1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
/// Define `Resolver` trait and implement it on some hashmaps and also define the `Resolver` tuple
/// composition. Provide also some utility functions related to how to create a `Resolver` and
/// resolving render.
///
use std::borrow::Cow;
use std::collections::HashMap;

use proc_macro2::Ident;
use syn::{parse_quote, Expr};

use crate::parse::Fixture;

pub(crate) mod fixtures {
    use quote::format_ident;

    use super::*;

    pub(crate) fn get<'a>(fixtures: impl Iterator<Item = &'a Fixture>) -> impl Resolver + 'a {
        fixtures
            .map(|f| (f.name.to_string(), extract_resolve_expression(f).into()))
            .collect::<HashMap<_, Expr>>()
    }

    fn extract_resolve_expression(fixture: &Fixture) -> syn::Expr {
        let resolve = fixture.resolve.as_ref().unwrap_or(&fixture.name);
        let positional = &fixture.positional.0;
        let f_name = match positional.len() {
            0 => format_ident!("default"),
            l => format_ident!("partial_{}", l),
        };
        parse_quote! { #resolve::#f_name(#(#positional), *) }
    }

    #[cfg(test)]
    mod should {
        use super::*;
        use crate::test::{assert_eq, *};

        #[rstest]
        #[case(&[], "default()")]
        #[case(&["my_expression"], "partial_1(my_expression)")]
        #[case(&["first", "other"], "partial_2(first, other)")]
        fn resolve_by_use_the_given_name(#[case] args: &[&str], #[case] expected: &str) {
            let data = vec![fixture("pippo", args)];
            let resolver = get(data.iter());

            let resolved = resolver.resolve(&ident("pippo")).unwrap().into_owned();

            assert_eq!(resolved, format!("pippo::{}", expected).ast());
        }

        #[rstest]
        #[case(&[], "default()")]
        #[case(&["my_expression"], "partial_1(my_expression)")]
        #[case(&["first", "other"], "partial_2(first, other)")]
        fn resolve_by_use_the_resolve_field(#[case] args: &[&str], #[case] expected: &str) {
            let data = vec![fixture("pippo", args).with_resolve("pluto")];
            let resolver = get(data.iter());

            let resolved = resolver.resolve(&ident("pippo")).unwrap().into_owned();

            assert_eq!(resolved, format!("pluto::{}", expected).ast());
        }
    }
}

pub(crate) mod values {
    use super::*;
    use crate::parse::fixture::ArgumentValue;

    pub(crate) fn get<'a>(values: impl Iterator<Item = &'a ArgumentValue>) -> impl Resolver + 'a {
        values
            .map(|av| (av.name.to_string(), &av.expr))
            .collect::<HashMap<_, &'a Expr>>()
    }

    #[cfg(test)]
    mod should {
        use super::*;
        use crate::test::{assert_eq, *};

        #[test]
        fn resolve_by_use_the_given_name() {
            let data = vec![
                arg_value("pippo", "42"),
                arg_value("donaldduck", "vec![1,2]"),
            ];
            let resolver = get(data.iter());

            assert_eq!(
                resolver.resolve(&ident("pippo")).unwrap().into_owned(),
                "42".ast()
            );
            assert_eq!(
                resolver.resolve(&ident("donaldduck")).unwrap().into_owned(),
                "vec![1,2]".ast()
            );
        }
    }
}

/// A trait that `resolve` the given ident to expression code to assign the value.
pub(crate) trait Resolver {
    fn resolve(&self, ident: &Ident) -> Option<Cow<Expr>>;
}

impl<'a> Resolver for HashMap<String, &'a Expr> {
    fn resolve(&self, ident: &Ident) -> Option<Cow<Expr>> {
        let ident = ident.to_string();
        self.get(&ident).map(|&c| Cow::Borrowed(c))
    }
}

impl<'a> Resolver for HashMap<String, Expr> {
    fn resolve(&self, ident: &Ident) -> Option<Cow<Expr>> {
        let ident = ident.to_string();
        self.get(&ident).map(|c| Cow::Borrowed(c))
    }
}

impl<R1: Resolver, R2: Resolver> Resolver for (R1, R2) {
    fn resolve(&self, ident: &Ident) -> Option<Cow<Expr>> {
        self.0.resolve(ident).or_else(|| self.1.resolve(ident))
    }
}

impl<R: Resolver + ?Sized> Resolver for &R {
    fn resolve(&self, ident: &Ident) -> Option<Cow<Expr>> {
        (*self).resolve(ident)
    }
}

impl<R: Resolver + ?Sized> Resolver for Box<R> {
    fn resolve(&self, ident: &Ident) -> Option<Cow<Expr>> {
        (**self).resolve(ident)
    }
}

impl Resolver for (String, Expr) {
    fn resolve(&self, ident: &Ident) -> Option<Cow<Expr>> {
        if self.0 == ident.to_string() {
            Some(Cow::Borrowed(&self.1))
        } else {
            None
        }
    }
}

#[cfg(test)]
mod should {
    use super::*;
    use crate::test::{assert_eq, *};
    use syn::parse_str;

    #[test]
    fn return_the_given_expression() {
        let ast = parse_str("fn function(mut foo: String) {}").unwrap();
        let arg = first_arg_ident(&ast);
        let expected = expr("bar()");
        let mut resolver = HashMap::new();

        resolver.insert("foo".to_string(), &expected);

        assert_eq!(expected, (&resolver).resolve(&arg).unwrap().into_owned())
    }

    #[test]
    fn return_none_for_unknown_argument() {
        let ast = "fn function(mut fix: String) {}".ast();
        let arg = first_arg_ident(&ast);

        assert!(EmptyResolver.resolve(&arg).is_none())
    }
}