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1 Introduction

qr mumps is a software package for the solution of sparse, linear systems on multicore computers. It
implements a direct solution method based on the QR factorization of the input matrix. Therefore, it
is suited to solving sparse least-squares problems minx ‖Ax− b‖2 and to computing the minimum-
norm solution of sparse, underdetermined problems. It can obviously be used for solving square
problems in which case the stability provided by the use of orthogonal transformations comes at the
cost of a higher operation count with respect to solvers based on, e.g., the LU factorization. qr mumps

supports real and complex, single or double precision arithmetic.
As in all the sparse, direct solvers, the solution is achieved in three distinct phases:

Analysis : in this phase an analysis of the structural properties of the input matrix is performed in
preparation for the numerical factorization phase. This includes computing a column permu-
tation which reduces the amount of fill-in coefficients (i.e., nonzeroes introduced by the factor-
ization). This step does not perform any floating-point operation and is, thus, commonly mush
faster than the factorization and solve (depending on the number of right-hand sides) phases.

Factorization : at this step, the actual QR factorization is computed. This step is the most com-
putationally intense and, therefore, the most time consuming.

Solution : once the factorization is done, the factors can be used to compute the solution of the
problem through two operations:

Solve : this operation computes the solution of the triangular system Rx = b or RTx = b;

Apply : this operation applies the Q orthogonal matrix to a vector, i.e., y = Qx or y = QTx.

These three steps have to be done in order but each of them can be performed multiple times. If,
for example, the problem has to be solved against multiple right-hand sides (not all available at once),
the analysis and factorization can be done only once while the solution is repeated for each right-hand
side. By the same token, if the coefficients of a matrix are updated but not its structure, the analysis
can be performed only once for multiple factorization and solution steps.

qr mumps is built upon the large knowledge base and know-how developed by the members of the
MUMPS1 project. However, qr mumps does not share any code with the MUMPS package and it is a
completely independent software. qr mumps is developed and maintained in a collaborative effort by
the APO team at the IRIT laboratory in Toulouse and the LaBRI laboratory in Bordeaux, France.

2 Algorithm

qr mumps is based on the multifrontal factorization method. This method was first introduced by Duff
and Reid [7] as a method for the factorization of sparse, symmetric linear systems and, since then, has
been the object of numerous studies and the method of choice for several, high-performance, software
packages such as MUMPS [2] and UMFPACK [6]. At the heart of this method is the concept of an
elimination tree, extensively studied and formalized later by Liu [8]. This tree graph describes the
dependencies among computational tasks in the multifrontal factorization. The multifrontal method
can be adapted to the QR factorization of a sparse matrix thanks to the fact that the R factor of a
matrix A and the Cholesky factor of the normal equation matrix ATA share the same structure under
the hypothesis that the matrix A is Strong Hall (for a definition of this property see, for example, [4]).
Based on this equivalence, the elimination tree for the QR factorization of A is the same as that for
the Cholesky factorization of ATA. In the case where the Strong Hall property does not hold, the
elimination tree related to the Cholesky factorization of ATA can still be used although the resulting
QR factorization will perform more computations and consume more memory than what is really

1http://mumps.enseeiht.fr
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needed; alternatively, the matrix A can be permuted to a Block Triangular Form (BTF) where all the
diagonal blocks are Strong Hall.

In a basic multifrontal method, the elimination tree has n nodes, where n is the number of columns
in the input matrix A, each node representing one pivotal step of theQR factorization of A. Every node
of the tree is associated with a dense matrix, known as frontal matrix that contains all the coefficients
affected by the elimination of the corresponding pivot. The whole QR factorization consists in a
bottom-up traversal of the tree where, at each node, two operations are performed:

• assembly: a set of rows from the original matrix is assembled together with data produced by
the processing of child nodes to form the frontal matrix;

• factorization: one Householder reflector is computed and applied to the whole frontal matrix
in order to annihilate all the subdiagonal elements in the first column. This step produces one
row of the R factor of the original matrix and a complement which corresponds to the data that
will be later assembled into the parent node (commonly referred to as a contribution block). The
Q factor is defined implicitly by means of the Householder vectors computed on each front; the
matrix that stores the coefficients of the computed Householder vectors, will be referred to as
the H matrix from now on.

Figure 1: (left) Example of multifrontal QR factorization. The dots denote the fill-in coefficients.
(right) The DAG associated with supernodes 1, 2 and 3 for a block-column size of one.

In practical implementations of the multifrontal QR factorization, and in qr mumps , nodes of the
elimination tree are amalgamated to form super nodes. The amalgamated pivots correspond to rows of
R that have the same structure and can be eliminated at once within the same frontal matrix without
producing any additional fill-in in the R factor. The elimination of amalgamated pivots and the
consequent update of the trailing frontal submatrix can thus be performed by means of efficient Level-
3 BLAS routines. Moreover, amalgamation reduces the number of assembly operations increasing
the computations-to-communications ratio which results in better performance. The amalgamated
elimination tree is also commonly referred to as assembly tree. Figure 1 (left) shows a sparse matrix
along with the assembly tree and the resulting R factor.

Parallelism is exploited, in qr mumps , through a fine-grained decomposition of the frontal matrices
into blocks. As illustrated in Figure 1 (right), this allows for representing the whole matrix factorization
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as DAG (Directed Acyclic Graph) where nodes represent sequential tasks, i.e. the execution of one
elementary operation on a block-column, and edges the dependencies among them.

The tasks in the DAG are then scheduled dynamically according to a data-flow parallel execution
model. This approach delivers high flexibility and concurrence which result in high performance on
modern, multicore computers.

The method used in qr mumps is described in full details in [5, 1].

3 Features

3.1 Parallelism

qr mumps is a parallel, multithreaded software based on the StarPU runtime system [3] and it currently
supports multicore or, more generally, shared memory multiprocessor computers. qr mumps does not
run on distributed memory (e.g. clusters) parallel computers. As described in Section 2, parallelism
is achieved through a decomposition of the workload into fine-grained computational tasks which
basically correspond to the execution of a BLAS or LAPACK operation on a blocks. It is strongly
recommended to use sequential BLAS and LAPACK libraries and let qr mumps have full control of
the parallelism.

The number of threads used by qr mumps can be controlled in two different ways:

1. by setting QRM NUM THREADS environment variable to the desired number of threads. In this case
the number of threads will be the same throughout the execution of your program/application;

2. through the qrm init (see Section 4.3.1. This method has higher priority than the QRM NUM THREADS

environment variable.

The granularity of the tasks is controlled by the qrm mb and qrm nb parameters (see Section 6.2)
which set the block size for partitioning internal data. Smaller values mean more parallelism; however,
because this blocking factor is an upper-bound for the granularity of operations (or, more precisely
for the granularity of calls to BLAS and LAPACK routines), it is recommended to choose reasonably
large values in order to achieve high efficiency.

3.2 Memory consumption control

qr mumps allows for controlling the amount of memory used in the parallel factorization stage. In the
multifrontal method, the memory consumption varies greatly throughout the sequential factorization
reaching a maximum value which is referred to as the sequential peak (sp). Parallelism can considerably
increase this peak because, in order to feed the working threads, more data is allocated at the same
time which results in higher concurrency. In qr mumps it is possible to bound the memory consumption
of the factorization phase through the qrm mem relax parameter. If this parameter is set to a real
value x.y ≥ 1, the memory consumption will be bounded by x.y×sp. Clearly, the tighter is this upper
bound, the slower the factorization will proceed. Note that sp only includes the memory consumed by
the factorization operation; moreover, although in practice it is possible to precisely pre-compute this
value in the analysis phase, this may be expensive and thus qrm analyse only computes a (hopefully)
slight overestimation. The value of sp is available upon completion of the analysis phase through the
qrm e facto mempeak information parameter (see Section 7.2.
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4 API

qr mumps is developed in the Fortran 2008 language but includes a portable C interface developed
through the Fortran iso c binding feature. Most of the qr mumps features are available from both
interfaces although the Fortran one takes full advantage of the language features, such as the interface
overloading, that are not available in C. The naming convention used in qr mumps groups all the
routine or data type names into two families depending on whether they depend on the arithmetic
or not. Typed names always begin by qrm where the first underscore becomes d, s, z, c for real
double, real single, complex double or complex single arithmetic, respectively. Untyped names, instead,
simply begin by qrm . Note that thanks to interface overloading in Fortran all the typed interfaces
of a routine can be conveniently grouped into a single untyped one; this is described in details in
Section 4.4. All the interfaces described in the remainder of this section are for the real, single
precision case. The interfaces for real double, complex single and complex double can be obtained by
replacing sqrm with dqrm, cqrm and zqrm, respectively and real with real(kind(1.d0)), complex,
complex(kind(1.d0)), respectively. All the routines that take vectors as input (e.g., qrm apply)
can be called with either one vector (i.e. a rank-1 Fortran array x(:)) or multiple ones (i.e., a rank-2
Fortran array x(:,:)) through the same interface thanks to interface overloading. This is not possible
for the C interface, in which case an extra argument is present in order to specify the number of vectors
which are expected to be stored in column-major (i.e., Fortran style) format.

In this section only the Fortran API is presented. For each Fortran name (either of a routine or
of a data type) the corresponding C name is obtained by adding the c suffix. The number, type and
order of arguments in the C routines is the same except for those routines that take dense vectors in
which case, the C interface needs an extra argument specifying the number of vectors passed trough
the same pointer. The user can refer to the code examples and to the qrm mumps.h file for the full
details of the C interface.

4.1 Data types

4.1.1 qrm spmat type

This data type is used to define a problem and all the information needed to process it. Specifically it
contains the problem matrix, the parameters used to control the behavior of the qr mumps operations
done on it and the statistics collected by qr mumps during the execution of these operations.

type sqrm_spmat_type

! Row and column indices

integer , pointer :: irn(:), jcn(:)

! Numerical values

real , pointer :: val (:)

! Number of rows , columns

! and nonzeroes

integer :: m, n, nz

! A pointer to an array

! containing a column permutation

! provided by the user

integer , pointer :: cperm_in (:)

! Integer control parameters

integer :: icntl (20)

! Collected statistics

integer(kind =8) :: gstats (10)

end type sqrm_spmat_type
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• Matrix data: matrices can be stored in the COO (or coordinate) format through the irn, jcn
and val fields containing the row indices, column indices and values, respectively and the m, n
and nz containing the number of rows, columns and nonzeroes, respectively. qr mumps uses a
Fortran-style 1-based numbering and thus all row indices are expected to be between 1 and m and
all the column indices between 1 and n. Duplicate entries are summed during the factorization,
out-of-bound entries are ignored.

• cperm in: this array can be used to provide a matrix column permutation and is only accessed
by qr mumps in this case.

• icntl: this array contains all the integer control parameters. Its content can be modified either
directly or indirectly through the qrm set routine (see Section 6.2).

• gstats: this array contains all the statistics collected by qr mumps . Its content can be accessed
either directly or indirectly through the qrm get routine (see Section 7.2).

4.2 Computational routines

4.2.1 qrm analyse

This routine performs the analysis phase (see Section 1) on A or AT .

interface qrm_analyse

subroutine sqrm_analyse(qrm_mat , transp , info)

type(sqrm_spmat_type ):: qrm_mat

character , optional :: transp

integer , optional :: info

end subroutine sqrm_analyse

end interface qrm_analyse

Arguments:

• qrm mat: the input problem.

• transp: whether the input matrix should be transposed or not. Can be either ’t’ (’c’ in
in complex arithmetic) or ’n’. In the Fortran interface this parameter is optional and set by
default to ’n’ if not passed.

• info: an optional output parameter that returns the exit status of the routine.

4.2.2 qrm factorize

This routine performs the factorization phase (see Section 1) on A or AT . It can only be executed if
the analysis is already done.

interface qrm_factorize

subroutine sqrm_factorize(qrm_mat , transp , info)

type(sqrm_spmat_type ):: qrm_mat

character , optional :: transp

integer , optional :: info

end subroutine sqrm_factorize

end interface qrm_factorize
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Arguments:

• qrm mat: the input problem.

• transp: whether the input matrix should be transposed or not. Can be either ’t’ (’c’ in
complex arithmetic) or ’n’. In the Fortran interface this parameter is optional and set by
default to ’n’ if not passed.

• info: an optional output parameter that returns the exit status of the routine.

4.2.3 qrm apply

This routine computes b = Q · b or b = QT · b. It can only be executed once the factorization is done.

interface qrm_apply

subroutine sqrm_apply1d(qrm_mat , transp , b, info)

type(sqrm_spmat_type) :: qrm_mat

character :: transp

real :: b(:)

integer , optional :: info

end subroutine sqrm_apply1d

subroutine sqrm_apply2d(qrm_mat , transp , b, info)

type(sqrm_spmat_type) :: qrm_mat

character :: transp

real :: b(:,:)

integer , optional :: info

end subroutine sqrm_apply2d

end interface qrm_apply

Arguments:

• qrm mat: the input problem.

• transp: whether to apply Q or QT . Can be either ’t’ (’c’ in complex arithmetic) or ’n’.

• b: the b vector(s) to which Q or QT is applied.

• info: an optional output parameter that returns the exit status of the routine.

4.2.4 qrm solve

This routine solves the triangular system R · x = b or RT · x = b. It can only be executed once the
factorization is done/

interface qrm_solve

subroutine sqrm_solve1d(qrm_mat , transp , b, x, info)

type(sqrm_spmat_type) :: qrm_mat

real :: b(:)

real :: x(:)

character :: transp

integer , optional :: info
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end subroutine sqrm_solve1d

subroutine sqrm_solve2d(qrm_mat , transp , b, x, info)

type(sqrm_spmat_type) :: qrm_mat

real :: b(:,:)

real :: x(:,:)

character :: transp

integer , optional :: info

end subroutine sqrm_solve2d

end interface qrm_solve

Arguments:

• qrm mat: the input problem.

• transp: whether to solve for R or RT . Can be either ’t’ (’c’ in complex arithmetic) or ’n’.

• b: the b right-hand side(s).

• x: the x solution vector(s).

• info: an optional output parameter that returns the exit status of the routine.

4.2.5 qrm least squares

This subroutine can be used to solve a linear least squares problem minx ‖Ax− b‖2 in the case where
the input matrix is square or overdetermined. It is a shortcut for the sequence

call qrm_analyse(qrm_mat , ’n’, info)

call qrm_factorize(qrm_mat , ’n’, info)

call qrm_apply(qrm_mat , ’t’, b, info)

call qrm_solve(qrm_mat , ’n’, b, x, info)

interface qrm_least_squares

subroutine sqrm_least_squares1d(qrm_mat , b, x, info)

type(sqrm_spmat_type) :: qrm_mat

real :: b(:)

real :: x(:)

integer , optional :: info

end subroutine sqrm_least_squares1d

subroutine sqrm_least_squares2d(qrm_mat , b, x, info)

type(sqrm_spmat_type) :: qrm_mat

real :: b(:,:)

real :: x(:,:)

integer , optional :: info

end subroutine sqrm_least_squares2d

end interface qrm_least_squares

Arguments:

• qrm mat: the input problem.

9



• b: the b right-hand side(s).

• x: the x solution vector(s).

• info: an optional output parameter that returns the exit status of the routine.

4.2.6 qrm min norm

This subroutine can be used to solve a linear minimum norm problem in the case where the input
matrix is square or underdetermined. It is a shortcut for the sequence

call qrm_analyse(qrm_mat , ’t’, info)

call qrm_factorize(qrm_mat , ’t’, info)

call qrm_solve(qrm_mat , ’t’, b, x, info)

call qrm_apply(qrm_mat , ’n’, b, info)

interface qrm_min_norm

subroutine sqrm_min_norm1d(qrm_mat , b, x, info)

type(sqrm_spmat_type) :: qrm_mat

real :: x(:)

real :: b(:)

integer , optional :: info

end subroutine sqrm_min_norm1d

subroutine sqrm_min_norm2d(qrm_mat , b, x, info)

type(sqrm_spmat_type) :: qrm_mat

real :: x(:,:)

real :: b(:,:)

integer , optional :: info

end subroutine sqrm_min_norm2d

end interface qrm_min_norm

Arguments:

• qrm mat: the input problem.

• b: the b right-hand side(s).

• x: the x solution vector(s).

• info: an optional output parameter that returns the exit status of the routine.

4.2.7 qrm matmul

This subroutine performs a matrix-vector product of the type y = αAx+ βy or y = αATx+ βy.

interface qrm_matmul

subroutine sqrm_matmul1d(qrm_mat , transp , alpha , x, beta , y)

type(sqrm_spmat_type) :: qrm_mat

real :: y(:)

real :: x(:)

real :: alpha , beta

character :: transp
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end subroutine sqrm_matmul1d

subroutine sqrm_matmul2d(qrm_mat , transp , alpha , x, beta , y)

type(sqrm_spmat_type) :: qrm_mat

real :: y(:,:)

real :: x(:,:)

real :: alpha , beta

character :: transp

end subroutine sqrm_matmul2d

end interface qrm_matmul

Arguments:

• qrm mat: the input problem.

• transp: whether to multiply by A or AT . Can be either ’t’ (’c’ if in complex arithmetic) or
’n’.

• alpha, beta the α and β scalars

• x: the x vector(s).

• y: the y vector(s).

4.2.8 qrm matnrm

This routine computes the one-norm ‖A‖1 or the infinity-norm ‖A‖∞ of a matrix.

interface qrm_matnrm

subroutine sqrm_matnrm(qrm_mat , ntype , nrm , info)

type(sqrm_spmat_type) :: qrm_mat

real :: nrm

character :: ntype

integer , optional :: info

end subroutine sqrm_matnrm

end interface qrm_matnrm

Arguments:

• qrm mat: the input problem.

• ntype: the type of norm to be computed. It can be either ’i’ or ’1’ for the infinity and one
norms, respectively.

• nrm: the computed norm.

• info: an optional output parameter that returns the exit status of the routine.

4.2.9 qrm vecnrm

This routine computes the one-norm ‖x‖1, the infinity-norm ‖x‖∞ or the two-norm ‖x‖2 of a vector.
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interface qrm_vecnrm

subroutine sqrm_vecnrm1d(vec , n, ntype , nrm)

real :: vec (:)

integer :: n

character :: ntype

real :: nrm

integer , optional :: info

end subroutine sqrm_vecnrm1d

subroutine sqrm_vecnrm2d(vec , n, ntype , nrm)

real :: vec(:,:)

integer :: n

character :: ntype

real :: nrm (:)

integer , optional :: info

end subroutine sqrm_vecnrm2d

end interface qrm_vecnrm

Arguments:

• x: the x vector(s).

• n: the size of the vector.

• ntype: the type of norm to be computed. It can be either ’i’, ’1’ or ’2’ for the infinity, one
and two norms, respectively.

• nrm the computed norm(s). If x is a rank-2 array (i.e., a multivector) this argument has to be a
rank-1 array nrm(:) and each of its elements will contain the norm of the corresponding column
of x.

• info: an optional output parameter that returns the exit status of the routine.

4.2.10 qrm residual norm

This routine computes the scaled norm of the residual ‖b−Ax‖∞
‖b‖∞+‖x‖∞‖A‖∞ , i.e., the normwise backward

error. It is a shortcut for the sequence

call qrm_vecnrm(b, qrm_mat%m, ’i’, nrmb)

call qrm_vecnrm(x, qrm_mat%n, ’i’, nrmx)

call qrm_matmul(qrm_mat , ’n’, -1, x, 1, b)

call qrm_matnrm(qrm_mat , ’i’, nrma)

call qrm_vecnrm(b, qrm_mat%m, ’i’, nrmr)

nrm = nrmr/(nrmb+nrma*nrmx)

interface qrm_residual_norm

subroutine sqrm_residual_norm1d(qrm_mat , b, x, nrm , info)

type(sqrm_spmat_type) :: qrm_mat

real :: b(:)

real :: x(:)

real :: nrm
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integer , optional :: info

end subroutine sqrm_residual_norm1d

subroutine sqrm_residual_norm2d(qrm_mat , b, x, nrm , info)

type(sqrm_spmat_type) :: qrm_mat

real :: b(:,:)

real :: x(:,:)

real :: nrm

integer , optional :: info

end subroutine sqrm_residual_norm2d

end interface qrm_residual_norm

Arguments:

• qrm mat: the input problem.

• b: the b right-hand side(s). On output this argument contains the residual.

• x: the x solution vector(s).

• nrm the scaled residual norm. This argument is of type real for single precision arithmetic (both
real and complex) and real(kind(1.d0)) for double precision ones (both real and complex).
If x and b are rank-2 arrays (i.e., multivectors) this argument has to be a rank-1 array nrm(:)

and each coefficient will contain the scaled norm of the residual for the corresponding column of
x and b.

• info: an optional output parameter that returns the exit status of the routine.

4.2.11 qrm residual orth

Computes the quantity ‖AT r‖2
‖r‖2 which can be used to evaluate the quality of the solution of a least

squares problem (see [4], page 34). It is a shortcut for the sequence

call qrm_matmul(qrm_mat , ’t’, 1, r, 0, atr)

call qrm_vecnrm(r, qrm_mat%m, ’2’, nrmr)

call qrm_vecnrm(atr , qrm_mat%n, ’2’, nrm)

nrm = nrm/nrmr

interface qrm_residual_orth

subroutine sqrm_residual_orth1d(qrm_mat , r, nrm , info)

type(sqrm_spmat_type) :: qrm_mat

real :: r(:)

real :: nrm

integer , optional :: info

end subroutine sqrm_residual_orth1d

subroutine sqrm_residual_orth2d(qrm_mat , r, nrm , info)

type(sqrm_spmat_type) :: qrm_mat

real :: r(:,:)

real :: nrm

integer , optional :: info

end subroutine sqrm_residual_orth2d
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end interface qrm_residual_orth

Arguments:

• qrm mat: the input problem.

• r: the r residual(s).

• nrm the scaled AT r norm. This argument is of type real for single precision arithmetic (both
real and complex) and real(kind(1.d0)) for double precision ones (both real and complex). If
r is a rank-2 array (i.e., a multivector) this argument has to be a rank-1 array nrm(:) and each
coefficient will contain the scaled norm of AT r for the corresponding column of r.

• info: an optional output parameter that returns the exit status of the routine.

4.3 Management routines

4.3.1 qrm init

This routine initializes qr mumps and should be called prior to any other qr mumps routine.

subroutine qrm_init(nthreads , info)

integer , optional :: nthreads

integer , optional :: info

end subroutine qrm_init

Arguments:

• nth: an option input parameter that sets the number of working threads. If not specified, the
QRM NUM THREADS is used.

• info: an optional output parameter that returns the exit status of the routine.

4.3.2 qrm finalize

This routine finalizes qr mumps and no other qr mumps routine should be called afterwards.

subroutine qrm_finalize ()

end subroutine qrm_finalize

4.3.3 qrm set

This family of routines is used to set control parameters that define the behavior of qr mumps . In
the Fortran API the qrm set interfaces overloads all of them (see Section 4.4 for more details). These
control parameters are explained in full details in Section 6.

interface qrm_set

subroutine sqrm_pseti(qrm_mat , string , ival , info)

type(sqrm_spmat_type) :: qrm_mat

character(len=*) :: string

integer :: ival

integer , optional :: info

end subroutine sqrm_pseti
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subroutine qrm_gseti(string , ival , info)

character(len=*) :: string

integer :: ival

integer , optional :: info

end subroutine qrm_gseti

end interface qrm_set

Arguments:

• qrm mat: the input problem.

• string: a string describing the parameter to be set (see Section 6 for a full list).

• val: the parameter value.

• info: an optional output parameter that returns the exit status of the routine.

4.3.4 qrm get

This family of routines can be used to get the value of a control parameter or the get the value of
information collected by qr mumps during the execution (see Section 7 for a full list).

interface qrm_get

subroutine sqrm_pgeti(qrm_mat , string , ival , info)

type(sqrm_spmat_type) :: qrm_mat

character(len=*) :: string

integer :: ival

integer , optional :: info

end subroutine sqrm_pgeti

subroutine sqrm_pgetii(qrm_mat , string , ival , info)

type(sqrm_spmat_type) :: qrm_mat

character(len=*) :: string

integer(kind =8) :: ival

integer , optional :: info

end subroutine sqrm_pgetii

subroutine qrm_ggeti(string , ival , info)

character(len=*) :: string

integer :: ival

integer , optional :: info

end subroutine qrm_ggeti

subroutine qrm_ggetii(string , ival , info)

character(len=*) :: string

integer(kind =8) :: ival

integer , optional :: info

end subroutine qrm_ggetii

end interface qrm_get
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Arguments:

• qrm mat: the input problem.

• string: a string describing the parameter to be set (see Sections 6 and 7 for a full list).

• val: the returned parameter value.

• info: an optional output parameter that returns the exit status of the routine.

4.3.5 qrm spmat init

This routine initializes a qrm spmat type data structure. this pretty much amounts to setting default
values for all the control parameters related to a specific problem. No other routine can be executed
on qrm spmat if it has not been initialized.

interface qrm_spmat_init

subroutine sqrm_spmat_init(qrm_spmat , info)

type(sqrm_spmat_type) :: qrm_mat

integer , optional :: info

end subroutine sqrm_spmat_init

end interface qrm_spmat_init

Arguments:

• qrm mat: the input problem.

• info: an optional output parameter that returns the exit status of the routine.

4.3.6 qrm spmat destroy

This routine destroys an instance of the qrm spmat type data structure. By default, this means that
it will cleanup all the additional data that has been produced and attached to it (and that is not
visible to the user) during the execution of the various qr mumps operations. In the Fortran interface
an optional all parameter is present which allows for deallocating also the arrays containing the input
matrix, i.e., irn, jcn and val. Note that in this case the memory counters will be decremented (see
Section 4.3.7) and thus it doesn’t make much sense to pass all=.true. unless these arrays have been
allocated through the qrm alloc routine.

interface qrm_spmat_destroy

subroutine sqrm_spmat_destroy(qrm_mat , all , info)

type(sqrm_spmat_type) :: qrm_mat

logical , optional :: all

integer , optional :: info

end subroutine sqrm_spmat_destroy

end interface qrm_spmat_destroy

Arguments:

• qrm mat: the input problem.

• all: if set equal to .true. the original matrix arrays will be deallocated. This option is not
available on the C interface.

• info: an optional output parameter that returns the exit status of the routine.
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4.3.7 qrm alloc and qrm dealloc

These routines are used to allocate and deallocate Fortran pointers or allocatables. They’re
essentially wrappers around the Fortran allocate function and they’re mostly used internally by
qr mumps too keep track of the amount of memory allocated. Input pointers and allocatables can be
either 1D or 2D, integer, real or complex, single precision or double precision (all of these are available
regardless of the arithmetic with which qr mumps has been compiled). For the sake of brevity, only
the interface of the 1D and 2D, single precision, real versions is given below.

interface qrm_alloc

subroutine qrm_aalloc_s(a, m, info)

real(kind (1.e0)), allocatable :: a(:)

integer :: m

integer , optional :: info

end subroutine qrm_aalloc_s

subroutine qrm_aalloc_2s(a, m, n, info)

real(kind (1.e0)), allocatable :: a(:,:)

integer :: m, n

integer , optional :: info

end subroutine qrm_aalloc_2s

subroutine qrm_palloc_s(a, m, info)

real(kind (1.e0)), pointer :: a(:)

integer :: m

integer , optional :: info

end subroutine qrm_palloc_s

subroutine qrm_palloc_2s(a, m, n, info)

real(kind (1.e0)), pointer :: a(:,:)

integer :: m, n

integer , optional :: info

end subroutine qrm_palloc_2s

end interface qrm_alloc

interface qrm_dealloc

subroutine qrm_adealloc_s(a, info)

real(kind (1.e0)), allocatable :: a(:)

integer , optional :: info

end subroutine qrm_adealloc_s

subroutine qrm_adealloc_2s(a, info)

real(kind (1.e0)), allocatable :: a(:,:)

integer , optional :: info

end subroutine qrm_adealloc_2s

subroutine qrm_pdealloc_s(a, info)

real(kind (1.e0)), pointer :: a(:)
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integer , optional :: info

end subroutine qrm_pdealloc_s

subroutine qrm_pdealloc_2s(a, info)

real(kind (1.e0)), pointer :: a(:,:)

integer , optional :: info

end subroutine qrm_pdealloc_2s

end interface qrm_dealloc

Arguments:

• a: the input 1D or 2D pointer or allocatable array.

• m: the row size.

• n: the column size.

• info: an optional output parameter that returns the exit status of the routine.

4.4 Interface overloading

The interface overloading feature of the Fortran language is heavily used inside qr mumps . First of all,
all the typed routines of the type qrm xyz are overloaded with a generic qrm xyz interface. This means
that, for example, a call to the qrm factorize(a) routine will result in a call to sqrm factorize(a) or
as a call to dqrm factorize(a) depending on whether a is of type sqrm spmat type or dqrm spmat type,
respectively (i.e., single or double precision real, respectively). As said in Section 4.3 the qrm set and
qrm get interfaces overload the routines in the corresponding families and the same holds for the
allocation/deallocation routines (see Section 4.3.7. The advantages of the overloading are obvious.
Take the following example:

type(sqrm_spmat_type) :: qrm_mat

real , allocatable :: b(:), x(:)

! initialize the control data structure.

call qrm_spmat_init(qrm_mat)

...

! allocate arrays for the input matrix

call qrm_alloc(qrm_mat%irn , nz)

call qrm_alloc(qrm_mat%jcn , nz)

call qrm_alloc(qrm_mat%val , nz)

call qrm_alloc(b, m)

call qrm_alloc(x, n)

! initialize the data

...

! solve the problem

call qrm_least_squares(qrm_mat , b, x)

...

In case the user wants to switch to double precision, only the declarations on the first two lines
have to be modified and the rest of the code stays unchanged.
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5 Error handling

Most qr mumps routines have an optional argument info (which is always last) that returns the exit
status. If the routine succeeded info will be equal to 0 otherwise it will have a positive value. A
message will be printed on the qrm eunit unit (see Section 7.1 upon occurrence of an error. A list of
error codes:

1 : The provided sparse matrix format is not supported.

2 : Symmetric matrices are not supported.

3 : qrm spmat%cntl is not associated or invalid.

4 : Trying to allocate an already allocated allocatable or pointer.

5-6 : Memory allocation problem.

8 : Input column permutation not provided or invalid.

9 : The requested ordering method is unknown.

10 : Internal error: insufficient size for array .

11 : Internal error: Error in lapack routine.

12 : Internal error: out of memory.

13 : The analysis must be done before the factorization.

14 : The factorization must be done before the solve.

15 : This type of norm is not implemented.

16 : Requested ordering method not available (i.e., has not been installed).

17 : Internal error: error from call to subroutine...

18 : An error has occured in a call to COLAMD.

19 : An error has occured in a call to SCOTCH.

20 : An error has occured in a call to Metis.

23 : Incorrect argument to qrm set/qrm get.

25 : Internal error: problem opening file.

27 : Incompatible values in qrm spmat%icntl.

28 : Incorrect value for qrm mb /qrm nb /qrm ib .

29 : Incorrect value for qrm spmat%m/n/nz.

30 : qrm apply cannot be called if the H matrix is discarded.

31 : StarPU initialization error.
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6 Control parameters

Control parameters define the behavior of qr mumps and can be classified in two types:

• global: these parameters control the global behavior of qr mumps and are not related to a specific
problem, e.g., the unit for output messages.

• problem specific: these parameters control the behavior of qr mumps on a specific problem, e.g.,
the ordering method to be used on the problem.

All the control parameters can be set through the qrm set routine (see the interface in Section 4.3);
problem specific control parameters can also be set by manually changing the coefficients of the
qrm spmat type%icntl array.

6.1 Global parameters

The global parameters can be set through the qrm set routine. A call

call qrm_set(’qrm_param ’, val)

sets parameter qrm param can be set to a value val where the latter can either be a preset value (a
constant, predefined, value) or, simply, an integer.

Here is a list of the parameters, their meaning and the accepted values:

• qrm ounit: val is an integer specifying the unit for output messages; if negative, output messages
are suppressed. Default is 6.

• qrm eunit: val is an integer specifying the unit for error messages; if negative, error messages
are suppressed. Default is 0.

6.2 Problem specific parameters

The problem specific parameters can be set through the qrm set routine. A call

call qrm_set(qrm_mat , ’qrm_param ’, val)

sets, for the qrm mat problem, parameter qrm param can be set to a value val where the latter can
either be a preset value (a constant, predefined, value) or, simply, an integer. Equivalently, a problem
specific control parameter can be set like (nothe the underscore at the end of qrm param :

qrm_mat%icntl(qrm_param_) = val

Here is a list of the parameters, their meaning and the accepted values:

• qrm ordering: this parameter specifies what permutation to apply to the columns of the input
matrix in order to reduce the fill-in and, consequently, the operation count of the factorization
and solve phases. This parameter is used by qr mumps during the analysis phase and, therefore,
has to be set before it starts. The following pre-defined values are accepted:

– qrm auto : the choice is automatically made by qr mumps . This is the default.

– qrm natural : no permutation is applied.

– qrm given : a column permutation is provided by the user through the qrm spmat type%cperm in.

– qrm colamd : the COLAMD software package (if installed) is used for computing the col-
umn permutation.

– qrm scotch : the SCOTCH software package (if installed) is used for computing the column
permutation.
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– qrm metis : the Metis software package (if installed) is used for computing the column
permutation.

• qrm keeph: this parameter says whether the H matrix should be kept for later use or discarded.
This parameter is used by qr mumps during the factorization phase and, therefore, has to be set
before it starts. Accepted value are:

– qrm yes : the H matrix is kept. This is the default.

– qrm no : the H matrix is discarded.

• qrm mb and qrm nb: These parameters define the block-size (rows and columns, respectively) for
data partitioning and, thus, granularity of parallel tasks. Smaller values mean higher concur-
rence. This parameter, however, implicitly defines an upper bound for the granularity of call
to BLAS and LAPACK routines (defined by the qrm ib parameter described below); therefore,
excessively small values may result in poor performance. This parameter is used by qr mumps

during the analysis and factorization phases and, therefore, has to be set before these start. The
default values are 256 and 128, respectively. Note that qrm mb has to be a multiple of qrm nb.

• qrm ib: this parameter defines the granularity of BLAS/LAPACK operations. Larger values
mean better efficiency but imply more fill-in and thus more flops and memory consumption
(please refer to [5] for more details). The value of this parameter is upper-bounded by the
qrm nb parameter described above. This parameter is used by qr mumps during the factorization
phase and, therefore, has to be set before it starts. The default value is 32. It is strongly advised
to choose, for this parameter, a submultiple of qrm nb

• qrm bh: this parameter defines the type of algorithm for the communication-avoiding QR fac-
torization of frontal matrices (see the details in [1]). Smaller values mean more concurrency but
worse tasks efficiency; if lower or equal to zero the largest possible value is chosen for each front.
Default value is -1.

• qrm rhsnb: in the case where multiple right-hand sides are passed to the qrm apply or the
qrm solve routines, this parameter can be used to define a blocking of the right-hand sides.
This parameter is used by qr mumps during the solve phase and, therefore, has to be set before
it starts. By default, all the right-hand sides are treated in a single block.

• qrm mem relax: a real value (>= 1) that sets a relaxation parameter, with respect to the
sequential peak, for the memory consumption in the factorization phase. If negative, the memory
consumption is not bounded. Default value is −1.0. See Section 3.2 for the details of this feature.

7 Information parameters

Information parameters return information about the behavior of qr mumps and can be classified in
two types:

• global: these parameters describe the global behavior of qr mumps and are not related to a
specific problem, e.g., the peak amount of memory consumed by qr mumps .

• problem specific: these parameters describe the behavior of qr mumps on a specific problem, e.g.,
the total number of flops executed during the factorization of a matrix.

All the information parameters can be gotten through the qrm get routine (see the interface
in Section 4.3); problem specific control parameters can also be retrieved by manually reading the
coefficients of the qrm spmat type%gstats array.

The qrm get routine can also be used to retrieve the values of all the control parameters described
in the previous section with the obvious usage.
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7.1 Global parameters

call qrm_get(’qrm_param ’, val)

• qrm max mem: this parameter, of type integer (or, better, of type integer(kind=8)), returns
the maximum amount of memory allocated by qr mumps during its execution.

• qrm tot mem: this parameter, of type integer (or, better, of type integer(kind=8)) , returns
the total amount of memory allocated by qr mumps at the moment when the qrm get routine is
called.

7.2 Problem specific parameters

call qrm_get(qrm_mat , ’qrm_param ’, val)

• qrm e nnz r: this parameter, of type integer (or, better, of type integer(kind=8)) returns
an estimate, computed during the analysis phase, of the number of nonzero coefficients in the R
factor. This value is only available after the qrm analyse routine is executed.

• qrm e nnz h: this parameter, of type integer (or, better, of type integer(kind=8)) returns an
estimate, computed during the analysis phase, of the number of nonzero coefficients in the H
matrix. This value is only available after the qrm analyse routine is executed.

• qrm e facto flops this parameter, of type integer (or, better, of type integer(kind=8)) re-
turns an estimate, computed during the analysis phase, of the number of floating point operations
performed during the factorization phase. This value is only available after the qrm analyse

routine is executed.

• qrm nnz r: this parameter, of type integer (or, better, of type integer(kind=8)) returns the
actual number of the nonzero coefficients in the R factor after the factorization is done. This
value is only available after the qrm factorize routine is executed.

• qrm nnz h: this parameter, of type integer (or, better, of type integer(kind=8)) returns the
actual number of the nonzero coefficients in the H matrix after the factorization is done. This
value is only available after the qrm factorize routine is executed.

• qrm e facto mempeak: this parameter, of type integer (or, better, of type integer(kind=8))
returns an estimate of the peak memory consumption of the factorization operation.

8 Example

The code below shows a basic example program that allocates and fills up a sparse matrix, runs the
analysis, factorization and solve on it, computes the solution backward error and finally prints some
information collected during the process.

program sqrm_test_small

use sqrm_mod

implicit none

type(sqrm_spmat_type) :: qrm_mat

integer :: ierr , nargs , i, nrhs

real , allocatable :: b(:), x(:), r(:)

real :: rnrm , onrm

call qrm_init ()

! initialize the control data structure.
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call qrm_spmat_init(qrm_mat)

! allocate arrays for the input matrix

call qrm_alloc(qrm_mat%irn , 13)

call qrm_alloc(qrm_mat%jcn , 13)

call qrm_alloc(qrm_mat%val , 13)

! initialize the input matrix

qrm_mat%jcn = (/1,1,1,2,2,3,3,3,3,4,4,5,5/)

qrm_mat%irn = (/2,3,6,1,6,2,4,5,7,2,3,2,4/)

qrm_mat%val = (/0.7 ,0.6 ,0.4 ,0.1 ,0.1 ,0.3 ,0.6 ,0.7 ,0.2 ,0.5 ,0.2 ,0.1 ,0.6/)

qrm_mat%m = 7

qrm_mat%n = 5

qrm_mat%nz = 13

write(*,’(" Starting Analysis ")’)

call qrm_analyse(qrm_mat)

write(*,’(" Starting Factorization ")’)

call qrm_factorize(qrm_mat)

call qrm_alloc(b, qrm_mat%m)

call qrm_alloc(r, qrm_mat%m)

call qrm_alloc(x, qrm_mat%n)

b = 1.e0

! as by is changed when applying Q’, we save a copy in r for later use

r = b

call qrm_apply(qrm_mat , ’t’, b)

call qrm_solve(qrm_mat , ’n’, b, x)

! compute the residual

call qrm_residual_norm(qrm_mat , r, x, rnrm)

call qrm_residual_orth(qrm_mat , r, onrm)

write(*,’("||r||/||A||    = ",e10.2)’)rnrm

write(*,’("||A^tr ||/||r|| = ",e10.2)’)onrm

call qrm_dealloc(b)

call qrm_dealloc(r)

call qrm_dealloc(x)

call qrm_spmat_destroy(qrm_mat , all=.true.)

write(*,’("  Nonzeroes in R           : ",i20)’)qrm_mat%gstats(qrm_nnz_r_)

write(*,’("  Total flops at facto     : ",i20)’)qrm_mat%gstats(qrm_e_facto_flops_)

write(*,’("  Global memory peak       : ",f9.3," MB")’) &

&real(qrm_max_mem ,kind (1.d0 ))/1024. d0 /1024. d0

call qrm_finalize ()

stop

end program sqrm_test_small

9 Asynchronous execution

An asynchronous interface is provided for the analysis, factorization apply and solve operations, re-
spectively qrm analyse async, qrm factorize async, qrm apply asyncand qrm solve async. These
routines are non-blocking, i.e., each of them will submit to the StarPU runtime system all the tasks
the corresponding operating is composed of and will return control to the calling program ass soon
as possible. The completion of the tasks will be achieved asynchronously and can only be ensured
through a call to the qrm barrier routine. This has a number of advantages; for example it allows
for executing concurrently operations that work on different data (e.g. the factorization of differ-
ent matrices) or to pipeline the execution of operations which work on the same data (for example
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factorization and solve with the same matrix), in which case StarPU will take care of ensuring that
the precedence constraints between tasks are respected. The asynchronous routine take an additional
argument qrm dscr which is a communication descriptor, i.e. a container for the submitted tasks.

Here is an example of how these routines can be used:

type(sqrm_spmat_type) :: qrm_mat

real(kind (1.e0)) :: b(:,:)

real(kind (1.e0)) :: x(:,:)

type(sqrm_rhs_type) :: x_rhs , b_rhs

type(qrm_dscr_type) :: qrm_dscr

call qrm_init ()

!init the matrix data structure

call qrm_spmat_init(qrm_mat)

! fill up the matrix and b

! ...

! init the rhs data structures

call qrm_rhs_init(b_rhs , b)

call qrm_rhs_init(x_rhs , x)

! init the descriptor data structure

call qrm_dscr_init(qrm_dscr)

! submit analysis , facto , apply and solve operations

call qrm_analyse_async(qrm_dscr , qrm_mat , ’n’)

call qrm_factorize_async(qrm_dscr , qrm_mat , ’n’)

call qrm_apply_async(qrm_dscr , qrm_mat , ’t’, b_rhs , err)

call qrm_solve_async(qrm_dscr , qrm_mat , ’n’, b_rhs , x_rhs , err)

! wait for their completion

call qrm_barrier(qrm_dscr)

! cleanup

call qrm_dscr_destroy(qrm_dscr)

call qrm_rhs_destroy(b_rhs)

call qrm_rhs_destroy(x_rhs)

call qrm_spmat_destroy(qrm_mat)

Two main differences exist with respect to the synchronous interface:

• Right-hand sides must be registered to qr mumps by means of the qrm rhs init routine which
associates a rank-1 or rank-2 Fortran array to a sqrm rhs type data structure.

• a communication descriptor must be initialized and passed to the operation routines: all the
associated tasks will be submitted to this descriptor.

The completion of the operation can be guaranteed by calling a qrm barrier routine either with the
(optional) descriptor argument, in which case the routine will wait for all the tasks in that descriptor,
or without, in which case the routine will wait for all the previously submitted tasks in all descriptors.

Note that the code above corresponds (without RHS blocking) to the qrm least squares routine.
There is currently no support for asynchronous execution in the qr mumps C interface.
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9.1 API
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