCol
is a list of column information rows, each being a list of table cell data objects. These rows are
shown between the header and the main table. The default is an empty list, i. e., there are no
column labels.

corner
is a list of lists of table cell data objects that are printed in the upper left corner, i. e., to the left
of the column label rows and above the row label columns. The default is an empty list.

sepRow

describes the separators above and below rows of the main table and of the row labels table. The
value is either an attribute line or a (not necessarily dense) list of attribute lines. In the former
case, repetitions of the attribute line are used as separators below each row and above the first
row of the table; in the latter case, repetitions of the entry at the first position (if bound) are used
above the first row, and repetitions of the last bound entry before the (i +2)-th position (if there
is such an entry at all) are used below the i-th table row. The default is an empty string, which
means that there are no row separators.

sepCol
describes the separators in front of and behind columns of the main table and of the column
labels table. The format of the value is analogous to that of the component sepRow; the default
is the string " " (whitespace of width one).

sepLabelsCol
describes the separators above and below rows of the column labels table and of the corner table,
analogously to sepRow. The default is an empty string, which means that there are no column
label separators.

sepLabelsRow
describes the separators in front of and behind columns of the row labels table and of the corner
table, analogously to sepCol. The default is an empty string.

We give a few examples of standard applications.

The first example defines a small browse table by prescribing only the component work.main, so
the defaults for row and column labels (no such labels), and for separators are used. The table cells
are given by plain strings, so they have height one. Usually this table will fit on the screen.

Example

gap> m:= 10;; mn:= 5;;
gap> xpll:= rec(work:= rec(

Browse 33

> main:= List([1 .. m], i ->List([1 .. n],
> j ->stringC [i, 1)))));;

gap> BrowseData.IsBrowseTable(xpll);

true

In the second example, also row and column labels appear, and different separators are used. The
table cells have height three. Also this table will usually fit on the screen.

Example
gap> m:= 6;; n:= 5;;
gap> xpl2:= rec(work:= rec(
> main:= List([1 .. m], i ->List([1 .. n],
> j -> rec(rows:= List([-i*j, i*j*1000+j, i-j], String),
> align:= "c"))),
> labelsRow:= List([1 .. m], i -> [String(i)]),
> labelsCol:= [List([1 .. n], String) 1,
> sepRow:= "-",
> sepCol:= "|",
>))
gap> BrowseData.IsBrowseTable(xpl2);
true

The third example additionally has a static header and a dynamic footer, and the ta-
ble cells involve attributes. This table will usually not fit on the screen. Note that
NCurses.attrs.ColorPairs is available only if the terminal supports colors, which can be checked
using NCurses.attrs.has_colors (2.2.1).

Example
gap> m:= 30;; mn:= 25;;
gap> xpl3:= rec(work:= rec(
> header:= [" Example 3"],
labelsRow:= List([1 .. 30], i -> [String(i) 1),
sepLabelsRow:= " % ",
sepLabelsCol:= "=",
sepRow:= "x*",
sepCol:= " |",
footer:= t -> [Concatenation("top-left entry is: ",

String(t.dynamic.topleft{ [1, 21 })) 1,
))55
ap> if NCurses.attrs.has_colors then
xpl3.work.main:= List([1 .. m], i -> List([1 .. n],
j -> rec(rows:= [String(-ixj),
[NCurses.attrs.BOLD, true,
NCurses.attrs.ColorPairs[56+1], true,
String(i*j*1000+j),
NCurses.attrs.NORMAL, true],
String(i-j) 1,
align:= "c")));
xpl3.work.labelsCol:= [List([1 .. 301, i -> [
NCurses.attrs.ColorPairs[56+4], true,
String(i),
NCurses.attrs.NORMAL, true]) 1;
else

VVVVVVVVVVVVVR®R YV VVVVYVVYV

Browse

> xpl3.work.main:= List([1 .. m], i -> List([1 .. n],
> j -> rec(rows:= [String(-ixj),

> [NCurses.attrs.BOLD, true,

> String(i*j*1000+j),

> NCurses.attrs.NORMAL, true],
> String(i-j) 1,

> align:= "c")));

> xpl3.work.labelsCol:= [List([1 .. 301, i -> [

> NCurses.attrs.BOLD, true,

> String(i),

> NCurses.attrs.NORMAL, true]) J];

> fi;

gap> BrowseData.IsBrowseTable(xpl3);

true

34

The fourth example illustrates that highlighting may not work properly for browse tables contain-
ing entries whose attributes are not set with explicit Boolean values, see NCurses.IsAttributeLine
(2.2.3). Call NCurses.BrowseGeneric (4.3.1) with the browse table xp14, and select an entry (or a
column or a row): Only the middle row of each selected cell will be highlighted, because only in this

row, the color attribute is switched on with an explicit true.

Example
gap> xpld:= rec(
> defc:= NCurses.defaultColors,
> wd:= Maximum(List(~.defc, Length)),
> ca:= NCurses.ColorAttr,
> work:= rec(
> header:= ["Examples of NCurses.ColorAttr"],
> main:= List(~.defc, i -> List(~.defc,
> j->I[T[.caCi, j), String(i, “.wd)], # no true!
> [".caC i, j), true, String("on", ~.wd) 1],
> [“.caC i, j), String(j, “~.wd) 1 1)), # no true!
> labelsRow:= List(~.defc, i -> [String(i) 1),
> labelsCol:= [List(~.defc, String)],
> sepRow:= "-",
> sepCol:= [" [|", "|"],
>))i
gap> BrowseData.IsBrowseTable(xpl4);
true

4.3 The Function NCurses.BrowseGeneric

4.3.1 NCurses.BrowseGeneric

> NCurses.BrowseGeneric(t[, arec])
Returns: an application dependent value, or nothing.

(function)

NCurses.BrowseGeneric is used to show the browse table t (see BrowseData.IsBrowseTable

(4.2.3)) in a formatted way on a text screen, and allows the user to navigate in this table.

The optional argument arec, if given, must be a record whose components work and dynamic,
if bound, are used to provide defaults for missing values in the corresponding components of t.

Browse 35

The default for arec and for the components not provided in arec is BrowseData.defaults,
see BrowseData (5.4.1), the function BrowseData.SetDefaults sets these default values.

At least the component work.main must be bound in t, with value a list of list of table cell data
objects, see BrowseData.IsBrowseTableCellData (4.2.1).

When the window or the screen is too small for the browse table, according to its component
work.mi