LIBINT
2.6.0
|
3D Cartesian Gaussian Function More...
#include <bfset.h>
Public Types | |
typedef CGF | iter_type |
As far as SetIterator is concerned, CGF is a set of one CGF. | |
typedef IncableBFSet | parent_type |
![]() | |
typedef KeyTraits< LIBINT2_UINT_LEAST64 >::ReturnType | KeyReturnType |
Public Member Functions | |
CGF () | |
How to return key. More... | |
CGF (unsigned int qn[3], bool pure_sh=false) | |
CGF (const CGF &) | |
CGF (const ConstructablePolymorphically &) | |
CGF & | operator= (const CGF &) |
assignment | |
const OriginDerivative< 3u > & | deriv () const |
OriginDerivative< 3u > & | deriv () |
std::string | label () const |
Return a compact label. | |
unsigned int | num_bf () const |
Returns the number of basis functions in the set (always 1) | |
unsigned int | qn (unsigned int axis) const |
Returns the quantum number along axis . | |
unsigned int | operator[] (unsigned int axis) const |
bool | pure_sh () const |
contains only solid harmonics with the same quantum number as this shell? (this may permit simplified RR to be used – obviously must transform to solid harmonics later) | |
void | pure_sh (bool p) |
bool | operator== (const CGF &) const |
Comparison operator. | |
void | inc (unsigned int xyz, unsigned int c=1u) |
Implementation of IncableBFSet::inc(). | |
void | dec (unsigned int xyz, unsigned int c=1u) |
Implementation of IncableBFSet::dec(). | |
unsigned int | norm () const |
Implements IncableBFSet::norm() | |
LIBINT2_UINT_LEAST64 | key () const |
Implements Hashable<LIBINT2_UINT_LEAST64>::key() | |
void | print (std::ostream &os=std::cout) const |
Print out the content. | |
bool | is_unit () const |
![]() | |
bool | zero () const |
norm() == 0 | |
bool | valid () const |
Return false if this object is invalid. | |
![]() | |
Contractable (const Contractable &source) | |
Contractable & | operator= (const Contractable &source) |
bool | contracted () const |
void | uncontract () |
void | contract () |
Static Public Member Functions | |
static CGF | unit () |
returns the unit shell (exponent=0, am=0, indicated by unit_=true) | |
![]() | |
static void | set_contracted_default_value (bool dv) |
Static Public Attributes | |
static const LIBINT2_UINT_LEAST64 | max_num_qn = ((1 + (CGShell::max_qn+1)) * (2 + (CGShell::max_qn+1)) * (3 + (CGShell::max_qn+1)) /6) |
The range of keys is [0,max_key). More... | |
static const LIBINT2_UINT_LEAST64 | max_key = OriginDerivative<3u>::max_key * 2ul * max_num_qn * 2ul + 1 |
Friends | |
CGF | operator+ (const CGF &A, const CGF &B) |
CGF | operator- (const CGF &A, const CGF &B) |
Additional Inherited Members | |
![]() | |
void | invalidate () |
make this object invalid | |
![]() | |
KeyStore< LIBINT2_UINT_LEAST64, OwnKey< KeyMP >::result > | key_ |
3D Cartesian Gaussian Function
CGF::CGF | ( | ) |
How to return key.
Default constructor makes an s-type Gaussian
|
inline |
p | if true, will assume to contain only solid harmonics of the same quantum number as this shell |
|
static |
The range of keys is [0,max_key).
The formula is easily derived by summing (L+1)(L+2)/2 up to CGShell::max_key The factor of 2 to account for contracted vs. uncontracted basis functions The factor of OriginDerivative::max_key to account for derivatives
Referenced by key().