VTK  9.3.1
vtkVolumeShaderComposer.h
Go to the documentation of this file.
1// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
2// SPDX-License-Identifier: BSD-3-Clause
3
4#ifndef vtkVolumeShaderComposer_h
5#define vtkVolumeShaderComposer_h
6#include <vtkCamera.h>
10#include <vtkRenderer.h>
11#include <vtkUniformGrid.h>
12#include <vtkVolume.h>
14#include <vtkVolumeMapper.h>
15#include <vtkVolumeProperty.h>
16#include <vtkVolumeTexture.h>
17
18#include <map>
19#include <sstream>
20#include <string>
21
22namespace
23{
24inline bool HasGradientOpacity(vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap& inputs)
25{
26 for (auto& item : inputs)
27 {
28 vtkVolumeProperty* volProp = item.second.Volume->GetProperty();
29 const bool gradOp = (volProp->HasGradientOpacity() || volProp->HasLabelGradientOpacity()) &&
30 !volProp->GetDisableGradientOpacity();
31 if (gradOp)
32 return true;
33 }
34 return false;
35}
36
37inline bool HasLighting(vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap& inputs)
38{
39 for (auto& item : inputs)
40 {
41 vtkVolumeProperty* volProp = item.second.Volume->GetProperty();
42 const bool lighting = volProp->GetShade() == 1;
43 if (lighting)
44 return true;
45 }
46 return false;
47}
48
49inline bool UseClippedVoxelIntensity(vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap& inputs)
50{
51 for (auto& item : inputs)
52 {
53 vtkVolumeProperty* volProp = item.second.Volume->GetProperty();
54 const bool useClippedVoxelIntensity = volProp->GetUseClippedVoxelIntensity() == 1;
55 if (useClippedVoxelIntensity)
56 {
57 return true;
58 }
59 }
60 return false;
61}
62
63inline std::string ArrayBaseName(const std::string& arrayName)
64{
65 return arrayName.substr(0, arrayName.length() - 3);
66}
67}
68
69// NOTE:
70// In this code, we referred to various spaces described below:
71// Object space: Raw coordinates in space defined by volume matrix
72// Dataset space: Raw coordinates
73// Eye space: Coordinates in eye space (as referred in computer graphics)
74
75namespace vtkvolume
76{
77VTK_ABI_NAMESPACE_BEGIN
78//--------------------------------------------------------------------------
80 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol))
81{
82 return std::string(
83 " //Transform vertex (data coordinates) to clip coordinates\n"
84 " // p_clip = T_ProjViewModel * T_dataToWorld * p_data\n"
85 " vec4 pos = in_projectionMatrix * in_modelViewMatrix * in_volumeMatrix[0] *\n"
86 " vec4(in_vertexPos.xyz, 1.0);\n"
87 " gl_Position = pos;\n");
88}
89
90//--------------------------------------------------------------------------
91inline std::string ComputeTextureCoordinates(
92 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol))
93{
94 return std::string(
95 " // Transform vertex (data coordinates) to texture coordinates.\n"
96 " // p_texture = T_dataToTex * p_data\n"
97 " vec3 uvx = sign(in_cellSpacing[0]) * (in_inverseTextureDatasetMatrix[0] *\n"
98 " vec4(in_vertexPos, 1.0)).xyz;\n"
99 "\n"
100 " // For point dataset, we offset the texture coordinate\n"
101 " // to account for OpenGL treating voxel at the center of the cell.\n"
102 " // Transform cell tex-coordinates to point tex-coordinates (cellToPoint\n"
103 " // is an identity matrix in the case of cell data).\n"
104 " ip_textureCoords = (in_cellToPoint[0] * vec4(uvx, 1.0)).xyz;\n"
105 " ip_inverseTextureDataAdjusted = in_cellToPoint[0] * in_inverseTextureDatasetMatrix[0];\n");
106}
107
108//--------------------------------------------------------------------------
109inline std::string BaseDeclarationVertex(vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* mapper,
110 vtkVolume* vtkNotUsed(vol), bool multipleInputs)
111{
112 auto gpuMapper = vtkGPUVolumeRayCastMapper::SafeDownCast(mapper);
113 const int numInputs = gpuMapper->GetInputCount();
114
115 std::ostringstream ss;
116 ss << "uniform vec3 in_cellSpacing[" << numInputs
117 << "];\n"
118 "uniform mat4 in_modelViewMatrix;\n"
119 "uniform mat4 in_projectionMatrix;\n";
120
121 const int numTransf = multipleInputs ? numInputs + 1 : 1;
122 ss << "uniform mat4 in_volumeMatrix[" << numTransf
123 << "];\n"
124 "uniform mat4 in_inverseTextureDatasetMatrix["
125 << numTransf
126 << "];\n"
127 "uniform mat4 in_cellToPoint["
128 << numTransf
129 << "];\n"
130 "\n"
131 "//This variable could be 'invariant varying' but it is declared\n"
132 "//as 'varying' to avoid compiler compatibility issues.\n"
133 "out mat4 ip_inverseTextureDataAdjusted;\n";
134
135 return ss.str();
136}
137
138//--------------------------------------------------------------------------
139inline std::string BaseDeclarationFragment(vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* mapper,
140 vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap& inputs, int totalNumberOfLights,
141 int numberPositionalLights, bool defaultLighting, int noOfComponents, int independentComponents)
142{
143 const int numInputs = static_cast<int>(inputs.size());
144
145 std::ostringstream toShaderStr;
146 toShaderStr << "uniform sampler3D in_volume[" << numInputs << "];\n";
147
148 toShaderStr << "uniform vec4 in_volume_scale[" << numInputs
149 << "];\n"
150 "uniform vec4 in_volume_bias["
151 << numInputs << "];\n";
152
154 {
155 toShaderStr << "uniform sampler1D in_coordTexs;\n";
156 toShaderStr << "uniform vec3 in_coordTexSizes;\n";
157 toShaderStr << "uniform vec3 in_coordsScale;\n";
158 toShaderStr << "uniform vec3 in_coordsBias;\n";
159 }
160
161 if (mapper->GetInput()->GetPointGhostArray() || mapper->GetInput()->GetCellGhostArray())
162 {
163 toShaderStr << "uniform sampler3D in_blanking;\n";
164 }
165
166 toShaderStr << "uniform int in_noOfComponents;\n"
167 "\n"
168 "uniform sampler2D in_depthSampler;\n";
169
171 if (glMapper->GetUseJittering())
172 {
173 toShaderStr << "uniform sampler2D in_noiseSampler;\n";
174 }
175
176 // For multiple inputs (numInputs > 1), an additional transformation is
177 // needed for the bounding-box.
178 const int numTransf = (numInputs > 1) ? numInputs + 1 : 1;
179 toShaderStr << "uniform mat4 in_volumeMatrix[" << numTransf
180 << "];\n"
181 "uniform mat4 in_inverseVolumeMatrix["
182 << numTransf
183 << "];\n"
184 "uniform mat4 in_textureDatasetMatrix["
185 << numTransf
186 << "];\n"
187 "uniform mat4 in_inverseTextureDatasetMatrix["
188 << numTransf
189 << "];\n"
190 "uniform mat4 in_textureToEye["
191 << numTransf
192 << "];\n"
193 "uniform vec3 in_texMin["
194 << numTransf
195 << "];\n"
196 "uniform vec3 in_texMax["
197 << numTransf
198 << "];\n"
199 "// Eye position in dataset space\n"
200 "uniform vec3 in_eyePosObjs["
201 << numTransf
202 << "];\n"
203 "uniform mat4 in_cellToPoint["
204 << numTransf << "];\n";
205
206 toShaderStr << "// view and model matrices\n"
207 "uniform mat4 in_projectionMatrix;\n"
208 "uniform mat4 in_inverseProjectionMatrix;\n"
209 "uniform mat4 in_modelViewMatrix;\n"
210 "uniform mat4 in_inverseModelViewMatrix;\n"
211 "in mat4 ip_inverseTextureDataAdjusted;\n"
212 "\n"
213 "// Ray step size\n"
214 "uniform vec3 in_cellStep["
215 << numInputs << "];\n";
216
217 if (glMapper->GetVolumetricScatteringBlending() > 0.0)
218 {
219
220 toShaderStr << "mat4 g_eyeToTexture = in_inverseTextureDatasetMatrix[0] *"
221 " in_inverseVolumeMatrix[0] * in_inverseModelViewMatrix;\n";
222 }
223
224 if (inputs[0].Volume->GetProperty() && inputs[0].Volume->GetProperty()->GetShade() &&
225 !defaultLighting && totalNumberOfLights > 0)
226 {
227 toShaderStr << "mat4 g_texToView = in_modelViewMatrix * in_volumeMatrix[0] *"
228 "in_textureDatasetMatrix[0];\n";
229 }
230
231 toShaderStr << "uniform vec2 in_scalarsRange[" << numInputs * 4
232 << "];\n"
233 "uniform vec3 in_cellSpacing["
234 << numInputs
235 << "];\n"
236 "\n"
237 "// Sample distance\n"
238 "uniform float in_sampleDistance;\n"
239 "\n"
240 "// Scales\n"
241 "uniform vec2 in_windowLowerLeftCorner;\n"
242 "uniform vec2 in_inverseOriginalWindowSize;\n"
243 "uniform vec2 in_inverseWindowSize;\n"
244 "uniform vec3 in_textureExtentsMax;\n"
245 "uniform vec3 in_textureExtentsMin;\n"
246 "\n"
247 "// Material and lighting\n"
248 "uniform vec3 in_diffuse[4];\n"
249 "uniform vec3 in_ambient[4];\n"
250 "uniform vec3 in_specular[4];\n"
251 "uniform float in_shininess[4];\n"
252 "\n"
253 "// Others\n"
254 "vec3 g_rayJitter = vec3(0.0);\n"
255 "\n"
256 "uniform vec2 in_averageIPRange;\n";
257
258 const bool hasGradientOpacity = HasGradientOpacity(inputs);
259 if (totalNumberOfLights > 0 || hasGradientOpacity)
260 {
261 toShaderStr << "uniform bool in_twoSidedLighting;\n";
262 }
263
264 if (glMapper->GetVolumetricScatteringBlending() > 0.0)
265 {
266 toShaderStr << R"***(
267uniform float in_giReach;
268uniform float in_anisotropy;
269uniform float in_volumetricScatteringBlending;
270
271)***";
272 }
273
274 if (totalNumberOfLights > 0)
275 {
276 std::string totalLights = std::to_string(totalNumberOfLights);
277 std::string positionalLights = std::to_string(numberPositionalLights);
278
279 if (!defaultLighting)
280 {
281 toShaderStr << "#define TOTAL_NUMBER_LIGHTS " << totalLights
282 << "\n"
283 "#define NUMBER_POS_LIGHTS "
284 << positionalLights
285 << "\n"
286 "vec4 g_fragWorldPos;\n"
287 "uniform vec3 in_lightAmbientColor[TOTAL_NUMBER_LIGHTS];\n"
288 "uniform vec3 in_lightDiffuseColor[TOTAL_NUMBER_LIGHTS];\n"
289 "uniform vec3 in_lightSpecularColor[TOTAL_NUMBER_LIGHTS];\n"
290 "uniform vec3 in_lightDirection[TOTAL_NUMBER_LIGHTS];\n";
291 if (numberPositionalLights > 0)
292 {
293 toShaderStr << "uniform vec3 in_lightPosition[NUMBER_POS_LIGHTS];\n"
294 "uniform vec3 in_lightAttenuation[NUMBER_POS_LIGHTS];\n"
295 "uniform float in_lightConeAngle[NUMBER_POS_LIGHTS];\n"
296 "uniform float in_lightExponent[NUMBER_POS_LIGHTS];\n";
297 }
298
299 if (glMapper->GetVolumetricScatteringBlending() > 0.0)
300 {
301 toShaderStr << "vec3 g_lightDirectionTex[TOTAL_NUMBER_LIGHTS];\n";
302
303 if (numberPositionalLights > 0)
304 {
305 toShaderStr << "vec3 g_lightPositionTex[NUMBER_POS_LIGHTS];\n";
306 }
307 }
308 }
309 else
310 {
311 toShaderStr << "uniform vec3 in_lightAmbientColor[1];\n"
312 "uniform vec3 in_lightDiffuseColor[1];\n"
313 "uniform vec3 in_lightSpecularColor[1];\n"
314 "vec4 g_lightPosObj["
315 << numInputs
316 << "];\n"
317 "vec3 g_ldir["
318 << numInputs
319 << "];\n"
320 "vec3 g_vdir["
321 << numInputs
322 << "];\n"
323 "vec3 g_h["
324 << numInputs << "];\n";
325 }
326 }
327
328 if (noOfComponents > 1 && independentComponents)
329 {
330 toShaderStr << "uniform vec4 in_componentWeight;\n";
331 }
332
334 glMapper->GetUseDepthPass())
335 {
336 toShaderStr << "uniform sampler2D in_depthPassSampler;\n";
337 }
338
340 {
341 toShaderStr << "#if NUMBER_OF_CONTOURS\n"
342 "uniform float in_isosurfacesValues[NUMBER_OF_CONTOURS];\n"
343 "\n"
344 "int findIsoSurfaceIndex(float scalar, float array[NUMBER_OF_CONTOURS+2])\n"
345 "{\n"
346 " int index = NUMBER_OF_CONTOURS >> 1;\n"
347 " while (scalar > array[index]) ++index;\n"
348 " while (scalar < array[index]) --index;\n"
349 " return index;\n"
350 "}\n"
351 "#endif\n";
352 }
353 else if (glMapper->GetBlendMode() == vtkVolumeMapper::SLICE_BLEND)
354 {
355 vtkVolume* vol = inputs.begin()->second.Volume;
356 vtkImplicitFunction* func = vol->GetProperty()->GetSliceFunction();
357
358 if (func && func->IsA("vtkPlane"))
359 {
360 toShaderStr
361 << "uniform vec3 in_slicePlaneOrigin;\n"
362 "uniform vec3 in_slicePlaneNormal;\n"
363 "vec3 g_intersection;\n"
364 "\n"
365 "float intersectRayPlane(vec3 rayOrigin, vec3 rayDir)\n"
366 "{\n"
367 " vec4 planeNormal = in_inverseVolumeMatrix[0] * vec4(in_slicePlaneNormal, 0.0);\n"
368 " float denom = dot(planeNormal.xyz, rayDir);\n"
369 " if (abs(denom) > 1e-6)\n"
370 " {\n"
371 " vec4 planeOrigin = in_inverseVolumeMatrix[0] * vec4(in_slicePlaneOrigin, 1.0);\n"
372 " return dot(planeOrigin.xyz - rayOrigin, planeNormal.xyz) / denom;\n"
373 " }\n"
374 " return -1.0;\n"
375 "}\n";
376 }
377 }
379 return toShaderStr.str();
380}
381
382//--------------------------------------------------------------------------
383inline std::string BaseInit(vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* mapper,
384 vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap& inputs, bool defaultLighting)
385{
387 vtkVolume* vol = inputs.begin()->second.Volume;
388 const int numInputs = static_cast<int>(inputs.size());
389
390 std::ostringstream shaderStr;
393 {
394 shaderStr << "\
395 \n //\
396 \n vec2 fragTexCoord2 = (gl_FragCoord.xy - in_windowLowerLeftCorner) *\
397 \n in_inverseWindowSize;\
398 \n vec4 depthValue = texture2D(in_depthPassSampler, fragTexCoord2);\
399 \n vec4 rayOrigin = WindowToNDC(gl_FragCoord.x, gl_FragCoord.y, depthValue.x);\
400 \n\
401 \n // From normalized device coordinates to eye coordinates.\
402 \n // in_projectionMatrix is inversed because of way VT\
403 \n // From eye coordinates to texture coordinates\
404 \n rayOrigin = in_inverseTextureDatasetMatrix[0] *\
405 \n in_inverseVolumeMatrix[0] *\
406 \n in_inverseModelViewMatrix *\
407 \n in_inverseProjectionMatrix *\
408 \n rayOrigin;\
409 \n rayOrigin /= rayOrigin.w;\
410 \n g_rayOrigin = rayOrigin.xyz;";
411 }
412 else
413 {
414 shaderStr << "\
415 \n // Get the 3D texture coordinates for lookup into the in_volume dataset\
416 \n g_rayOrigin = ip_textureCoords.xyz;";
417 }
418
419 shaderStr << "\n\
420 \n // Getting the ray marching direction (in dataset space)\
421 \n vec3 rayDir = computeRayDirection();\
422 \n\
423 \n // 2D Texture fragment coordinates [0,1] from fragment coordinates.\
424 \n // The frame buffer texture has the size of the plain buffer but \
425 \n // we use a fraction of it. The texture coordinate is less than 1 if\
426 \n // the reduction factor is less than 1.\
427 \n // Device coordinates are between -1 and 1. We need texture\
428 \n // coordinates between 0 and 1. The in_depthSampler\
429 \n // buffer has the original size buffer.\
430 \n vec2 fragTexCoord = (gl_FragCoord.xy - in_windowLowerLeftCorner) *\
431 \n in_inverseWindowSize;\
432 \n\
433 \n // Multiply the raymarching direction with the step size to get the\
434 \n // sub-step size we need to take at each raymarching step\
435 \n g_dirStep = (ip_inverseTextureDataAdjusted *\
436 \n vec4(rayDir, 0.0)).xyz * in_sampleDistance;\
437 \n g_lengthStep = length(g_dirStep);\
438 \n";
439
440 shaderStr << "\
441 \n float jitterValue = 0.0;\
442 \n";
443
445 {
446 // Intersection is computed with g_rayOrigin, so we should not modify it with Slice mode
447 if (glMapper->GetUseJittering())
448 {
449 shaderStr << "\
450 \n jitterValue = texture2D(in_noiseSampler, gl_FragCoord.xy /\
451 vec2(textureSize(in_noiseSampler, 0))).x;\
452 \n g_rayJitter = g_dirStep * jitterValue;\
453 \n";
454 }
455 else
456 {
457 shaderStr << "\
458 \n g_rayJitter = g_dirStep;\
459 \n";
460 }
461 shaderStr << "\
462 \n g_rayOrigin += g_rayJitter;\
463 \n";
464 }
465
466 shaderStr << "\
467 \n // Flag to determine if voxel should be considered for the rendering\
468 \n g_skip = false;";
469
470 if (vol->GetProperty()->GetShade() && defaultLighting)
471 {
472 shaderStr << "\
473 \n // Light position in dataset space";
474 for (int i = 0; i < numInputs; ++i)
475 {
476 // In multi-volume case the first volume matrix is of the bounding box
477 shaderStr << "\
478 \n g_lightPosObj["
479 << i << "] = vec4(in_eyePosObjs[" << (numInputs > 1 ? i + 1 : i) << "], 1.0);\
480 \n g_ldir["
481 << i << "] = normalize(g_lightPosObj[" << i << "].xyz - ip_vertexPos);\
482 \n g_vdir["
483 << i << "] = normalize(in_eyePosObjs[" << i << "].xyz - ip_vertexPos);\
484 \n g_h["
485 << i << "] = normalize(g_ldir[" << i << "] + g_vdir[" << i << "]);";
486 }
487 }
489 return shaderStr.str();
490}
491
492//--------------------------------------------------------------------------
493inline std::string BaseImplementation(
494 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* mapper, vtkVolume* vtkNotUsed(vol))
495{
497
498 std::string str("\
499 \n g_skip = false;");
500
501 // Blanking support
503 bool blankCells = (dataSet->GetCellGhostArray() != nullptr);
504 bool blankPoints = (dataSet->GetPointGhostArray() != nullptr);
505 if (blankPoints || blankCells)
506 {
507 str += std::string("\
508 \n // Check whether the neighboring points/cells are blank.\
509 \n // Note the half cellStep because texels are point centered.\
510 \n vec3 xvec = vec3(in_cellStep[0].x/2.0, 0.0, 0.0);\
511 \n vec3 yvec = vec3(0.0, in_cellStep[0].y/2.0, 0.0);\
512 \n vec3 zvec = vec3(0.0, 0.0, in_cellStep[0].z/2.0);\
513 \n vec3 texPosPVec[3];\
514 \n texPosPVec[0] = g_dataPos + xvec;\
515 \n texPosPVec[1] = g_dataPos + yvec;\
516 \n texPosPVec[2] = g_dataPos + zvec;\
517 \n vec3 texPosNVec[3];\
518 \n texPosNVec[0] = g_dataPos - xvec;\
519 \n texPosNVec[1] = g_dataPos - yvec;\
520 \n texPosNVec[2] = g_dataPos - zvec;\
521 \n vec4 blankValue = texture3D(in_blanking, g_dataPos);\
522 \n vec4 blankValueXP = texture3D(in_blanking, texPosPVec[0]);\
523 \n vec4 blankValueYP = texture3D(in_blanking, texPosPVec[1]);\
524 \n vec4 blankValueZP = texture3D(in_blanking, texPosPVec[2]);\
525 \n vec4 blankValueXN = texture3D(in_blanking, texPosNVec[0]);\
526 \n vec4 blankValueYN = texture3D(in_blanking, texPosNVec[1]);\
527 \n vec4 blankValueZN = texture3D(in_blanking, texPosNVec[2]);\
528 \n vec3 blankValuePx;\
529 \n blankValuePx[0] = blankValueXP.x;\
530 \n blankValuePx[1] = blankValueYP.x;\
531 \n blankValuePx[2] = blankValueZP.x;\
532 \n vec3 blankValuePy;\
533 \n blankValuePy[0] = blankValueXP.y;\
534 \n blankValuePy[1] = blankValueYP.y;\
535 \n blankValuePy[2] = blankValueZP.y;\
536 \n vec3 blankValueNx;\
537 \n blankValueNx[0] = blankValueXN.x;\
538 \n blankValueNx[1] = blankValueYN.x;\
539 \n blankValueNx[2] = blankValueZN.x;\
540 \n vec3 blankValueNy;\
541 \n blankValueNy[0] = blankValueXN.y;\
542 \n blankValueNy[1] = blankValueYN.y;\
543 \n blankValueNy[2] = blankValueZN.y;\
544 \n");
545 if (blankPoints)
546 {
547 str += std::string("\
548 \n // If the current or neighboring points\
549 \n // (that belong to cells that share this texel) are blanked,\
550 \n // skip the texel. In other words, if point 1 were blank,\
551 \n // texels 0, 1 and 2 would have to be skipped.\
552 \n if (blankValue.x > 0.0 ||\
553 \n any(greaterThan(blankValueNx, vec3(0.0))) ||\
554 \n any(greaterThan(blankValuePx, vec3(0.0))))\
555 \n {\
556 \n // skip this texel\
557 \n g_skip = true;\
558 \n }\
559 \n");
560 if (blankCells)
561 {
562 str += std::string("\
563 \n // If the current or previous cells (that share this texel)\
564 \n // are blanked, skip the texel. In other words, if cell 1\
565 \n // is blanked, texels 1 and 2 would have to be skipped.\
566 \n else if (blankValue.y > 0.0 ||\
567 \n any(greaterThan(blankValuePy, vec3(0.0))) ||\
568 \n any(greaterThan(blankValueNy, vec3(0.0))))\
569 \n {\
570 \n // skip this texel\
571 \n g_skip = true;\
572 \n }\
573 \n");
574 }
575 }
576 else if (blankCells)
577 {
578 str += std::string("\
579 \n // If the current or previous cells (that share this texel)\
580 \n // are blanked, skip the texel. In other words, if cell 1\
581 \n // is blanked, texels 1 and 2 would have to be skipped.\
582 \n if (blankValue.x > 0.0 ||\
583 \n any(greaterThan(blankValueNx, vec3(0.0))) ||\
584 \n any(greaterThan(blankValuePx, vec3(0.0))))\
585 \n {\
586 \n // skip this texel\
587 \n g_skip = true;\
588 \n }\
589 \n");
590 }
591 }
592
594 {
595 str += std::string("\
596 \n g_dataPos = g_intersection;\
597 \n");
598 }
600 return str;
601}
602
603//--------------------------------------------------------------------------
604inline std::string BaseExit(
605 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol))
607 return std::string();
608}
609
610//--------------------------------------------------------------------------
611inline std::string ComputeGradientOpacity1DDecl(vtkVolume* vol, int noOfComponents,
612 int independentComponents, std::map<int, std::string> gradientTableMap)
613{
614 auto volProperty = vol->GetProperty();
615 std::ostringstream ss;
616 if (volProperty->HasGradientOpacity())
617 {
618 ss << "uniform sampler2D " << ArrayBaseName(gradientTableMap[0]) << "[" << noOfComponents
619 << "];\n";
620 }
621 bool useLabelGradientOpacity =
622 (volProperty->HasLabelGradientOpacity() && (noOfComponents == 1 || !independentComponents));
623 if (useLabelGradientOpacity)
624 {
625 ss << "uniform sampler2D in_labelMapGradientOpacity;\n";
626 }
627
628 std::string shaderStr = ss.str();
629
630 if (volProperty->HasGradientOpacity() && noOfComponents > 0)
631 {
632 if (noOfComponents == 1 || !independentComponents)
633 {
634 shaderStr += std::string("\
635 \nfloat computeGradientOpacity(vec4 grad)\
636 \n {\
637 \n return texture2D(" +
638 gradientTableMap[0] + ", vec2(grad.w, 0.0)).r;\
639 \n }");
640 }
641 else
642 {
643 shaderStr += std::string("\
644 \nfloat computeGradientOpacity(vec4 grad, int component)\
645 \n {");
646
647 for (int i = 0; i < noOfComponents; ++i)
648 {
649 std::ostringstream toString;
650 toString << i;
651 shaderStr += std::string("\
652 \n if (component == " +
653 toString.str() + ")");
654
655 shaderStr += std::string("\
656 \n {\
657 \n return texture2D(" +
658 gradientTableMap[i] + ", vec2(grad.w, 0.0)).r;\
659 \n }");
660 }
661
662 shaderStr += std::string("\
663 \n }");
664 }
665 }
666
667 if (useLabelGradientOpacity)
668 {
669 shaderStr += std::string("\
670 \nfloat computeGradientOpacityForLabel(vec4 grad, float label)\
671 \n {\
672 \n return texture2D(in_labelMapGradientOpacity, vec2(grad.w, label)).r;\
673 \n }");
674 }
676 return shaderStr;
677}
678
679//--------------------------------------------------------------------------
680inline std::string ComputeGradientDeclaration(
682{
683 const bool hasLighting = HasLighting(inputs);
684 const bool hasGradientOp = HasGradientOpacity(inputs);
685
686 std::string shaderStr;
687 if (hasLighting || hasGradientOp)
688 {
689 shaderStr += std::string(
690 "// c is short for component\n"
691 "vec4 computeGradient(in vec3 texPos, in int c, in sampler3D volume,in int index)\n"
692 "{\n"
693 " // Approximate Nabla(F) derivatives with central differences.\n"
694 " vec3 g1; // F_front\n"
695 " vec3 g2; // F_back\n"
696 " vec3 xvec = vec3(in_cellStep[index].x, 0.0, 0.0);\n"
697 " vec3 yvec = vec3(0.0, in_cellStep[index].y, 0.0);\n"
698 " vec3 zvec = vec3(0.0, 0.0, in_cellStep[index].z);\n"
699 " vec3 texPosPvec[3];\n"
700 " texPosPvec[0] = texPos + xvec;\n"
701 " texPosPvec[1] = texPos + yvec;\n"
702 " texPosPvec[2] = texPos + zvec;\n"
703 " vec3 texPosNvec[3];\n"
704 " texPosNvec[0] = texPos - xvec;\n"
705 " texPosNvec[1] = texPos - yvec;\n"
706 " texPosNvec[2] = texPos - zvec;\n"
707 " g1.x = texture3D(volume, vec3(texPosPvec[0]))[c];\n"
708 " g1.y = texture3D(volume, vec3(texPosPvec[1]))[c];\n"
709 " g1.z = texture3D(volume, vec3(texPosPvec[2]))[c];\n"
710 " g2.x = texture3D(volume, vec3(texPosNvec[0]))[c];\n"
711 " g2.y = texture3D(volume, vec3(texPosNvec[1]))[c];\n"
712 " g2.z = texture3D(volume, vec3(texPosNvec[2]))[c];\n"
713 "\n");
714 if (UseClippedVoxelIntensity(inputs) && mapper->GetClippingPlanes())
715 {
716 shaderStr +=
717 std::string(" vec4 g1ObjDataPos[3], g2ObjDataPos[3];\n"
718 " for (int i = 0; i < 3; ++i)\n"
719 " {\n"
720 " g1ObjDataPos[i] = clip_texToObjMat * vec4(texPosPvec[i], 1.0);\n"
721 " if (g1ObjDataPos[i].w != 0.0)\n"
722 " {\n"
723 " g1ObjDataPos[i] /= g1ObjDataPos[i].w;\n"
724 " }\n"
725 " g2ObjDataPos[i] = clip_texToObjMat * vec4(texPosNvec[i], 1.0);\n"
726 " if (g2ObjDataPos[i].w != 0.0)\n"
727 " {\n"
728 " g2ObjDataPos[i] /= g2ObjDataPos[i].w;\n"
729 " }\n"
730 " }\n"
731 "\n"
732 " for (int i = 0; i < clip_numPlanes && !g_skip; i = i + 6)\n"
733 " {\n"
734 " vec3 planeOrigin = vec3(in_clippingPlanes[i + 1],\n"
735 " in_clippingPlanes[i + 2],\n"
736 " in_clippingPlanes[i + 3]);\n"
737 " vec3 planeNormal = normalize(vec3(in_clippingPlanes[i + 4],\n"
738 " in_clippingPlanes[i + 5],\n"
739 " in_clippingPlanes[i + 6]));\n"
740 " for (int j = 0; j < 3; ++j)\n"
741 " {\n"
742 " if (dot(vec3(planeOrigin - g1ObjDataPos[j].xyz), planeNormal) > 0)\n"
743 " {\n"
744 " g1[j] = in_clippedVoxelIntensity;\n"
745 " }\n"
746 " if (dot(vec3(planeOrigin - g2ObjDataPos[j].xyz), planeNormal) > 0)\n"
747 " {\n"
748 " g2[j] = in_clippedVoxelIntensity;\n"
749 " }\n"
750 " }\n"
751 " }\n"
752 "\n");
753 }
754 shaderStr += std::string(" // Apply scale and bias to the fetched values.\n"
755 " g1 = g1 * in_volume_scale[index][c] + in_volume_bias[index][c];\n"
756 " g2 = g2 * in_volume_scale[index][c] + in_volume_bias[index][c];\n"
757 "\n");
758 if (!hasGradientOp)
759 {
760 shaderStr +=
761 std::string(" // Central differences: (F_front - F_back) / 2h\n"
762 " // This version of computeGradient() is only used for lighting\n"
763 " // calculations (only direction matters), hence the difference is\n"
764 " // not scaled by 2h and a dummy gradient mag is returned (-1.).\n"
765 " return vec4((g1 - g2) / in_cellSpacing[index], -1.0);\n"
766 "}\n");
767 }
768 else
769 {
770 shaderStr += std::string(
771 " // Scale values the actual scalar range.\n"
772 " float range = in_scalarsRange[4*index+c][1] - in_scalarsRange[4*index+c][0];\n"
773 " g1 = in_scalarsRange[4*index+c][0] + range * g1;\n"
774 " g2 = in_scalarsRange[4*index+c][0] + range * g2;\n"
775 "\n"
776 " // Central differences: (F_front - F_back) / 2h\n"
777 " g2 = g1 - g2;\n"
778 "\n"
779 " float avgSpacing = (in_cellSpacing[index].x +\n"
780 " in_cellSpacing[index].y + in_cellSpacing[index].z) / 3.0;\n"
781 " vec3 aspect = in_cellSpacing[index] * 2.0 / avgSpacing;\n"
782 " g2 /= aspect;\n"
783 " float grad_mag = length(g2);\n"
784 "\n"
785 " // Handle normalizing with grad_mag == 0.0\n"
786 " g2 = grad_mag > 0.0 ? normalize(g2) : vec3(0.0);\n"
787 "\n"
788 " // Since the actual range of the gradient magnitude is unknown,\n"
789 " // assume it is in the range [0, 0.25 * dataRange].\n"
790 " range = range != 0 ? range : 1.0;\n"
791 " grad_mag = grad_mag / (0.25 * range);\n"
792 " grad_mag = clamp(grad_mag, 0.0, 1.0);\n"
793 "\n"
794 " return vec4(g2.xyz, grad_mag);\n"
795 "}\n");
796 }
797 }
798 else
799 {
800 shaderStr += std::string(
801 "vec4 computeGradient(in vec3 texPos, in int c, in sampler3D volume, in int index)\n"
802 "{\n"
803 " return vec4(0.0);\n"
804 "}\n");
805 }
807 return shaderStr;
808}
809
810//---------------------------------------------------------------------------
811inline std::string ComputeMatricesInit(
812 vtkOpenGLGPUVolumeRayCastMapper* vtkNotUsed(mapper), int numberPositionalLights)
813{
814 std::string resStr;
815 resStr += R"***(
816 for(int i=0; i<TOTAL_NUMBER_LIGHTS; i++)
817 {
818 g_lightDirectionTex[i] = (g_eyeToTexture * vec4(-in_lightDirection[i], 0.0)).xyz;
819 }
820 )***";
821
822 if (numberPositionalLights > 0)
823 {
824 resStr += R"***(
825 for(int i=0; i<NUMBER_POS_LIGHTS; i++)
826 {
827 g_lightPositionTex[i] = (g_eyeToTexture * vec4(in_lightPosition[i], 1.0)).xyz;
828 }
829 )***";
831 return resStr;
832}
833
834//--------------------------------------------------------------------------
835inline std::string ComputeRGBA2DWithGradientDeclaration(vtkRenderer* vtkNotUsed(ren),
836 vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol), int noOfComponents,
837 int independentComponents, std::map<int, std::string> opacityTableMap, int useGradient)
838{
839 std::string resStr;
840 std::string functionBody;
841 bool severalIndpt = noOfComponents > 1 && independentComponents;
842 std::string functionSignature = severalIndpt
843 ? "vec4 computeRGBAWithGrad(vec4 scalar, vec4 grad, int component)\n"
844 : "vec4 computeRGBAWithGrad(vec4 scalar, vec4 grad)\n";
845
846 if (severalIndpt)
847 {
848 // Multiple independent components
849
850 if (!useGradient)
851 {
852 functionBody +=
853 "vec4 yscalar = texture3D(in_transfer2DYAxis, g_dataPos);\n"
854 "for (int i = 0; i < 4; ++i)\n"
855 "{\n"
856 " yscalar[i] = yscalar[i] * in_transfer2DYAxis_scale[i] + in_transfer2DYAxis_bias[i];\n"
857 "}\n";
858 }
859
860 for (int i = 0; i < noOfComponents; ++i)
861 {
862 std::string secondAxis(useGradient
863 // we take the same grad for all components so we have to be sure that
864 // the one given as a parameter is computed wrt the right component
865 ? "grad.w"
866 : std::string("yscalar[") + std::to_string(i) + "]");
867
868 functionBody += " if(component == " + std::to_string(i) +
869 ")\n"
870 " {\n"
871 " return texture2D(" +
872 opacityTableMap[i] + ",\n" + " vec2(scalar[" + std::to_string(i) + "], " + secondAxis +
873 "))\n" + " }\n";
874 }
875 }
876
877 else if (noOfComponents == 2 && !independentComponents)
878 {
879 std::string secondAxis(useGradient ? "grad.w" : "yscalar.y");
880
881 functionBody += " return texture2D(" + opacityTableMap[0] +
882 ",\n"
883 " vec2(scalar.y, " +
884 secondAxis + "));\n";
885 }
886
887 else
888 {
889 if (useGradient)
890 {
891 // Dependent components (RGBA) || Single component
892 functionBody += " return texture2D(" + opacityTableMap[0] +
893 ",\n"
894 " vec2(scalar.a, grad.w));\n";
895 }
896 else
897 {
898 // Dependent compoennts (RGBA) || Single component
899 functionBody +=
900 " vec4 yscalar = texture3D(in_transfer2DYAxis, g_dataPos);\n"
901 " yscalar.r = yscalar.r * in_transfer2DYAxis_scale.r + in_transfer2DYAxis_bias.r;\n"
902 " yscalar = vec4(yscalar.r);\n"
903 " return texture2D(" +
904 opacityTableMap[0] +
905 ",\n"
906 " vec2(scalar.a, yscalar.w));\n";
907 }
908 }
909
910 resStr = functionSignature + "{\n" + functionBody + "}\n";
912 return resStr;
913}
914
915//-----------------------------------------------------------------------
916inline std::string ComputeOpacityEvaluationCall(vtkOpenGLGPUVolumeRayCastMapper* vtkNotUsed(mapper),
917 vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap& inputs, int noOfComponents,
918 int independentComponents, int useGradYAxis, std::string position, bool requestColor = false)
919{
920 // relies on the declaration of variables opacity, gradient, c, volume, index, scalar, gradTF,
921 // opacityTF, label in the scope
922 std::string resStr;
923
924 if (inputs.size() > 1)
925 {
926 // Multi Volume
927 const bool hasGradOp = ::HasGradientOpacity(inputs);
928 resStr += " opacity = computeOpacity(vec4(scalar), opacityTF);\n";
929 // either all volumes have a TF either none have one, so we can have
930 // the same opacity call for all volumes
931 if (hasGradOp)
932 {
933 resStr += std::string(" gradient = computeGradient(") + position + ", c, volume, index);\n";
934 resStr += " opacity *= computeGradientOpacity(gradient, gradTF);\n";
935 }
936 // ignore request color for now, but given the actual architecture, it should be a
937 // succession of 'if' comparing the volume idx
938 if (requestColor)
939 {
940 vtkGenericWarningMacro(<< "ComputeOpacityEvaluationCall was called with requestColor, but "
941 "MultiVolume does not support this option yet.");
942 }
943 }
944 else
945 {
946 // Single Volume
947 vtkVolumeProperty* volProp = inputs[0].Volume->GetProperty();
948 const bool hasGradOp = volProp->HasGradientOpacity() && !volProp->GetDisableGradientOpacity();
949 const bool useLabelGradientOpacity = (volProp->HasLabelGradientOpacity() &&
950 (noOfComponents == 1 || !independentComponents) && !volProp->GetDisableGradientOpacity());
951
952 const int tfMode = volProp->GetTransferFunctionMode();
953
954 bool indpComps = (noOfComponents > 1 && independentComponents);
955 std::string compArgument = (indpComps) ? std::string(", c") : std::string();
956
957 const bool needGrad = (tfMode == vtkVolumeProperty::TF_2D && useGradYAxis); // to be sure
958
959 if (tfMode == vtkVolumeProperty::TF_1D)
960 {
961
962 std::string compWeights = indpComps ? std::string(" * in_componentWeight[c]") : std::string();
963
964 resStr += std::string(" opacity = computeOpacity(vec4(scalar)") + compArgument +
965 std::string(")") + compWeights + ";\n";
966
967 if (hasGradOp || useLabelGradientOpacity)
968 {
969 resStr += std::string(" gradient = computeGradient(") + position +
970 std::string(", c, volume, index);\n"
971 " if(gradient.w >= 0.0) {\n") +
972 (hasGradOp ? (std::string(" opacity *= computeGradientOpacity(gradient") +
973 compArgument + ")" + compWeights + ";\n")
974 : std::string())
975
976 + (useLabelGradientOpacity
977 ? (std::string(" opacity *= computeGradientOpacityForLabel(gradient, label);\n"))
978 : std::string())
979
980 + std::string(" }\n");
981 }
982
983 if (requestColor)
984 {
985 resStr +=
986 " color = texture2D(" + inputs[0].RGBTablesMap[0] + ", vec2(scalar, 0.0)).xyz;\n";
987 }
988 }
989 else
990 {
991 // 2D TF
992 if (needGrad)
993 {
994 resStr +=
995 std::string(" gradient = computeGradient(") + position + ", c, volume, index);\n";
996 }
997 resStr += std::string(" vec4 lutRes = computeRGBAWithGrad(vec4(scalar), gradient") +
998 compArgument + std::string(");\n");
999
1000 resStr += " opacity = lutRes.a;\n";
1001
1002 if (requestColor)
1003 {
1004 resStr += " color = lutRes.xyz;\n";
1005 }
1006 }
1007 }
1009 return resStr;
1010}
1011
1012//--------------------------------------------------------------------------
1014 vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap& inputs, int noOfComponents,
1015 int independentComponents, int useGradYAxis)
1016{
1017 const bool hasLighting = ::HasLighting(inputs);
1018 const bool hasGradientOp = ::HasGradientOpacity(inputs);
1019
1020 std::string functionSignature;
1021
1022 if (inputs.size() > 1)
1023 {
1024 if (hasGradientOp)
1025 {
1026 functionSignature = std::string(
1027 "vec4 computeDensityGradient(in vec3 texPos, in int c, in sampler3D volume, "
1028 "const in sampler2D opacityTF, const in sampler2D gradTF, in int index, float label)\n");
1029 }
1030 else
1031 {
1032 functionSignature =
1033 std::string("vec4 computeDensityGradient(in vec3 texPos, in int c, in sampler3D volume, "
1034 "const in sampler2D opacityTF, in int index, float label)\n");
1035 }
1036 }
1037 else
1038 {
1039 functionSignature = std::string("vec4 computeDensityGradient(in vec3 texPos, in int c, in "
1040 "sampler3D volume, in int index, float label)\n");
1041 }
1042
1043 std::string shaderStr;
1044 if (hasLighting || hasGradientOp)
1045 {
1046
1047 std::string opacityTFcall;
1048 std::string gradComput;
1049 // this table remembers the correspondence results <-> texture coordinates
1050 static const std::array<std::pair<const char*, const char*>, 6> results_texPos = { {
1051 { " g1.x", "texPosPvec[0]" },
1052 { " g1.y", "texPosPvec[1]" },
1053 { " g1.z", "texPosPvec[2]" },
1054 { " g2.x", "texPosNvec[0]" },
1055 { " g2.y", "texPosNvec[1]" },
1056 { " g2.z", "texPosNvec[2]" },
1057 } };
1058
1059 shaderStr += std::string("// c is short for component\n") + functionSignature +
1060 std::string("{\n"
1061 " // Approximate Nabla(F) derivatives with central differences.\n"
1062 " vec3 g1; // F_front\n"
1063 " vec3 g2; // F_back\n"
1064 " vec3 xvec = vec3(in_cellStep[index].x, 0.0, 0.0);\n"
1065 " vec3 yvec = vec3(0.0, in_cellStep[index].y, 0.0);\n"
1066 " vec3 zvec = vec3(0.0, 0.0, in_cellStep[index].z);\n"
1067 " vec3 texPosPvec[3];\n"
1068 " texPosPvec[0] = texPos + xvec;\n"
1069 " texPosPvec[1] = texPos + yvec;\n"
1070 " texPosPvec[2] = texPos + zvec;\n"
1071 " vec3 texPosNvec[3];\n"
1072 " texPosNvec[0] = texPos - xvec;\n"
1073 " texPosNvec[1] = texPos - yvec;\n"
1074 " texPosNvec[2] = texPos - zvec;\n"
1075 " float scalar;\n"
1076 " float opacity;\n"
1077 " vec4 gradient;\n"
1078 "\n");
1079
1080 for (auto& gradComp : results_texPos)
1081 {
1082 // opacityTFcall corresponds to code snippet used to compute the opacity
1083 opacityTFcall = ComputeOpacityEvaluationCall(
1084 mapper, inputs, noOfComponents, independentComponents, useGradYAxis, gradComp.second);
1085 shaderStr += std::string(" scalar = texture3D(volume,") + gradComp.second +
1086 std::string(")[c];\n"
1087 " scalar = scalar * in_volume_scale[index][c] + in_volume_bias[index][c];\n") +
1088 opacityTFcall + gradComp.first + " = opacity;\n";
1089 }
1090
1091 if (::UseClippedVoxelIntensity(inputs) && mapper->GetClippingPlanes())
1092 {
1093 shaderStr +=
1094 std::string(" vec4 g1ObjDataPos[3], g2ObjDataPos[3];\n"
1095 " for (int i = 0; i < 3; ++i)\n"
1096 " {\n"
1097 " g1ObjDataPos[i] = clip_texToObjMat * vec4(texPosPvec[i], 1.0);\n"
1098 " if (g1ObjDataPos[i].w != 0.0)\n"
1099 " {\n"
1100 " g1ObjDataPos[i] /= g1ObjDataPos[i].w;\n"
1101 " }\n"
1102 " g2ObjDataPos[i] = clip_texToObjMat * vec4(texPosNvec[i], 1.0);\n"
1103 " if (g2ObjDataPos[i].w != 0.0)\n"
1104 " {\n"
1105 " g2ObjDataPos[i] /= g2ObjDataPos[i].w;\n"
1106 " }\n"
1107 " }\n"
1108 "\n"
1109 " for (int i = 0; i < clip_numPlanes && !g_skip; i = i + 6)\n"
1110 " {\n"
1111 " vec3 planeOrigin = vec3(in_clippingPlanes[i + 1],\n"
1112 " in_clippingPlanes[i + 2],\n"
1113 " in_clippingPlanes[i + 3]);\n"
1114 " vec3 planeNormal = normalize(vec3(in_clippingPlanes[i + 4],\n"
1115 " in_clippingPlanes[i + 5],\n"
1116 " in_clippingPlanes[i + 6]));\n"
1117 " for (int j = 0; j < 3; ++j)\n"
1118 " {\n"
1119 " if (dot(vec3(planeOrigin - g1ObjDataPos[j].xyz), planeNormal) > 0)\n"
1120 " {\n"
1121 " g1[j] = in_clippedVoxelIntensity;\n"
1122 " }\n"
1123 " if (dot(vec3(planeOrigin - g2ObjDataPos[j].xyz), planeNormal) > 0)\n"
1124 " {\n"
1125 " g2[j] = in_clippedVoxelIntensity;\n"
1126 " }\n"
1127 " }\n"
1128 " }\n"
1129 "\n");
1130 }
1131
1132 if (!hasGradientOp)
1133 {
1134 shaderStr +=
1135 std::string(" // Central differences: (F_front - F_back) / 2h\n"
1136 " // This version of computeGradient() is only used for lighting\n"
1137 " // calculations (only direction matters), hence the difference is\n"
1138 " // not scaled by 2h and a dummy gradient mag is returned (-1.).\n"
1139 " return vec4((g1 - g2) / in_cellSpacing[index], -1.0);\n"
1140 "}\n");
1141 }
1142 else
1143 {
1144 shaderStr += std::string(
1145 " // Scale values the actual scalar range.\n"
1146 " float range = in_scalarsRange[4*index+c][1] - in_scalarsRange[4*index+c][0];\n"
1147 " g1 = in_scalarsRange[4*index+c][0] + range * g1;\n"
1148 " g2 = in_scalarsRange[4*index+c][0] + range * g2;\n"
1149 "\n"
1150 " // Central differences: (F_front - F_back) / 2h\n"
1151 " g2 = g1 - g2;\n"
1152 "\n"
1153 " float avgSpacing = (in_cellSpacing[index].x +\n"
1154 " in_cellSpacing[index].y + in_cellSpacing[index].z) / 3.0;\n"
1155 " vec3 aspect = in_cellSpacing[index] * 2.0 / avgSpacing;\n"
1156 " g2 /= aspect;\n"
1157 " float grad_mag = length(g2);\n"
1158 "\n"
1159 " // Handle normalizing with grad_mag == 0.0\n"
1160 " g2 = grad_mag > 0.0 ? normalize(g2) : vec3(0.0);\n"
1161 "\n"
1162 " // Since the actual range of the gradient magnitude is unknown,\n"
1163 " // assume it is in the range [0, 0.25 * dataRange].\n"
1164 " range = range != 0 ? range : 1.0;\n"
1165 " grad_mag = grad_mag / (0.25 * range);\n"
1166 " grad_mag = clamp(grad_mag, 0.0, 1.0);\n"
1167 "\n"
1168 " return vec4(g2.xyz, grad_mag);\n"
1169 "}\n");
1170 }
1171 }
1172 else
1173 {
1174 shaderStr += functionSignature +
1175 std::string("{\n"
1176 " return vec4(0.0);\n"
1177 "}\n");
1179
1180 return shaderStr;
1181}
1182
1183inline std::string PhaseFunctionDeclaration(
1184 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vol)
1185{
1186 std::string resStr;
1187 // to be compatible with the surface shading model,
1188 // the phase function should be normalized to 4pi instead of 1
1189 // that's why the isotropic phase function returns 1 and not 1/4pi for example
1190 if (std::abs(vol->GetProperty()->GetScatteringAnisotropy()) < 0.01)
1191 {
1192 resStr += R"***(
1193float phase_function(float cos_angle)
1194{
1195 return 1.0;
1196}
1197 )***";
1198 }
1199 else
1200 {
1201 resStr += R"***(
1202float g_anisotropy2 = in_anisotropy * in_anisotropy;
1203
1204float phase_function(float cos_angle)
1205{
1206 float d = 1.0 + g_anisotropy2 - 2.0 * in_anisotropy * cos_angle;
1207 return (1.0 - g_anisotropy2) / (d * sqrt(d));
1208}
1209
1210 )***";
1212 return resStr;
1213}
1214
1215//--------------------------------------------------------------------------
1216inline std::string ComputeLightingDeclaration(vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* mapper,
1217 vtkVolume* vol, int noOfComponents, int independentComponents, int totalNumberOfLights,
1218 int numberPositionalLights, bool defaultLighting)
1219{
1220 auto glMapper = vtkOpenGLGPUVolumeRayCastMapper::SafeDownCast(mapper);
1221 vtkVolumeProperty* volProperty = vol->GetProperty();
1222 std::string shaderStr = std::string("\
1223 \nvec4 computeLighting(vec4 color, int component, float label)\
1224 \n{\
1225 \n vec4 finalColor = vec4(0.0);\n");
1226
1227 // Shading for composite blending only
1228 int const shadeReqd = volProperty->GetShade() &&
1232
1233 int const transferMode = volProperty->GetTransferFunctionMode();
1234
1235 bool const volumetricShadow = glMapper->GetVolumetricScatteringBlending() > 0.0;
1236 std::string volumetricCall = volumetricShadow
1237 ? "\n vol_shadow = volumeShadow(g_dataPos, tex_light.xyz, 0.0, component, in_volume[0], "
1238 "0, label);"
1239 : "";
1240 std::string volumetricDeclarations =
1241 volumetricShadow ? "\n float vol_shadow = 1.0;\n vec4 tex_light = vec4(0.0);\n" : "\n";
1242
1243 // If shading is required, we compute a shading gradient (used for the shading model)
1244 if (shadeReqd)
1245 {
1246 if (glMapper->GetComputeNormalFromOpacity())
1247 {
1248 // we compute the gradienty according to the volume's opacity !
1249 shaderStr +=
1250 std::string(" vec4 shading_gradient = computeDensityGradient(g_dataPos, component, "
1251 "in_volume[0], 0, label);\n");
1252 }
1253 else
1254 {
1255 // otherwise we take the scalar gradient directly
1256 shaderStr += std::string(
1257 " vec4 shading_gradient = computeGradient(g_dataPos, component, in_volume[0], 0);\n");
1258 }
1259 }
1260
1261 // If we need the scalar gradient (typically to sample a transfer function)
1262 if (volProperty->HasGradientOpacity() || volProperty->HasLabelGradientOpacity())
1263 {
1264 // If we didn't compute it before, we compute it
1265 if (!shadeReqd || glMapper->GetComputeNormalFromOpacity())
1266 {
1267 shaderStr +=
1268 std::string(" vec4 gradient = computeGradient(g_dataPos, component, in_volume[0], 0);\n");
1269 }
1270 // otherwise, we use what we already computed
1271 else
1272 {
1273 shaderStr += std::string(" vec4 gradient = shading_gradient;\n");
1274 }
1275 }
1276
1277 if (shadeReqd)
1278 {
1279 if (defaultLighting)
1280 {
1281 shaderStr += R"***(
1282 vec3 diffuse = vec3(0.0);
1283 vec3 specular = vec3(0.0);
1284 vec3 normal = shading_gradient.xyz;
1285 float normalLength = length(normal);
1286 if (normalLength > 0.0)
1287 {
1288 normal = normalize(normal);
1289 }
1290 else
1291 {
1292 normal = vec3(0.0, 0.0, 0.0);
1293 }
1294 // XXX: normal is oriented inside the volume, so we take -g_ldir/-g_vdir
1295 float nDotL = dot(normal, -g_ldir[0]);
1296 vec3 r = normalize(2.0 * nDotL * normal + g_ldir[0]);
1297 float vDotR = dot(r, -g_vdir[0]);
1298 if (nDotL < 0.0 && in_twoSidedLighting)
1299 {
1300 nDotL = -nDotL;
1301 }
1302 if (nDotL > 0.0)
1303 {
1304 diffuse = nDotL * in_diffuse[component] *
1305 in_lightDiffuseColor[0] * color.rgb;
1306 vDotR = max(vDotR, 0.0);
1307 specular = pow(vDotR, in_shininess[component]) *
1308 in_specular[component] *
1309 in_lightSpecularColor[0];
1310 }
1311 // For the headlight, ignore the light's ambient color
1312 // for now as it is causing the old mapper tests to fail
1313 finalColor.xyz = in_ambient[component] * color.rgb +
1314 diffuse + specular;
1315
1316 )***";
1317 }
1318 else if (totalNumberOfLights > 0)
1319 {
1320 shaderStr += R"***(
1321 g_fragWorldPos = g_texToView * vec4(g_dataPos, 1.0);
1322 if (g_fragWorldPos.w != 0.0)
1323 {
1324 g_fragWorldPos /= g_fragWorldPos.w;
1325 }
1326 vec3 viewDirection = normalize(-g_fragWorldPos.xyz);
1327 vec3 ambient = vec3(0,0,0);
1328 vec3 diffuse = vec3(0,0,0);
1329 vec3 specular = vec3(0,0,0);
1330 vec3 vertLightDirection;
1331 vec3 normal = normalize((in_textureToEye[0] * vec4(shading_gradient.xyz, 0.0)).xyz);
1332 vec3 lightDir;
1333 )***";
1334
1335 if (numberPositionalLights > 0)
1336 {
1337 shaderStr += R"***(
1338 for (int posNum = 0; posNum < NUMBER_POS_LIGHTS; posNum++)
1339 {
1340 float attenuation = 1.0;
1341 lightDir = in_lightDirection[posNum];
1342 vertLightDirection = (g_fragWorldPos.xyz - in_lightPosition[posNum]);
1343 float distance = length(vertLightDirection);
1344 vertLightDirection = normalize(vertLightDirection);
1345 attenuation = 1.0 /
1346 (in_lightAttenuation[posNum].x
1347 + in_lightAttenuation[posNum].y * distance
1348 + in_lightAttenuation[posNum].z * distance * distance);
1349 // per OpenGL standard cone angle is 90 or less for a spot light
1350 if (in_lightConeAngle[posNum] <= 90.0)
1351 {
1352 float coneDot = dot(vertLightDirection, lightDir);
1353 // if inside the cone
1354 if (coneDot >= cos(radians(in_lightConeAngle[posNum])))
1355 {
1356 attenuation = attenuation * pow(coneDot, in_lightExponent[posNum]);
1357 }
1358 else
1359 {
1360 attenuation = 0.0;
1361 }
1362 }
1363
1364 float nDotL = dot(normal, vertLightDirection);
1365 if (nDotL < 0.0 && in_twoSidedLighting)
1366 {
1367 nDotL = -nDotL;
1368 }
1369 if (nDotL > 0.0)
1370 {
1371 float df = max(0.0, attenuation * nDotL);
1372 diffuse += (df * in_lightDiffuseColor[posNum]);
1373 vec3 r = normalize(2.0 * nDotL * normal - vertLightDirection);
1374 float rDotV = dot(-viewDirection, r);
1375 if (rDotV < 0.0 && in_twoSidedLighting)
1376 {
1377 rDotV = -rDotV;
1378 }
1379 if (rDotV > 0.0)
1380 {
1381 float sf = attenuation * pow(rDotV, in_shininess[component]);
1382 specular += (sf * in_lightSpecularColor[posNum]);
1383 }
1384 }
1385 ambient += in_lightAmbientColor[posNum];
1386 }
1387 )***";
1388 }
1389
1390 shaderStr += R"***(
1391 for (int dirNum = NUMBER_POS_LIGHTS; dirNum < TOTAL_NUMBER_LIGHTS; dirNum++)
1392 {
1393 vertLightDirection = in_lightDirection[dirNum];
1394 float nDotL = dot(normal, vertLightDirection);
1395 if (nDotL < 0.0 && in_twoSidedLighting)
1396 {
1397 nDotL = -nDotL;
1398 }
1399 if (nDotL > 0.0)
1400 {
1401 float df = max(0.0, nDotL);
1402 diffuse += (df * in_lightDiffuseColor[dirNum]);
1403 vec3 r = normalize(2.0 * nDotL * normal - vertLightDirection);
1404 float rDotV = dot(-viewDirection, r);
1405 if (rDotV > 0.0)
1406 {
1407 float sf = pow(rDotV, in_shininess[component]);
1408 specular += (sf * in_lightSpecularColor[dirNum]);
1409 }
1410 }
1411 ambient += in_lightAmbientColor[dirNum];
1412 }
1413 finalColor.xyz = in_ambient[component] * ambient +
1414 in_diffuse[component] * diffuse * color.rgb +
1415 in_specular[component] * specular;
1416
1417 )***";
1418 }
1419 }
1420 else
1421 {
1422 shaderStr += std::string("\n finalColor = vec4(color.rgb, 0.0);");
1423 }
1424
1425 if (glMapper->GetVolumetricScatteringBlending() > 0.0 && totalNumberOfLights > 0)
1426 {
1427
1428 float vsBlend = glMapper->GetVolumetricScatteringBlending();
1429 std::string blendingFormula = std::string(" float vol_coef = ") +
1430 (vsBlend < 1.0 ? "2.0 * in_volumetricScatteringBlending * exp( - 2.0 * "
1431 "in_volumetricScatteringBlending * shading_gradient.w * color.a)"
1432 : "2.0 * (1.0 - in_volumetricScatteringBlending) * exp( - 2.0 * "
1433 "in_volumetricScatteringBlending * shading_gradient.w * color.a) + 2.0 * "
1434 "in_volumetricScatteringBlending - 1.0") +
1435 ";\n";
1436
1437 shaderStr +=
1438 (defaultLighting
1439 ? std::string()
1440 : std::string(
1441 "vec3 view_tdir = normalize((g_eyeToTexture * vec4(viewDirection, 0.0)).xyz);\n")) +
1442 R"***(
1443 vec3 secondary_contrib = vec3(0.0);
1444 vec3 tex_light = vec3(0.0);
1445 shading_gradient.w = length(shading_gradient.xyz);
1446 vec3 diffuse_light = vec3(0.0);
1447 float attenuation = 0.0;
1448 float vol_shadow = 0.0;
1449 float phase = 1.0;
1450 )***";
1451
1452 if (defaultLighting)
1453 {
1454 shaderStr += R"***(
1455 tex_light = (in_inverseTextureDatasetMatrix[0] * vec4(in_eyePosObjs[0], 1.0)).xyz;
1456 phase = phase_function(-1); // always angle of pi
1457 vol_shadow = volumeShadow(g_dataPos, tex_light, 1.0, component, in_volume[0], 0, label);
1458 secondary_contrib += vol_shadow * phase * color.rgb * in_diffuse[component] * in_lightDiffuseColor[0];
1459 secondary_contrib += in_ambient[component] * in_lightAmbientColor[0];
1460 )***";
1461 }
1462 else
1463 {
1464 if (numberPositionalLights > 0)
1465 {
1466 shaderStr += R"***(
1467 float dist_light = 0.0;
1468 for(int posNum = 0; posNum < NUMBER_POS_LIGHTS; posNum++)
1469 {
1470 tex_light = g_lightPositionTex[posNum];
1471 vec3 light_vert = g_fragWorldPos.xyz - in_lightPosition[posNum];
1472 dist_light = length(light_vert);
1473 float light_angle = dot(normalize(light_vert), normalize(in_lightDirection[posNum]));
1474 phase = phase_function(dot(normalize(g_dataPos - tex_light), view_tdir));
1475 attenuation = 1.0 /
1476 (in_lightAttenuation[posNum].x
1477 + in_lightAttenuation[posNum].y * dist_light
1478 + in_lightAttenuation[posNum].z * dist_light * dist_light);
1479 attenuation *= max(0.0, sign(light_angle - cos(radians(in_lightConeAngle[posNum]))))
1480 * pow(light_angle, in_lightExponent[posNum]);
1481 vol_shadow = volumeShadow(g_dataPos, tex_light, 1.0, component, in_volume[0], 0, label);
1482 secondary_contrib += vol_shadow * phase * attenuation * color.rgb * in_diffuse[component] * in_lightDiffuseColor[posNum];
1483 secondary_contrib += in_ambient[component] * in_lightAmbientColor[posNum];
1484 }
1485 )***";
1486 }
1487
1488 shaderStr += R"***(
1489 for(int dirNum = NUMBER_POS_LIGHTS; dirNum < TOTAL_NUMBER_LIGHTS; dirNum++)
1490 {
1491 tex_light = g_lightDirectionTex[dirNum];
1492 phase = phase_function(dot(normalize(-tex_light), view_tdir));
1493 vol_shadow = volumeShadow(g_dataPos, tex_light, 0.0, component, in_volume[0], 0, label);
1494 secondary_contrib += vol_shadow * phase * color.rgb * in_diffuse[component] * in_lightDiffuseColor[dirNum];
1495 secondary_contrib += in_ambient[component] * in_lightAmbientColor[dirNum];
1496 }
1497 )***";
1498 }
1499
1500 shaderStr += blendingFormula +
1501 R"***(
1502 finalColor.xyz = (1.0 - vol_coef) * finalColor.xyz + vol_coef * secondary_contrib;
1503 )***";
1504 }
1505
1506 // For 1D transfers only (2D transfer functions hold scalar and
1507 // gradient-magnitude opacities combined in the same table).
1508 // For multiple inputs, a different computeGradientOpacity() signature
1509 // is defined.
1510 if (transferMode == vtkVolumeProperty::TF_1D && glMapper->GetInputCount() == 1)
1511 {
1512 if (noOfComponents == 1 || !independentComponents)
1513 {
1514 if (volProperty->HasGradientOpacity())
1515 {
1516 shaderStr += std::string("\
1517 \n if (gradient.w >= 0.0 && label == 0.0)\
1518 \n {\
1519 \n color.a *= computeGradientOpacity(gradient);\
1520 \n }");
1521 }
1522 if (volProperty->HasLabelGradientOpacity())
1523 {
1524 shaderStr += std::string("\
1525 \n if (gradient.w >= 0.0 && label > 0.0)\
1526 \n {\
1527 \n color.a *= computeGradientOpacityForLabel(gradient, label);\
1528 \n }");
1529 }
1530 }
1531 else if (noOfComponents > 1 && independentComponents && volProperty->HasGradientOpacity())
1532 {
1533 shaderStr += std::string("\
1534 \n if (gradient.w >= 0.0)\
1535 \n {\
1536 \n for (int i = 0; i < in_noOfComponents; ++i)\
1537 \n {\
1538 \n color.a = color.a *\
1539 \n computeGradientOpacity(gradient, i) * in_componentWeight[i];\
1540 \n }\
1541 \n }");
1542 }
1543 }
1544
1545 shaderStr += std::string("\
1546 \n finalColor.a = color.a;\
1547 \n return finalColor;\
1548 \n }");
1549
1550 return shaderStr;
1551}
1552
1553//--------------------------------------------------------------------------
1554inline std::string ComputeLightingMultiDeclaration(vtkRenderer* vtkNotUsed(ren),
1555 vtkVolumeMapper* mapper, vtkVolume* vol, int noOfComponents, int independentComponents,
1556 int vtkNotUsed(totalNumberOfLights), bool defaultLighting)
1557{
1558 auto glMapper = vtkOpenGLGPUVolumeRayCastMapper::SafeDownCast(mapper);
1559 vtkVolumeProperty* volProperty = vol->GetProperty();
1560 std::string shaderStr = std::string();
1561
1562 // if no gradient TF is needed, don't add it into the function signature
1563 if (volProperty->HasGradientOpacity())
1564 {
1565 shaderStr += std::string("\
1566 \nvec4 computeLighting(vec3 texPos, vec4 color, const in sampler2D gradientTF, const in sampler3D volume, const in sampler2D opacityTF, const int volIdx, int component)\
1567 \n {\
1568 \n vec4 finalColor = vec4(0.0);\n");
1569 }
1570 else
1571 {
1572 shaderStr += std::string("\
1573 \nvec4 computeLighting(vec3 texPos, vec4 color, const in sampler3D volume, const in sampler2D opacityTF, const int volIdx, int component)\
1574 \n {\
1575 \n vec4 finalColor = vec4(0.0);\n");
1576 }
1577
1578 // Shading for composite blending only
1579 int const shadeReqd = volProperty->GetShade() &&
1582
1583 int const transferMode = volProperty->GetTransferFunctionMode();
1584
1585 // If shading is required, we compute a shading gradient (used for the shading model)
1586 if (shadeReqd)
1587 {
1588 /*
1589 We compute the gradient every time, because the alternative would be to test whether
1590 the volume has gradient cache or not. But as both branches will be evaluated anyway
1591 on GPU, we might as well compute the gradient every time.
1592 */
1593 if (glMapper->GetComputeNormalFromOpacity())
1594 {
1595 if (volProperty->HasGradientOpacity())
1596 {
1597 shaderStr += " vec4 shading_gradient = computeDensityGradient(texPos, component, volume, "
1598 "opacityTF, gradientTF, volIdx, 0.0);\n";
1599 }
1600 else
1601 {
1602 shaderStr += " vec4 shading_gradient = computeDensityGradient(texPos, component, volume, "
1603 "opacityTF, volIdx, 0.0);\n";
1604 }
1605 }
1606 else
1607 {
1608 shaderStr +=
1609 " vec4 shading_gradient = computeGradient(texPos, component, volume, volIdx);\n";
1610 }
1611 }
1612
1613 // If we need the scalar gradient (typically to sample a transfer function)
1614 if (volProperty->HasGradientOpacity())
1615 {
1616 if (!shadeReqd || glMapper->GetComputeNormalFromOpacity())
1617 {
1618 shaderStr += " vec4 gradient = computeGradient(texPos, component, volume, volIdx);\n";
1619 }
1620 else
1621 {
1622 // if we already computed it
1623 shaderStr += " vec4 gradient = shading_gradient;\n";
1624 }
1625 }
1626
1627 if (shadeReqd && defaultLighting)
1628 {
1629 shaderStr += std::string("\
1630 \n vec3 diffuse = vec3(0.0);\
1631 \n vec3 specular = vec3(0.0);\
1632 \n vec3 normal = shading_gradient.xyz;\
1633 \n float normalLength = length(normal);\
1634 \n if (normalLength > 0.0)\
1635 \n {\
1636 \n normal = normalize(normal);\
1637 \n }\
1638 \n else\
1639 \n {\
1640 \n normal = vec3(0.0, 0.0, 0.0);\
1641 \n }\
1642 \n // normal is oriented inside the volume (because normal = gradient, oriented inside the volume)\
1643 \n // thus we have to take minus everything\
1644 \n float nDotL = dot(normal, -g_ldir[volIdx]);\
1645 \n vec3 r = normalize(2.0 * nDotL * normal + g_ldir[volIdx]);\
1646 \n float vDotR = dot(r, -g_vdir[volIdx]);\
1647 \n if (nDotL < 0.0 && in_twoSidedLighting)\
1648 \n {\
1649 \n nDotL = -nDotL;\
1650 \n }\
1651 \n if (nDotL > 0.0)\
1652 \n {\
1653 \n diffuse = nDotL * in_diffuse[component] *\
1654 \n in_lightDiffuseColor[0] * color.rgb;\
1655 \n vDotR = max(vDotR, 0.0);\
1656 \n specular = pow(vDotR, in_shininess[component]) *\
1657 \n in_specular[component] *\
1658 \n in_lightSpecularColor[0];\
1659 \n }\
1660 \n // For the headlight, ignore the light's ambient color\
1661 \n // for now as it is causing the old mapper tests to fail\
1662 \n finalColor.xyz = in_ambient[component] * color.rgb +\
1663 \n diffuse + specular;\
1664 \n");
1665 }
1666 else
1667 {
1668 shaderStr += std::string("\n finalColor = vec4(color.rgb, 0.0);");
1669 }
1670
1671 // For 1D transfers only (2D transfer functions hold scalar and
1672 // gradient-magnitude opacities combined in the same table).
1673 if (transferMode == vtkVolumeProperty::TF_1D)
1674 {
1675 if (volProperty->HasGradientOpacity() && (noOfComponents == 1 || !independentComponents))
1676 {
1677 shaderStr += std::string("\
1678 \n if (gradient.w >= 0.0)\
1679 \n {\
1680 \n color.a = color.a *\
1681 \n computeGradientOpacity(gradient, gradientTF);\
1682 \n }");
1683 }
1684 }
1685
1686 shaderStr += std::string("\
1687 \n finalColor.a = color.a;\
1688 \n return clamp(finalColor, 0.0, 1.0);\
1689 \n }");
1690
1691 return shaderStr;
1692}
1693
1694//--------------------------------------------------------------------------
1695inline std::string ComputeRayDirectionDeclaration(vtkRenderer* ren,
1696 vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol), int vtkNotUsed(noOfComponents))
1697{
1699 {
1700 return std::string("\
1701 \nvec3 computeRayDirection()\
1702 \n {\
1703 \n return normalize(ip_vertexPos.xyz - in_eyePosObjs[0].xyz);\
1704 \n }");
1705 }
1706 else
1707 {
1708 return std::string("\
1709 \nuniform vec3 in_projectionDirection;\
1710 \nvec3 computeRayDirection()\
1711 \n {\
1712 \n return normalize((in_inverseVolumeMatrix[0] *\
1713 \n vec4(in_projectionDirection, 0.0)).xyz);\
1714 \n }");
1715 }
1716}
1717
1718//--------------------------------------------------------------------------
1720 int noOfComponents, vtkVolumeProperty* volProp)
1721{
1722 std::string resStr;
1723 if (inputs.size() > 1)
1724 {
1725 // multi volume
1726 for (auto& item : inputs)
1727 {
1728 const auto& prop = item.second.Volume->GetProperty();
1729 if (prop->GetTransferFunctionMode() != vtkVolumeProperty::TF_1D)
1730 continue;
1731
1732 auto& map = item.second.RGBTablesMap;
1733 const auto numComp = map.size();
1734 resStr +=
1735 "uniform sampler2D " + ArrayBaseName(map[0]) + "[" + std::to_string(numComp) + "];\n";
1736 }
1738 else
1739 {
1740 // single volume
1742 {
1743 resStr += "uniform sampler2D " + ArrayBaseName(inputs[0].RGBTablesMap[0]) + "[" +
1744 std::to_string(noOfComponents) + "];\n";
1745 }
1746 // in case of TF_2D, the texture needed is defined with computeOpacity
1747 }
1748 return resStr;
1749}
1750
1751//--------------------------------------------------------------------------
1752inline std::string ComputeColorDeclaration(vtkRenderer* vtkNotUsed(ren),
1753 vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol), int noOfComponents,
1754 int independentComponents, std::map<int, std::string> colorTableMap)
1755{
1756 std::ostringstream ss;
1757
1758 std::string shaderStr = ss.str();
1759 if (noOfComponents == 1)
1760 {
1761 shaderStr += std::string("\
1762 \nvec4 computeColor(vec4 scalar, float opacity)\
1763 \n {\
1764 \n return clamp(computeLighting(vec4(texture2D(" +
1765 colorTableMap[0] + ",\
1766 \n vec2(scalar.w, 0.0)).xyz, opacity), 0, 0.0), 0.0, 1.0);\
1767 \n }");
1768 return shaderStr;
1769 }
1770 else if (noOfComponents > 1 && independentComponents)
1771 {
1772 std::ostringstream toString;
1773
1774 shaderStr += std::string("\
1775 \nvec4 computeColor(vec4 scalar, float opacity, int component)\
1776 \n {");
1777
1778 for (int i = 0; i < noOfComponents; ++i)
1779 {
1780 toString << i;
1781 shaderStr += std::string("\
1782 \n if (component == " +
1783 toString.str() + ")");
1784
1785 shaderStr += std::string("\
1786 \n {\
1787 \n return clamp(computeLighting(vec4(texture2D(\
1788 \n " +
1789 colorTableMap[i]);
1790 shaderStr += std::string(", vec2(\
1791 \n scalar[" +
1792 toString.str() + "],0.0)).xyz,\
1793 \n opacity)," +
1794 toString.str() + ", 0.0), 0.0, 1.0);\
1795 \n }");
1796
1797 // Reset
1798 toString.str("");
1799 toString.clear();
1800 }
1801
1802 shaderStr += std::string("\n }");
1803 return shaderStr;
1804 }
1805 else if (noOfComponents == 2 && !independentComponents)
1806 {
1807 shaderStr += std::string("\
1808 \nvec4 computeColor(vec4 scalar, float opacity)\
1809 \n {\
1810 \n return clamp(computeLighting(vec4(texture2D(" +
1811 colorTableMap[0] + ",\
1812 \n vec2(scalar.x, 0.0)).xyz,\
1813 \n opacity), 0, 0.0), 0.0, 1.0);\
1814 \n }");
1815 return shaderStr;
1816 }
1817 else
1818 {
1819 shaderStr += std::string("\
1820 \nvec4 computeColor(vec4 scalar, float opacity)\
1821 \n {\
1822 \n return clamp(computeLighting(vec4(scalar.xyz, opacity), 0, 0.0), 0.0, 1.0);\
1823 \n }");
1824 return shaderStr;
1825 }
1826}
1827
1828//--------------------------------------------------------------------------
1829inline std::string ComputeColorMultiDeclaration(
1830 vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap& inputs, bool useGradientTF)
1831{
1832 std::ostringstream ss;
1833 int lastComponentMode = vtkVolumeInputHelper::INVALID;
1834 std::map<int, std::string> lastColorTableMap;
1835 for (auto& item : inputs)
1836 {
1837 auto prop = item.second.Volume->GetProperty();
1838 if (prop->GetTransferFunctionMode() != vtkVolumeProperty::TF_1D)
1839 continue;
1840 auto& map = item.second.RGBTablesMap;
1841 lastComponentMode = item.second.ComponentMode;
1842 lastColorTableMap = map;
1843 }
1844
1845 if (lastComponentMode == vtkVolumeInputHelper::LA)
1846 {
1847 ss << "vec4 computeColor(vec4 scalar, const in sampler2D colorTF)\
1848 \n {\
1849 \n return clamp(computeLighting(vec4(texture2D(colorTF,\
1850 \n vec2(scalar.w, 0.0)).xyz, opacity), 0), 0.0, 1.0);\
1851 \n }\n";
1852 }
1853 else
1854 {
1855 std::ostringstream colorDec;
1856 colorDec << " vec3 color = ";
1857 if (lastComponentMode == vtkVolumeInputHelper::RGBA)
1858 {
1859 // Use RGB components without mapping through the color transfer function.
1860 colorDec << "scalar.xyz;\n";
1861 }
1862 else // vtkVolumeInputHelper::INDEPENDENT
1863 {
1864 // MultiVolume assumes input is 1-component, see ShadingMultipleInputs.
1865 // To support multiple independent components, each component should be mapped through the
1866 // transfer function as done in ComputeColorDeclaration for single volumes.
1867 colorDec << "texture2D(colorTF, vec2(scalar.w, 0.0)).xyz;\n";
1868 }
1869
1870 if (useGradientTF)
1871 {
1872 ss
1873 << "vec4 computeColor(vec3 texPos, vec4 scalar, float opacity, const in sampler2D colorTF, "
1874 "const in sampler2D gradientTF, const in sampler3D volume, const in sampler2D "
1875 "opacityTF, const int volIdx)\n\n"
1876 "{\n";
1877 ss << colorDec.str()
1878 << " return clamp(computeLighting(texPos, vec4(color, opacity), gradientTF, volume, "
1879 "opacityTF,"
1880 "volIdx, 0), 0.0, 1.0);\n"
1881 "}\n";
1882 }
1883 else
1884 {
1886 << "vec4 computeColor(vec3 texPos, vec4 scalar, float opacity, const in sampler2D colorTF, "
1887 "const in sampler3D volume, const in sampler2D opacityTF, const int volIdx)\n\n"
1888 "{\n";
1889 ss << colorDec.str()
1890 << " return clamp(computeLighting(texPos, vec4(color, opacity), volume, opacityTF,"
1891 "volIdx, 0), 0.0, 1.0);\n"
1892 "}\n";
1893 }
1894 }
1895
1896 return ss.str();
1897}
1898
1899//--------------------------------------------------------------------------
1900inline std::string ComputeOpacityMultiDeclaration(
1902{
1903 std::ostringstream ss;
1904 for (auto& item : inputs)
1905 {
1906 auto prop = item.second.Volume->GetProperty();
1907 if (prop->GetTransferFunctionMode() != vtkVolumeProperty::TF_1D)
1908 continue;
1909
1910 auto& map = item.second.OpacityTablesMap;
1911 const auto numComp = map.size();
1912 ss << "uniform sampler2D " << ArrayBaseName(map[0]) << "[" << numComp << "];\n";
1913 }
1914
1915 ss << "float computeOpacity(vec4 scalar, const in sampler2D opacityTF)\n"
1916 "{\n"
1917 " return texture2D(opacityTF, vec2(scalar.w, 0)).r;\n"
1918 "}\n";
1919 return ss.str();
1920}
1921
1922//--------------------------------------------------------------------------
1923inline std::string ComputeGradientOpacityMulti1DDecl(
1925{
1926 std::ostringstream ss;
1927
1928 for (auto& item : inputs)
1929 {
1930 auto prop = item.second.Volume->GetProperty();
1931 if (prop->GetTransferFunctionMode() != vtkVolumeProperty::TF_1D || !prop->HasGradientOpacity())
1932 continue;
1933
1934 auto& map = item.second.GradientOpacityTablesMap;
1935 const auto numComp = map.size();
1936 ss << "uniform sampler2D " << ArrayBaseName(map[0]) << "[" << numComp << "];\n";
1937 }
1938
1939 ss << "float computeGradientOpacity(vec4 grad, const in sampler2D gradientTF)\n"
1940 "{\n"
1941 " return texture2D(gradientTF, vec2(grad.w, 0.0)).r;\n"
1942 "}\n";
1943 return ss.str();
1944}
1945
1946//--------------------------------------------------------------------------
1947inline std::string ComputeOpacityDeclaration(vtkRenderer* vtkNotUsed(ren),
1948 vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol), int noOfComponents,
1949 int independentComponents, std::map<int, std::string> opacityTableMap)
1950{
1951 std::ostringstream ss;
1952 ss << "uniform sampler2D " << ArrayBaseName(opacityTableMap[0]) << "[" << noOfComponents
1953 << "];\n";
1954
1955 std::string shaderStr = ss.str();
1956 if (noOfComponents > 1 && independentComponents)
1957 {
1958 shaderStr += std::string("\
1959 \nfloat computeOpacity(vec4 scalar, int component)\
1960 \n{");
1961
1962 for (int i = 0; i < noOfComponents; ++i)
1963 {
1964 std::ostringstream toString;
1965 toString << i;
1966 shaderStr += std::string("\
1967 \n if (component == " +
1968 toString.str() + ")");
1969
1970 shaderStr += std::string("\
1971 \n {\
1972 \n return texture2D(" +
1973 opacityTableMap[i]);
1974
1975 shaderStr += std::string(",vec2(scalar[" + toString.str() + "], 0)).r;\
1976 \n }");
1977 }
1978
1979 shaderStr += std::string("\n}");
1980 return shaderStr;
1981 }
1982 else if (noOfComponents == 2 && !independentComponents)
1983 {
1984 shaderStr += std::string("\
1985 \nfloat computeOpacity(vec4 scalar)\
1986 \n{\
1987 \n return texture2D(" +
1988 opacityTableMap[0] + ", vec2(scalar.y, 0)).r;\
1989 \n}");
1990 return shaderStr;
1991 }
1992 else
1993 {
1994 shaderStr += std::string("\
1995 \nfloat computeOpacity(vec4 scalar)\
1996 \n{\
1997 \n return texture2D(" +
1998 opacityTableMap[0] + ", vec2(scalar.w, 0)).r;\
1999 \n}");
2000 return shaderStr;
2001 }
2002}
2003
2004//--------------------------------------------------------------------------
2005inline std::string ComputeColor2DYAxisDeclaration(int noOfComponents,
2006 int vtkNotUsed(independentComponents), std::map<int, std::string> colorTableMap)
2007{
2008 if (noOfComponents == 1)
2009 {
2010 // Single component
2011 return std::string(
2012 "vec4 computeColor(vec4 scalar, float opacity)\n"
2013 "{\n"
2014 " vec4 yscalar = texture3D(in_transfer2DYAxis, g_dataPos);\n"
2015 " yscalar.r = yscalar.r * in_transfer2DYAxis_scale.r + in_transfer2DYAxis_bias.r;\n"
2016 " yscalar = vec4(yscalar.r);\n"
2017 " vec4 color = texture2D(" +
2018 colorTableMap[0] +
2019 ",\n"
2020 " vec2(scalar.w, yscalar.w));\n"
2021 " return computeLighting(color, 0, 0);\n"
2022 "}\n");
2023 }
2024 return std::string("vec4 computeColor(vec4 scalar, float opacity)\n"
2025 "{\n"
2026 " return vec4(0, 0, 0, 0)\n"
2027 "}\n");
2028}
2029
2030//--------------------------------------------------------------------------
2031inline std::string ComputeColor2DDeclaration(vtkRenderer* vtkNotUsed(ren),
2032 vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol), int noOfComponents,
2033 int independentComponents, std::map<int, std::string> colorTableMap, int useGradient)
2034{
2035 if (!useGradient)
2036 {
2037 return ComputeColor2DYAxisDeclaration(noOfComponents, independentComponents, colorTableMap);
2038 }
2039 if (noOfComponents == 1)
2040 {
2041 // Single component
2042 return std::string("vec4 computeColor(vec4 scalar, float opacity)\n"
2043 "{\n"
2044 " vec4 color = texture2D(" +
2045 colorTableMap[0] +
2046 ",\n"
2047 " vec2(scalar.w, g_gradients_0[0].w));\n"
2048 " return computeLighting(color, 0, 0);\n"
2049 "}\n");
2050 }
2051 else if (noOfComponents > 1 && independentComponents)
2052 {
2053 // Multiple independent components
2054 std::string shaderStr;
2055 shaderStr += std::string("vec4 computeColor(vec4 scalar, float opacity, int component)\n"
2056 "{\n");
2057
2058 for (int i = 0; i < noOfComponents; ++i)
2059 {
2060 std::ostringstream toString;
2061 toString << i;
2062 std::string const num = toString.str();
2063 shaderStr += std::string(" if (component == " + num +
2064 ")\n"
2065 " {\n"
2066 " vec4 color = texture2D(" +
2067 colorTableMap[i] +
2068 ",\n"
2069 " vec2(scalar[" +
2070 num + "], g_gradients_0[" + num +
2071 "].w));\n"
2072 " return computeLighting(color, " +
2073 num +
2074 ", 0.0);\n"
2075 " }\n");
2076 }
2077 shaderStr += std::string("}\n");
2078
2079 return shaderStr;
2080 }
2081 else if (noOfComponents == 2 && !independentComponents)
2082 {
2083 // Dependent components (Luminance/ Opacity)
2084 return std::string("vec4 computeColor(vec4 scalar, float opacity)\n"
2085 "{\n"
2086 " vec4 color = texture2D(" +
2087 colorTableMap[0] +
2088 ",\n"
2089 " vec2(scalar.x, g_gradients_0[0].w));\n"
2090 " return computeLighting(color, 0, 0.0);\n"
2091 "}\n");
2092 }
2093 else
2094 {
2095 return std::string("vec4 computeColor(vec4 scalar, float opacity)\n"
2096 "{\n"
2097 " return computeLighting(vec4(scalar.xyz, opacity), 0, 0.0);\n"
2098 "}\n");
2099 }
2100}
2101
2102//--------------------------------------------------------------------------
2104{
2105 std::ostringstream ss;
2106 for (auto& item : inputs)
2107 {
2108 auto prop = item.second.Volume->GetProperty();
2109 if (prop->GetTransferFunctionMode() != vtkVolumeProperty::TF_2D)
2110 continue;
2112 auto& map = item.second.TransferFunctions2DMap;
2113 const auto numComp = map.size();
2114 ss << "uniform sampler2D " << ArrayBaseName(map[0]) << "[" << numComp << "];\n";
2115 }
2116
2117 std::string result = ss.str() +
2118 std::string("uniform sampler3D in_transfer2DYAxis;\n"
2119 "uniform vec4 in_transfer2DYAxis_scale;\n"
2120 "uniform vec4 in_transfer2DYAxis_bias;\n");
2121
2122 return result;
2123}
2124
2125//--------------------------------------------------------------------------
2126inline std::string ComputeOpacity2DDeclaration(vtkRenderer* vtkNotUsed(ren),
2127 vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol), int noOfComponents,
2128 int independentComponents, std::map<int, std::string> opacityTableMap, int useGradient)
2129{
2130 std::ostringstream toString;
2131 if (noOfComponents > 1 && independentComponents)
2132 {
2133 // Multiple independent components
2134 toString << "float computeOpacity(vec4 scalar, int component)\n"
2135 "{\n";
2136 if (!useGradient)
2137 {
2138 toString
2139 << "vec4 yscalar = texture3D(in_transfer2DYAxis, g_dataPos);\n"
2140 "for (int i = 0; i < 4; ++i)\n"
2141 "{\n"
2142 " yscalar[i] = yscalar[i] * in_transfer2DYAxis_scale[i] + in_transfer2DYAxis_bias[i];\n"
2143 "}\n";
2144 if (noOfComponents == 1)
2145 {
2146 toString << "yscalar = vec4(yscalar.r);\n";
2147 }
2148 }
2149
2150 for (int i = 0; i < noOfComponents; ++i)
2151 {
2152 if (useGradient)
2153 {
2154 toString << " if (component == " << i
2155 << ")\n"
2156 " {\n"
2157 " return texture2D("
2158 << opacityTableMap[i]
2159 << ",\n"
2160 " vec2(scalar["
2161 << i << "], g_gradients_0[" << i
2162 << "].w)).a;\n"
2163 " }\n";
2164 }
2165 else
2166 {
2167 toString << " if (component == " << i
2168 << ")\n"
2169 " {\n"
2170 " return texture2D("
2171 << opacityTableMap[i]
2172 << ",\n"
2173 " vec2(scalar["
2174 << i << "], yscalar[" << i
2175 << "])).a;\n"
2176 " }\n";
2177 }
2178 }
2179
2180 toString << "}\n";
2181 }
2182
2183 else if (noOfComponents == 2 && !independentComponents)
2184 {
2185 if (useGradient)
2186 {
2187 // Dependent components (Luminance/ Opacity)
2188 toString << "float computeOpacity(vec4 scalar)\n"
2189 "{\n"
2190 " return texture2D(" +
2191 opacityTableMap[0] +
2192 ",\n"
2193 " vec2(scalar.y, g_gradients_0[0].w)).a;\n"
2194 "}\n";
2195 }
2196 else
2197 {
2198 // Dependent components (Luminance/ Opacity)
2199 toString << "float computeOpacity(vec4 scalar)\n"
2200 "{\n"
2201 " return texture2D(" +
2202 opacityTableMap[0] +
2203 ",\n"
2204 " vec2(scalar.y, yscalar.y)).a;\n"
2205 "}\n";
2206 }
2207 }
2208
2209 else
2210 {
2211 if (useGradient)
2212 {
2213 // Dependent compoennts (RGBA) || Single component
2214 toString << "float computeOpacity(vec4 scalar)\n"
2215 "{\n"
2216 " return texture2D(" +
2217 opacityTableMap[0] +
2218 ",\n"
2219 " vec2(scalar.a, g_gradients_0[0].w)).a;\n"
2220 "}\n";
2221 }
2222 else
2223 {
2224 // Dependent compoennts (RGBA) || Single component
2225 toString
2226 << "float computeOpacity(vec4 scalar)\n"
2227 "{\n"
2228 " vec4 yscalar = texture3D(in_transfer2DYAxis, g_dataPos);\n"
2229 " yscalar.r = yscalar.r * in_transfer2DYAxis_scale.r + in_transfer2DYAxis_bias.r;\n"
2230 " yscalar = vec4(yscalar.r);\n"
2231 " return texture2D(" +
2232 opacityTableMap[0] +
2233 ",\n"
2234 " vec2(scalar.a, yscalar.w)).a;\n"
2235 "}\n";
2236 }
2237 }
2238 return toString.str();
2239}
2240
2241//--------------------------------------------------------------------------
2243 vtkVolume* vtkNotUsed(vol), int noOfComponents, int independentComponents,
2244 vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap& inputs, int useGradYAxis)
2245{
2246 std::string resStr;
2247 std::string declarations;
2248 std::string functionSignature;
2249 std::string opacityEval;
2250 std::string rayInit;
2251
2252 const size_t numInputs = inputs.size();
2253 const bool hasGradOp = ::HasGradientOpacity(inputs);
2254
2255 // for now, shadow is mono-chromatic (we only sample opacity)
2256 // it could be RGB
2257
2258 functionSignature = "float volumeShadow(vec3 sample_position, vec3 light_pos_dir, float is_Pos, "
2259 " in int c, in sampler3D volume, " +
2260 (numInputs > 1 ? std::string("in sampler2D opacityTF, ") : std::string()) +
2261 (numInputs > 1 && hasGradOp ? std::string("in sampler2D gradTF, ") : std::string()) +
2262 "int index, float label)\n";
2263
2264 declarations +=
2265 R"***(
2266 float shadow = 1.0;
2267 vec3 direction = vec3(0.0);
2268 vec3 norm_dir = vec3(0.0);
2269 float maxdist = 0.0;
2270 float scalar;
2271 vec4 gradient;
2272 float opacity = 0.0;
2273 vec3 color;
2274 Ray ray;
2275 Hit hit;
2276 float sampled_dist = 0.0;
2277 vec3 sampled_point = vec3(0.0);
2278 )***";
2279
2280 rayInit +=
2281 R"***(
2282 // direction is light_pos_dir when light is directional
2283 // and light_pos_dir - sample_position when positional
2284 direction = light_pos_dir - is_Pos * sample_position;
2285 norm_dir = normalize(direction);
2286 // introduce little offset to avoid sampling shadows at the exact
2287 // sample position
2288 sample_position += g_lengthStep * norm_dir;
2289 direction = light_pos_dir - is_Pos * sample_position;
2290 ray.origin = sample_position;
2291 ray.dir = norm_dir;
2292 safe_0_vector(ray);
2293 ray.invDir = 1.0/ray.dir;
2294 if(!BBoxIntersect(vec3(0.0), vec3(1.0), ray, hit))
2295 {
2296 // it can happen around the bounding box
2297 return 1.0;
2298 }
2299 if(hit.tmax < g_lengthStep)
2300 {
2301 // if we're too close to the bounding box
2302 return 1.0;
2303 }
2304 // in case of directional light, we want direction not to be normalized but to go
2305 // all the way to the bbox
2306 direction *= pow(hit.tmax / length(direction), 1.0 - is_Pos);
2307 maxdist = min(hit.tmax, length(direction));
2308 maxdist = min(in_giReach, maxdist);
2309 if(maxdist < EPSILON) return 1.0;
2310
2311 )***";
2312
2313 // slight imprecision for the last sample : it can be something else (less) than g_lengthStep
2314 // because the last step is clamped to the end of the ray
2315 opacityEval += " scalar = texture3D(volume, sampled_point)[c];\n"
2316 " scalar = scalar * in_volume_scale[index][c] + in_volume_bias[index][c];\n";
2318 mapper, inputs, noOfComponents, independentComponents, useGradYAxis, "sampled_point", true);
2319
2320 resStr += functionSignature + "{\n" + declarations + rayInit +
2321 R"***(
2322 float current_dist = 0.0;
2323 float current_step = g_lengthStep;
2324 float clamped_step = 0.0;
2325 while(current_dist < maxdist)
2326 {
2327 clamped_step = min(maxdist - current_dist, current_step);
2328 sampled_dist = current_dist + clamped_step * g_jitterValue;
2329 sampled_point = sample_position + sampled_dist * norm_dir;
2330 )***" +
2331 opacityEval +
2332 R"***(
2333 shadow *= 1.0 - opacity;
2334 current_dist += current_step;
2335 }
2336 return shadow;
2337}
2338 )***";
2339
2340 return resStr;
2341}
2342
2343//--------------------------------------------------------------------------
2344inline std::string ShadingDeclarationVertex(
2345 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol))
2346{
2347 return std::string();
2348}
2349
2350//--------------------------------------------------------------------------
2351inline std::string ShadingDeclarationFragment(
2352 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* mapper, vtkVolume* vtkNotUsed(vol))
2353{
2355 {
2356 return std::string("\
2357 \n bool l_firstValue;\
2358 \n vec4 l_maxValue;");
2359 }
2361 {
2362 return std::string("\
2363 \n bool l_firstValue;\
2364 \n vec4 l_minValue;");
2365 }
2367 {
2368 return std::string("\
2369 \n uvec4 l_numSamples;\
2370 \n vec4 l_avgValue;");
2371 }
2372 else if (mapper->GetBlendMode() == vtkVolumeMapper::ADDITIVE_BLEND)
2373 {
2374 return std::string("\
2375 \n vec4 l_sumValue;");
2376 }
2377 else if (mapper->GetBlendMode() == vtkVolumeMapper::ISOSURFACE_BLEND)
2378 {
2379 return std::string("\
2380 \n int l_initialIndex = 0;\
2381 \n float l_normValues[NUMBER_OF_CONTOURS + 2];");
2382 }
2383 else
2384 {
2385 return std::string();
2386 }
2387}
2388
2389//--------------------------------------------------------------------------
2390inline std::string ShadingInit(
2391 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* mapper, vtkVolume* vtkNotUsed(vol))
2392{
2395 return std::string("\
2396 \n // We get data between 0.0 - 1.0 range\
2397 \n l_firstValue = true;\
2398 \n l_maxValue = vec4(0.0);");
2399 }
2401 {
2402 return std::string("\
2403 \n //We get data between 0.0 - 1.0 range\
2404 \n l_firstValue = true;\
2405 \n l_minValue = vec4(1.0);");
2406 }
2408 {
2409 return std::string("\
2410 \n //We get data between 0.0 - 1.0 range\
2411 \n l_avgValue = vec4(0.0);\
2412 \n // Keep track of number of samples\
2413 \n l_numSamples = uvec4(0);");
2414 }
2415 else if (mapper->GetBlendMode() == vtkVolumeMapper::ADDITIVE_BLEND)
2416 {
2417 return std::string("\
2418 \n //We get data between 0.0 - 1.0 range\
2419 \n l_sumValue = vec4(0.0);");
2420 }
2421 else if (mapper->GetBlendMode() == vtkVolumeMapper::ISOSURFACE_BLEND)
2423 return std::string("\
2424 \n#if NUMBER_OF_CONTOURS\
2425 \n l_normValues[0] = -1e20; //-infinity\
2426 \n l_normValues[NUMBER_OF_CONTOURS+1] = +1e20; //+infinity\
2427 \n for (int i = 0; i < NUMBER_OF_CONTOURS; i++)\
2428 \n {\
2429 \n l_normValues[i+1] = (in_isosurfacesValues[i] - in_scalarsRange[0].x) / \
2430 \n (in_scalarsRange[0].y - in_scalarsRange[0].x);\
2431 \n }\
2432 \n#endif\
2433 ");
2434 }
2435 else
2436 {
2437 return std::string();
2438 }
2439}
2440
2441//--------------------------------------------------------------------------
2442inline std::string GradientCacheDec(vtkRenderer* vtkNotUsed(ren), vtkVolume* vtkNotUsed(vol),
2443 vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap& inputs, int independentComponents = 0)
2444{
2445 const int numInputs = static_cast<int>(inputs.size());
2446 const int comp = numInputs == 1 ?
2447 // Dependent components use a single opacity lut.
2448 (!independentComponents ? 1 : numInputs)
2449 :
2450 // Independent components not supported with multiple-inputs
2451 1;
2452
2453 std::ostringstream toShader;
2454 for (const auto& item : inputs)
2455 {
2456 auto& input = item.second;
2457 if (input.Volume->GetProperty()->HasGradientOpacity())
2458 {
2459 toShader << "vec4 " << input.GradientCacheName << "[" << comp << "];\n";
2460 }
2461 }
2462
2463 return toShader.str();
2464}
2465
2466//--------------------------------------------------------------------------
2467inline std::string PreComputeGradientsImpl(vtkRenderer* vtkNotUsed(ren), vtkVolume* vtkNotUsed(vol),
2468 int noOfComponents = 1, int independentComponents = 0)
2469{
2470 std::ostringstream shader;
2471 if (independentComponents)
2472 {
2473 if (noOfComponents == 1)
2474 {
2475 shader << "g_gradients_0[0] = computeGradient(g_dataPos, 0, in_volume[0], 0);\n";
2476 }
2477 else
2478 {
2479 // Multiple components
2480 shader << "for (int comp = 0; comp < in_noOfComponents; comp++)\n"
2481 "{\n"
2482 " g_gradients_0[comp] = computeGradient(g_dataPos, comp, in_volume[0], 0);\n"
2483 "}\n";
2484 }
2485 }
2486 else
2487 {
2488 shader << "g_gradients_0[0] = computeGradient(g_dataPos, 0, in_volume[0], 0);\n";
2489 }
2490
2491 return shader.str();
2492}
2493
2494//--------------------------------------------------------------------------
2495inline std::string ShadingMultipleInputs(
2497{
2498 std::ostringstream toShaderStr;
2499 toShaderStr << " if (!g_skip)\n"
2500 " {\n"
2501 " vec3 texPos;\n";
2502
2503 switch (mapper->GetBlendMode())
2504 {
2506 default:
2507 {
2508 int i = 0;
2509 for (auto& item : inputs)
2510 {
2511 auto& input = item.second;
2512 auto property = input.Volume->GetProperty();
2513 // Transformation index. Index 0 refers to the global bounding-box.
2514 const auto idx = i + 1;
2515 toShaderStr <<
2516 // From global texture coordinates (bbox) to volume_i texture coords.
2517 // texPos = T * g_dataPos
2518 // T = T_dataToTex1 * T_worldToData * T_bboxTexToWorld;
2519 " texPos = (in_cellToPoint[" << idx << "] * in_inverseTextureDatasetMatrix[" << idx
2520 << "] * in_inverseVolumeMatrix[" << idx
2521 << "] *\n"
2522 " in_volumeMatrix[0] * in_textureDatasetMatrix[0] * "
2523 "vec4(g_dataPos.xyz, 1.0)).xyz;\n"
2524 " if ((all(lessThanEqual(texPos, vec3(1.0))) &&\n"
2525 " all(greaterThanEqual(texPos, vec3(0.0)))))\n"
2526 " {\n"
2527 " vec4 scalar = texture3D(in_volume["
2528 << i
2529 << "], texPos);\n"
2530 " scalar = scalar * in_volume_scale["
2531 << i << "] + in_volume_bias[" << i << "];\n";
2533 // MultiVolume considers input has one component when independent component is on.
2534 if (property->GetIndependentComponents())
2535 {
2536 toShaderStr << " scalar = vec4(scalar.r);\n";
2537 }
2538
2539 toShaderStr << " g_srcColor = vec4(0.0);\n";
2540
2541 if (property->GetTransferFunctionMode() == vtkVolumeProperty::TF_1D)
2542 {
2543 std::string gradientopacity_param = (property->HasGradientOpacity())
2544 ? input.GradientOpacityTablesMap[0] + std::string(", ")
2545 : std::string();
2546
2547 toShaderStr << " g_srcColor.a = computeOpacity(scalar,"
2548 << input.OpacityTablesMap[0]
2549 << ");\n"
2550 " if (g_srcColor.a > 0.0)\n"
2551 " {\n"
2552 " g_srcColor = computeColor(texPos, scalar, g_srcColor.a, "
2553 << input.RGBTablesMap[0] << ", " << gradientopacity_param << "in_volume[" << i
2554 << "], " << input.OpacityTablesMap[0] << ", " << i << ");\n";
2555
2556 if (property->HasGradientOpacity())
2557 {
2558 const auto& grad = input.GradientCacheName;
2559 toShaderStr << " " << grad << "[0] = computeGradient(texPos, 0, "
2560 << "in_volume[" << i << "], " << i
2561 << ");\n"
2562 " if ("
2563 << grad
2564 << "[0].w >= 0.0)\n"
2565 " {\n"
2566 " g_srcColor.a *= computeGradientOpacity("
2567 << grad << "[0], " << input.GradientOpacityTablesMap[0]
2568 << ");\n"
2569 " }\n";
2570 }
2571 }
2572 else if (property->GetTransferFunctionMode() == vtkVolumeProperty::TF_2D)
2573 {
2574 const auto& grad = input.GradientCacheName;
2575 toShaderStr <<
2576 // Sample 2DTF directly
2577 " " << grad << "[0] = computeGradient(texPos, 0, "
2578 << "in_volume[" << i << "], " << i
2579 << ");\n"
2580 " g_srcColor = texture2D("
2581 << input.TransferFunctions2DMap[0] << ", vec2(scalar.r, "
2582 << input.GradientCacheName
2583 << "[0].w));\n"
2584 " if (g_srcColor.a > 0.0)\n"
2585 " {\n";
2586 }
2587
2588 toShaderStr
2589 << " g_srcColor.rgb *= g_srcColor.a;\n"
2590 " g_fragColor = (1.0f - g_fragColor.a) * g_srcColor + g_fragColor;\n"
2591 " }\n"
2592 " }\n\n";
2593
2594 i++;
2595 }
2596 }
2597 break;
2598 }
2599 toShaderStr << " }\n";
2600
2601 return toShaderStr.str();
2602}
2603
2604//--------------------------------------------------------------------------
2605inline std::string ShadingSingleInput(vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* mapper,
2606 vtkVolume* vtkNotUsed(vol), vtkImageData* maskInput, vtkVolumeTexture* mask, int maskType,
2607 int noOfComponents, int independentComponents = 0)
2608{
2609 auto glMapper = vtkOpenGLGPUVolumeRayCastMapper::SafeDownCast(mapper);
2610
2611 std::string shaderStr;
2612
2613 shaderStr += std::string("\
2614 \n if (!g_skip)\
2615 \n {\
2616 \n vec4 scalar;\
2617 \n");
2619 {
2620 shaderStr += std::string("\
2621 \n // Compute IJK vertex position for current sample in the rectilinear grid\
2622 \n vec4 dataPosWorld = in_volumeMatrix[0] * in_textureDatasetMatrix[0] * vec4(g_dataPos, 1.0);\
2623 \n dataPosWorld = dataPosWorld / dataPosWorld.w;\
2624 \n dataPosWorld.w = 1.0;\
2625 \n ivec3 ijk = ivec3(0);\
2626 \n vec3 ijkTexCoord = vec3(0.0);\
2627 \n vec3 pCoords = vec3(0.0);\
2628 \n vec3 xPrev, xNext, tmp;\
2629 \n int sz = textureSize(in_coordTexs, 0);\
2630 \n vec4 dataPosWorldScaled = dataPosWorld * vec4(in_coordsScale, 1.0) +\
2631 \n vec4(in_coordsBias, 1.0);\
2632 \n for (int j = 0; j < 3; ++j)\
2633 \n {\
2634 \n xPrev = texture1D(in_coordTexs, 0.0).xyz;\
2635 \n xNext = texture1D(in_coordTexs, (in_coordTexSizes[j] - 1) / sz).xyz;\
2636 \n if (xNext[j] < xPrev[j])\
2637 \n {\
2638 \n tmp = xNext;\
2639 \n xNext = xPrev;\
2640 \n xPrev = tmp;\
2641 \n }\
2642 \n for (int i = 0; i < int(in_coordTexSizes[j]); i++)\
2643 \n {\
2644 \n xNext = texture1D(in_coordTexs, (i + 0.5) / sz).xyz;\
2645 \n if (dataPosWorldScaled[j] >= xPrev[j] && dataPosWorldScaled[j] < xNext[j])\
2646 \n {\
2647 \n ijk[j] = i - 1;\
2648 \n pCoords[j] = (dataPosWorldScaled[j] - xPrev[j]) / (xNext[j] - xPrev[j]);\
2649 \n break;\
2650 \n }\
2651 \n else if (dataPosWorldScaled[j] == xNext[j])\
2652 \n {\
2653 \n ijk[j] = i - 1;\
2654 \n pCoords[j] = 1.0;\
2655 \n break;\
2656 \n }\
2657 \n xPrev = xNext;\
2658 \n }\
2659 \n ijkTexCoord[j] = (ijk[j] + pCoords[j]) / in_coordTexSizes[j];\
2660 \n }\
2661 \n scalar = texture3D(in_volume[0], sign(in_cellSpacing[0]) * ijkTexCoord);\
2662 \n");
2663 }
2664 else
2665 {
2666 shaderStr += std::string("\
2667 \n scalar = texture3D(in_volume[0], g_dataPos);\
2668 \n");
2669 }
2670
2671 // simulate old intensity textures
2672 if (noOfComponents == 1)
2673 {
2674 shaderStr += std::string("\
2675 \n scalar.r = scalar.r * in_volume_scale[0].r + in_volume_bias[0].r;\
2676 \n scalar = vec4(scalar.r);");
2677 }
2678 else
2679 {
2680 // handle bias and scale
2681 shaderStr += std::string("\
2682 \n scalar = scalar * in_volume_scale[0] + in_volume_bias[0];");
2683 }
2684
2686 {
2687 if (noOfComponents > 1)
2688 {
2689 if (!independentComponents)
2690 {
2691 shaderStr += std::string("\
2692 \n if (l_maxValue.w < scalar.w || l_firstValue)\
2693 \n {\
2694 \n l_maxValue = scalar;\
2695 \n }\
2696 \n\
2697 \n if (l_firstValue)\
2698 \n {\
2699 \n l_firstValue = false;\
2700 \n }");
2701 }
2702 else
2703 {
2704 shaderStr += std::string("\
2705 \n for (int i = 0; i < in_noOfComponents; ++i)\
2706 \n {\
2707 \n if (l_maxValue[i] < scalar[i] || l_firstValue)\
2708 \n {\
2709 \n l_maxValue[i] = scalar[i];\
2710 \n }\
2711 \n }\
2712 \n if (l_firstValue)\
2713 \n {\
2714 \n l_firstValue = false;\
2715 \n }");
2716 }
2717 }
2718 else
2719 {
2720 shaderStr += std::string("\
2721 \n if (l_maxValue.w < scalar.x || l_firstValue)\
2722 \n {\
2723 \n l_maxValue.w = scalar.x;\
2724 \n }\
2725 \n\
2726 \n if (l_firstValue)\
2727 \n {\
2728 \n l_firstValue = false;\
2729 \n }");
2730 }
2731 }
2733 {
2734 if (noOfComponents > 1)
2735 {
2736 if (!independentComponents)
2737 {
2738 shaderStr += std::string("\
2739 \n if (l_minValue.w > scalar.w || l_firstValue)\
2740 \n {\
2741 \n l_minValue = scalar;\
2742 \n }\
2743 \n\
2744 \n if (l_firstValue)\
2745 \n {\
2746 \n l_firstValue = false;\
2747 \n }");
2748 }
2749 else
2750 {
2751 shaderStr += std::string("\
2752 \n for (int i = 0; i < in_noOfComponents; ++i)\
2753 \n {\
2754 \n if (l_minValue[i] < scalar[i] || l_firstValue)\
2755 \n {\
2756 \n l_minValue[i] = scalar[i];\
2757 \n }\
2758 \n }\
2759 \n if (l_firstValue)\
2760 \n {\
2761 \n l_firstValue = false;\
2762 \n }");
2763 }
2764 }
2765 else
2766 {
2767 shaderStr += std::string("\
2768 \n if (l_minValue.w > scalar.x || l_firstValue)\
2769 \n {\
2770 \n l_minValue.w = scalar.x;\
2771 \n }\
2772 \n\
2773 \n if (l_firstValue)\
2774 \n {\
2775 \n l_firstValue = false;\
2776 \n }");
2777 }
2778 }
2780 {
2781 if (noOfComponents > 1 && independentComponents)
2782 {
2783 shaderStr += std::string("\
2784 \n for (int i = 0; i < in_noOfComponents; ++i)\
2785 \n {\
2786 \n // Get the intensity in volume scalar range\
2787 \n float intensity = in_scalarsRange[i][0] +\
2788 \n (in_scalarsRange[i][1] -\
2789 \n in_scalarsRange[i][0]) * scalar[i];\
2790 \n if (in_averageIPRange.x <= intensity &&\
2791 \n intensity <= in_averageIPRange.y)\
2792 \n {\
2793 \n l_avgValue[i] += computeOpacity(scalar, i) * scalar[i];\
2794 \n ++l_numSamples[i];\
2795 \n }\
2796 \n }");
2797 }
2798 else
2799 {
2800 shaderStr += std::string("\
2801 \n // Get the intensity in volume scalar range\
2802 \n float intensity = in_scalarsRange[0][0] +\
2803 \n (in_scalarsRange[0][1] -\
2804 \n in_scalarsRange[0][0]) * scalar.x;\
2805 \n if (in_averageIPRange.x <= intensity &&\
2806 \n intensity <= in_averageIPRange.y)\
2807 \n {\
2808 \n l_avgValue.x += computeOpacity(scalar) * scalar.x;\
2809 \n ++l_numSamples.x;\
2810 \n }");
2811 }
2812 }
2813 else if (mapper->GetBlendMode() == vtkVolumeMapper::ADDITIVE_BLEND)
2814 {
2815 if (noOfComponents > 1 && independentComponents)
2816 {
2817 shaderStr += std::string("\
2818 \n for (int i = 0; i < in_noOfComponents; ++i)\
2819 \n {\
2820 \n float opacity = computeOpacity(scalar, i);\
2821 \n l_sumValue[i] = l_sumValue[i] + opacity * scalar[i];\
2822 \n }");
2823 }
2824 else
2825 {
2826 shaderStr += std::string("\
2827 \n float opacity = computeOpacity(scalar);\
2828 \n l_sumValue.x = l_sumValue.x + opacity * scalar.x;");
2829 }
2830 }
2831 else if (mapper->GetBlendMode() == vtkVolumeMapper::ISOSURFACE_BLEND)
2832 {
2833 shaderStr += std::string("\
2834 \n#if NUMBER_OF_CONTOURS\
2835 \n int maxComp = 0;");
2836
2837 std::string compParamStr;
2838 if (noOfComponents > 1 && independentComponents)
2839 {
2840 shaderStr += std::string("\
2841 \n for (int i = 1; i < in_noOfComponents; ++i)\
2842 \n {\
2843 \n if (in_componentWeight[i] > in_componentWeight[maxComp])\
2844 \n maxComp = i;\
2845 \n }");
2846 compParamStr = ", maxComp";
2847 }
2848 shaderStr += std::string("\
2849 \n if (g_currentT == 0)\
2850 \n {\
2851 \n l_initialIndex = findIsoSurfaceIndex(scalar[maxComp], l_normValues);\
2852 \n }\
2853 \n else\
2854 \n {\
2855 \n float s;\
2856 \n bool shade = false;\
2857 \n l_initialIndex = clamp(l_initialIndex, 0, NUMBER_OF_CONTOURS);\
2858 \n if (scalar[maxComp] < l_normValues[l_initialIndex])\
2859 \n {\
2860 \n s = l_normValues[l_initialIndex];\
2861 \n l_initialIndex--;\
2862 \n shade = true;\
2863 \n }\
2864 \n if (scalar[maxComp] > l_normValues[l_initialIndex+1])\
2865 \n {\
2866 \n s = l_normValues[l_initialIndex+1];\
2867 \n l_initialIndex++;\
2868 \n shade = true;\
2869 \n }\
2870 \n if (shade == true)\
2871 \n {\
2872 \n vec4 vs = vec4(s);\
2873 \n g_srcColor.a = computeOpacity(vs " +
2874 compParamStr + ");\
2875 \n g_srcColor = computeColor(vs, g_srcColor.a " +
2876 compParamStr + ");\
2877 \n g_srcColor.rgb *= g_srcColor.a;\
2878 \n g_fragColor = (1.0f - g_fragColor.a) * g_srcColor + g_fragColor;\
2879 \n }\
2880 \n }\
2881 \n#endif");
2882 }
2883 else if (mapper->GetBlendMode() == vtkVolumeMapper::SLICE_BLEND)
2884 {
2885 shaderStr += std::string("\
2886 \n // test if the intersection is inside the volume bounds\
2887 \n if (any(greaterThan(g_dataPos, vec3(1.0))) || any(lessThan(g_dataPos, vec3(0.0))))\
2888 \n {\
2889 \n discard;\
2890 \n }\
2891 \n float opacity = computeOpacity(scalar);\
2892 \n g_fragColor = computeColor(scalar, opacity);\
2893 \n g_fragColor.rgb *= opacity;\
2894 \n g_exit = true;");
2895 }
2896 else if (mapper->GetBlendMode() == vtkVolumeMapper::COMPOSITE_BLEND)
2897 {
2898 if (noOfComponents > 1 && independentComponents)
2899 {
2900 shaderStr += std::string("\
2901 \n vec4 color[4]; vec4 tmp = vec4(0.0);\
2902 \n float totalAlpha = 0.0;\
2903 \n for (int i = 0; i < in_noOfComponents; ++i)\
2904 \n {\
2905 ");
2906 if (glMapper->GetUseDepthPass() &&
2908 {
2909 shaderStr += std::string("\
2910 \n // Data fetching from the red channel of volume texture\
2911 \n float opacity = computeOpacity(scalar, i);\
2912 \n if (opacity > 0.0)\
2913 \n {\
2914 \n g_srcColor.a = opacity;\
2915 \n }\
2916 \n }");
2917 }
2918 else if (!mask || !maskInput || maskType != vtkGPUVolumeRayCastMapper::LabelMapMaskType)
2919 {
2920 shaderStr += std::string("\
2921 \n // Data fetching from the red channel of volume texture\
2922 \n color[i][3] = computeOpacity(scalar, i);\
2923 \n color[i] = computeColor(scalar, color[i][3], i);\
2924 \n totalAlpha += color[i][3] * in_componentWeight[i];\
2925 \n }\
2926 \n if (totalAlpha > 0.0)\
2927 \n {\
2928 \n for (int i = 0; i < in_noOfComponents; ++i)\
2929 \n {\
2930 \n // Only let visible components contribute to the final color\
2931 \n if (in_componentWeight[i] <= 0) continue;\
2932 \n\
2933 \n tmp.x += color[i].x * color[i].w * in_componentWeight[i];\
2934 \n tmp.y += color[i].y * color[i].w * in_componentWeight[i];\
2935 \n tmp.z += color[i].z * color[i].w * in_componentWeight[i];\
2936 \n tmp.w += ((color[i].w * color[i].w)/totalAlpha);\
2937 \n }\
2938 \n }\
2939 \n g_fragColor = (1.0f - g_fragColor.a) * tmp + g_fragColor;");
2940 }
2941 }
2942 else if (glMapper->GetUseDepthPass() &&
2944 {
2945 shaderStr += std::string("\
2946 \n g_srcColor = vec4(0.0);\
2947 \n g_srcColor.a = computeOpacity(scalar);");
2948 }
2949 else
2950 {
2951 if (!mask || !maskInput || maskType != vtkGPUVolumeRayCastMapper::LabelMapMaskType)
2952 {
2953 shaderStr += std::string("\
2954 \n g_srcColor = vec4(0.0);\
2955 \n g_srcColor.a = computeOpacity(scalar);\
2956 \n if (g_srcColor.a > 0.0)\
2957 \n {\
2958 \n g_srcColor = computeColor(scalar, g_srcColor.a);");
2959 }
2960
2961 shaderStr += std::string("\
2962 \n // Opacity calculation using compositing:\
2963 \n // Here we use front to back compositing scheme whereby\
2964 \n // the current sample value is multiplied to the\
2965 \n // currently accumulated alpha and then this product\
2966 \n // is subtracted from the sample value to get the\
2967 \n // alpha from the previous steps. Next, this alpha is\
2968 \n // multiplied with the current sample colour\
2969 \n // and accumulated to the composited colour. The alpha\
2970 \n // value from the previous steps is then accumulated\
2971 \n // to the composited colour alpha.\
2972 \n g_srcColor.rgb *= g_srcColor.a;\
2973 \n g_fragColor = (1.0f - g_fragColor.a) * g_srcColor + g_fragColor;");
2974
2975 if (!mask || !maskInput || maskType != vtkGPUVolumeRayCastMapper::LabelMapMaskType)
2976 {
2977 shaderStr += std::string("\
2978 \n }");
2979 }
2980 }
2981 }
2982 else
2983 {
2984 shaderStr += std::string();
2985 }
2986
2987 shaderStr += std::string("\
2988 \n }");
2989 return shaderStr;
2990}
2991
2992//--------------------------------------------------------------------------
2993inline std::string PickingActorPassExit(
2994 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol))
2995{
2996 return std::string("\
2997 \n // Special coloring mode which renders the Prop Id in fragments that\
2998 \n // have accumulated certain level of opacity. Used during the selection\
2999 \n // pass vtkHardwareSelection::ACTOR_PASS.\
3000 \n if (g_fragColor.a > 3.0/ 255.0)\
3001 \n {\
3002 \n gl_FragData[0] = vec4(in_propId, 1.0);\
3003 \n }\
3004 \n else\
3005 \n {\
3006 \n gl_FragData[0] = vec4(0.0);\
3007 \n }\
3008 \n return;");
3009};
3010
3011//--------------------------------------------------------------------------
3012inline std::string PickingIdLow24PassExit(
3013 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol))
3014{
3015 return std::string("\
3016 \n // Special coloring mode which renders the voxel index in fragments that\
3017 \n // have accumulated certain level of opacity. Used during the selection\
3018 \n // pass vtkHardwareSelection::ID_LOW24.\
3019 \n if (g_fragColor.a > 3.0/ 255.0)\
3020 \n {\
3021 \n uvec3 volumeDim = uvec3(in_textureExtentsMax - in_textureExtentsMin);\
3022 \n uvec3 voxelCoords = uvec3(volumeDim * g_dataPos);\
3023 \n // vtkHardwareSelector assumes index 0 to be empty space, so add uint(1).\
3024 \n uint idx = volumeDim.x * volumeDim.y * voxelCoords.z +\
3025 \n volumeDim.x * voxelCoords.y + voxelCoords.x + uint(1);\
3026 \n gl_FragData[0] = vec4(float(idx % uint(256)) / 255.0,\
3027 \n float((idx / uint(256)) % uint(256)) / 255.0,\
3028 \n float((idx / uint(65536)) % uint(256)) / 255.0, 1.0);\
3029 \n }\
3030 \n else\
3031 \n {\
3032 \n gl_FragData[0] = vec4(0.0);\
3033 \n }\
3034 \n return;");
3035};
3036
3037//--------------------------------------------------------------------------
3038inline std::string PickingIdHigh24PassExit(
3039 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol))
3040{
3041 return std::string("\
3042 \n // Special coloring mode which renders the voxel index in fragments that\
3043 \n // have accumulated certain level of opacity. Used during the selection\
3044 \n // pass vtkHardwareSelection::ID_MID24.\
3045 \n if (g_fragColor.a > 3.0/ 255.0)\
3046 \n {\
3047 \n uvec3 volumeDim = uvec3(in_textureExtentsMax - in_textureExtentsMin);\
3048 \n uvec3 voxelCoords = uvec3(volumeDim * g_dataPos);\
3049 \n // vtkHardwareSelector assumes index 0 to be empty space, so add uint(1).\
3050 \n uint idx = volumeDim.x * volumeDim.y * voxelCoords.z +\
3051 \n volumeDim.x * voxelCoords.y + voxelCoords.x + uint(1);\
3052 \n idx = ((idx & 0xff000000) >> 24);\
3053 \n gl_FragData[0] = vec4(float(idx % uint(256)) / 255.0,\
3054 \n float((idx / uint(256)) % uint(256)) / 255.0,\
3055 \n float(idx / uint(65536)) / 255.0, 1.0);\
3056 \n }\
3057 \n else\
3058 \n {\
3059 \n gl_FragData[0] = vec4(0.0);\
3060 \n }\
3061 \n return;");
3062};
3063
3064//--------------------------------------------------------------------------
3065inline std::string ShadingExit(vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* mapper,
3066 vtkVolume* vtkNotUsed(vol), int noOfComponents, int independentComponents = 0)
3067{
3069
3070 if (glMapper->GetUseDepthPass() &&
3073 {
3074 return std::string();
3075 }
3077 {
3078 if (noOfComponents > 1 && independentComponents)
3079 {
3080 return std::string("\
3081 \n g_srcColor = vec4(0);\
3082 \n for (int i = 0; i < in_noOfComponents; ++i)\
3083 \n {\
3084 \n vec4 tmp = computeColor(l_maxValue, computeOpacity(l_maxValue, i), i);\
3085 \n g_srcColor[0] += tmp[0] * tmp[3] * in_componentWeight[i];\
3086 \n g_srcColor[1] += tmp[1] * tmp[3] * in_componentWeight[i];\
3087 \n g_srcColor[2] += tmp[2] * tmp[3] * in_componentWeight[i];\
3088 \n g_srcColor[3] += tmp[3] * in_componentWeight[i];\
3089 \n }\
3090 \n g_fragColor = g_srcColor;");
3091 }
3092 else
3093 {
3094 return std::string("\
3095 \n g_srcColor = computeColor(l_maxValue,\
3096 \n computeOpacity(l_maxValue));\
3097 \n g_fragColor.rgb = g_srcColor.rgb * g_srcColor.a;\
3098 \n g_fragColor.a = g_srcColor.a;");
3099 }
3100 }
3102 {
3103 if (noOfComponents > 1 && independentComponents)
3104 {
3105 return std::string("\
3106 \n g_srcColor = vec4(0);\
3107 \n for (int i = 0; i < in_noOfComponents; ++i)\
3108 \n {\
3109 \n vec4 tmp = computeColor(l_minValue, computeOpacity(l_minValue, i), i);\
3110 \n g_srcColor[0] += tmp[0] * tmp[3] * in_componentWeight[i];\
3111 \n g_srcColor[1] += tmp[1] * tmp[3] * in_componentWeight[i];\
3112 \n g_srcColor[2] += tmp[2] * tmp[3] * in_componentWeight[i];\
3113 \n g_srcColor[2] += tmp[3] * tmp[3] * in_componentWeight[i];\
3114 \n }\
3115 \n g_fragColor = g_srcColor;");
3116 }
3117 else
3118 {
3119 return std::string("\
3120 \n g_srcColor = computeColor(l_minValue,\
3121 \n computeOpacity(l_minValue));\
3122 \n g_fragColor.rgb = g_srcColor.rgb * g_srcColor.a;\
3123 \n g_fragColor.a = g_srcColor.a;");
3125 }
3127 {
3128 if (noOfComponents > 1 && independentComponents)
3129 {
3130 return std::string("\
3131 \n for (int i = 0; i < in_noOfComponents; ++i)\
3132 \n {\
3133 \n if (l_numSamples[i] == uint(0))\
3134 \n {\
3135 \n continue;\
3136 \n }\
3137 \n l_avgValue[i] = l_avgValue[i] * in_componentWeight[i] /\
3138 \n l_numSamples[i];\
3139 \n if (i > 0)\
3140 \n {\
3141 \n l_avgValue[0] += l_avgValue[i];\
3142 \n }\
3143 \n }\
3144 \n l_avgValue[0] = clamp(l_avgValue[0], 0.0, 1.0);\
3145 \n g_fragColor = vec4(vec3(l_avgValue[0]), 1.0);");
3146 }
3147 else
3148 {
3149 return std::string("\
3150 \n if (l_numSamples.x == uint(0))\
3151 \n {\
3152 \n discard;\
3153 \n }\
3154 \n else\
3155 \n {\
3156 \n l_avgValue.x /= l_numSamples.x;\
3157 \n l_avgValue.x = clamp(l_avgValue.x, 0.0, 1.0);\
3158 \n g_fragColor = vec4(vec3(l_avgValue.x), 1.0);\
3159 \n }");
3160 }
3161 }
3162 else if (mapper->GetBlendMode() == vtkVolumeMapper::ADDITIVE_BLEND)
3163 {
3164 if (noOfComponents > 1 && independentComponents)
3165 {
3166 // Add all the components to get final color
3167 return std::string("\
3168 \n l_sumValue.x *= in_componentWeight.x;\
3169 \n for (int i = 1; i < in_noOfComponents; ++i)\
3170 \n {\
3171 \n l_sumValue.x += l_sumValue[i] * in_componentWeight[i];\
3172 \n }\
3173 \n l_sumValue.x = clamp(l_sumValue.x, 0.0, 1.0);\
3174 \n g_fragColor = vec4(vec3(l_sumValue.x), 1.0);");
3175 }
3176 else
3177 {
3178 return std::string("\
3179 \n l_sumValue.x = clamp(l_sumValue.x, 0.0, 1.0);\
3180 \n g_fragColor = vec4(vec3(l_sumValue.x), 1.0);");
3181 }
3182 }
3183 else
3184 {
3185 return std::string();
3186 }
3187}
3188
3189//--------------------------------------------------------------------------
3190inline std::string TerminationDeclarationVertex(
3191 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol))
3192{
3193 return std::string();
3194}
3195
3196//--------------------------------------------------------------------------
3197inline std::string TerminationDeclarationFragment(
3198 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol))
3199{
3200 return std::string("\
3201 \n const float g_opacityThreshold = 1.0 - 1.0 / 255.0;");
3202}
3203
3204//--------------------------------------------------------------------------
3205inline std::string PickingActorPassDeclaration(
3206 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol))
3207{
3208 return std::string("\
3209 \n uniform vec3 in_propId;");
3210};
3211
3212//--------------------------------------------------------------------------
3213inline std::string TerminationInit(
3214 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* mapper, vtkVolume* vol)
3215{
3216 std::string shaderStr;
3217 shaderStr += std::string("\
3218 \n // Flag to indicate if the raymarch loop should terminate \
3219 \n bool stop = false;\
3220 \n\
3221 \n g_terminatePointMax = 0.0;\
3222 \n\
3223 \n vec4 l_depthValue = texture2D(in_depthSampler, fragTexCoord);\
3224 \n // Depth test\
3225 \n if(gl_FragCoord.z >= l_depthValue.x)\
3226 \n {\
3227 \n discard;\
3228 \n }\
3229 \n\
3230 \n // color buffer or max scalar buffer have a reduced size.\
3231 \n fragTexCoord = (gl_FragCoord.xy - in_windowLowerLeftCorner) *\
3232 \n in_inverseOriginalWindowSize;\
3233 \n");
3234
3236 {
3237 vtkImplicitFunction* sliceFunc = vol->GetProperty()->GetSliceFunction();
3238 if (sliceFunc)
3239 {
3240 if (sliceFunc->IsA("vtkPlane"))
3241 {
3242 shaderStr += std::string("\
3243 \n\
3244 \n // Intersection with plane\
3245 \n float t = intersectRayPlane(ip_vertexPos, rayDir);\
3246 \n vec4 intersection = vec4(ip_vertexPos + t * rayDir, 1.0);\
3247 \n g_intersection = (in_inverseTextureDatasetMatrix[0] * intersection).xyz;\
3248 \n vec4 intersDC = in_projectionMatrix * in_modelViewMatrix * in_volumeMatrix[0] * intersection;\
3249 \n intersDC.xyz /= intersDC.w;\
3250 \n vec4 intersWin = NDCToWindow(intersDC.x, intersDC.y, intersDC.z);\
3251 \n if(intersWin.z >= l_depthValue.x)\
3252 \n {\
3253 \n discard;\
3254 \n }\
3255 \n");
3256 }
3257 else
3258 {
3259 vtkErrorWithObjectMacro(
3260 sliceFunc, "Implicit function type is not supported by this mapper.");
3261 }
3262 }
3263 }
3264
3265 shaderStr += std::string("\
3266 \n // Compute max number of iterations it will take before we hit\
3267 \n // the termination point\
3268 \n\
3269 \n // Abscissa of the point on the depth buffer along the ray.\
3270 \n // point in texture coordinates\
3271 \n vec4 rayTermination = WindowToNDC(gl_FragCoord.x, gl_FragCoord.y, l_depthValue.x);\
3272 \n\
3273 \n // From normalized device coordinates to eye coordinates.\
3274 \n // in_projectionMatrix is inversed because of way VT\
3275 \n // From eye coordinates to texture coordinates\
3276 \n rayTermination = ip_inverseTextureDataAdjusted *\
3277 \n in_inverseVolumeMatrix[0] *\
3278 \n in_inverseModelViewMatrix *\
3279 \n in_inverseProjectionMatrix *\
3280 \n rayTermination;\
3281 \n g_rayTermination = rayTermination.xyz / rayTermination.w;\
3282 \n\
3283 \n // Setup the current segment:\
3284 \n g_dataPos = g_rayOrigin;\
3285 \n g_terminatePos = g_rayTermination;\
3286 \n\
3287 \n g_terminatePointMax = length(g_terminatePos.xyz - g_dataPos.xyz) /\
3288 \n length(g_dirStep);\
3289 \n g_currentT = 0.0;");
3290
3291 return shaderStr;
3292}
3293
3294//--------------------------------------------------------------------------
3295inline std::string TerminationImplementation(
3296 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol))
3297{
3298 return std::string("\
3299 \n if(any(greaterThan(max(g_dirStep, vec3(0.0))*(g_dataPos - in_texMax[0]),vec3(0.0))) ||\
3300 \n any(greaterThan(min(g_dirStep, vec3(0.0))*(g_dataPos - in_texMin[0]),vec3(0.0))))\
3301 \n {\
3302 \n break;\
3303 \n }\
3304 \n\
3305 \n // Early ray termination\
3306 \n // if the currently composited colour alpha is already fully saturated\
3307 \n // we terminated the loop or if we have hit an obstacle in the\
3308 \n // direction of they ray (using depth buffer) we terminate as well.\
3309 \n if((g_fragColor.a > g_opacityThreshold) || \
3310 \n g_currentT >= g_terminatePointMax)\
3311 \n {\
3312 \n break;\
3313 \n }\
3314 \n ++g_currentT;");
3315}
3316
3317//--------------------------------------------------------------------------
3318inline std::string TerminationExit(
3319 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol))
3320{
3321 return std::string();
3322}
3323
3324//--------------------------------------------------------------------------
3325inline std::string CroppingDeclarationVertex(
3326 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol))
3327{
3328 return std::string();
3329}
3330
3331//--------------------------------------------------------------------------
3332inline std::string CroppingDeclarationFragment(
3333 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* mapper, vtkVolume* vtkNotUsed(vol))
3334{
3335 if (!mapper->GetCropping())
3336 {
3337 return std::string();
3338 }
3339
3340 return std::string("\
3341 \nuniform float in_croppingPlanes[6];\
3342 \nuniform int in_croppingFlags [32];\
3343 \nfloat croppingPlanesTexture[6];\
3344 \n\
3345 \n// X: axis = 0, Y: axis = 1, Z: axis = 2\
3346 \n// cp Cropping plane bounds (minX, maxX, minY, maxY, minZ, maxZ)\
3347 \nint computeRegionCoord(float cp[6], vec3 pos, int axis)\
3348 \n {\
3349 \n int cpmin = axis * 2;\
3350 \n int cpmax = cpmin + 1;\
3351 \n\
3352 \n if (pos[axis] < cp[cpmin])\
3353 \n {\
3354 \n return 1;\
3355 \n }\
3356 \n else if (pos[axis] >= cp[cpmin] &&\
3357 \n pos[axis] < cp[cpmax])\
3358 \n {\
3359 \n return 2;\
3360 \n }\
3361 \n else if (pos[axis] >= cp[cpmax])\
3362 \n {\
3363 \n return 3;\
3364 \n }\
3365 \n return 0;\
3366 \n }\
3367 \n\
3368 \nint computeRegion(float cp[6], vec3 pos)\
3369 \n {\
3370 \n return (computeRegionCoord(cp, pos, 0) +\
3371 \n (computeRegionCoord(cp, pos, 1) - 1) * 3 +\
3372 \n (computeRegionCoord(cp, pos, 2) - 1) * 9);\
3373 \n }");
3374}
3375
3376//--------------------------------------------------------------------------
3377inline std::string CroppingInit(
3378 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* mapper, vtkVolume* vtkNotUsed(vol))
3379{
3380 if (!mapper->GetCropping())
3381 {
3382 return std::string();
3383 }
3384
3385 return std::string("\
3386 \n // Convert cropping region to texture space\
3387 \n mat4 datasetToTextureMat = in_inverseTextureDatasetMatrix[0];\
3388 \n\
3389 \n vec4 tempCrop = vec4(in_croppingPlanes[0], 0.0, 0.0, 1.0);\
3390 \n tempCrop = datasetToTextureMat * tempCrop;\
3391 \n if (tempCrop[3] != 0.0)\
3392 \n {\
3393 \n tempCrop[0] /= tempCrop[3];\
3394 \n }\
3395 \n croppingPlanesTexture[0] = tempCrop[0];\
3396 \n\
3397 \n tempCrop = vec4(in_croppingPlanes[1], 0.0, 0.0, 1.0);\
3398 \n tempCrop = datasetToTextureMat * tempCrop;\
3399 \n if (tempCrop[3] != 0.0)\
3400 \n {\
3401 \n tempCrop[0] /= tempCrop[3];\
3402 \n }\
3403 \n croppingPlanesTexture[1] = tempCrop[0];\
3404 \n\
3405 \n tempCrop = vec4(0.0, in_croppingPlanes[2], 0.0, 1.0);\
3406 \n tempCrop = datasetToTextureMat * tempCrop;\
3407 \n if (tempCrop[3] != 0.0)\
3408 \n {\
3409 \n tempCrop[1] /= tempCrop[3];\
3410 \n }\
3411 \n croppingPlanesTexture[2] = tempCrop[1];\
3412 \n\
3413 \n tempCrop = vec4(0.0, in_croppingPlanes[3], 0.0, 1.0);\
3414 \n tempCrop = datasetToTextureMat * tempCrop;\
3415 \n if (tempCrop[3] != 0.0)\
3416 \n {\
3417 \n tempCrop[1] /= tempCrop[3];\
3418 \n }\
3419 \n croppingPlanesTexture[3] = tempCrop[1];\
3420 \n\
3421 \n tempCrop = vec4(0.0, 0.0, in_croppingPlanes[4], 1.0);\
3422 \n tempCrop = datasetToTextureMat * tempCrop;\
3423 \n if (tempCrop[3] != 0.0)\
3424 \n {\
3425 \n tempCrop[2] /= tempCrop[3];\
3426 \n }\
3427 \n croppingPlanesTexture[4] = tempCrop[2];\
3428 \n\
3429 \n tempCrop = vec4(0.0, 0.0, in_croppingPlanes[5], 1.0);\
3430 \n tempCrop = datasetToTextureMat * tempCrop;\
3431 \n if (tempCrop[3] != 0.0)\
3432 \n {\
3433 \n tempCrop[2] /= tempCrop[3];\
3434 \n }\
3435 \n croppingPlanesTexture[5] = tempCrop[2];");
3436}
3437
3438//--------------------------------------------------------------------------
3439inline std::string CroppingImplementation(
3440 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* mapper, vtkVolume* vtkNotUsed(vol))
3441{
3442 if (!mapper->GetCropping())
3443 {
3444 return std::string();
3445 }
3446
3447 return std::string("\
3448 \n // Determine region\
3449 \n int regionNo = computeRegion(croppingPlanesTexture, g_dataPos);\
3450 \n\
3451 \n // Do & operation with cropping flags\
3452 \n // Pass the flag that its Ok to sample or not to sample\
3453 \n if (in_croppingFlags[regionNo] == 0)\
3454 \n {\
3455 \n // Skip this voxel\
3456 \n g_skip = true;\
3457 \n }");
3458}
3459
3460//--------------------------------------------------------------------------
3461inline std::string CroppingExit(
3462 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol))
3463{
3464 return std::string();
3465}
3466
3467//--------------------------------------------------------------------------
3468inline std::string ClippingDeclarationVertex(
3469 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol))
3470{
3471 return std::string();
3472}
3473
3474//--------------------------------------------------------------------------
3475inline std::string ClippingDeclarationFragment(
3476 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* mapper, vtkVolume* vtkNotUsed(vol))
3477{
3478 if (!mapper->GetClippingPlanes())
3479 {
3480 return std::string();
3481 }
3482
3483 return std::string("\
3484 \n /// We support only 8 clipping planes for now\
3485 \n /// The first value is the size of the data array for clipping\
3486 \n /// planes (origin, normal)\
3487 \n uniform float in_clippingPlanes[49];\
3488 \n uniform float in_clippedVoxelIntensity;\
3489 \n\
3490 \n int clip_numPlanes;\
3491 \n vec3 clip_rayDirObj;\
3492 \n mat4 clip_texToObjMat;\
3493 \n mat4 clip_objToTexMat;\
3494 \n\
3495 \n// Tighten the sample range as needed to account for clip planes. \
3496 \n// Arguments are in texture coordinates. \
3497 \n// Returns true if the range is at all valid after clipping. If not, \
3498 \n// the fragment should be discarded. \
3499 \nbool AdjustSampleRangeForClipping(inout vec3 startPosTex, inout vec3 stopPosTex) \
3500 \n{ \
3501 \n vec4 startPosObj = vec4(0.0);\
3502 \n {\
3503 \n startPosObj = clip_texToObjMat * vec4(startPosTex - g_rayJitter, 1.0);\
3504 \n startPosObj = startPosObj / startPosObj.w;\
3505 \n startPosObj.w = 1.0;\
3506 \n }\
3507 \n\
3508 \n vec4 stopPosObj = vec4(0.0);\
3509 \n {\
3510 \n stopPosObj = clip_texToObjMat * vec4(stopPosTex, 1.0);\
3511 \n stopPosObj = stopPosObj / stopPosObj.w;\
3512 \n stopPosObj.w = 1.0;\
3513 \n }\
3514 \n\
3515 \n for (int i = 0; i < clip_numPlanes; i = i + 6)\
3516 \n {\
3517 \n vec3 planeOrigin = vec3(in_clippingPlanes[i + 1],\
3518 \n in_clippingPlanes[i + 2],\
3519 \n in_clippingPlanes[i + 3]);\
3520 \n vec3 planeNormal = normalize(vec3(in_clippingPlanes[i + 4],\
3521 \n in_clippingPlanes[i + 5],\
3522 \n in_clippingPlanes[i + 6]));\
3523 \n\
3524 \n // Abort if the entire segment is clipped:\
3525 \n // (We can do this before adjusting the term point, since it'll \
3526 \n // only move further into the clipped area)\
3527 \n float startDistance = dot(planeNormal, planeOrigin - startPosObj.xyz);\
3528 \n float stopDistance = dot(planeNormal, planeOrigin - stopPosObj.xyz);\
3529 \n bool startClipped = startDistance > 0.0;\
3530 \n bool stopClipped = stopDistance > 0.0;\
3531 \n if (startClipped && stopClipped)\
3532 \n {\
3533 \n return false;\
3534 \n }\
3535 \n\
3536 \n float rayDotNormal = dot(clip_rayDirObj, planeNormal);\
3537 \n bool frontFace = rayDotNormal > 0.0;\
3538 \n\
3539 \n // Move the start position further from the eye if needed:\
3540 \n if (frontFace && // Observing from the clipped side (plane's front face)\
3541 \n startDistance > 0.0) // Ray-entry lies on the clipped side.\
3542 \n {\
3543 \n // Scale the point-plane distance to the ray direction and update the\
3544 \n // entry point.\
3545 \n float rayScaledDist = startDistance / rayDotNormal;\
3546 \n startPosObj = vec4(startPosObj.xyz + rayScaledDist * clip_rayDirObj, 1.0);\
3547 \n vec4 newStartPosTex = clip_objToTexMat * vec4(startPosObj.xyz, 1.0);\
3548 \n newStartPosTex /= newStartPosTex.w;\
3549 \n startPosTex = newStartPosTex.xyz;\
3550 \n startPosTex += g_rayJitter;\
3551 \n }\
3552 \n\
3553 \n // Move the end position closer to the eye if needed:\
3554 \n if (!frontFace && // Observing from the unclipped side (plane's back face)\
3555 \n stopDistance > 0.0) // Ray-entry lies on the unclipped side.\
3556 \n {\
3557 \n // Scale the point-plane distance to the ray direction and update the\
3558 \n // termination point.\
3559 \n float rayScaledDist = stopDistance / rayDotNormal;\
3560 \n stopPosObj = vec4(stopPosObj.xyz + rayScaledDist * clip_rayDirObj, 1.0);\
3561 \n vec4 newStopPosTex = clip_objToTexMat * vec4(stopPosObj.xyz, 1.0);\
3562 \n newStopPosTex /= newStopPosTex.w;\
3563 \n stopPosTex = newStopPosTex.xyz;\
3564 \n }\
3565 \n }\
3566 \n\
3567 \n if (any(greaterThan(startPosTex, in_texMax[0])) ||\
3568 \n any(lessThan(startPosTex, in_texMin[0])))\
3569 \n {\
3570 \n return false;\
3571 \n }\
3572 \n\
3573 \n return true;\
3574 \n}\
3575 \n");
3576}
3577
3578//--------------------------------------------------------------------------
3579inline std::string ClippingInit(
3580 vtkRenderer* ren, vtkVolumeMapper* mapper, vtkVolume* vtkNotUsed(vol))
3581{
3582 if (!mapper->GetClippingPlanes())
3584 return std::string();
3585 }
3586
3587 std::string shaderStr;
3589 {
3590 shaderStr = std::string("\
3591 \n vec4 tempClip = in_volumeMatrix[0] * vec4(rayDir, 0.0);\
3592 \n if (tempClip.w != 0.0)\
3593 \n {\
3594 \n tempClip = tempClip/tempClip.w;\
3595 \n tempClip.w = 1.0;\
3596 \n }\
3597 \n clip_rayDirObj = normalize(tempClip.xyz);");
3598 }
3599 else
3600 {
3601 shaderStr = std::string("\
3602 clip_rayDirObj = normalize(in_projectionDirection);");
3604
3605 shaderStr += std::string("\
3606 \n clip_numPlanes = int(in_clippingPlanes[0]);\
3607 \n clip_texToObjMat = in_volumeMatrix[0] * inverse(ip_inverseTextureDataAdjusted);\
3608 \n clip_objToTexMat = ip_inverseTextureDataAdjusted * in_inverseVolumeMatrix[0];\
3609 \n\
3610 \n // Adjust for clipping.\
3611 \n if (!AdjustSampleRangeForClipping(g_rayOrigin, g_rayTermination))\
3612 \n { // entire ray is clipped.\
3613 \n discard;\
3614 \n }\
3615 \n\
3616 \n // Update the segment post-clip:\
3617 \n g_dataPos = g_rayOrigin;\
3618 \n g_terminatePos = g_rayTermination;\
3619 \n g_terminatePointMax = length(g_terminatePos.xyz - g_dataPos.xyz) /\
3620 \n length(g_dirStep);\
3621 \n");
3622
3623 return shaderStr;
3625
3626//--------------------------------------------------------------------------
3627inline std::string ClippingImplementation(
3628 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol))
3629{
3630 return std::string();
3631}
3632
3633//--------------------------------------------------------------------------
3634inline std::string ClippingExit(
3635 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol))
3636{
3637 return std::string();
3638}
3639
3640//--------------------------------------------------------------------------
3641inline std::string BinaryMaskDeclaration(vtkRenderer* vtkNotUsed(ren),
3642 vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol), vtkImageData* maskInput,
3643 vtkVolumeTexture* mask, int vtkNotUsed(maskType))
3644{
3645 if (!mask || !maskInput)
3646 {
3647 return std::string();
3648 }
3649 else
3650 {
3651 return std::string("uniform sampler3D in_mask;");
3652 }
3653}
3654
3655//--------------------------------------------------------------------------
3656inline std::string BinaryMaskImplementation(vtkRenderer* vtkNotUsed(ren),
3657 vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol), vtkImageData* maskInput,
3658 vtkVolumeTexture* mask, int maskType)
3659{
3660 if (!mask || !maskInput || maskType == vtkGPUVolumeRayCastMapper::LabelMapMaskType)
3661 {
3662 return std::string();
3663 }
3664 else
3665 {
3666 return std::string("\
3667 \nvec4 maskValue = texture3D(in_mask, g_dataPos);\
3668 \nif(maskValue.r <= 0.0)\
3669 \n {\
3670 \n g_skip = true;\
3671 \n }");
3672 }
3673}
3674
3675//--------------------------------------------------------------------------
3676inline std::string CompositeMaskDeclarationFragment(vtkRenderer* vtkNotUsed(ren),
3677 vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol), vtkImageData* maskInput,
3678 vtkVolumeTexture* mask, int maskType)
3679{
3680 if (!mask || !maskInput || maskType != vtkGPUVolumeRayCastMapper::LabelMapMaskType)
3681 {
3682 return std::string();
3683 }
3684 else
3685 {
3686 return std::string("\
3687 \nuniform float in_maskBlendFactor;\
3688 \nuniform sampler2D in_labelMapTransfer;\
3689 \nuniform float in_mask_scale;\
3690 \nuniform float in_mask_bias;\
3691 \nuniform int in_labelMapNumLabels;\
3692 \n");
3693 }
3694}
3695
3696//--------------------------------------------------------------------------
3697inline std::string CompositeMaskImplementation(vtkRenderer* vtkNotUsed(ren),
3698 vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol), vtkImageData* maskInput,
3699 vtkVolumeTexture* mask, int maskType, int noOfComponents)
3700{
3701 if (!mask || !maskInput || maskType != vtkGPUVolumeRayCastMapper::LabelMapMaskType)
3702 {
3703 return std::string();
3704 }
3705 else
3706 {
3707 std::string shaderStr = std::string("\
3708 \nvec4 scalar = texture3D(in_volume[0], g_dataPos);");
3709
3710 // simulate old intensity textures
3711 if (noOfComponents == 1)
3712 {
3713 shaderStr += std::string("\
3714 \n scalar.r = scalar.r * in_volume_scale[0].r + in_volume_bias[0].r;\
3715 \n scalar = vec4(scalar.r);");
3716 }
3717 else
3718 {
3719 // handle bias and scale
3720 shaderStr += std::string("\
3721 \n scalar = scalar * in_volume_scale[0] + in_volume_bias[0];");
3722 }
3723
3724 // Assumeing single component scalar for label texture lookup.
3725 // This can be extended to composite color obtained from all components
3726 // in the scalar array.
3727 return shaderStr + std::string("\
3728 \nif (in_maskBlendFactor == 0.0)\
3729 \n {\
3730 \n g_srcColor.a = computeOpacity(scalar);\
3731 \n if (g_srcColor.a > 0)\
3732 \n {\
3733 \n g_srcColor = computeColor(scalar, g_srcColor.a);\
3734 \n }\
3735 \n }\
3736 \nelse\
3737 \n {\
3738 \n float opacity = computeOpacity(scalar);\
3739 \n // Get the mask value at this same location\
3740 \n vec4 maskValue = texture3D(in_mask, g_dataPos);\
3741 \n maskValue.r = maskValue.r * in_mask_scale + in_mask_bias;\
3742 \n // Quantize the height of the labelmap texture over number of labels\
3743 \n if (in_labelMapNumLabels > 0)\
3744 \n {\
3745 \n maskValue.r =\
3746 \n floor(maskValue.r * in_labelMapNumLabels) /\
3747 \n in_labelMapNumLabels;\
3748 \n }\
3749 \n else\
3750 \n {\
3751 \n maskValue.r = 0.0;\
3752 \n }\
3753 \n if(maskValue.r == 0.0)\
3754 \n {\
3755 \n g_srcColor.a = opacity;\
3756 \n if (g_srcColor.a > 0)\
3757 \n {\
3758 \n g_srcColor = computeColor(scalar, g_srcColor.a);\
3759 \n }\
3760 \n }\
3761 \n else\
3762 \n {\
3763 \n g_srcColor = texture2D(in_labelMapTransfer,\
3764 \n vec2(scalar.r, maskValue.r));\
3765 \n if (g_srcColor.a > 0)\
3766 \n {\
3767 \n g_srcColor = computeLighting(g_srcColor, 0, maskValue.r);\
3768 \n }\
3769 \n if (in_maskBlendFactor < 1.0)\
3770 \n {\
3771 \n vec4 color = opacity > 0 ? computeColor(scalar, opacity) : vec4(0);\
3772 \n g_srcColor = (1.0 - in_maskBlendFactor) * color +\
3773 \n in_maskBlendFactor * g_srcColor;\
3774 \n }\
3775 \n }\
3776 \n }");
3777 }
3778}
3779
3780//--------------------------------------------------------------------------
3781inline std::string RenderToImageDeclarationFragment(
3782 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol))
3784 return std::string("uniform bool in_clampDepthToBackface;\n"
3785 "vec3 l_opaqueFragPos;\n"
3786 "bool l_updateDepth;\n");
3787}
3788
3789//--------------------------------------------------------------------------
3790inline std::string RenderToImageInit(
3791 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol))
3792{
3793 return std::string("\
3794 \n l_opaqueFragPos = vec3(-1.0);\
3795 \n if(in_clampDepthToBackface)\
3796 \n {\
3797 \n l_opaqueFragPos = g_dataPos;\
3798 \n }\
3799 \n l_updateDepth = true;");
3800}
3801
3802//--------------------------------------------------------------------------
3803inline std::string RenderToImageImplementation(
3804 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol))
3805{
3806 return std::string("\
3807 \n if(!g_skip && g_srcColor.a > 0.0 && l_updateDepth)\
3808 \n {\
3809 \n l_opaqueFragPos = g_dataPos;\
3810 \n l_updateDepth = false;\
3811 \n }");
3812}
3813
3814//--------------------------------------------------------------------------
3815inline std::string RenderToImageExit(
3816 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol))
3817{
3818 return std::string("\
3819 \n if (l_opaqueFragPos == vec3(-1.0))\
3820 \n {\
3821 \n gl_FragData[1] = vec4(1.0);\
3822 \n }\
3823 \n else\
3824 \n {\
3825 \n vec4 depthValue = in_projectionMatrix * in_modelViewMatrix *\
3826 \n in_volumeMatrix[0] * in_textureDatasetMatrix[0] *\
3827 \n vec4(l_opaqueFragPos, 1.0);\
3828 \n depthValue /= depthValue.w;\
3829 \n gl_FragData[1] = vec4(vec3(0.5 * (gl_DepthRange.far -\
3830 \n gl_DepthRange.near) * depthValue.z + 0.5 *\
3831 \n (gl_DepthRange.far + gl_DepthRange.near)), 1.0);\
3832 \n }");
3833}
3834
3835//--------------------------------------------------------------------------
3836inline std::string DepthPassInit(
3837 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol))
3838{
3839 return std::string("\
3840 \n vec3 l_isoPos = g_dataPos;");
3841}
3842
3843//--------------------------------------------------------------------------
3844inline std::string DepthPassImplementation(
3845 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol))
3846{
3847 return std::string("\
3848 \n if(!g_skip && g_srcColor.a > 0.0)\
3849 \n {\
3850 \n l_isoPos = g_dataPos;\
3851 \n g_exit = true; g_skip = true;\
3852 \n }");
3853}
3854
3855//--------------------------------------------------------------------------
3856inline std::string DepthPassExit(
3857 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol))
3858{
3859 return std::string("\
3860 \n vec4 depthValue = in_projectionMatrix * in_modelViewMatrix *\
3861 \n in_volumeMatrix[0] * in_textureDatasetMatrix[0] *\
3862 \n vec4(l_isoPos, 1.0);\
3863 \n gl_FragData[0] = vec4(l_isoPos, 1.0);\
3864 \n gl_FragData[1] = vec4(vec3((depthValue.z/depthValue.w) * 0.5 + 0.5),\
3865 \n 1.0);");
3866}
3867
3868//---------------------------------------------------------------------------
3869inline std::string WorkerImplementation(
3870 vtkRenderer* vtkNotUsed(ren), vtkVolumeMapper* vtkNotUsed(mapper), vtkVolume* vtkNotUsed(vol))
3871{
3872 return std::string("\
3873 \n initializeRayCast();\
3874 \n castRay(-1.0, -1.0);\
3875 \n finalizeRayCast();");
3876}
3877
3878//---------------------------------------------------------------------------
3879inline std::string ImageSampleDeclarationFrag(
3880 const std::vector<std::string>& varNames, size_t usedNames)
3881{
3882 std::string shader = "\n";
3883 for (size_t i = 0; i < usedNames; i++)
3884 {
3885 shader += "uniform sampler2D " + varNames[i] + ";\n";
3886 }
3887 return shader;
3888}
3889
3890//---------------------------------------------------------------------------
3891inline std::string ImageSampleImplementationFrag(
3892 const std::vector<std::string>& varNames, size_t usedNames)
3893{
3894 std::string shader = "\n";
3895 for (size_t i = 0; i < usedNames; i++)
3896 {
3897 std::stringstream ss;
3898 ss << i;
3899 shader += " gl_FragData[" + ss.str() + "] = texture2D(" + varNames[i] + ", texCoord);\n";
3900 }
3901 shader += " return;\n";
3902 return shader;
3903}
3904VTK_ABI_NAMESPACE_END
3905}
3906
3907#endif // vtkVolumeShaderComposer_h
3908// VTK-HeaderTest-Exclude: vtkVolumeShaderComposer.h
virtual vtkPlaneCollection * GetClippingPlanes()
Get/Set the vtkPlaneCollection which specifies the clipping planes.
virtual vtkTypeBool GetParallelProjection()
Set/Get the value of the ParallelProjection instance variable.
static vtkDataSet * SafeDownCast(vtkObjectBase *o)
vtkUnsignedCharArray * GetCellGhostArray()
Get the array that defines the ghost type of each cell.
vtkUnsignedCharArray * GetPointGhostArray()
Gets the array that defines the ghost type of each point.
virtual vtkTypeBool GetUseDepthPass()
If UseDepthPass is on, the mapper will use two passes.
virtual vtkTypeBool GetUseJittering()
If UseJittering is on, each ray traversal direction will be perturbed slightly using a noise-texture ...
static vtkGPUVolumeRayCastMapper * SafeDownCast(vtkObjectBase *o)
int GetInputCount()
Number of currently active ports.
virtual float GetVolumetricScatteringBlending()
This parameter controls the blending between surfacic approximation and volumetric multi-scattering.
topologically and geometrically regular array of data
abstract interface for implicit functions
virtual vtkTypeBool IsA(const char *type)
Return 1 if this class is the same type of (or a subclass of) the named class.
OpenGL implementation of volume rendering through ray-casting.
static vtkOpenGLGPUVolumeRayCastMapper * SafeDownCast(vtkObjectBase *o)
std::map< int, vtkVolumeInputHelper > VolumeInputMap
static vtkRectilinearGrid * SafeDownCast(vtkObjectBase *o)
abstract specification for renderers
Definition vtkRenderer.h:62
vtkCamera * GetActiveCamera()
Get the current camera.
Hold a reference to a vtkObjectBase instance.
Abstract class for a volume mapper.
virtual bool GetComputeNormalFromOpacity()
If enabled, the volume(s) whose shading is enabled will use the gradient of opacity instead of the sc...
virtual vtkDataSet * GetInput()
Set/Get the input data.
virtual vtkTypeBool GetCropping()
Turn On/Off orthogonal cropping.
virtual int GetBlendMode()
Set/Get the blend mode.
represents the common properties for rendering a volume.
virtual int GetDisableGradientOpacity(int index)
Enable/Disable the gradient opacity function for the given component.
virtual float GetScatteringAnisotropy()
Get/Set the volume's scattering anisotropy.
virtual int GetUseClippedVoxelIntensity()
Set/Get whether to use a fixed intensity value for voxels in the clipped space for gradient calculati...
bool HasGradientOpacity(int index=0)
Check whether or not we have the gradient opacity.
int GetShade(int index)
Set/Get the shading of a volume.
virtual int GetTransferFunctionMode()
Color-opacity transfer function mode.
Creates and manages the volume texture rendered by vtkOpenGLGPUVolumeRayCastMapper.
represents a volume (data & properties) in a rendered scene
Definition vtkVolume.h:40
virtual vtkVolumeProperty * GetProperty()
Set/Get the volume property.
@ position
Definition vtkX3D.h:261
@ string
Definition vtkX3D.h:490
std::string ClippingDeclarationFragment(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol))
std::string ComputeGradientOpacity1DDecl(vtkVolume *vol, int noOfComponents, int independentComponents, std::map< int, std::string > gradientTableMap)
std::string WorkerImplementation(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string TerminationExit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ClippingDeclarationVertex(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string TerminationImplementation(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ComputeDensityGradientDeclaration(vtkOpenGLGPUVolumeRayCastMapper *mapper, vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs, int noOfComponents, int independentComponents, int useGradYAxis)
std::string BinaryMaskDeclaration(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol), vtkImageData *maskInput, vtkVolumeTexture *mask, int vtkNotUsed(maskType))
std::string PickingIdLow24PassExit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string CroppingDeclarationFragment(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol))
std::string ComputeLightingDeclaration(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vol, int noOfComponents, int independentComponents, int totalNumberOfLights, int numberPositionalLights, bool defaultLighting)
std::string PhaseFunctionDeclaration(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vol)
std::string ComputeColorDeclaration(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol), int noOfComponents, int independentComponents, std::map< int, std::string > colorTableMap)
std::string CroppingImplementation(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol))
std::string ShadingExit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol), int noOfComponents, int independentComponents=0)
std::string BaseExit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ComputeOpacityMultiDeclaration(vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs)
std::string BaseDeclarationVertex(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol), bool multipleInputs)
std::string ComputeTextureCoordinates(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string DepthPassInit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string TerminationInit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vol)
std::string ComputeMatricesInit(vtkOpenGLGPUVolumeRayCastMapper *vtkNotUsed(mapper), int numberPositionalLights)
std::string RenderToImageInit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ComputeClipPositionImplementation(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string RenderToImageImplementation(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ComputeOpacityDeclaration(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol), int noOfComponents, int independentComponents, std::map< int, std::string > opacityTableMap)
std::string PreComputeGradientsImpl(vtkRenderer *vtkNotUsed(ren), vtkVolume *vtkNotUsed(vol), int noOfComponents=1, int independentComponents=0)
std::string ClippingExit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ComputeGradientDeclaration(vtkOpenGLGPUVolumeRayCastMapper *mapper, vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs)
std::string PickingIdHigh24PassExit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string TerminationDeclarationVertex(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string PickingActorPassExit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string RenderToImageDeclarationFragment(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string BaseDeclarationFragment(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs, int totalNumberOfLights, int numberPositionalLights, bool defaultLighting, int noOfComponents, int independentComponents)
std::string BaseImplementation(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol))
std::string RenderToImageExit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ShadingDeclarationVertex(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ShadingSingleInput(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol), vtkImageData *maskInput, vtkVolumeTexture *mask, int maskType, int noOfComponents, int independentComponents=0)
std::string ShadingMultipleInputs(vtkVolumeMapper *mapper, vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs)
std::string CompositeMaskDeclarationFragment(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol), vtkImageData *maskInput, vtkVolumeTexture *mask, int maskType)
std::string ComputeColorUniforms(vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs, int noOfComponents, vtkVolumeProperty *volProp)
std::string ComputeRayDirectionDeclaration(vtkRenderer *ren, vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol), int vtkNotUsed(noOfComponents))
std::string ImageSampleDeclarationFrag(const std::vector< std::string > &varNames, size_t usedNames)
std::string BaseInit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs, bool defaultLighting)
std::string DepthPassImplementation(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string GradientCacheDec(vtkRenderer *vtkNotUsed(ren), vtkVolume *vtkNotUsed(vol), vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs, int independentComponents=0)
std::string Transfer2DDeclaration(vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs)
std::string ClippingImplementation(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string CroppingDeclarationVertex(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ComputeRGBA2DWithGradientDeclaration(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol), int noOfComponents, int independentComponents, std::map< int, std::string > opacityTableMap, int useGradient)
std::string ComputeColorMultiDeclaration(vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs, bool useGradientTF)
std::string ImageSampleImplementationFrag(const std::vector< std::string > &varNames, size_t usedNames)
std::string CroppingInit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol))
std::string CompositeMaskImplementation(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol), vtkImageData *maskInput, vtkVolumeTexture *mask, int maskType, int noOfComponents)
std::string ComputeColor2DYAxisDeclaration(int noOfComponents, int vtkNotUsed(independentComponents), std::map< int, std::string > colorTableMap)
std::string CroppingExit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ClippingInit(vtkRenderer *ren, vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol))
std::string ComputeLightingMultiDeclaration(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vol, int noOfComponents, int independentComponents, int vtkNotUsed(totalNumberOfLights), bool defaultLighting)
std::string TerminationDeclarationFragment(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ShadingDeclarationFragment(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol))
std::string PickingActorPassDeclaration(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ShadingInit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *mapper, vtkVolume *vtkNotUsed(vol))
std::string BinaryMaskImplementation(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol), vtkImageData *maskInput, vtkVolumeTexture *mask, int maskType)
std::string DepthPassExit(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol))
std::string ComputeOpacity2DDeclaration(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol), int noOfComponents, int independentComponents, std::map< int, std::string > opacityTableMap, int useGradient)
std::string ComputeOpacityEvaluationCall(vtkOpenGLGPUVolumeRayCastMapper *vtkNotUsed(mapper), vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs, int noOfComponents, int independentComponents, int useGradYAxis, std::string position, bool requestColor=false)
std::string ComputeColor2DDeclaration(vtkRenderer *vtkNotUsed(ren), vtkVolumeMapper *vtkNotUsed(mapper), vtkVolume *vtkNotUsed(vol), int noOfComponents, int independentComponents, std::map< int, std::string > colorTableMap, int useGradient)
std::string ComputeGradientOpacityMulti1DDecl(vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs)
std::string ComputeVolumetricShadowDec(vtkOpenGLGPUVolumeRayCastMapper *mapper, vtkVolume *vtkNotUsed(vol), int noOfComponents, int independentComponents, vtkOpenGLGPUVolumeRayCastMapper::VolumeInputMap &inputs, int useGradYAxis)