LIBINT  2.6.0
integral_decl.h
1 /*
2  * Copyright (C) 2004-2019 Edward F. Valeev
3  *
4  * This file is part of Libint.
5  *
6  * Libint is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * Libint is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with Libint. If not, see <http://www.gnu.org/licenses/>.
18  *
19  */
20 
21 #ifndef _libint2_src_bin_libint_integraldecl_h_
22 #define _libint2_src_bin_libint_integraldecl_h_
23 
24 namespace libint2 {
25 
26  template <class Oper, class BFS, class BraSetType, class KetSetType, class AuxQuanta>
27  class GenIntegralSet;
28 #if LIBINT_SUPPORT_ONEBODYINTS
29  template <class Oper, class BFS, class AuxQuanta>
30  class GenIntegralSet_1_1;
31 #endif // LIBINT_SUPPORT_ONEBODYINTS
32  template <class Oper, class BFS, class AuxQuanta>
33  class GenIntegralSet_11_11;
34 
35 #if 0
36  template <class BFS> class TwoPRep_11_11;
37 #endif
38  template <class BFS, int K> class R12kG12_11_11;
39  template <class BFS, int K> class TiG12_11_11;
40  template <class BFS> class R1dotR1G12_11_11;
41  template <class BFS> class R2dotR2G12_11_11;
42  template <class BFS> class R1dotR2G12_11_11;
43 
44 };
45 
46 #endif
R1dotR1G12_11_11 – integral over R1dotR1_G12 operator with one bfs for each particle in bra and ket.
Definition: integral_decl.h:40
Defaults definitions for various parameters assumed by Libint.
Definition: algebra.cc:24
Definition: integral_decl.h:39
Definition: integral_decl.h:36
Definition: integral_decl.h:42
R2dotR2G12_11_11 – integral over R2dotR2_G12 operator with one bfs for each particle in bra and ket.
Definition: integral_decl.h:41
Definition: integral_decl.h:38