

under development

STXXL Tutorial
for STXXL 1.1

Roman Dementiev

under development

CONTENTS Dementiev June 10, 2014 iii

Contents

1 Introduction 1

2 Prerequisites 3

3 Installation 5

4 A Starting Example 7
4.1 STL Code . 7
4.2 Going Large – Use STXXL . 10

5 Design of STXXL 13

6 STL-User Layer 15
6.1 Vector . 15
6.2 Stacks . 20
6.3 Priority Queue . 26
6.4 STXXL Algorithms . 30
6.5 Sorting . 30
6.6 Sorted Order Checking . 33
6.7 Sorting Using Integer Keys . 33
6.8 Other STXXL Algorithms . 36

7 Pipelined/Stream Interfaces 45
7.1 Preliminaries . 45
7.2 Node Interface . 45
7.3 Scheduling . 45
7.4 File Nodes – streamify and materialize 45
7.5 Streaming Nodes . 45
7.6 Sorting Nodes . 45
7.7 A Pipelined Version of the Billing Application 45

8 Internals 47
8.1 Block Management Layer . 47
8.2 I/O Primitives Layer . 47
8.3 Utilities . 47

9 Miscellaneous 49
9.1 STXXL Compile Flags . 49

Introduction Dementiev June 10, 2014 1

Chapter 1

Introduction

There exist many application that have to process data sets which can not fit into
the main memory of a computer, but external memory (e.g. hard disks). The examples
are Geographic Information Systems, Internet and telecommunication billing systems,
Information Retrieval systems manipulating terabytes of data.

The most of engineering efforts have been spent on designing algorithms which
work on data that completely resides in the main memory. The algorithms assume
that the execution time of any memory access is a small constant (1–20 ns). But it
is no more true when an application needs to access external memory (EM). Because
of the mechanical nature of the position seeking routine, a random hard disk access
takes about 3–20 ms. This is about 1 000 000 longer than a main memory access.
Since the I/Os are apparently the major bottleneck of applications that handle large
data sets, they minimize the number of performed I/Os. A new measure of program
performance is becoming sound – the I/O complexity.

Vitter and Shriver [8] came up with a model for designing I/O efficient algorithms.
In order to amortize the high cost of a random disk access1, external data loaded in
contiguous chunks of size B. To increase bandwidth external memory algorithms use
multiple parallel disks. The algorithms try in each I/O step transfer D blocks between
the main memory and disks (one block per each disk).

I/O efficient algorithms have been developed for many problem domains, includ-
ing fundamental ones like sorting [], graph algorithms [], string processing [], compu-
tational geometry [].

However there is the ever increasing gap between theoretical nouveau of external
memory algorithms and their use in practice. Several EM software library projects
(LEDA-SM [2] and TPIE [1]) attempted to reduce this gap. They offer frameworks
which aim to speed up the process of implementing I/O efficient algorithms giving a
high level abstraction away the details of how I/O is performed. Implementations of
many EM algorithms and data structures are offered as well.

Those projects are excellent proofs of EM paradigm, but have some drawbacks
which impede their practical use.

Therefore we started to develop STXXL library, which tries to avoid those obsta-
cles. The objectives of STXXL project (distinguishing it from other libraries):

1Modern disks after locating the position of the data on the surface can deliver the contiguous data
blocks at speed 50-60 MiB/s. For example with the seek time 10 ms, 1 MiB can be read or written in
10 + 1000 × 1/50 = 30 ms, 1 byte – in 10.02 ms.

2 Introduction

• Make the library able to handle problems of real world size (up to dozens of
terabytes).

• Offer transparent support of parallel disks. This feature although announced
has not been implemented in any library.

• Implement parallel disk algorithms. LEDA-SM and TPIE libraries offer only
implementations of single disk EM algorithms.

• Use computer resources more efficiently. STXXL allows transparent overlap-
ping of I/O and computation in many algorithms and data structures.

• Care about constant factors in I/O volume. A unique library feature “pipelin-
ing” can half the number of I/Os performed by an algorithm.

• Care about the internal work, improve the in-memory algorithms. Having many
disks can hide the latency and increase the I/O bandwidth, s.t. internal work
becomes a bottleneck.

• Care about operating system overheads. Use unbuffered disk access to avoid
superfluous copying of data.

• Shorten development times providing well known interface for EM algorithms
and data structures. We provide STL-compatible2 interfaces for our implemen-
tations.

2STL – Standard Template Library [7] is freely available library of algorithms and data structures deliv-
ered with almost any C++ compiler.

Prerequisites Dementiev June 10, 2014 3

Chapter 2

Prerequisites

The intended audience of this tutorial are developers or researchers who develop ap-
plications or implement algorithms processing large data sets which do not fit into the
main memory of a computer. They must have basic knowledge in the theory of exter-
nal memory computing and have working knowledge of C++ and an experience with
programming using STL. Familiarity with key concepts of generic programming and
C++ template mechanism is assumed.

4 Prerequisites

Installation Dementiev June 10, 2014 5

Chapter 3

Installation

See the STXXL home page stxxl.sourceforge.net for the installation instruc-
tion for your compiler and operating system.

6 Installation

A Starting Example Dementiev June 10, 2014 7

Chapter 4

A Starting Example

Let us start with a toy but pretty relevant problem: the phone call billing problem.
You are given a sequence of event records. Each record has a time stamp (time when
the event had happened), type of event (’call begin’ or ’call end’), the callers number,
and the destination number. The event sequence is time-ordered. Your task is to
generate a bill for each subscriber that includes cost of all her calls. The solution
is uncomplicated: sort the records by the callers number. Since the sort brings all
records of a subscriber together, we scan the sorted result computing and summing up
the costs of all calls of a particular subscriber. The phone companies record up to 300
million transactions per day. AT&T billing system Gecko [4] has to process databases
with about 60 billion records, occupying 2.6 terabytes. Certainly this volume can not
be sorted in the main memory of a single computer1. Therefore we need to sort those
huge data sets out-of-memory. Now we show how STXXL can be useful here, since it
can handle large volumes I/O efficiently.

4.1 STL Code
If you are familiar with STL your the main function of bill generation program will
probably look like this:

int main(int argc, char * argv[])
{

if(argc < 4) // check if all parameters are given
{ // in the command line

print_usage(argv[0]);
return 0;

}
// open file with the event log
std::fstream in(argv[1],std::ios::in);
// create a vector of log entries to read in
std::vector<LogEntry> v;
// read the input file and push the records
// into the vector
std::copy(std::istream_iterator<LogEntry>(in),

std::istream_iterator<LogEntry>(),

1Except may be in the main memory of an expensive supercomputer.

8 A Starting Example

std::back_inserter(v));
// sort records by callers number
std::sort(v.begin(),v.end(),SortByCaller());
// open bill file for output
std::fstream out(argv[3],std::ios::out);
// scan the vector and output bills
std::for_each(v.begin(),v.end(),ProduceBill(out));
return 0;

}

To complete the code we need to define the log entry data type LogEntry, input
operator >> for LogEntry, comparison functor SortByCaller, unary functor
ProduceBills used for computing bills, and the print usage function.

#include <algorithm> // for STL std::sort
#include <vector> // for STL std::vector
#include <fstream> // for std::fstream
#include <limits>
#include <ctime> // for time_t type
#define CT_PER_MIN 2 // subscribers pay 2 cent per minute

struct LogEntry // the event log data structure
{
long long int from; // callers number (64 bit integer)
long long int to; // destination number (64 bit int)
time_t timestamp; // time of event
int event; // event type 1 - call started

// 2 - call ended
};

// input operator used for reading from the file
std::istream & operator >> (std::istream & i,

LogEntry & entry)
{
i >> entry.from;
i >> entry.to;
i >> entry.timestamp;
i >> entry.event;
return i;

}

struct SortByCaller // comparison function
{
bool operator() (const LogEntry & a,

const LogEntry & b) const
{

return a.from < b.from ||
(a.from == b.from && a.timestamp < b.timestamp) ||
(a.from == b.from && a.timestamp == b.timestamp &&

9

a.event < b.event);
}
static LogEntry min_value()
{

LogEntry dummy;
dummy.from = (std::numeric_limits<long long int>::min)();
return dummy;

}
static LogEntry max_value()
{

LogEntry dummy;
dummy.from = (std::numeric_limits<long long int>::max)();
return dummy;

}

}

// unary function used for producing the bills
struct ProduceBill
{

std::ostream & out; // stream for outputting
// the bills

unsigned sum; // current subscribers debit
LogEntry last; // the last record

ProduceBill(std::ostream & o_):out(o_),sum(0)
{

last.from = -1;
}

void operator () (const LogEntry & e)
{

if(last.from == e.from)
{

// either the last event was ’call started’
// and current event is ’call ended’ or the
// last event was ’call ended’ and current
// event is ’call started’
assert((last.event == 1 && e.event == 2) ||

(last.event == 2 && e.event == 1));

if(e.event == 2) // call ended
sum += CT_PER_MIN*
(e.timestamp - last.timestamp)/60;

}
else if(last.from != -1)
{

// must be ’call ended’
assert(last.event == 2);
// must be ’call started’
assert(e.event == 1);

// output the total sum
out << last.from <<"; "<< (sum/100)<<" EUR "

10 A Starting Example

<< (sum%100)<< " ct"<< std::endl;

sum = 0; // reset the sum
}

last = e;
}

};

void print_usage(const char * program)
{

std::cout << "Usage: "<<program<<
" logfile main billfile" << std::endl;

std::cout <<" logfile - file name of the input"
<< std::endl;

std::cout <<" main - memory to use (in MiB)"
<< std::endl;

std::cout <<" billfile - file name of the output"
<< std::endl;

}

measure the running time for in-core and out-of-core case, point the I/O ineffi-
ciency of the code

4.2 Going Large – Use STXXL

In order to make the program I/O efficient we will replace the STL internal memory
data structures and algorithms by their STXXL counterparts. The changes are under-
lined.

#include <stxxl.h>
// the rest of the code remains the same
int main(int argc, char * argv[])
{
if(argc < 4) // check if all parameters are given
{ // in the command line

print_usage(argv[0]);
return 0;

}
// open file with the event log
std::fstream in(argv[1],std::ios::in);
// create a vector of log entries to read in
stxxl::vector<LogEntry> v;
// read the input file and push the records
// into the vector
std::copy(std::istream_iterator<LogEntry>(in),

std::istream_iterator<LogEntry>(),
std::back_inserter(v));

// bound the main memory consumption by M
// during sorting
const unsigned M = atol(argv[2])*1024*1024;
// sort records by callers number

11

stxxl::sort(v.begin(),v.end(),SortByCaller(),M);
// open bill file for output
std::fstream out(argv[3],std::ios::out);
// scan the vector and output bills
// the last parameter tells how many buffers
// to use for overlapping I/O and computation
stxxl::for_each(v.begin(),v.end(),ProduceBill(out),2);
return 0;

}

As you note the changes are minimal. Only the namespaces and some memory
specific parameters had to be changed.

To compile the STXXL billing program you may use the following Makefile:

all: phonebills
path to stxxl.mk file
from your stxxl installation
include ˜/stxxl/stxxl.mk

phonebills: phonebills.cpp
$(STXXL_CXX) -c phonebills.cpp $(STXXL_CPPFLAGS)
$(STXXL_CXX) phonebills.o -o phonebills.bin $(STXXL_LDLIBS)

clean:
rm -f phonebills.bin phonebills.o

Do not forget to configure you external memory space in file .stxxl. You can
copy the config example (Windows: config example win) from the STXXL
installation directory, and adapt it to your configuration.

12 A Starting Example

Design of STXXL Dementiev June 10, 2014 13

Chapter 5

Design of STXXL

STXXL is a layered library. There are three layers (see Fig. 5.1). The lowest layer,
Asynchronous I/O primitives layer hides the details of how I/Os are done. In partic-
ular, the layer provides abstraction for asynchronous read and write operations on a
file. The completion status of I/O operations is is facilitated by I/O request objects re-
turned by read and write file operations. The layer has several implementations of file
access for Linux. The fastest one is based on read and write system calls which
operate directly on user space memory pages1. To support asynchrony the current
Linux implementation of the layer uses standard pthread library. Porting STXXL
library to a different platform (for example Windows) involves only reimplementing
the Asynchronous I/O primitives layer using native file access methods and/or native
multithreading mechanisms2.

T
X

X
L

S

files, I/O requests, disk queues, completion handlers

block prefetcher, buffered block writer

Asynchronous I/O Primitives

Block Management

typed block, block manager, buffered streams,

Containers:

STL Interface
vector, stack, set

priority_queue, map

sort, for_each, merge

Pipelined sorting,
zero-I/O scanning

Pipelining

Algorithms:

Operating System

Applications

Figure 5.1: The STXXL library structure

The middle layer, Block management layer provides a programming interface sim-
ulating the parallel disk model. The layer provides abstraction for a fundamental con-
cept in the external memory algorithm design – block of elements. Block manager
implements block allocation/deallocation allowing several block-to-disk assignment

1O DIRECT option when opening a file.
2Porting STXXL to Windows platform is not finished yet.

14 Design of STXXL

strategies: striping, randomized striping, randomized cycling, etc. The block man-
agement layer provides implementation of parallel disk buffered writing and optimal
prefetching [5], and block caching. The implementations are fully asynchronous and
designed to explicitly support overlapping of I/O and computation.

The top of STXXL consists of two modules (see Fig. 5.1). STL-user layer imple-
ments the functionality and interfaces of the STL library. The layer provides external
memory sorting, external memory stack, external memory priority queue, etc. which
have (almost) the same interfaces (including syntax and semantics) as their STL coun-
terparts.

The Streaming layer provides efficient support for external memory algorithms
with mostly sequential I/O pattern, i.e. scan, sort, merge, etc. A user algorithm, im-
plemented using this module can save many I/Os3. The win is due to an efficient
interface, that couples the input and the output of the algorithms-components (scans,
sorts, etc.). The output from an algorithm is directly fed into another algorithm as the
input, without the need to store it on the disk.

3The doubling algorithm for external memory suffix array construction implemented with this module
requires only 1/3 of I/Os which must be performed by an implementation that uses conventional data
structures and algorithms (from STXXL STL-user layer, or LEDA-SM, or TPIE).

STL-User Layer Dementiev June 10, 2014 15

Chapter 6

STL-User Layer

STXXL library was designed to ease the access to external memory algorithms and
data structures for a programmer. We decided to equip our implementations of out-of-
memory data structure and algorithms with well known generic interfaces of internal
memory data structures and algorithms from the Standard Template Library. Currently
we have implementation of the following data structures (in STL terminology contain-
ers): vector, stack, priority queue. We have implemented a parallel disk
sorter which have syntax of STL sort [3]. Our ksort is a specialized implemen-
tation of sort which efficiently sorts elements with integer keys1. STXXL currently
provides several implementations of scanning algorithms (generate, for each,
find) optimized for external memory. However, it is possible (with some constant
factor degradation in the performance) to apply internal memory scanning algorithms
from STL to STXXL containers, since STXXL containers have iterator based interface.

STXXL has a restriction that the data types stored in the containers can not have
pointers or references to other elements of external memory containers. The reason is
that those pointers/references get invalidated when the blocks containing the elements
they point/refer to are written on the disks.

6.1 Vector

External memory vector (array) stxxl::vector is a data structure that supports
random access to elements. The semantics of the basic methods of stxxl::vector
is kept to compatible with STL std::vector. Table 6.1 shows the internal work
and the I/O worst case complexity of the stxxl::vector.

1ksort is not STL compatible, it extends the syntax of STL.

Table 6.1: Running times of the basic operations of stxxl::vector
int. work I/O (worst case)

random access O(1) O(1)
insertion at the end O(1) O(1)
removal at the end O(1) O(1)

16 STL-User Layer

6.1.1 The Architecture of stxxl::vector
The stxxl::vector is organized as a collection of blocks residing on the external
storage media (parallel disks). Access to the external blocks is organized through the
fully associative cache which consist of some fixed amount of in-memory pages2. The
schema of stxxl::vector is depicted in the Fig. 6.1. When accessing an element
the implementation of stxxl::vector access methods ([·] operator, push back,
etc.) first checks whether the page to which the requested element belongs is in the
vector’s cache. If it is the case the reference to the element in the cache is returned.
Otherwise the page is brought into the cache3. If there was no free space in the cache,
then some page is to be written out. Vector maintains a pager object, that tells which
page to kick out. STXXL provides LRU and random paging strategies. The most effi-
cient and default one is LRU. For each page vector maintains the dirty flag, which is
set when non-constant reference to one of the page’s elements was returned. The dirty
flag is cleared each time when the page is read into the cache. The purpose of the flag
is to track whether any element of the page is modified and therefore the page needs
to be written to the disk(s) when it has to be evicted from the cache.

cache

page 0 page 1 page 2 page 3 page 4 page 5 page 6 page 7 page 8 page 9

page 1

external
storage

of vector

page 8 page 5free

Figure 6.1: The schema of stxxl::vector that consists of ten external memory
pages and has a cache with the capacity of four pages. The first cache page is mapped
to external page 1, the second page is mapped to external page 8, and the fourth cache
page is mapped to page 5. The third page is not assigned to any external memory
page.

In the worst case scenario when vector elements are read/written in the random
order each access takes 2× blocks per page I/Os. The factor two shows up here
because one has to write the replaced from cache page and read the required one).
However the scanning of the array costs about n/B I/Os using constant vector iterators
or const reference to the vector4 (read-only access). Using non-const vector access
methods leads to 2× n/B I/Os because every page becomes dirty when returning a
non const reference. If one needs only to sequentially write elements to the vector
in n/B I/Os the currently fastest method is stxxl::generate (see section 6.8.1).
Sequential writing to an untouched before vector5 or alone adding elements at the end
of the vector6 leads also to n/B I/Os.

Example of use

stxxl::vector<int> V;

2The page is a collection of consecutive blocks. The number of blocks in the page is constant.
3If the page of the element has not been touched so far, this step is skipped. To keep an eye on such

situations there is a special flag for each page.
4n is the number of elements to read or write.
5For example writing in the vector that has been created using vector(size type n) constructor.
6Using void push back(const T&) method.

17

V.push_back(3);
assert(V.size() == 1 && V.capacity() >= 1 && V[0] == 3);

6.1.2 stxxl::VECTOR GENERATOR

Besides the type of the elements stxxl::vector has many other template param-
eters (block size, number of blocks per page, pager class, etc.). To make the configu-
ration of the vector type easier STXXL provides special type generator template meta
programs for its containers.

The program for stxxl::vector is called stxxl::VECTOR GENERATOR.
Example of use

typedef stxxl::VECTOR_GENERATOR<int>::result vector_type;
vector_type V;
V.push_back(3);
assert(V.size() == 1 && V.capacity() >= 1 && V[0] == 3);

Table 6.2: Template parameters of stxxl::VECTOR GENERATOR from left to
right.

parameter description default value recommended value
Tp element type
PgSz number of blocks in a

page
4 ≥ D

Pages number of pages in the
cache

8 ≥ 2

BlkSize block size B in bytes 2×1024×1024 larger is better
AllocStr parallel disk assignment

strategy (Table 6.3)
RC RC

Pager paging strategy (Ta-
ble 6.4)

lru lru

Table 6.3: Supported parallel disk assignment strategies.
strategy identifier
striping striping
simple randomized SR
fully randomized FR
randomized cycling RC

Notes:

• All blocks of a page are read and written from/to disks together. Therefore to
increase the I/O bandwidth, it is recommended to set the PgSz parameter to
multiple of D.

Since there are defaults for the last five of the parameters, it is not necessary to
specify them all. Examples:

18 STL-User Layer

Table 6.4: Supported paging strategies.
strategy identifier
random random
least recently used lru

• VECTOR GENERATOR<double>::result – external vector of double’s
with four blocks per page, the cache with eight pages, 2 MiB blocks, Random
Allocation and lru cache replacement strategy

• VECTOR GENERATOR<double,8>::result – external vector of double’s
, with eight blocks per page, the cache with eight pages, 2 MiB blocks, Random
Allocation and lru cache replacement strategy

• VECTOR GENERATOR<double,8,2,524288,SR>::result – external
vector of double’s, with eight blocks per page, the cache with two pages,
512 KiB blocks, Simple Randomized allocation and lru cache replacement
strategy

6.1.3 Internal Memory Consumption of stxxl::vector
The cache of stxxl::vector largely dominates in its internal memory consump-
tion. Other members consume very small fraction of stxxl::vectors memory
even when the vector size is large. Therefore, the internal memory consumption of
stxxl::vector can be estimated as BlkSize ×Pages ×PgSz bytes.

6.1.4 Members of stxxl::vector
See Tables 6.5 and 6.6.

Notes:

a) In opposite to STL, stxxl::vector’s iterators do not get invalidated when
the vector is resized or reallocated.

b) Dereferencing a non-const iterator makes the page of the element to which the
iterator points to dirty. This causes the page to be written back to the disks(s)
when the page is to be kicked off from the cache (additional write I/Os). If you
do not want this behavior, use const iterators instead. Example:

vector_type V;

// ... fill the vector here

vector_type::iterator iter = V.begin();

// ... advance the iterator
a = *iter; // causes write I/Os,

// although *iter is not changed
vector_type::const_iterator citer = V.begin();
// ... advance the iterator
a = *citer; // read-only access, causes no write I/Os

19

Table 6.5: Members of stxxl::vector. Part 1.
member description
value type The type of object, Tp , stored in

the vector.
pointer Pointer to Tp .
reference Reference to Tp .
const reference Const reference to Tp .
size type An unsigned 64-bit7 integral type.
iterator Iterator used to iterate through a

vector. See notes a,b.
const iterator Const iterator used to iterate

through a vector. See notes a,b.
block type type of the block used in disk-

memory transfers
iterator begin() Returns an iterator pointing to the

beginning of the vector. See notes
a,b.

iterator end() Returns an iterator pointing to the
end of the vector. See notes a,b.

const iterator begin() const Returns a const iterator pointing to
the beginning of the vector. See
notes a,b.

const iterator end() const Returns a const iterator pointing to
the end of the vector. See notes a,b.

size type size() const Returns the size of the vector.
size type capacity() const Number of elements for which ex-

ternal memory has been allocated.
capacity() is always greater
than or equal to size().

bool empty() const true if the vector’s size is 0.
reference
operator[](size type n)

Returns (the reference to) the n’th
element. See note c.

const reference
operator[](size type n)
const

Returns (the const reference to) the
n’th element. See note c.

*citer = b; // does not compile, citer is const

c) Non const [·] operator makes the page of the element dirty. This causes the
page to be written back to the disks(s) when the page is to be kicked off from
the cache (additional write I/Os). If you do not want this behavior, use const
[·] operator. For that you need to access the vector via a const reference to it.
Example:

vector_type V;

// ... fill the vector here

20 STL-User Layer

Table 6.6: Members of stxxl::vector. Part 2.
member description
vector() Creates an empty vector.
vector(size type n) Creates a vector with n elements.
vector(const vector&) Not yet implemented
˜vector() The destructor.
void reserve(size type n) If n is less than or equal to

capacity(), this call has no ef-
fect. Otherwise, it is a request
for allocation of additional external
memory. If the request is success-
ful, then capacity() is greater
than or equal to n; otherwise,
capacity() is unchanged. In ei-
ther case, size() is unchanged.

reference front() Returns (the reference to) the first
element. See note c.

const reference front()
const

Returns (the const reference to) the
first element. See note c.

reference back() Returns (the reference to) the last
element. See note c.

const reference back() const Returns (the const reference to) the
last element. See note c.

void push back(const T&) Inserts a new element at the end.
void pop back() Removes the last element.
void clear() Erases all of the elements and deal-

locates all external memory that
vector occupied.

void flush() Flushes the cache pages to the ex-
ternal memory.

vector (file * from) Create the vector from the file. The
construction causes no I/O.

a = V[index]; // causes write I/Os,
// although V[index] is not changed

const vector_type & CV = V; // const reference to V
a = CV[index]; // read-only access, can cause no write I/Os
CV[index] = b; // does not compile, CV is const

This issue also concerns front() and back() methods.

6.2 Stacks
Stacks provide only restricted subset of sequence operations: insertion, removal, and
inspection of the element at the top of the stack. Stacks are a ”last in first out” (LIFO)

21

data structures: the element at the top of a stack is the one that was most recently
added. Stacks does not allow iteration through its elements.

The I/O efficient stack is perhaps the simplest external memory data structure. The
basic variant of EM stack keeps the top k elements in the main memory buffer, where
k ≤ 2B. If the buffers get empty on a removal call, one block is brought from the disk
to the buffers. Therefore at least B removals are required to make one I/O reading a
block. Insertions cause no I/Os until the internal buffers get full. In this case to make
space the first B elements are written to the disk. Thus a block write happens only
after at least B insertions. If we choose the unit of disk transfer to be a multiple of DB
(we denote it as a page), set the stack buffer size to 2D pages, and evenly assign the
blocks of a page to disks we obtain the running times shown in Table 6.7.

Table 6.7: Amortized running times of the basic operations of stxxl::stack
int. work I/O (amortized)

insertion at the end O(1) O(1/DB)
removal at the end O(1) O(1/DB)

STXXL has several implementations of the external memory stack. Each imple-
mentation is specialized for a certain access pattern:

• The Normal stack (stxxl::normal stack) is a general purpose imple-
mentation which is the best if the access pattern to the stack is an irregular mix
of push’es and pop’s, i.e. the stack grows and shrinks without a certain rule.

• The Grow-Shrink stack is a stack that is optimized for an access pattern where
the insertions are (almost) not intermixed with the removals, and/or vice versa,
the removals are (almost) not intermixed with the insertions. In other words
the stack first grows to its maximal size, then it shrinks, then it might again
grow, then shrink, and so forth, i.e. the pattern is (pushi j popr j)k, where k ∈ N,
1≤ j ≤ k, and i j, r j are large.

• The Grow-Shrink2 stack is a “grow-shrink” stack that allows the use of com-
mon prefetch and write buffer pools. The pools are shared between several
“grow-shrink” stacks.

• The Migrating stack is a stack that migrates from internal memory to external
when its size exceeds a certain threshold.

6.2.1 stxxl::normal stack

The stxxl::normal stackis a general purpose implementation of the external
memory stack. The stack has two pages, the size of the page in blocks is a configu-
ration constant and can be given as a template parameter. The implementation of the
methods follows the description given in Section 6.2.

Internal Memory Consumption of stxxl::normal stack

The cache of stxxl::normal stack largely dominates in its internal memory
consumption. Other members consume very small fraction of stxxl::normal stacks

22 STL-User Layer

memory even when the stack size is large. Therefore, the internal memory con-
sumption of stxxl::normal stack can be estimated as 2× BlkSize × PgSz
bytes, where BlkSize is the block size and PgSz is the page size in blocks (see Sec-
tion 6.2.5).

Members of stxxl::normal stack

See Table 6.8.

Table 6.8: Members of stxxl::normal stack.
member description
value type The type of object, Tp , stored in

the vector.
size type An unsigned 64-bit8 integral type.
block type type of the block used in disk-

memory transfers
bool empty() const Returns true if the stack con-

tains no elements, and false other-
wise. S.empty() is equivalent to
S.size() == 0.

size type size() const Returns the number of elements
contained in the stack.

value type& top() Returns a mutable reference to the
element at the top of the stack. Pre-
condition: empty() is false.

const value type& top()
const

Returns a const reference to the el-
ement at the top of the stack. Pre-
condition: empty() is false.

void push(const value type&
x)

Inserts x at the top of the stack.
Postconditions: size() will be
incremented by 1, and top() will
be equal to x.

void pop() Removes the element at the top of
the stack. Precondition: empty()
is false. Postcondition: size() will
be decremented by 1.

normal stack() he default constructor. Creates an
empty stack.

template <class stack type>
normal stack(const stack type
& stack)

The copy constructor. Accepts any
stack concept data type.

˜normal stack() The destructor.

The running times of the push/pop stack operations are given in Table 6.7. Other
operations except copy construction perform constant internal work and no I/Os.

23

6.2.2 stxxl::grow shrink stack

The stxxl::grow shrink stack stack specialization is optimized for an access
pattern where the insertions are (almost) not intermixed with the removals, and/or vice
versa, the removals are (almost) not intermixed with the insertions. In other words
the stack first grows to its maximal size, then it shrinks, then it might again grow,
then shrink, and so forth, i.e. the pattern is (pushi j popr j)k, where k ∈ N, 1 ≤ j ≤ k,
and i j, r j are large. The implementation efficiently exploits the knowledge of the
access pattern that allows prefetching the blocks beforehand while the stack shrinks
and buffered writing while the stack grows. Therefore the overlapping of I/O and
computation is possible.

Internal Memory Consumption of stxxl::grow shrink stack

The cache of stxxl::grow shrink stack largely dominates in its internal mem-
ory consumption. Other members consume very small fraction of stxxl::grow shrink stack’s
memory even when the stack size is large. Therefore, the internal memory consump-
tion of stxxl::grow shrink stack can be estimated as 2×BlkSize ×PgSz
bytes, where BlkSize is the block size and PgSz is the page size in blocks (see Sec-
tion 6.2.5).

Members of stxxl::grow shrink stack

The stxxl::grow shrink stackhas the same set of members as the stxxl::normal stack
(see Table 6.8). The running times of stxxl::grow shrink stack are the same
as stxxl::normal stack except that when the stack switches from growing to
shrinking (or from shrinking to growing) PgSz I/Os can be spent additionally in the
worst case.9

6.2.3 stxxl::grow shrink stack2

The stxxl::grow shrink stack2 is optimized for the same kind of access pat-
tern as stxxl::grow shrink stack. The difference is that each instance of
stxxl::grow shrink stack uses an own internal buffer to overlap I/Os and
computation, but stxxl::grow shrink stack2 is able to share the buffers from
the pool used by several stacks.

Internal Memory Consumption of stxxl::grow shrink stack2

Not counting the memory consumption of the shared blocks from the pools, the stack
alone consumes about BlkSize bytes.10

Members of stxxl::grow shrink stack2

The stxxl::grow shrink stack2 has almost the same set of members as the
stxxl::normal stack (Table 6.8), except that it does not have the default con-
structor. The stxxl::grow shrink stack2 requires prefetch and write pool

9This is for the single disk setting, if the page is perfectly striped over parallel disk the number of I/Os
is PgSz /D.

10It has the cache that consists of only a single block.

24 STL-User Layer

objects (see Sections 8.1.1 and 8.1.2 for the documentation for the pool classes) to be
specified in the creation time. The new members are listed in Table 6.9.

Table 6.9: New members of stxxl::grow shrink stack2.
member description
grow shrink stack2
(prefetch pool<
block type > & p pool ,
write pool< block type
> &w pool , unsigned
prefetch aggressiveness=0)

Constructs stack, that will use
p pool for prefetching and
w pool for buffered writing.
prefetch aggressiveness
parameter tells how many blocks
from the prefetch pool the stack is
allowed to use.

void set prefetch aggr
(unsigned new p)

Sets level of prefetch aggressive-
ness (number of blocks from the
prefetch pool used for prefetching).

unsigned get prefetch aggr ()
const

Returns the number of blocks used
for prefetching.

6.2.4 stxxl::migrating stack

The stxxl::migrating stack is a stack that migrates from internal memory
to external when its size exceeds a certain threshold (template parameter). The im-
plementation of internal and external memory stacks can be arbitrary and given as a
template parameters.

Internal Memory Consumption of stxxl::migrating stack

The stxxl::migrating stack memory consumption depends on the memory
consumption of the stack implementations given as template parameters. The the cur-
rent state is internal (external), the stxxl::migrating stack consumes almost
exactly the same space as internal (external) memory stack implementation.11

Members of stxxl::migrating stack

The stxxl::migrating stack extends the member set of stxxl::normal stack
(Table 6.8). The new members are listed in Table 6.10.

6.2.5 stxxl::STACK GENERATOR

To provide an easy way to choose and configure the stxxl::stack implementa-
tions STXXL offers a template meta program called stxxl::STACK GENERATOR.
See Table 6.11.

Example:

11The stxxl::migrating stack needs only few pointers to maintain the switching from internal
to external memory implementations.

25

Table 6.10: New members of stxxl::migrating stack.
member description
bool internal () const Returns true if the current im-

plementation is internal, otherwise
false.

bool external () const Returns true if the current im-
plementation is external, otherwise
false.

typedef stxxl::STACK_GENERATOR<int>::result stack_type;

int main()
{

stack_type S;
S.push(8);
S.push(7);
S.push(4);
assert(S.size() == 3);

assert(S.top() == 4);
S.pop();

assert(S.top() == 7);
S.pop();

assert(S.top() == 8);
S.pop();

assert(S.empty());
}

Example for stxxl::grow shrink stack2 :

typedef STACK_GENERATOR<int,external,grow_shrink2>::result stack_type;
typedef stack_type::block_type block_type;

stxxl::prefetch_pool p_pool(10); // 10 read buffers
stxxl::write_pool w_pool(6); // 6 write buffers
stack_type S(p_pool,w_pool,0); // no read buffers used

for(long long i=0;i < max_value;++i)
S.push(i);

S.set_prefetch_aggressiveness(5);
/* give a hint that we are going to

shrink the stack from now on,
always prefetch 5 buffers
beforehand */

26 STL-User Layer

Table 6.11: Template parameters of stxxl::STACK GENERATOR from left to right.

parameter description default value recommended value
ValTp element type
Externality tells whether the vector is inter-

nal, external, or migrating (Ta-
ble 6.12)

external

Behavior chooses external implementa-
tion (Table 6.13)

normal

BlocksPerPage defines how many blocks has
one page of internal cache of an
external implementation

4 ≥ D

BlkSz external block size in bytes 2×1024×1024 larger is better
IntStackTp type of internal stack (used for

the migrating stack)
std::stack<ValTp>

MigrCritSize threshold value for num-
ber of elements when
migrating stack migrates
to the external memory

2×BlocksPerPage×BlkSz

AllocStr parallel disk assignment strat-
egy (Table 6.3)

RC RC

SzTp size type off t off t

Table 6.12: The Externality parameter.
identifier comment
internal chooses IntStackTp implementation
external external container, implementation is chosen ac-

cording to the Behavior parameter
migrating migrates from internal implementation given by

IntStackTp parameter to external implementation
given by Behavior parameter when size exceeds
MigrCritSize

for(long long i=0; i< max_value;++i)
S.pop();

S.set_prefetch_aggressiveness(0);
// stop prefetching

6.3 Priority Queue
A priority queue is a data structure that provides a restricted subset of container func-
tionality: it provides insertion of elements, and inspection and removal of the top
element. It is guaranteed that the top element is the largest element in the priority

27

Table 6.13: The Behavior parameter.
identifier comment
normal conservative version, implemented in

stxxl::normal stack
grow shrink chooses stxxl::grow shrink stack
grow shrink2 chooses stxxl::grow shrink stack2

queue, where the function object Cmp is used for comparisons. Priority queue does
not allow iteration through its elements.

STXXL priority queue is an external memory implementation of [6]. The differ-
ence to the original design is that the last merge groups keep their sorted sequences in
the external memory. The running times of stxxl::priority queue data struc-
ture is given in Table 6.14. The theoretic guarantees on I/O performance are given
only for a single disk setting, however the queue also performs well in practice for
multi-disk configuration.

Table 6.14: Amortized running times of the basic operations of
stxxl::priority queue in terms of I = the number of performed opera-
tions.

int. work I/O (amortized)
insertion O(log I) O(1/B)
deletion O(log I) O(1/B)

6.3.1 Members of stxxl::priority queue

See Table 6.15.

6.3.2 stxxl::PRIORITY QUEUE GENERATOR

Since the stxxl::priority queue has many setup parameters (internal mem-
ory buffer sizes, arity of mergers, number of internal and external memory merger
groups, etc.) which are difficult to guess, STXXL provides a helper meta template
program that searches for the optimum settings for user demands. The program is
called stxxl::PRIORITY QUEUE GENERATOR. The parameter of the program
are given in Table 6.16.

Notes:

a) If Cmp (x,y) is true, then x is smaller than y. The element returned by
Q.top() is the largest element in the priority queue. That is, it has the prop-
erty that, for every other element x in the priority queue, Cmp (Q.top(), x)
is false. Cmp must also provide min value method, that returns value of type
Tp that is smaller than any element of the queue x , i.e. Cmp (Cmp .min value(),x))
is always true.

Example, a comparison object for priority queue where top() returns the
smallest contained integer:

28 STL-User Layer

struct CmpIntGreater
{

bool operator () (const int & a, const int & b)
{ return a<b; }
int min_value() const
{ return (std::numeric_limits<int>::max)(); }

};

Example, a comparison object for priority queue where top() returns the
largest contained integer:

struct CmpIntLess: public std::less<int>
{

int min_value() const
{ return (std::numeric_limits<int>::min)(); }

};

Note that Cmp must define the Strict Weak Ordering.

b) Example: if you are sure that priority queue contains no more than one million
elements any time, then the right parameter for you is (1000000/1024) = 976.

c) Try to play with the Tune parameter if the your code does not compile (larger
than default value 6 might help). The reason that the code does not compile
is that no suitable internal parameters were found for given IntM and MaxS .
It might also happen that given IntM is too small for given MaxS , try larger
values.

PRIORITY QUEUE GENERATOR searches for 7 configuration parameters of
stxxl::priority queue that both minimize internal memory consump-
tion of the priority queue to match IntM and maximize the performance of
priority queue operations. Actual memory consumption might be slightly larger
(use stxxl::priority queue::mem cons() method to track it), since
the search assumes rather optimistic schedule of push’es and pop’es for the
estimation of the maximum memory consumption. To keep actual memory re-
quirements low, increase the value of MaxS parameter.

d) For the functioning, a priority queue object requires two pools of blocks (See
the constructor of priority queue). To construct STXXL block pools you
need the block type that is used by priority queue. Block’s size and hence
it’s type is generated by the PRIORITY QUEUE GENERATOR in compile type
from IntM , MaxS and sizeof(Tp) and it can not be given directly by the
user as a template parameter. The block type can be accessed as
PRIORITY QUEUE GENERATOR<parameters>::result::block type.

Example:

struct Cmp
{
bool operator () (const int & a,

const int & b) const
{ return a>b; }
int min_value() const

29

{ return (std::numeric_limits<int>::max)(); }
};

typedef stxxl::PRIORITY_QUEUE_GENERATOR<int,
Cmp,

/* use 64 MiB on main memory */ 64*1024*1024,
/* 1 billion items at most */ 1024*1024

>::result pq_type;
typedef pq_type::block_type block_type;

int main() {
// use 10 block read and write pools
// for enable overlapping of I/O and
// computation
stxxl::prefetch_pool<block_type> p_pool(10);
stxxl::write_pool<block_type> w_pool(10);

pq_type Q(p_pool,w_pool);
Q.push(1);
Q.push(4);
Q.push(2);
Q.push(8);
Q.push(5);
Q.push(7);

assert(Q.size() == 6);

assert(Q.top() == 8);
Q.pop();

assert(Q.top() == 7);
Q.pop();

assert(Q.top() == 5);
Q.pop();

assert(Q.top() == 4);
Q.pop();

assert(Q.top() == 2);
Q.pop();

assert(Q.top() == 1);
Q.pop();

assert(Q.empty());
}

6.3.3 Internal Memory Consumption of stxxl::priority queue

Internal memory consumption of stxxl::priority queue is bounded by the
IntM parameter in most situations.

30 STL-User Layer

6.4 STXXL Algorithms
Iterators of stxxl::vector are STL compatible. stxxl::vector::iterator
is a model of Random Access Iterator concept from STL. Therefore it is possible to
use the stxxl::vector iterator ranges with STL algorithms. However such use
is not I/O efficient if an algorithm accesses the sequence in a random order. For such
kind of algorithms STXXL provides I/O efficient implementations described in this
chapter (Sections 6.5–6.7). If an algorithm does only a scan (or a constant number
of scans) of a sequence (or sequences) the implementation that calls STL algorithm
is nevertheless I/O efficient. However one can save constant factors in I/O volume
and internal work if the the access pattern is known (read-only or write-only scan
for example). This knowledge is used in STXXL specialized implementations of STL
algorithms (Section 6.8).

Example: STL Algorithms Running on STXXL containers

typedef stxxl::VECTOR_GENERATOR<int>::result vector_type;

// Replace every number in an array with its negative.
const int N = 1000000000;
vector_type A(N);
std::iota(A.begin(), A.end(), 1);
std::transform(A, A+N, A, negate<double>());

// Calculate the sum of two vectors,
// storing the result in a third vector.

const int N = 1000000000;
vector_type V1(N);
vector_type V2(N);
vector_type V3(N);

std::iota(V1.begin(), V1.end(), 1);
std::fill(V2.begin(), V2.end(), 75);

assert(V2.size() >= V1.size() &&
V3.size() >= V1.size());

std::transform(V1.begin(),
V1.end(),
V2.begin(),
V3.begin(),
plus<int>());

6.5 Sorting
stxxl::sort is an external memory equivalent to STL std::sort. The design
and implementation of the algorithm is described in detail in [3].

Prototype

31

template < typename ExtIterator_,
typename StrictWeakOrdering_

>
void sort (ExtIterator_ first,

ExtIterator_ last,
StrictWeakOrdering_ cmp,
unsigned M

)

Description

stxxl::sort sorts the elements in [first, last) into ascending order, meaning that if
i and j are any two valid iterators in [first, last) such that i precedes j, then *j is not
less than *i. Note: as std::sort, stxxl::sort is not guaranteed to be stable.
That is, suppose that *i and *j are equivalent: neither one is less than the other. It
is not guaranteed that the relative order of these two elements will be preserved by
stxxl::sort.

The order is defined by the cmp parameter. The sorter’s internal memory con-
sumption is bounded by M bytes.

Requirements on Types

• ExtIterator is a model of External Random Access Iterator13.

• ExtIterator is mutable.

• StrictWeakOrdering is a model of Strict Weak Ordering and must pro-
vide min and max values for the elements in the input:

– max value method that returns an object that is strictly greater than all
other objects of user type according to the given ordering.

– min valuemethod that returns an object that is strictly less than all other
objects of user type according to the given ordering.

Example: a comparison object for ordering integer elements in the ascending
order

struct CmpIntLess: public std::less<int>
{

static int min_value() const
{ return (std::numeric_limits<int>::min)(); }
static int max_value() const
{ return (std::numeric_limits<int>::max)(); }

};

Example: a comparison object for ordering integer elements in the descending
order

13In STXXL currently only stxxl::vector provides iterators that are models of External Random
Access Iterator.

32 STL-User Layer

struct CmpIntGreater: public std::greater<int>
{

int min_value() const
{ return (std::numeric_limits<int>::max)(); }
int max_value() const
{ return (std::numeric_limits<int>::min)(); }

};

Note, that according to the stxxl::sort requirements min value and max value
can not be present in the input sequence.

• ExtIterator ’s value type is convertible to StrictWeakOrdering ’s ar-
gument type.

Preconditions

[first, last) is a valid range.

Complexity

• Internal work: O(N logN), where
N = (last− f irst)· sizeof(ExtIterator ::value type).

• I/O complexity: (2N/DB)(1+ dlogM/B(2N/M)e) I/Os

stxxl::sort chooses the block size (parameter B) equal to the block size of
the container, the last and first iterators pointing to (e.g. stxxl::vector’s block
size).

The second term in the I/O complexity accounts for the merge phases of the ex-
ternal memory sorting algorithm [3]. Avoiding multiple merge phases speeds up the
sorting. In practice one should choose the block size B of the container to be sorted
such that there is only one merge phase needed: dlogM/B(2N/M)e) = 1. This is possi-
ble for M > DB and N < M2/2DB. But still this restriction gives a freedom to choose
a variety of blocks sizes. The study [3] has shown that optimal B for sorting lies in the
range [M2/(4N),3M2/(8N)]. With such choice of the parameters the stxxl::sort
always performs 4N/DB I/Os.

Internal Memory Consumption

The stxxl::sort consumes slightly more than M bytes of internal memory.

External Memory Consumption

The stxxl::sort is not in-place. It requires about N bytes of external memory to
store the sorted runs during the sorting process [3]. After the sorting this memory is
freed.

33

Example

struct MyCmp: public std::less<int> // ascending
{ // order

static int min_value() const
{ return (std::numeric_limits<int>::min)(); }
static int max_value() const
{ return (std::numeric_limits<int>::max)(); }

};
typedef stxxl::VECTOR_GENERATOR<int>::result vec_type;

vec_type V;
// ... fill here the vector with some values

/*
Sort in ascending order
use 512 MiB of main memory

*/
stxxl::sort(V.begin(),V.end(),MyCmp(),512*1024*1024);
// sorted

6.6 Sorted Order Checking
STXXL gives an ability to automatically check the order in the output of STXXL 14

sorters and intermediate results of sorting (the order and a meta information in the
sorted runs). The check is switched on if the source codes and the library are compiled
with the option -DSTXXL CHECK ORDER IN SORTS and the option -DNDEBUG is
not used. For details see the compiler.make file in the STXXL tar ball. Note, that
the checking routines require more internal work as well as additional N/DB I/Os to
read the sorted runs. Therefore for the final non-debug version of a user application
on should switch this option off.

6.7 Sorting Using Integer Keys
stxxl::ksort is a specialization of external memory sorting optimized for records
having integer keys.

Prototype

template < typename ExtIterator_>
void ksort (ExtIterator_ first,

ExtIterator_ last,
unsigned M

)

template < typename ExtIterator_, typename KeyExtractor_>
void ksort (ExtIterator_ first,

14This checker checks the stxxl::sort, stxxl::ksort (Section 6.7), and the pipelined sorter
from Section 7.6.

34 STL-User Layer

ExtIterator_ last,
KeyExtractor_ keyobj,
unsigned M

)

Description
stxxl::ksort sorts the elements in [first, last) into ascending order, meaning that
if i and j are any two valid iterators in [first, last) such that i precedes j, then *j is
not less than *i. Note: as std::sortand stxxl::sort, stxxl::ksort is not
guaranteed to be stable. That is, suppose that *i and *j are equivalent: neither one
is less than the other. It is not guaranteed that the relative order of these two elements
will be preserved by stxxl::ksort.

The two versions of stxxl::ksort differ in how they define whether one el-
ement is less than another. The first version assumes that the elements have key()
member function that returns an integral key (32 or 64 bit), as well as the minimum
and the maximum element values. The second version compares objects extracting
the keys using keyobj object, that is in turn provides min and max element values.

The sorter’s internal memory consumption is bounded by M bytes.

Requirements on Types
• ExtIterator is a model of External Random Access Iterator15.

• ExtIterator is mutable.

• KeyExtractor must implement operator () that extracts the key of an
element and provide min and max values for the elements in the input:

– key type typedef for the type of the keys.

– max value method that returns an object that is strictly greater than all
other keys of the elements in the input.

– min valuemethod that returns an object that is strictly less than all other
keys of the elements in the input.

Example: a key extractor object for ordering elements having 64 bit integer
keys:

struct MyType
{

typedef unsigned long long key_type;
key_type _key;
char _data[32];
MyType() {}
MyType(key_type __key):_key(__key) {}

};
struct GetKey
{

typedef MyType::key_type key_type;

15In STXXL currently only stxxl::vector provides iterators that are models of External Random
Access Iterator.

35

key_type operator() (const MyType & obj)
{ return obj._key; }
MyType min_value() const
{ return MyType(

(std::numeric_limits<key_type>::min)()); }
MyType max_value() const
{ return MyType(

(std::numeric_limits<key_type>::max)()); }
};

Note, that according to the stxxl::sort requirements min value and max value
can not be present in the input sequence.

• ExtIterator ’s value type is convertible to KeyExtractor ’s argument
type.

• ExtIterator ’s value type has a typedef key type.

• For the first version of stxxl::ksort ExtIterator ’s value type must
have the key() function that returns the key value of the element, and the
min value() and max value() member functions that return minimum
and maximum element values respectively. Example:

struct MyType
{

typedef unsigned long long key_type;
key_type _key;
char _data[32];
MyType() {}
MyType(key_type __key):_key(__key) {}
key_type key() { return _key; }
MyType min_value() const
{ return MyType(

(std::numeric_limits<key_type>::min)()); }
MyType max_value() const
{ return MyType(

(std::numeric_limits<key_type>::max)()); }
};

Preconditions

The same as for stxxl::sort (section 6.5).

Complexity

The same as for stxxl::sort (Section 6.5).

Internal Memory Consumption

The same as for stxxl::sort (Section 6.5)

36 STL-User Layer

External Memory Consumption

The same as for stxxl::sort (Section 6.5).

Example

struct MyType
{

typedef unsigned long long key_type;
key_type _key;
char _data[32];
MyType() {}
MyType(key_type __key):_key(__key) {}
key_type key() { return obj._key; }
static MyType min_value() const
{ return MyType(

(std::numeric_limits<key_type>::min)()); }
static MyType max_value() const
{ return MyType(

(std::numeric_limits<key_type>::max)()); }
};

typedef stxxl::VECTOR_GENERATOR<MyType>::result vec_type;

vec_type V;
// ... fill here the vector with some values

/*
Sort in ascending order
use 512 MiB of main memory

*/
stxxl::ksort(V.begin(),V.end(),512*1024*1024);
// sorted

6.8 Other STXXL Algorithms
STXXL offers several specializations of STL algorithms for stxxl::vector iter-
ators. The algorithms while accessing the elements bypass the vector’s cache and
access the vector’s blocks directly. Another improvement is that algorithms from this
chapter are able to overlap I/O and computation. With standard STL algorithms the
overlapping is not possible. This measures save constant factors both in I/O volume
and internal work.

6.8.1 stxxl::generate

The semantics of the algorithm is equivalent to the STL std::generate.

Prototype

37

template<typename ExtIterator, typename Generator>
void generate (ExtIterator first,

ExtIterator last,
Generator gen,
int nbuffers

)

Description

Generate assigns the result of invoking gen, a function object that takes no arguments,
to each element in the range [first, last). To overlap I/O and computation nbuffers
are used (a value at least D is recommended). The size of the buffers is derived from
the container that is pointed by the iterators.

Requirements on types

• ExtIterator is a model of External Random Access Iterator.

• ExtIterator is mutable.

• Generator is a model of STL Generator.

• Generator’s result type is convertible to ExtIterator’s value type.

Preconditions

[first, last) is a valid range.

Complexity

• Internal work is linear.

• External work: close to N/DB I/Os (write-only).

Example

// Fill a vector with random numbers, using the
// standard C library function rand.
typedef stxxl::VECTOR_GENERATOR<int>::result vector_type;
vector_type V(some_size);
// use 20 buffer blocks
stxxl::generate(V.begin(), V.end(), rand, 20);

6.8.2 stxxl::for each

The semantics of the algorithm is equivalent to the STL std::for each.

38 STL-User Layer

Prototype

template<typename ExtIterator, typename UnaryFunction>
UnaryFunction for_each (ExtIterator first,

ExtIterator last,
UnaryFunction f,
int nbuffers

)

Description
stxxl::for each applies the function object f to each element in the range [first,
last); f’s return value, if any, is ignored. Applications are performed in forward order,
i.e. from first to last. stxxl::for each returns the function object after it has been
applied to each element. To overlap I/O and computation nbuffers are used (a value
at least D is recommended). The size of the buffers is derived from the container that
is pointed by the iterators.

Requirements on types
• ExtIterator is a model of External Random Access Iterator.

• UnaryFunction is a model of STL Unary Function.

• UnaryFunction does not apply any non-constant operations through its ar-
gument.

• ExtIterator’s value type is convertible to UnaryFunction’s argument
type.

Preconditions
[first, last) is a valid range.

Complexity
• Internal work is linear.

• External work: close to N/DB I/Os (read-only).

Example

template<class T> struct print :
public unary_function<T, void>

{
print(ostream& out) : os(out), count(0) {}
void operator() (T x) { os << x << ’ ’; ++count; }
ostream& os;
int count;

};
typedef stxxl::VECTOR_GENERATOR<int>::result vector_type;

39

int main()
{

vector_type A(N);
// fill A with some values
// ...

print<int> P = stxxl::for_each(A.begin(), A.end(),
print<int>(cout));

cout << endl << P.count << " objects printed." << endl;
}

6.8.3 stxxl::for each m

stxxl::for each m is a mutating version of stxxl::for each, i.e. the re-
striction that Unary Function f can not apply any non-constant operations through its
argument does not exist.

Prototype

template<typename ExtIterator, typename UnaryFunction>
UnaryFunction for_each (ExtIterator first,

ExtIterator last,
UnaryFunction f,
int nbuffers

)

Description

stxxl::for each applies the function object f to each element in the range [first,
last); f’s return value, if any, is ignored. Applications are performed in forward order,
i.e. from first to last. stxxl::for each returns the function object after it has
been applied to each element. To overlap I/O and computation nbuffers are used
(a value at least 2D is recommended). The size of the buffers is derived from the
container that is pointed by the iterators.

Requirements on types

• ExtIterator is a model of External Random Access Iterator.

• UnaryFunction is a model of STL Unary Function.

• ExtIterator’s value type is convertible to UnaryFunction’s argument
type.

Preconditions

[first, last) is a valid range.

40 STL-User Layer

Complexity

• Internal work is linear.

• External work: close to 2N/DB I/Os (read and write).

Example

struct AddX
{
int x;
AddX(int x_): x(x_) {}
void operator() (int & val)
{ val += x; }

};

typedef stxxl::VECTOR_GENERATOR<int>::result vector_type;
int main()
{
vector_type A(N);
// fill A with some values
// ...

// Add 5 to each value in the vector
stxxl::for_each(A.begin(), A.end(), AddX(5));

}

6.8.4 stxxl::find

The semantics of the algorithm is equivalent to the STL std::find.

Prototype

template< typename ExtIterator,
typename EqualityComparable>

ExtIterator find (ExtIterator first,
ExtIterator last,
const EqualityComparable & value,
int nbuffers

)

Description

Returns the first iterator i in the range [first, last) such that *i == value. Returns
last if no such iterator exists. To overlap I/O and computation nbuffers are used (a
value at least D is recommended). The size of the buffers is derived from the container
that is pointed by the iterators.

41

Requirements on types
a) EqualityComparable is a model of STL EqualityComparable concept.

b) ExtIterator is a model of External Random Access Iterator.

c) Equality is defined between objects of type EqualityComparable and ob-
jects of ExtIterator’s value type.

Preconditions
[first, last) is a valid range.

Complexity
• Internal work is linear.

• External work: close to N/DB I/Os (read-only).

Example

typedef stxxl::VECTOR_GENERATOR<int>::result vector_type;

vector_type V;
// fill the vector

// find 7 in V
vector_type::iterator result = find(V.begin(), V.end(), 7);
if(result != V.end())
std::cout << ‘‘Found at position ’’<<

(result - V.begin()) << std::endl;
else
std::cout << ‘‘Not found’’ << std::endl;

42 STL-User Layer

Table 6.15: Members of stxxl::priority queue.
member description
value type The type of object, Tp , stored in

the vector.
size type An unsigned 64-bit12 integral type.
block type type of the block used in disk-

memory transfers
priority queue(
prefetch pool<block type>&
p pool ,
write pool<block type>&
w pool)

Creates an empty priority queue.
Prefetch pool p pool and write
pools w pool will be used for
overlapping of I/O and computa-
tion during external memory merg-
ing (see Sections 8.1.1 and 8.1.2
for the documentation for the pool
classes).

bool empty() const Returns true if the
priority queue contains
no elements, and false otherwise.
S.empty() is equivalent to
S.size() == 0.

size type size() const Returns the number of el-
ements contained in the
priority queue.

const value type& top()
const

Returns a const reference to
the element at the top of the
priority queue. The ele-
ment at the top is guaranteed
to be the largest element in the
priority queue, as determined by
the comparison function Cmp .
That is, for every other element
x in the priority queue,
Cmp (Q.top(), x) is false.
Precondition: empty() is false.

void push(const value type&
x)

Inserts x into the
priority queue. Postcondi-
tion: size() will be incremented
by 1.

void pop() Removes the element at the top
of the priority queue, that
is, the largest element in the
priority queue. Precondition:
empty() is false. Postcondition:
size() will be decremented by 1.

unsigned mem cons () const Returns number of bytes consumed
by the priority queue in the
internal memory not including the
pools.

˜priority queue() The destructor. Deallocates all oc-
cupied internal and external mem-
ory.

43

Table 6.16: Template parameters of stxxl::PRIORITY QUEUE GENERATOR
from left to right.

parameter description default value recommended value
Tp element type
Cmp the comparison type used to de-

termine whether one element is
smaller than another element.
See note a.

IntM upper limit for internal memory
consumption in bytes

larges is better

MaxS upper limit for number of ele-
ments contained in the priority
queue (in units of 1024 items).
See note b.

Tune a tuning parameter. See note c. 6

44 STL-User Layer

Pipelined/Stream Interfaces Dementiev June 10, 2014 45

Chapter 7

Pipelined/Stream Interfaces

7.1 Preliminaries

7.2 Node Interface

7.3 Scheduling

7.4 File Nodes – streamify and materialize

7.5 Streaming Nodes

7.6 Sorting Nodes

7.6.1 Runs Creator – stxxl::stream::runs creator

7.6.2 Specializations of stxxl::stream::runs creator

7.6.3 Runs Merger – stxxl::stream::runs merger

7.6.4 A Combination: stxxl::stream::sort

7.7 A Pipelined Version of the Billing Application

46 Pipelined/Stream Interfaces

Internals Dementiev June 10, 2014 47

Chapter 8

Internals

8.1 Block Management Layer

8.1.1 stxxl::prefetch pool

8.1.2 stxxl::write pool

8.2 I/O Primitives Layer

8.3 Utilities

48 Internals

Miscellaneous Dementiev June 10, 2014 49

Chapter 9

Miscellaneous

9.1 STXXL Compile Flags

50 Miscellaneous

BIBLIOGRAPHY Dementiev June 10, 2014 51

Bibliography

[1] L. Arge, O. Procopiuc, and J. S. Vitter. Implementing I/O-efficient Data Structures
Using TPIE. In 10th European Symposium on Algorithms (ESA), volume 2461 of
LNCS, pages 88–100. Springer, 2002.

[2] A. Crauser and K. Mehlhorn. LEDA-SM, extending LEDA to secondary memory.
In 3rd International Workshop on Algorithmic Engineering (WAE), volume 1668
of LNCS, pages 228–242, 1999.

[3] R. Dementiev and P. Sanders. Asynchronous parallel disk sorting. In 15th ACM
Symposium on Parallelism in Algorithms and Architectures, pages 138–148, San
Diego, 2003.

[4] Andrew Hume. Handbook of massive data sets, chapter Billing in the large, pages
895 – 909. Kluwer Academic Publishers, 2002.

[5] D. A. Hutchinson, P. Sanders, and J. S. Vitter. Duality between prefetching and
queued writing with parallel disks. In 9th European Symposium on Algorithms
(ESA), number 2161 in LNCS, pages 62–73. Springer, 2001.

[6] Peter Sanders. Fast priority queues for cached memory. ACM Journal of Experi-
mental Algorithmics, 5, 2000.

[7] A. A. Stepanov and M. Lee. The Standard Template Library. Technical Report
X3J16/94-0095, WG21/N0482, Silicon Graphics Inc., Hewlett Packard Laborato-
ries, 1994.

[8] J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory, I/II. Algorith-
mica, 12(2/3):110–169, 1994.

