Main MRPT website > C++ reference for MRPT 1.4.0
CPose3DPDFGaussian.h
Go to the documentation of this file.
1/* +---------------------------------------------------------------------------+
2 | Mobile Robot Programming Toolkit (MRPT) |
3 | http://www.mrpt.org/ |
4 | |
5 | Copyright (c) 2005-2016, Individual contributors, see AUTHORS file |
6 | See: http://www.mrpt.org/Authors - All rights reserved. |
7 | Released under BSD License. See details in http://www.mrpt.org/License |
8 +---------------------------------------------------------------------------+ */
9#ifndef CPose3DPDFGaussian_H
10#define CPose3DPDFGaussian_H
11
13#include <mrpt/poses/CPose3D.h>
14
15namespace mrpt
16{
17namespace poses
18{
19 class CPosePDF;
20 class CPosePDFGaussian;
22
24
25 /** Declares a class that represents a Probability Density function (PDF) of a 3D pose \f$ p(\mathbf{x}) = [x ~ y ~ z ~ yaw ~ pitch ~ roll]^t \f$.
26 *
27 * This class implements that PDF using a mono-modal Gaussian distribution. See mrpt::poses::CPose3DPDF for more details.
28 *
29 * Uncertainty of pose composition operations (\f$ y = x \oplus u \f$) is implemented in the method "CPose3DPDFGaussian::operator+=".
30 *
31 * For further details on implemented methods and the theory behind them,
32 * see <a href="http://www.mrpt.org/6D_poses:equivalences_compositions_and_uncertainty" >this report</a>.
33 *
34 * \sa CPose3D, CPose3DPDF, CPose3DPDFParticles
35 * \ingroup poses_pdf_grp
36 */
38 {
39 // This must be added to any CSerializable derived class:
41
42 protected:
43 /** Assures the symmetry of the covariance matrix (eventually certain operations in the math-coprocessor lead to non-symmetric matrixes!)
44 */
46
47 public:
48 /** Default constructor
49 */
51
52 /** Constructor
53 */
54 explicit CPose3DPDFGaussian( const CPose3D &init_Mean );
55
56 /** Uninitialized constructor: leave all fields uninitialized - Call with UNINITIALIZED_POSE as argument
57 */
59
60 /** Constructor */
61 CPose3DPDFGaussian( const CPose3D &init_Mean, const mrpt::math::CMatrixDouble66 &init_Cov );
62
63 /** Constructor from a Gaussian 2D pose PDF (sets to 0 the missing variables z,pitch, and roll).
64 */
66
67 /** Constructor from a 6D pose PDF described as a Quaternion
68 */
70
71 /** The mean value
72 */
74
75 /** The 6x6 covariance matrix
76 */
78
79 inline const CPose3D & getPoseMean() const { return mean; }
80 inline CPose3D & getPoseMean() { return mean; }
81
82 /** Returns an estimate of the pose, (the mean, or mathematical expectation of the PDF).
83 * \sa getCovariance
84 */
85 void getMean(CPose3D &mean_pose) const MRPT_OVERRIDE {
86 mean_pose = mean;
87 }
88
89 /** Returns an estimate of the pose covariance matrix (6x6 cov matrix) and the mean, both at once.
90 * \sa getMean
91 */
93 cov = this->cov;
94 mean_point = this->mean;
95 }
96
97 void asString(std::string &s) const;
98 inline std::string asString() const { std::string s; asString(s); return s; }
99
100 /** Copy operator, translating if necesary (for example, between particles and gaussian representations)
101 */
103
104 /** Copy operator, translating if necesary (for example, between particles and gaussian representations)
105 */
106 void copyFrom(const CPosePDF &o);
107
108 /** Copy from a 6D pose PDF described as a Quaternion
109 */
111
112
113 /** Save the PDF to a text file, containing the 3D pose in the first line, then the covariance matrix in next 3 lines.
114 */
115 void saveToTextFile(const std::string &file) const MRPT_OVERRIDE;
116
117 /** this = p (+) this. This can be used to convert a PDF from local coordinates to global, providing the point (newReferenceBase) from which
118 * "to project" the current pdf. Result PDF substituted the currently stored one in the object.
119 */
120 void changeCoordinatesReference( const CPose3D &newReferenceBase ) MRPT_OVERRIDE;
121
122 /** Draws a single sample from the distribution
123 */
124 void drawSingleSample( CPose3D &outPart ) const MRPT_OVERRIDE;
125
126 /** Draws a number of samples from the distribution, and saves as a list of 1x6 vectors, where each row contains a (x,y,phi) datum.
127 */
128 void drawManySamples( size_t N, std::vector<mrpt::math::CVectorDouble> & outSamples ) const MRPT_OVERRIDE;
129
130 /** Bayesian fusion of two points gauss. distributions, then save the result in this object.
131 * The process is as follows:<br>
132 * - (x1,S1): Mean and variance of the p1 distribution.
133 * - (x2,S2): Mean and variance of the p2 distribution.
134 * - (x,S): Mean and variance of the resulting distribution.
135 *
136 * S = (S1<sup>-1</sup> + S2<sup>-1</sup>)<sup>-1</sup>;
137 * x = S * ( S1<sup>-1</sup>*x1 + S2<sup>-1</sup>*x2 );
138 */
139 void bayesianFusion( const CPose3DPDF &p1, const CPose3DPDF &p2 ) MRPT_OVERRIDE;
140
141 /** Returns a new PDF such as: NEW_PDF = (0,0,0) - THIS_PDF
142 */
144
145 /** Unary - operator, returns the PDF of the inverse pose. */
147 {
149 this->inverse(p);
150 return p;
151 }
152
153
154 /** Makes: thisPDF = thisPDF + Ap, where "+" is pose composition (both the mean, and the covariance matrix are updated).
155 */
156 void operator += ( const CPose3D &Ap);
157
158 /** Makes: thisPDF = thisPDF + Ap, where "+" is pose composition (both the mean, and the covariance matrix are updated).
159 */
160 void operator += ( const CPose3DPDFGaussian &Ap);
161
162 /** Makes: thisPDF = thisPDF - Ap, where "-" is pose inverse composition (both the mean, and the covariance matrix are updated).
163 */
164 void operator -= ( const CPose3DPDFGaussian &Ap);
165
166 /** Evaluates the PDF at a given point.
167 */
168 double evaluatePDF( const CPose3D &x ) const;
169
170 /** Evaluates the ratio PDF(x) / PDF(MEAN), that is, the normalized PDF in the range [0,1].
171 */
172 double evaluateNormalizedPDF( const CPose3D &x ) const;
173
174 /** Computes the Mahalanobis distance between the centers of two Gaussians.
175 * The variables with a variance exactly equal to 0 are not taken into account in the process, but
176 * "infinity" is returned if the corresponding elements are not exactly equal.
177 */
179
180 /** Returns a 3x3 matrix with submatrix of the covariance for the variables (x,y,yaw) only.
181 */
183
184
185 }; // End of class def.
187
188
189 /** Pose composition for two 3D pose Gaussians \sa CPose3DPDFGaussian::operator += */
190 inline CPose3DPDFGaussian operator +( const CPose3DPDFGaussian &x, const CPose3DPDFGaussian &u )
191 {
192 CPose3DPDFGaussian res(x);
193 res+=u;
194 return res;
195 }
196
197 /** Pose composition for two 3D pose Gaussians \sa CPose3DPDFGaussian::operator -= */
199 {
200 CPose3DPDFGaussian res(x);
201 res-=u;
202 return res;
203 }
204
205 /** Dumps the mean and covariance matrix to a text stream.
206 */
207 std::ostream BASE_IMPEXP & operator << (std::ostream & out, const CPose3DPDFGaussian& obj);
208
210
211 } // End of namespace
212
213
214 /** Global variables to change the run-time behaviour of some MRPT classes within mrpt-base.
215 * See each variable for the description of what classes it affects.
216 */
217 namespace global_settings
218 {
219 /** If set to true (false), a Scaled Unscented Transform is used instead of a linear approximation with Jacobians.
220 * Affects to:
221 * - CPose3DPDFGaussian::CPose3DPDFGaussian( const CPose3DQuatPDFGaussian &o)
222 */
224 }
225
226} // End of namespace
227
228#endif
#define DEFINE_SERIALIZABLE(class_name)
This declaration must be inserted in all CSerializable classes definition, within the class declarati...
#define DEFINE_SERIALIZABLE_POST_CUSTOM_BASE(class_name, base_name)
#define DEFINE_SERIALIZABLE_PRE_CUSTOM_BASE(class_name, base_name)
This declaration must be inserted in all CSerializable classes definition, before the class declarati...
A numeric matrix of compile-time fixed size.
A class used to store a 3D pose (a 3D translation + a rotation in 3D).
Definition CPose3D.h:73
Declares a class that represents a Probability Density function (PDF) of a 3D pose .
void bayesianFusion(const CPose3DPDF &p1, const CPose3DPDF &p2) MRPT_OVERRIDE
Bayesian fusion of two points gauss.
CPose3DPDFGaussian(const CPose3D &init_Mean, const mrpt::math::CMatrixDouble66 &init_Cov)
Constructor
void saveToTextFile(const std::string &file) const MRPT_OVERRIDE
Save the PDF to a text file, containing the 3D pose in the first line, then the covariance matrix in ...
void getCovSubmatrix2D(mrpt::math::CMatrixDouble &out_cov) const
Returns a 3x3 matrix with submatrix of the covariance for the variables (x,y,yaw) only.
CPose3DPDFGaussian(TConstructorFlags_Poses constructor_dummy_param)
Uninitialized constructor: leave all fields uninitialized - Call with UNINITIALIZED_POSE as argument.
void getCovarianceAndMean(mrpt::math::CMatrixDouble66 &cov, CPose3D &mean_point) const MRPT_OVERRIDE
Returns an estimate of the pose covariance matrix (6x6 cov matrix) and the mean, both at once.
const CPose3D & getPoseMean() const
void copyFrom(const CPose3DPDF &o) MRPT_OVERRIDE
Copy operator, translating if necesary (for example, between particles and gaussian representations)
double mahalanobisDistanceTo(const CPose3DPDFGaussian &theOther)
Computes the Mahalanobis distance between the centers of two Gaussians.
double evaluatePDF(const CPose3D &x) const
Evaluates the PDF at a given point.
CPose3DPDFGaussian()
Default constructor.
void assureSymmetry()
Assures the symmetry of the covariance matrix (eventually certain operations in the math-coprocessor ...
void getMean(CPose3D &mean_pose) const MRPT_OVERRIDE
Returns an estimate of the pose, (the mean, or mathematical expectation of the PDF).
CPose3DPDFGaussian(const CPosePDFGaussian &o)
Constructor from a Gaussian 2D pose PDF (sets to 0 the missing variables z,pitch, and roll).
void changeCoordinatesReference(const CPose3D &newReferenceBase) MRPT_OVERRIDE
this = p (+) this.
void inverse(CPose3DPDF &o) const MRPT_OVERRIDE
Returns a new PDF such as: NEW_PDF = (0,0,0) - THIS_PDF.
CPose3DPDFGaussian(const CPose3DQuatPDFGaussian &o)
Constructor from a 6D pose PDF described as a Quaternion.
void copyFrom(const CPosePDF &o)
Copy operator, translating if necesary (for example, between particles and gaussian representations)
void copyFrom(const CPose3DQuatPDFGaussian &o)
Copy from a 6D pose PDF described as a Quaternion.
void drawManySamples(size_t N, std::vector< mrpt::math::CVectorDouble > &outSamples) const MRPT_OVERRIDE
Draws a number of samples from the distribution, and saves as a list of 1x6 vectors,...
CPose3DPDFGaussian(const CPose3D &init_Mean)
Constructor.
void drawSingleSample(CPose3D &outPart) const MRPT_OVERRIDE
Draws a single sample from the distribution.
mrpt::math::CMatrixDouble66 cov
The 6x6 covariance matrix.
double evaluateNormalizedPDF(const CPose3D &x) const
Evaluates the ratio PDF(x) / PDF(MEAN), that is, the normalized PDF in the range [0,...
void asString(std::string &s) const
Declares a class that represents a Probability Density Function (PDF) of a 3D pose (6D actually).
Definition CPose3DPDF.h:41
Declares a class that represents a Probability Density function (PDF) of a 3D pose using a quaternion...
Declares a class that represents a Probability Density function (PDF) of a 2D pose .
Declares a class that represents a probability density function (pdf) of a 2D pose (x,...
Definition CPosePDF.h:40
EIGEN_STRONG_INLINE double mean() const
Computes the mean of the entire matrix.
#define MRPT_OVERRIDE
C++11 "override" for virtuals:
Definition mrpt_macros.h:28
BASE_IMPEXP bool USE_SUT_QUAT2EULER_CONVERSION
If set to true (false), a Scaled Unscented Transform is used instead of a linear approximation with J...
std::ostream & operator<<(std::ostream &o, const CPoint< DERIVEDCLASS > &p)
Dumps a point as a string [x,y] or [x,y,z]
Definition CPoint.h:106
CPose2D BASE_IMPEXP operator-(const CPose2D &p)
Unary - operator: return the inverse pose "-p" (Note that is NOT the same than a pose with negative x...
class BASE_IMPEXP CPosePDF
Definition CPosePDF.h:25
class BASE_IMPEXP CPose3DQuatPDFGaussian
class BASE_IMPEXP CPosePDFGaussian
bool operator==(const CPoint< DERIVEDCLASS > &p1, const CPoint< DERIVEDCLASS > &p2)
Definition CPoint.h:130
This is the global namespace for all Mobile Robot Programming Toolkit (MRPT) libraries.



Page generated by Doxygen 1.9.8 for MRPT 1.4.0 SVN: at Fri Dec 15 05:36:48 UTC 2023