NCList-class {IRanges} | R Documentation |
Nested Containment List objects
Description
The NCList class is a container for storing the Nested Containment
List representation of a IntegerRanges object. Preprocessing a
IntegerRanges object as a Nested Containment List allows
efficient overlap-based operations like findOverlaps
.
The NCLists class is a container for storing a collection of NCList objects. An NCLists object is typically the result of preprocessing each list element of a IntegerRangesList object as a Nested Containment List. Like with NCList, the NCLists object can then be used for efficient overlap-based operations.
To preprocess a IntegerRanges or IntegerRangesList object,
simply call the NCList
or NCLists
constructor function on it.
Usage
NCList(x, circle.length=NA_integer_)
NCLists(x, circle.length=NA_integer_)
Arguments
x |
The IntegerRanges or IntegerRangesList object to preprocess. |
circle.length |
Use only if the space (or spaces if For For |
Details
The GenomicRanges package also defines the
GNCList
constructor and class for
preprocessing and representing a vector of genomic ranges as a
data structure based on Nested Containment Lists.
Some important differences between the new findOverlaps/countOverlaps implementation based on Nested Containment Lists (BioC >= 3.1) and the old implementation based on Interval Trees (BioC < 3.1):
With the new implementation, the hits returned by
findOverlaps
are not fully ordered (i.e. ordered by queryHits and subject Hits) anymore, but only partially ordered (i.e. ordered by queryHits only). Other than that, and except for the 2 particular situations mentioned below, the 2 implementations produce the same output. However, the new implementation is faster and more memory efficient.With the new implementation, either the query or the subject can be preprocessed with
NCList
for a IntegerRanges object (replacement forIntervalTree
),NCLists
for a IntegerRangesList object (replacement forIntervalForest
), andGNCList
for a GenomicRanges object (replacement forGIntervalTree
). However, for a one-time use, it is NOT advised to explicitely preprocess the input. This is becausefindOverlaps
orcountOverlaps
will take care of it and do a better job at it (by preprocessing only what's needed when it's needed, and releasing memory as they go).With the new implementation,
countOverlaps
on IntegerRanges or GenomicRanges objects doesn't callfindOverlaps
in order to collect all the hits in a growing Hits object and count them only at the end. Instead, the counting happens at the C level and the hits are not kept. This reduces memory usage considerably when there is a lot of hits.When
minoverlap=0
, zero-width ranges are now interpreted as insertion points and considered to overlap with ranges that contain them. With the old alogrithm, zero-width ranges were always ignored. This is the 1st situation where the new and old implementations produce different outputs.When using
select="arbitrary"
, the new implementation will generally not select the same hits as the old implementation. This is the 2nd situation where the new and old implementations produce different outputs.The new implementation supports preprocessing of a GenomicRanges object with ranges defined on circular sequences (e.g. on the mitochnodrial chromosome). See GNCList in the GenomicRanges package for some examples.
Objects preprocessed with
NCList
,NCLists
, andGNCList
are serializable (withsave
) for later use. Not a typical thing to do though, because preprocessing is very cheap (i.e. very fast and memory efficient).
Value
An NCList object for the NCList
constructor and an NCLists object
for the NCLists
constructor.
Author(s)
Hervé Pagès
References
Alexander V. Alekseyenko and Christopher J. Lee – Nested Containment List (NCList): a new algorithm for accelerating interval query of genome alignment and interval databases. Bioinformatics (2007) 23 (11): 1386-1393. doi: 10.1093/bioinformatics/btl647
See Also
The
GNCList
constructor and class defined in the GenomicRanges package.-
findOverlaps
for finding/counting interval overlaps between two range-based objects. -
IntegerRanges and IntegerRangesList objects.
Examples
## The example below is for illustration purpose only and does NOT
## reflect typical usage. This is because, for a one-time use, it is
## NOT advised to explicitely preprocess the input for findOverlaps()
## or countOverlaps(). These functions will take care of it and do a
## better job at it (by preprocessing only what's needed when it's
## needed, and release memory as they go).
query <- IRanges(c(1, 4, 9), c(5, 7, 10))
subject <- IRanges(c(2, 2, 10), c(2, 3, 12))
## Either the query or the subject of findOverlaps() can be preprocessed:
ppsubject <- NCList(subject)
hits1 <- findOverlaps(query, ppsubject)
hits1
ppquery <- NCList(query)
hits2 <- findOverlaps(ppquery, subject)
hits2
## Note that 'hits1' and 'hits2' contain the same hits but not in the
## same order.
stopifnot(identical(sort(hits1), sort(hits2)))