We randomly choose an $r \times\ n$ matrix A over ZZ with entries up to the given Height, and take the time to compute B=ker A and an LLL basis of B.
i1 : setRandomSeed "nice example 2"; |
i2 : r=10,n=20 o2 = (10, 20) o2 : Sequence |
i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11) o3 = ({5, 2.91596e52, 9}, .00170003, .000924283) o3 : Sequence |
i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100) o4 = ({50, 2.30853e454, 98}, .00486323, .0358393) o4 : Sequence |
i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2}) o5 = {{.00578731, .0127174}, {.00527425, .0044419}, {.024228, .00706165}, ------------------------------------------------------------------------ {.00542547, .0102446}, {.00544184, .0134763}, {.00636136, .0124703}, ------------------------------------------------------------------------ {.00535416, .00873729}, {.00619648, .00801389}, {.0221723, .00575267}, ------------------------------------------------------------------------ {.00623148, .00833116}} o5 : List |
i6 : 1/10*sum(L,t->t_0) o6 = .00924726960000001 o6 : RR (of precision 53) |
i7 : 1/10*sum(L,t->t_1) o7 = .00912471819999999 o7 : RR (of precision 53) |
The object testTimeForLLLonSyzygies is a method function with options.