LIBINT
2.6.0
|
Represents quantum numbers of real spherical multipole operator defined in Eqs. More...
#include <oper.h>
Public Types | |
typedef MultiplicativeODep1Body_Props | Properties |
enum | Sign |
![]() | |
enum | Sign { plus, minus } |
![]() | |
typedef KeyTraits< LIBINT2_UINT_LEAST64 >::ReturnType | KeyReturnType |
Public Member Functions | |
SphericalMultipole_Descr () | |
Default ctor makes a 0th-order multipole. | |
SphericalMultipole_Descr (int l, int m) | |
constructs ![]() ![]() ![]() | |
SphericalMultipole_Descr (int l, int m, Sign sign) | |
SphericalMultipole_Descr (const SphericalMultipoleQuanta &quanta) | |
std::string | description () const |
std::string | label () const |
int | psymm (int i, int j) const |
int | hermitian (int i) const |
![]() | |
Contractable (const Contractable &source) | |
Contractable & | operator= (const Contractable &source) |
bool | contracted () const |
void | uncontract () |
void | contract () |
![]() | |
SphericalMultipoleQuanta () | |
constructs an object in default (unusable) state | |
SphericalMultipoleQuanta (int l, int m) | |
constructs ![]() ![]() ![]() | |
SphericalMultipoleQuanta (int l, int m, Sign sign) | |
constructs ![]() | |
int | l () const |
int | m () const |
Sign | sign () const |
bool | valid () const |
int | phase () const |
bool | is_precomputed () const |
![]() | |
int | value () const |
LIBINT2_UINT_LEAST64 | key () const |
Implements Hashable<unsigned>::key() | |
Static Public Attributes | |
static const unsigned | max_key |
![]() | |
const static constexpr unsigned | max_qn = LIBINT_CARTGAUSS_MAX_AM |
static const unsigned | max_key = (1 + max_qn) * (1 + max_qn) |
Additional Inherited Members | |
![]() | |
static void | set_contracted_default_value (bool dv) |
![]() | |
KeyStore< LIBINT2_UINT_LEAST64, OwnKey< KeyMP >::result > | key_ |
Represents quantum numbers of real spherical multipole operator defined in Eqs.
5 and 6 of J.M. Pérez-Jordá and W. Yang, J Chem Phys 104, 8003 (1996). ( corresponds to moments
,
corresponds to
)